Föld mágneses tere . ionoszférában magnetoszférának (napszél A Napból érkező részecskesugárzás napszél,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Föld mágneses tere . ionoszférában magnetoszférának (napszél A Napból érkező részecskesugárzás napszél,"

Átírás

1 A Föld mágneses tere A földi mágneses tér eredetét a magas vas és nikkel tartalmú, olvadt külső földmagnak a szilárd Földhöz viszonyított forgásában kereshetjük. A mag áramlásai révén örvényáramok keletkeznek, az örvényáramok pedig kiterjedt mágneses teret gerjesztenek, a mágneses dipóluséhoz (mágnes rúdéhoz) hasonló teret hoznak létre. A Föld mágneses tere 90%-ban felel meg egy ilyen dipólus térnek, a többi a magban lejátszódó ismeretlen hatások, a kéreg változó összetételének és a külső kozmikus hatásoknak a következménye. Bolygónk esetében a két pólus az Északi- és Déli-sark közelében található. A mágneses pólusokat összekötő képzeletbeli tengely nagyjából 11,3 -kal tér el a bolygó forgástengelyétől, ezt a jelenséget mágneses elhajlásnak nevezzük. (A pólusok vándorlásáról itt olvashat: A Föld légköre a felszín közelében semleges atomokból és molekulákból áll, azaz elektromosan szigetelő. Nagyobb magasságokban a napsugárzás hatására egyre nagyobb mértékben ionizálódik, s ezzel nő az elektromos vezetőképessége. Az ún. ionoszférában, kb.90 km felett az ionizáció már számottevő, és éjjelnappal fennmarad, mert a légkör itt már oly ritka, hogy a rekombinációnak egy napnál hosszabb időre volna szüksége a nappal keletkezett ionok és elektronok eltüntetésére. A magasság további növelésével a légkör tovább ritkul, s az ionizált gáz hányada növekszik. Az ionoszféra felett, kb km-től kezdve a légkör teljesen ionizáltnak tekinthető, s ritkasága miatt a részecskék ütközései is elhanyagolhatók. A részecskemozgást itt főként a mágneses tér határozza meg, ezért a felső légkörnek ezt a részét magnetoszférának nevezzük. Benne a légkört lényegében protonokból és elektronokból állónak tekinthetjük. Összetételét tekintve a földi légkör folytonosan olvad bele az interplanetáris tér anyagába. A Föld mágneses tere a felszínen, s felette is néhány földsugárnyi távolságig jó közelítéssel dipólusnak tekinthető, viszont ettől kifelé már nem hasonlít a dipólus térhez, ráadásul erővonalai (magnetoszféra erővonalai) nem nyúlnak a végtelenbe: a magnetoszférának határozott külső határa állapítható meg. A bolygónk dipólterét torzító és lehatároló hatások nagyrészt az interplanetáris tér plazmájának áramlásától (napszél) nyerik eredetüket. A Napból érkező részecskeáram és a földi mágneses tér kölcsönhatására először a napkitöréseket (flereket) követő ún. mágneses viharok hívták fel a figyelmet. A kitörést követően kb. egy nap múlva a Föld felszínén mágneses vihar keletkezhet, ami mindenekelőtt a mágneses térerősség ingadozását jelenti. Minthogy a flerek hatásai kb. egynapos késéssel jelentkeznek a Földön, kézenfekvő volt feltenni, hogy e hatásokat korpuszkuláris sugárzás, pontosabban a fler által kidobott plazmacsomag közvetíti. A Nap-Föld távolságból kiszámítható, hogy ez a plazmacsomag km/s sebességgel mozog az interplanetáris térben. A Napból nem csak a flerek idején távozik plazma, hanem állandóan, s ez a folytonos részecskeáram az egész Naprendszert kitölti. Jelenlétét az üstökösök csóvájának magyarázatára már régebben feltételezték. A Napból érkező részecskesugárzás összefoglaló elnevezése a napszél, melynek alkotói 87 % proton és elektron; 12 % - részecske (He atommag); 1 % nehezebb atommag. A napszél sűrűsége a Föld távolságában kb. 5 proton/cm 3. Áramlási sebessége a Föld pályánál 200 és 700 km/s között változik, nyugodt naptevékenységi időszakban átlagosan 320 km/s. A napszelet alkotó részecskék spirális pályákon érkeznek a Napból a Földre. A Földet elérő anyag bolygónkról nézve nem a Nap látszólagos irányából jönnek, hanem nyugatabbról. A spirálist a Nap általános mágneses tere határozza meg, ami együtt forog csillagunkkal. (Az ábra szemlélteti a Nap mágneses terét, benne a bolygókkal.)

2 A Föld mágneses terének szerkezete Amint a napszél áramlása a magnetoszférába ütközik, egy lökéshullámfront alakul ki a magnetoszféra előtt 2-3 földsugárnyi távolságban, és a Napból érkező plazma áram eltérül, a napszél a földi erővonalakat a nappal szemközti oldalon összenyomja, az átellenes oldalon pedig az erővonalakhoz kötött, töltött részecskékkel együtt több millió kilométerre elfújja. A Föld mágneses erővonalai egy hosszan elnyúló, csóvaszerű "üregbe", a magnetoszféra-üregbe szorulnak. Ezt az üreget a napszél körülfolyja, nem hatol belé. Az üreg határa a magnetopauza egy vékony határréteg, a magnetoszféra méreteihez képest felületnek tekinthető (vastagsága 100 km körüli). A magnetopauza a Nap irányába nyugodt időszakban kb. 10 földsugárnyi távolságban ( km) húzódik, a Nappal ellentett oldalon azonban több száz földsugárnyi messzeségbe nyúlik ki, s itt már nincs éles határa az interplanetáris tér felé. A magnetoszféra a napszél számára áthatolhatatlan akadályt jelent. A mágneses tér meggátolja, hogy a napszél töltött részecskéi szabadon a Föld légkörébe jussanak, és megakadályozza azt is, hogy a napszél a felső légkört elsodorja. Képletesen azt mondhatjuk, hogy a mágneses tér egyensúlyt tart a napszél nyomásával. Ezt az egyensúlyi felületet hívjuk magnetopauzának. A magnetopauza olyan felület, melyen töltött részecskék csak különleges folyamatok révén juthatnak át, így mint egy tartály magába zárja a Föld légkörét olyan magasságban, ahol azt már a gravitáció képtelen lenne tartósan megtartani. A magnetoszférában az ionizált gázt már nem a gravitáció, hanem a geomágneses tér tartja meg. Ha Naprendszerünkben szétnézünk, azt találjuk, hogy ebben a tekintetben még az ún. Föld-típusú bolygók is elég nagy eltéréseket mutatnak. A Vénusznak egyáltalán nincs mágneses tere, ennek oka az lehet, hogy forgása rendkívül lassú. Másik szomszédunknak, a Marsnak ugyan van, de az a Földéhez viszonyítva csekély, vélhetően csak a szilárd kőzetek maradék mágnesezettségéből ered. (A Marsnak feltehetőleg nincs olyan belső magja, mint a Földnek.) Amikor nincs napkitörés, a földi mágneses mező eltéríti a napszelet bolygónktól. A Föld mágneses mezejét leginkább úgy képzelhetjük el, mint egy folyóból kiálló szikla és a folyó vizének kapcsolatát - a sziklához közel, de még előtte kitér a víz, a szikla mögött viszont hosszan elnyúló farvize alakul ki az áramlatnak. Ha egy papírcsónakot engedünk az áramlatba, látható, hogy szemből a sziklához érve nem ütközik a sziklának, hanem annak valamelyik oldalát megkerülve elúszik a szikla mögé, majd a farvizén úszik tovább. (A szikla farvizében ráadásul örvények alakulnak ki, amelyek a kis hajócskát kitéríthetik egyenes útjáról.) Hasonló viselkedést tapasztaltak a földmágnesség és a napszél kapcsolatrendszerében is, a csóvában a védőernyő belsejébe jutott napszél nem feltétlenül éri el a földi légkör felső rétegeit, hanem a Föld mögé kerülve úszik tovább.

3 A sarki fény keletkezése A naptevékenységnek talán az egyik leglátványosabb földi hatása a sarki fény, melyet a két pólus közében figyelhetünk meg. Maga a jelenség egy pólus középpontú ovális mentén keletkezik. Átlagos távolsága a mágneses pólusoktól 4000 km. A sarki fényes éjszakák száma a 67. fok környékén a legnagyobb, itt a sarki fényes éjszakák száma eléri a 300-at, míg Magyarországon ez a szám 1 és 5 közé esik, és intenzitása is sokkal kisebb. Leginkább március április és szeptember október között figyelhető meg. A sarki fény (az északi féltekén aurora borealis, délen aurora australis, nevét a római hajnalistennő Aurora nevéből alkották), a Föld északi és déli sarkánál, a megnetoszféra poláris tölcséreinél a légkör sűrűbb rétegeibe behatoló töltött részecskék (elsősorban protonok és elektronok) által keltett időleges fényjelenség. A magnetoszfárába behatoló, az erővonalak mentén mozgó, felgyorsuló, részecskék ütköznek a légkör atomjaival, molekuláival. Az ütközés által gerjesztett atomok fénykibocsátás mellett visszanyerik eredeti energiaszintjüket. A kibocsátott fény az atomra vagy molekulára jellemző színű. A színkép látható tartományában elsősorban az oxigén zöld és vörös, valamint a nitrogénmolekulák kékesibolya vonalai jelentkeznek. A sarki fény az ultraibolya tartományban is érzékelhető. A jelenség km magasságban fordul elő, de leggyakrabban 100 km körüli magasságban figyelhető meg. Töltött részecskék mozgása az erővonalak mentén (Lorentz - erő) mágneses tér (magnetoszféra) Nap sarki fény keletkezése napszél Föld sűrűbb légkör A sarki fény kialakulásának helyét nyilván a magnetoszféra alakja, az erővonalak sűrűsége határozza meg, általában a mágneses pólust övező ovális gyűrűben látható - illetve a nagy légköri magassága miatt sokkal távolabbról is, mint a kialakulás alatti pont. Az ovális volta a magnetoszféránk napfelőli és ellentétes oldalon történő torzulásának köszönhető: a Föld nappali oldalán közelebb van a mágneses pólushoz, az éjjeli oldalán távolabb.

4 Műholdról készült felvételek tanúsága szerint a jelenség fénygyűrűként, glóriaként veszi körül a mágneses pólust. Ilyen ábrán látható a sarki fény aktuális helyzete ITT Sarki fények a Discovery űrsiklóról készült képen Természetesen a behatoló részecskék száma és így a sarki fény láthatósága elsősorban a napszél erősségével, azaz a Napunk aktivitásával van kapcsolatban. Erős naptevékenységet követően, mágneses viharok idején megváltozik a magnetoszféra szerkezete, ilyenkor a sarki fény alacsonyabb szélességi körökön, így nagyon ritkán Magyarországon is megfigyelhető. Jelenleg még tart a naptevékenység minimuma, esélyesek a maximum ideje táján leszünk hazai megfigyelésre - természetesen nagy napkitörés bármikor kialakulhat, de az előfordulása maximum idején gyakori. Legközelebb ban lesz naptevékenységi maximum, ekkoriban ismét nagyobb esély lesz hazai auróra-észlelésre. Sebők György fotója 1991-ben a bakonyi Ráktanyáról készült Novák András fotója november 20-án készült Veszprémből A sarki fény formái változatosak, állandóan változnak, gyakran függönyre, ívelt szalagokra emlékeztetnek vagy sugaras szerkezetűek. A sarki fénynek 5 formája ismert: folt-forma: kisméretű fényjelenségek, ív-forma: enyhén görbülő szalagok, sáv-forma: csomós vagy ráncos, sugár-forma: egyenes fénynyalábok, amelyek a Föld mágneses erővonalait követik, fátyol-forma: diffúz, nagy kiterjedésű fénylések.

5 Sarki fények a Szaturnusz, a Jupiter, az Uránusz és az Io felett (ebben a sorrendben), a felvételek nem látható fény tartományában, hanem ibolyántúliban és infravörösben készültek. Akik a sarki fények iránt érdeklődve szeretnének tudni egy-egy várható eseményről, megtehetik ezen az oldalon, illetve a következő oldalon. Ez utóbbin csodás képgaléria is várja a sarki fények szerelmeseit.

6 Mi mindenre hatnak a napkitörések és a geomágneses viharok? A napszél és a Föld kölcsönhatásaiból a sarki fényeken kívül sokáig semmi egyebet nem érzékeltünk. Amióta a technikai fejlettségünkhöz hozzátartozik az elektromosság használata, majd később az űrhajózás, kiderült, hogy a napkitörések energiái sok egyéb, számunkra immáron bonyodalmas jelenséget is okoznak. A Föld felső légkörében az ún. ionoszférában a naptevékenységgel párhuzamosan változások mutatkoznak. Ez nem is csoda, mert ezekhez az igen ritka, elektromosan töltött gázból álló rétegeknek a létrehozásában a Nap ibolyántúli és röntgensugárzása játszik döntő szerepet. A rövidhullámú sugárzás ionizálja a felsőlégkört, így alakul ki az ionoszféra. Ennek fontos gyakorlati jelentősége van a rövidhullámú rádiózás szempontjából, ugyanis nagyon jelentős a rádióhullámok visszaverődése az ionoszféráról. A rádióadásokat ne csak hírek és zenehallgatás képében képzeljük el, hanem távközlési kommunikációs és navigációs eszközként is, hajók, repülőgépek, stb. fedélzetén. Ezért kell mindig úgy megválasztani a hullámhosszakat, hogy a visszaverődés megfelelő legyen, de az elnyelés ne legyen túl nagy. Mára a fontos rádiókommunikáció műholdas rendszereken keresztül folyik, s a használt frekvenciák okán e sugárzást nem befolyásolja az ionoszféra állapota. A napkitörések, flerek az ibolyántúli részen többszörös, a röntgentartományban pedig már több nagyságrendnyi sugárzásnövekedést okoznak. Erre az ionoszféra érzékenyen reagál. A röntgensugárzás hatására megnő a D-réteg ionizációja, ami erőteljes elnyeléshez vezet a rövidhullámok tartományában (fading). Ugyanakkor a megnövekedett ionizáció miatt az ionoszféra olyan ultrarövid hullámokat is visszaver, amelyeket egyébként átengedne. Hasonló következmény, hogy a közepes szélességeken megnövekszik a nagyon nagy (kb.10 km) hullámhosszúságú légköri rádiózaj erőssége. Ezt a zajt az állandó trópusi zivatarok villámai keltik, s az ionoszféra D-rétegéről visszaverődve jutnak el hozzánk. A fenti zavarokat a flerek elektromágneses sugárzása okozza, amely minden, a Nap felénk forduló félgömbjén látható flerből elér a Földre, és a fénysugárzással egyidejűleg érkezik. Az úgynevezett geomágneses vihar jelensége akkor alakul ki, ha a napkitörések során nagyenergiájú napszél találkozik a Föld mágneses mezejével, s a Föld ionoszférájában folyó elektronáramlatokat megzavarja. Napkitörés alkalmával a plazmaáramlat eltorzítja a Föld mágneses mezejét, bolygónk amúgy is üstökös formát öltő magnetoszférája még jobban összenyomódik, a plazma beérkezése helyén megemelkedik a mágneses térerősség, áram indukálódik. Ahol ez illetve hatása a mi érzékeny elektromos berendezéseinkkel találkozik, ott túláram keletkezik, ami tönkreteheti a berendezéseket. Egy elektromos távvezeték (telefonkábel, stb.) esetében magában a távvezetékben is indukálódhat a áram, akár már kis geomágneses aktivitás hatására is. Az ilyen jellegű megfigyelések már a múlt században kezdődtek, mikor kiépültek a telegráfvezetékek. Ez törvényszerűen vonja maga után azt, hogy Tehát az erővonalak közelebb kerülnek egymáshoz, amely végső soron térerősség-növekedéshez vezet ben megfigyelték, hogy sarki fény idején, azaz mágneses viharban hiába kapcsolták le a hálózatot a feszültségforrásról, a hálózat a lekapcsolásra fittyet hányva működik tovább. Fölfigyeltek arra is, hogy a vezetékben indukált áram ingadozásai összefüggésben állnak a sarki fény intenzitásának ingadozásával. A nagyobb napkitörések által kiváltott geomágneses viharok néha egészen megdöbbentő hatásokat hoznak létre ezekben a vezetékekben. Az január között lejátszódó geomágneses vihar például az USA-t Skóciával összekötő Transzatlanti vezetékben 2700 V-os feszültséget indukált. Ennek hatására több városban szinte teljesen összeomlott a telekommunikációs hálózat. Geomágneses viharban tönkrement transzformátor Érdekes adalék, hogy az sem mindegy, milyen az elektromos távvezetékek alatti kőzet, az altalaj. Ahol ugyanis magma eredetű, vulkanikus kőzetek vannak, amely kőzetek ellenállása nagy, a geomágneses vihar alkalmával keletkező áram hajla-

7 mos inkább a távvezetékeken át "közlekedni", máshol, ahol a kőzetek ellenállása kisebb, a talajban vezetődik az áram. Az erős geomágneses viharok hatására a magas feszültségű hálózatok is furcsa viselkedést produkálnak ban Torontóban geomágneses vihar következtében megsemmisült az áramelosztó rendszer, aminek hosszabb áramkimaradás lett a következménye. Hasonló eset történt 1972 szeptemberében az USA-ban, amikor a nagy napaktivitás hatására a túlterhelődött transzformátorok felmondták a szolgálatot. A legutolsó nagy geomágneses aktivitás 1989-ben volt, melynek hatására némely kanadai telefonhálózat vezetékében A erősségű indukált áramot mértek. A távvezetékekhez hasonlóan a felszíni csővezetékekben is indukálódhat áram a mágneses viharok alkalmával. Ezeket a vezetékeket úgy védik a korrózió ellen, hogy a vezetéken áramot vezetnek keresztül. A védőáramot szolgáltató és ellenőrző berendezések a geomágneses háborgások alatt túlterhelésnek lehetnek kitéve. Jó példa erre az Alaszkában található, 1300 km-es kőolajvezeték, amelyben augusztus 5-én 85A nagyságú indukált áramot és V/km nagyságú térerősséget regisztráltak! Az 1989-es nagy áramkimaradást az USA északi államaiban és Kanadában is egy napkitörés számlájára írhatjuk A bolygónk körül keringő műholdakra is veszélyes a napkitörés, a finom műszerekben zárlatokat, elektromos kisüléseket okozhat, mivel a keringés során különböző töltésű régiókon halad keresztül a műhold, a töltött részecskék a járművet bombázva azt is feltöltik, az eltérő polaritású töltések között - akár a szonda felületén, akár a belsejében - kialakulnak a kisülések. A sugárzás hatására az űrjárművek érzékelői, adattárolói is sérülhetnek. Az űrhajósok, amennyiben napkitörés anyagának hozzájuk érkezése során épp űrsétát tennének, nagy sugárveszélynek lennének kitéve. Éppen ezért is próbálják a külső szerelési munkálatokat a naptevékenység minimum időszakára időzíteni. Akcióterv is létezik, mellyel a napkitörések idejére pl. a Nemzetközi Űrállomás legénységét utasítják, hogy azonnal fejezzenek be mindenféle kültéri tevékenységet (űrséta), húzódjanak az űrállomás Földhöz közelebbi részébe (a nagyenergiájú protonok nagy része elnyelődik, mire eléri őket). Milyen veszélyt jelenthet az űrhajósokra a napszél? A plazma, amely élő szervezettel találkozik, nagyenergiájú, ionizáló hatású részecskékből áll. Az ionizáló sugárzások - mint pl. a közismert radioaktivitás - az élő szervezetben akut és hosszú távú hatást is kifejtenek. Azonnali hatás lehet a szemben a szürke hályog kialakulása, különböző szervek működészavarai, ezek a besugárzás dózisától függenek. Hosszú távú hatás lehet a DNS elváltozás, amely rákos megbetegedéseket éppúgy eredményezhet, mint a szaporodás komplex problémáit. Ez utóbbi esetben nincs határérték, a bekövetkezés véletlenszerű, mivel egyéni érzékenység és

8 hajlam határozza meg, mikortól okoz elváltozást a sugárzás. A sugárzást elnyelő védőanyagok híján az űrsétát végzők vannak a legnagyobb veszélynek kitéve. Az 1989-es nagy napkitörés idején olyan nagy energiájú részecskék robogtak a világűrben, hogy egy feltételezett űrhajóst, aki akkor épp a Hold felszínén tartózkodott volna egy szál űrruhában, minden bizonnyal órák alatt megölt volna. Fokozott, ma még nem megoldott veszélyességi tényező a majdani bolygóközi utazások során az űrhajósokat érő sugárzásmennyiség, de attól tartok, ez sem a kedves olvasókat, sem engem nem érint. Néhány állat, amely a mágnesség alapján tájékozódik, mint pl. a postagalambok vagy egyéb vándormadarak, a delfinek, stb. tájékozódását veszti mágneses viharban. Ezen állatok közvetlenül a Föld mágneses mezejében bekövetkező hirtelen és nagy léptékű változásokat érzékelik, mivel rendelkeznek olyan magnetoszómákkal, amelyek kimondottan e célra fejlődtek ki bennük. Az ember nem rendelkezik a mágnességet érzékelő szervvel, sejtekkel, így mi direkt módon nem is vesszük észre a földi mágneses tér megváltozását. Érinthet viszont olyan légiút során a geomágneses viharban megnövekedett sugárzás bárkit, aki a sarki fények övezetében repül nagy magasságokban. Ez azonban csak extra erős viharban léphet fel, amikor ráadásnak a technológiát érintő okok miatt törölni szokták a légijáratokat. A gyakorlati valószínűsége tehát ennek is elhanyagolható. Miként lehet védekezni e hatások ellen? A műholdakat, ha van rá lehetőség, kikapcsolják (alvó üzemmódba állítják) napkitörések idején, hogy a lehető legkisebb sérülést szenvedjék el. Mivel a napkitörések során a bolygót elérő különféle sugárzások hatására a felső légkör felmelegszik és kitágul, az alacsonyabb pályákon keringő műholdakat ez lelassítja (sűrűbb közegben kell keringeniük), alacsonyabb pályára húzza le, akár a légkörbe zuhanásukat is okozhatja, ha nem időben magasabb pályára vezérelni őket ben a Skylab nevű egykori amerikai űrállomással is ez történt: a már használaton kívüli és megsemmisülésre váró Skylab nem a tervezett helyen lépett be a légkörbe (bár módosítottak a pályáján így is), mivel épp egy nagy napkitörés zajlott, amely miatt túl alacsony pályára állva az Indiai-óceán vize helyett Ausztrália nyugati vidékén értek földet a darabjai. Az egykorvolt Skylab A Napot figyelő-mérő SOHO űrszonda Addig, míg nem voltak űrszondáink, amelyek a Napról gyorsan és közvetlenül tudtak adatokat továbbítani, nem volt lehetőség sem a geomágneses viharok megfelelő előrejelzésére. Ma már egészen pontosan megjósolható, hogy egy-egy napkitörés lesz-e valamilyen hatással bolygónk életére, működésére, mérhető az áramló plazma sebessége és sűrűsége, az iránya (hogy a Föld felé jön-e, vagy elkerüli messzire). A SOHO űrszonda több, mint 10 éve szolgálja a földi környezet megóvását és a sarkifény-vadászok tevékenységét azzal, hogy naponta többször részletes információkkal, képekkel, mérési eredményekkel látja el a földi személyzetet. A SOHO adataiból azonnali információkat lehet látni az interneten is, illetve az érintett szervezetek külön értesítést is kapnak, ha megemelkednek az értékek és napkitörést észlel a műhold.

9 Kiegészítések, megjegyzések: Ezen írás elején említésre került, hogy a Napnak is van mágneses mezeje, amely együtt forog a Nappal. Csak megjegyezzük, hogy ennek változásai szoros összefüggést mutatnak a naptevékenységgel, a napfoltok kialakulásával, s hatással vannak még a földi időjárás alakulására is. De vajon Nap mágneses tere meddig terjed, vajon meg véd-e ez bennünket valamitől? Azt szokták mondani, hogy a Naprendszer határa ott van, ameddig a Nap gravitációs tere érvényesül. A Föld-Hold rendszer példájából kiindulva ez nyilván messzebb van, mint a mágneses tér (a helioszféra) határa. (A Hold keringése során csak időlegesen tartózkodik a földi magnetoszférán belül.) Mai tudásunk szerint a helioszféra és a galaktikus, csillagközi tér találkozásánál a földi magnetoszféra és a napszél kölcsönhatásához hasonló jelenségek játszódhatnak le. A kozmikus galaktikus sugárzás ismereteink szerint sokkal nagyobb energiájú részecskéket is tartalmaz, mint a napszél, tehát van mitől megvédeni bennünket. Az 1977-ben indított Voyager-1 űrszonda a híradások szerint elérte a naplégkör, a helioszféra határzónáját, amiről itt olvashat többet:http://web.interware.hu/valas/valas/hirek/astro/heliosph.htm

10 Még egy megjegyzés, ami csak arra vonatkozik, hogy a napszélen kívül elektromágneses hullámok is érkeznek a Napból (és a galaktikus térből is!) a Földhöz. Ezek egyik másika nem igazán van jó hatással az élő szervezetekre. Csak egy ábra, amely azt szemlélteti, hogy a légkörünk hogyan engedi át a különböző hullámokat, milyen magasságig ( mélységig ) hatolnak be a légkörbe. A Napból érkező elektromágneses hullámok spektruma és erőssége, mennyisége:

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER

A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER A FÖLD KÖRNYEZETE ÉS A NAPRENDSZER 1. Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. A fény terjedési sebessége: 300.000 km/s, így egy év alatt 60*60*24*365*300 000 km-t,

Részletesebben

A Naprendszer középpontjában a Nap helyezkedik el.

A Naprendszer középpontjában a Nap helyezkedik el. A Naprendszer középpontjában a Nap helyezkedik el. A NAPRENDSZER ÉS BOLYGÓI A Nap: csillag (Csillag = nagyméretű, magas hőmérsékletű, saját fénnyel rendelkező izzó gázgömb.) 110 földátmérőjű összetétele

Részletesebben

A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán

A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán A 35 éves Voyager őrszondák a napszél és a csillagközi szél határán Király Péter MTA Wigner Fizikai Kutatóközpont RMKI KFFO İsrégi kérdés: meddig terjedhet Napisten birodalma? Napunk felszíne, koronája,

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete

FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete FOGALOMTÁR 9. évfolyam I. témakör A Föld és kozmikus környezete csillag: csillagrendszer: Nap: Naprendszer: a Naprendszer égitestei: plazmaállapot: forgás: keringés: ellipszis alakú pálya: termonukleáris

Részletesebben

A szférák zenéjétől és az űridőjárásig. avagy mi a kapcsolat az Antarktisz és a műholdak között. Lichtenberger János

A szférák zenéjétől és az űridőjárásig. avagy mi a kapcsolat az Antarktisz és a műholdak között. Lichtenberger János A szférák zenéjétől és az űridőjárásig avagy mi a kapcsolat az Antarktisz és a műholdak között Lichtenberger János ELTE Geofizikai és Űrtudományi Tanszék Űrkutató Csoport Egy kis közvéleménykutatás 1.

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

A hétvégi vihar ismertetése

A hétvégi vihar ismertetése A hétvégi vihar ismertetése Zivatarlánc Szupercella Dió nagyságú jég Tuba Tornádó Jégeső Villámok Tatabánya Pécs felett Pécs felett Csontváry u. szombat 20:10 Köszönöm a kitartó figyelmet! ;) Készítette:

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

CSILLAGÁSZATI TESZT. 1. Csillagászati totó

CSILLAGÁSZATI TESZT. 1. Csillagászati totó CSILLAGÁSZATI TESZT Név: Iskola: Osztály: 1. Csillagászati totó 1. Melyik bolygót nevezzük a vörös bolygónak? 1 Jupiter 2 Mars x Merkúr 2. Melyik bolygónak nincs holdja? 1 Vénusz 2 Merkúr x Szaturnusz

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 27. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 27. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József

MATROSHKA kísérletek a Nemzetközi Űrállomáson. Kató Zoltán, Pálfalvi József MATROSHKA kísérletek a Nemzetközi Űrállomáson Kató Zoltán, Pálfalvi József Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló 2010 A Matroshka kísérletek: Az Európai Űrügynökség (ESA) dozimetriai programjának

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középszintű érettségi feladatsor Fizika Első rész Az alábbi kérdésekre adott válaszlehetőségek közül pontosan egy a jó. Írja be ennek a válasznak a betűjelét a jobb oldali fehér négyzetbe! (Ha szükséges,

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Űr-időjárási folyamatok a magnetoszférában

Űr-időjárási folyamatok a magnetoszférában Űr-időjárási folyamatok a magnetoszférában Lichtenberger János és Ferencz Csaba ELTE Geofizikai és Űrtudományi Tanszék Űrkutató Csoport Kérdések 1. Mi az űr-időjárás? Milyen űr-időjárási folyamatok vannak

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Thomson-modell (puding-modell)

Thomson-modell (puding-modell) Atommodellek Thomson-modell (puding-modell) A XX. század elejére világossá vált, hogy az atomban található elektronok ugyanazok, mint a katódsugárzás részecskéi. Magyarázatra várt azonban, hogy mi tartja

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Plazma elektron spray ionizáló rendszer

Plazma elektron spray ionizáló rendszer Plazma elektron spray ionizáló rendszer tartalom Ismertetés 2... Fő funkciók 5... Jellemzők 7... Üzemmódok és alkalmazás 9... Tesztek és tanúsítványok 10... Technikai adatok 12... Csomagolás 13... 1. Ismertetés

Részletesebben

AZ EGYENÁRAM HATÁSAI

AZ EGYENÁRAM HATÁSAI AZ EGYENÁRAM HATÁSAI 1) HŐHATÁS Az elektromos áram hatására a zseblámpa világít, mert izzószála felmelegszik, izzásba jön. Oka: az áramló elektronok kölcsönhatásba kerülnek a vezető helyhez kötött részecskéivel,

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

A NAPSUGÁRZÁS MÉRÉSE

A NAPSUGÁRZÁS MÉRÉSE A NAPSUGÁRZÁS MÉRÉSE A Napból érkező elektromágneses sugárzás Ø Terjedéséhez nincs szükség közvetítő közegre. ØHőenergiává anyagi részecskék jelenlétében alakul pl. a légkörön keresztül haladva. Ø Időben

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

Távérzékelés, a jöv ígéretes eszköze

Távérzékelés, a jöv ígéretes eszköze Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Elektromágneses sugárözönben élünk

Elektromágneses sugárözönben élünk Elektromágneses sugárözönben élünk Az Életet a Nap, a civilizációnkat a Tűz sugarainak köszönhetjük. - Ha anya helyett egy isten nyitotta föl szemed, akkor a halálos éjben mindenütt tűz, tűz lobog fel,

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

LX. évfolyam, 4. szám, 2014. április

LX. évfolyam, 4. szám, 2014. április LX. évfolyam, 4. szám, 2014. április A laboratory for specialist guidance on racing pigeons with more than 40 years of international experience, managed by Dr. H.J.M. de Weerd, veterinary surgeon for racing

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános Iskola Természetismeret Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli, szóbeli Követelmények, témakörök:

Részletesebben

Fizika vizsgakövetelmény

Fizika vizsgakövetelmény Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek

Részletesebben

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.

Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

1. A Szaturnusz plazmakörnyezetének kutatása, különös tekintettel a fejhullámra, és a köpenyben lejátszódó hullámjelenségek tanulmányozására.

1. A Szaturnusz plazmakörnyezetének kutatása, különös tekintettel a fejhullámra, és a köpenyben lejátszódó hullámjelenségek tanulmányozására. A kutatás témája, technikai és személyi feltételei Hosszú élettartamú űrszondák építése és rádioizotópos áramgenerátorok alkalmazása lehetővé tette a külső naprendszer helyszíni megfigyelését. A kutatás

Részletesebben

Irány az ûr! SZKA_210_17

Irány az ûr! SZKA_210_17 Irány az ûr! SZKA_210_17 TANULÓI IRÁNY AZ ÛR! 10. ÉVFOLYAM 205 KVÍZKÁRTYÁK 17/1A 1. Melyik bolygónak nincs légköre az alábbiak közül? A Jupiter C Vénusz B Merkur D Mars 2. Mennyi a CsE (csillagászati

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

Számítógépes programokkal a fenti mérőszámok alapján meghatározhatók adott frekvenciákon az összeköttetések lehetőségei.

Számítógépes programokkal a fenti mérőszámok alapján meghatározhatók adott frekvenciákon az összeköttetések lehetőségei. 3.15. Hullámterjedés 3.15.1. A Föld légköre és rétegei Az elektromágneses hullámok terjedésében nagy szerepet játszik a Föld légköre. A légkör alsó, kb. 11 km. magasságig terjedő szakasza a troposzféra.

Részletesebben

A MÁGNESES BOLYGÓK MAGNETOSZFÉRÁJA

A MÁGNESES BOLYGÓK MAGNETOSZFÉRÁJA A MÁGNESES BOLYGÓK MAGNETOSZFÉRÁJA 1 A NAPSZÉL ÉS AZ AKADÁLY SEMATIKUS KÖLCSONHATÁSA MILYEN KÉRDÉSEKET VIZSGÁLUNK? Melyek a makroszkópikus tartományok a magnetoszférában? E tartományokban melyek a jellemző

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

Aspektus könyvekben gyakran használt újszerű megfogalmazások szójegyzéke

Aspektus könyvekben gyakran használt újszerű megfogalmazások szójegyzéke Aspektus könyvekben gyakran használt újszerű megfogalmazások szójegyzéke A szószedetnek nem célja, új fizikai, kémiai értelmező szótár felállítása, ezért mindenekelőtt javasolja a Fizikai fogalomgyűjtemények

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 10. GPS, GPRS (mobilkommunikációs) ismeretek Helymeghatározás GPS rendszer alapelve GNSS rendszerek

Részletesebben

A Naprendszeri Változások Kivonat Richard Hoagland & David Wilcock irásából Sári Izabella fordításába

A Naprendszeri Változások Kivonat Richard Hoagland & David Wilcock irásából Sári Izabella fordításába A Naprendszeri Változások Kivonat Richard Hoagland & David Wilcock irásából Sári Izabella fordításába A Naprendszeri Változások Kivonat Richard Hoagland & David Wilcock irásából Sári Izabella fordításában

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2005. május 17. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Fizika középszint írásbeli vizsga

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

A meteorológia tárgya, a légkör. Bozó László egyetemi tanár, BCE Kertészettudományi Kar

A meteorológia tárgya, a légkör. Bozó László egyetemi tanár, BCE Kertészettudományi Kar A meteorológia tárgya, a légkör Bozó László egyetemi tanár, BCE Kertészettudományi Kar A légkör Az éghajlati rendszer A légkör "Az ember megismeréséhez tehát tudnunk kell, mi a magyarázata annak, hogy

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

A légkör mint erőforrás és kockázat

A légkör mint erőforrás és kockázat A légkör mint erőforrás és kockázat Prof. Dr. Mika János TÁMOP-4.1.2.A/1-11-1-2011-0038 Projekt ismertető 2012. november 22. Fejezetek 1. A légköri mozgásrendszerek térbeli és időbeli jellemzői 2. A mérsékelt

Részletesebben

A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László

A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László Összefoglalás A négy alapvető fizikai kölcsönhatás közül az elektromágneses kölcsönhatásnak van fontos szerepe a biológiában. Atomi és molekuláris

Részletesebben

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor MeviMR 3XC Magnetorezisztív járműérzékelő szenzor MeviMR3XC járműérzékelő szenzor - 3 dimenzióban érzékeli a közelében megjelenő vastömeget. - Könnyű telepíthetőség. Nincs szükség az aszfalt felvágására,

Részletesebben

A NEM MÁGNESES BOLYGÓK MAGNETOSZFÉRÁJA

A NEM MÁGNESES BOLYGÓK MAGNETOSZFÉRÁJA A NEM MÁGNESES BOLYGÓK MAGNETOSZFÉRÁJA A NAPSZÉL ÉS AZ AKADÁLY SEMATIKUS KÖLCSONHATÁSA A BOLYGÓK MAGNETOSZFÉRÁJA AZ ÉGITESTEK AKADÁLYT JELENTENEK A SZUPERSZÓNIKUSAN ÁRAMLÓ NAPSZÉLBEN. A KÖLCSÖNHATÁS JELLEGE

Részletesebben

A napenergia alapjai

A napenergia alapjai A napenergia alapjai Magyarország energia mérlege sötét Ahonnan származik Forrás: Kardos labor 3 A légkör felső határára és a Föld felszínére érkező sugárzás spektruma Nem csak az a spektrum tud energiát

Részletesebben

Az általános földi légkörzés. Dr. Lakotár Katalin

Az általános földi légkörzés. Dr. Lakotár Katalin Az általános földi légkörzés Dr. Lakotár Katalin A Nap a Földet egyenlőtlenül melegíti fel máskülönbség légkörzés szűnteti meg légnyo- lokális (helyi), regionális, egy-egy terület éghajlatában fontos szerepű

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok

Előadás menete. Magfúzióból nyerhető energia és az energiatermelés feltétele. Fúziós kutatási ágazatok Előadás menete Magfúzióból nyerhető energia és az energiatermelés feltétele Fúziós kutatási ágazatok Hőmérséklet és sűrűségmérés egyik módszere plazmafizikában a Thomson szórás Fúziós kutatás célja A nap

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középszintű érettségi feladatsor Fizika Első rész Az alábbi kérdésekre adott válaszleetőségek közül pontosan egy a jó. Írja be ennek a válasznak a betűjelét a jobb oldali feér négyzetbe! (Ha szükséges,

Részletesebben

CERN-i látogatás. A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit.

CERN-i látogatás. A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit. CERN-i látogatás Mágnesgyár A mágnesgyár az a hely,ahol a mágneseket tesztelik és nem igazán gyártják őket. Itt magyarázták el nekünk a gyorsító alkotórészeit. Ez a berendezés gyorsítja a részecskéket.,és

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum IR Az elektromágneses spektrum V Hamis színes felvételek Elektromágnes hullámok Jellemzők: Amplitúdó Hullámhossz E ~ A 2 / λ 2 Információ ~ 1/λ UV Összeállította: Juhász Tibor 2008 Függ a közegtől Légüres

Részletesebben

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése:

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése: Danás Miklós Elektrotechnikai alapismeretek - villamos alapfogalmak A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító

Részletesebben

1. Az egyenes vonalú mozgás. 2. Merev test egyensúlya. 3. Newton törvényei. 4. Munka, energia, teljesítmény, hatásfok

1. Az egyenes vonalú mozgás. 2. Merev test egyensúlya. 3. Newton törvényei. 4. Munka, energia, teljesítmény, hatásfok 1. Az egyenes vonalú mozgás Választhat az alábbi két kísérlet elvégzése közül: A. Igazolja, hogy a Mikola-csőben lévő buborék mozgása egyenes vonalú egyenletes! Számítsa ki a buborék sebességét két különböző

Részletesebben

Fizika 8. oszt. Fizika 8. oszt.

Fizika 8. oszt. Fizika 8. oszt. 1. Statikus elektromosság Dörzsöléssel a testek elektromos állapotba hozhatók. Ilyenkor egyik testről töltések mennek át a másikra. Az a test, amelyről a negatív töltések (elektronok) átmennek, pozitív

Részletesebben

4. osztályos feladatsor II. forduló 2014/2015. tanév

4. osztályos feladatsor II. forduló 2014/2015. tanév Iskola: 1 Csapatnév: 4. osztályos feladatsor II. forduló 2014/2015. tanév 1. Milyen mozgásokat végez a Föld? Töltsétek ki a táblázatot! Mozgás Mi körül? Időtartama Következménye 2. A repülőtéren összegyűltek

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

Ex Fórum 2009 Konferencia. 2009 május 26. robbanásbiztonság-technika 1

Ex Fórum 2009 Konferencia. 2009 május 26. robbanásbiztonság-technika 1 1 Az elektrosztatikus feltöltődés elleni védelem felülvizsgálata 2 Az elektrosztatikus feltöltődés folyamata -érintkezés szétválás -emisszió, felhalmozódás -mechanikai hatások (aprózódás, dörzsölés, súrlódás)

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben