Arisztotelesz Kr.e. 350 körül írta logikai műveit, melyek egyrésze elveszett, a többit 300 évvel később

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Arisztotelesz Kr.e. 350 körül írta logikai műveit, melyek egyrésze elveszett, a többit 300 évvel később"

Átírás

1 Slide 1 Induktív következtetés Érvelési hibák Ajánlott források: Lakatos László Kutrovátz Gábor Bognár - Forrai Slide Arisztotelesz Kr.e. 350 körül írta logikai műveit, melyek egyrésze elveszett, a többit 300 évvel később több kötetbe rendezték, és a szerkesztőktől az Organon címet kapta. Arisztotelesz megalapozza a formális logikát, a 19. századig ezen a területen nem is történik érdemi haladás. Slide 3 Az Organon egyik kötete a Szofisztikus cáfolatok, ebben Arisztotelesz az általa (és Platon által) lenézett szofista filozófusok érvelési hibáit bírálva megalapozza az informális logikát.

2 A köznapi gondolkodás következtetési hibái Slide 4 A favágó egyedül él az erdőben. A favágónak van egy két évvel idősebb testvére, a bátyja, aki vadász, ő is egyedül él, egy másik erdőben. A favágó édesapja erdész, ő fiatalon megnősült, két gyereke van, akik édestestvérek. A testvérek között két év a korkülönbség. Lehetséges-e: a favágó bátyjának nincs öccse. Induktív következtetési típusok Teljes indukció (=matematikai indukció) Slide 5 Állítások sorozatának bizonyítása {S n : n = 0, 1,,...} S 0 bizonyítása annak bizonyítása, hogy ha S n igaz valamely n természetes számra, akkor S n+1 is igaz Hány részre osztja a síkot n általános helyzetű egyenes? n rész Slide ? 4?

3 Hány részre osztja a síkot n = 3 általános helyzetű egyenes? Hány részre osztja a síkot n = 4 általános helyzetű egyenes? 7 7 7

4 Hány részre osztja a síkot n általános helyzetű egyenes? n rész Slide n rész n (n + 1) Slide Slide 9 Hány részre osztja a síkot n általános helyzetű egyenes? Válasz: n (n + 1) n (n + 1) (n + 1) = + 1 mert: = n (n + 1) + (n + 1) + 1 = (n + 1) (n + ) + 1

5 Indukció általánosítással Slide 10 Az empírikus társadalomkutatás egy alapvető eljárása a survey adatfelvétel, amikor egy (gondosan tervezett eljárással) mintát veszünk, és ennek statisztikai elemzésével következtetünk az alapsokaságra Az induktív kutatás lépései: Slide 11 kiindulás a megfigyelésekből, elemzés, osztályozás, rendszerezés, értékelés, induktív következtetések, az induktív következtetések érvényességi körének gondos vizsgálata. Slide 1 Simpson paradoxon Példa: Berkeley posztgraduális felvételi (Freedman: Statisztika..fejezet 4.pont) Male Female Admitted Rejected Aki azt a következtetést vonja le, hogy a férfi hallgatók valamilyen oknál fogva sikeresebbek a felvételin, téved. Miért?

6 Slide 13 A jelentkezők száma szakonként, nemenként: Dept Male Female A B C D E F Slide 14 A jelentkezők/felvettek szakonként, nemenként: Male MaleA Fem FemA 85 / / / / / / / / / / / 341 / 4 Tot Slide 15 A jelentkezők/elutasítottak szakonként, nemenként: Male MaleR Fem FemR 85 / / / 07 5 / 8 35 / / / / / / / / 317 Tot

7 Slide 16 Simpson paradoxon A példában a nemek felvételi aránya között nincs jelentős különbség egyik szakon sem. Az összesített adatokból levont következtetési hibát a különböző szakokra való különböző jelentkezési arányok figyelmen kívül hagyása okozza. Ökológiai tévkövetkeztetés az elemzési egység megváltoztatása befolyásolja a következtetés érvényességét. Slide 17 Az érveléselmélet tágabban vizsgálja az érvelés szabályait, mint a logika. Az érvelési szokások vizsgálatában szociológiai, nyelvészeti, retorikai eszközöket is használ, elemzi a hirdetésekben, a politikában alkalmazott technikákat, részletesebben lásd: Kutrovátz. Slide 18 Az alapvető érvelési hibákat Arisztotelesz a Szofisztikus cáfolatokban rendszerezetten felsorolta. Ez a rendszerezés (mint a későbbiek is) átfedő, azaz egy érvelési hiba általában több kategóriába is beletartozik (lásd: Bognár-Forrai).

8 Néhány példa érvelési hibákra csúsztatás (Kutrovátz 5.4.) Slide 19 következményekre való hivatkozás (Bognár-Forrai: ) Slide 0 Slide 1 időbeli rákövetkezés és okság összekeverése (Bognár-Forrai: ) apellálás kétséges tekintélyre személyeskedés (Bognár-Forrai: 6..1.) a hitelesség kétségessé tétele irreleváns okokkal apellálás az érzelmekre érvelési hibára hivatkozás ellenpélda létezésének tagadása rejtett előfeltételezés alkalmazása irreleváns érvek használata közvélekedésre való hivatkozás (Bognár-Forrai: 6.1.3) hamis dilemma (Kutrovátz 5.4.) szalmabáb-érvelés (Kutrovátz 5.4.) hibás általánosítás félrevezető analógia körkörös érvelés trükkös kérdés (Bognár-Forrai: 8.4)

9 A induktív következtetés hibái az általánosítások hibái (az olaszok jól sielnek) Slide a statisztikával érvelés hibái (a túlsúly komoly egészségi problémákat okoz) az analógia még nem érv (az atom olyan, mint a Naprendszer) Az oksági következtetés hibái Slide 3 Post hoc hiba (ezer évvel ezelőtt nem dohányoztak és 30 év volt a várható élettartam) Ok és okozat felcserélése (a tetű fontos a jó egészséghez) Elhallgatott közös ok (ha az alma kukacos, akkor nem okoz hasmenést) Téves ok (a bolha megsüketül, ha elveszti a lábait) Slide 4 Dominó effektus (aki elhallgat vmit, az hazudik, aki hazudik, az lop is) a természetre való hivatkozás (az természetes, hogy az ellenzék minden törvényjavaslatot ellenez)

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika

Tartalomjegyzék. Pragmatikai és logikai alapok. Első rész A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika Tartalomjegyzék ELSŐ FEJEZET Bevezetés 1.1. A könyv célja, használata 1.2 Elméleti keretek: pragmatika és logika 15 15 17 Első rész Pragmatikai és logikai alapok MÁSODIK FEJEZET A vita 2.1 A vita: megközelítési

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA

Részletesebben

TUDOMÁNYOS MÓDSZERTAN ÉS ÉRVELÉSTECHNIKA

TUDOMÁNYOS MÓDSZERTAN ÉS ÉRVELÉSTECHNIKA TUDOMÁNYOS MÓDSZERTAN ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább

Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább Terepkutatás Míg a kérdıíves felérés elsısorban kvantitatív (statisztikai) elemzésre alkalmas adatokat szolgáltat, a terepkutatásból ezzel szemben inkább kvalitatív adatok származnak Megfigyelések, melyek

Részletesebben

A társadalomkutatás módszerei I.

A társadalomkutatás módszerei I. A társadalomkutatás módszerei I. 2. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 22. Outline 1 Bevezetés 2 Társadalomtudományi módszerek Beavatkozásmentes vizsgálatok Kvalitatív terepkutatás

Részletesebben

A logika története ott kezdődik, ahol elkezdenek gondolkodni a helyes következtetési formákról.

A logika története ott kezdődik, ahol elkezdenek gondolkodni a helyes következtetési formákról. A MATEMATIKAI LOGIKA TÖRTÉNETE A logika eredetileg a filozófia részeként jelent meg a tudományok sorában. Az i. e. 5. századtól kezdtek terjedni a tisztán emberi gondolkodáson alapuló logikai bizonyítások.

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika A RACIONÁLIS VITA Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Forrai Gábor

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

ESSZÉÍRÁS június

ESSZÉÍRÁS június ESSZÉÍRÁS Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

ÉRVELÉSTECHNIKA-LOGIKA GYAKORLÓ FELADATOK, 1. ZH

ÉRVELÉSTECHNIKA-LOGIKA GYAKORLÓ FELADATOK, 1. ZH ÉRVELÉSTECHNIKA-LOGIKA GYAKORLÓ FELADATOK, 1. ZH 1. Mi a különbség a veszekedés és a racionális vita között? 2. Mit nevezünk premisszának a logikában? 3. Mi a hasonlóság és mi a különbség a veszekedés

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Induktív érvelések. Érveléselmélet, 2011. október 17.

Induktív érvelések. Érveléselmélet, 2011. október 17. Induktív érvelések Érveléselmélet, 2011. október 17. 0. Igazolás és/vagy meggyőzés Érvelések használata milyen kérdésre keres választ: Mi az érvelések funkciója: Milyen területek foglalkoznak ezzel: Az

Részletesebben

Érveléstechnika-logika 4. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2.

Érveléstechnika-logika 4. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u fsz. 2. Érveléstechnika-logika 4. Filozófia és Tudománytörténet Tanszék 1111 Budapest, Sztoczek J. u. 2-4. fsz. 2. Következtetések két csoportja Különböző állítások különböző erősségű indoklást igényelnek. Annak

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

Szocio- lingvisztikai alapismeretek

Szocio- lingvisztikai alapismeretek Szocio- lingvisztikai alapismeretek 10. A szociolingvisztika kialakulásának okai Hagyományos nyelvészet: A nyelv társadalmi normák strukturált halmaza (invariáns, homogén) Noam Chomsky: A nyelvelmélet

Részletesebben

KÖZGAZDASÁGI KAR Szabadka

KÖZGAZDASÁGI KAR Szabadka KÖZGAZDASÁGI KAR Szabadka KÖZGAZDASÁGI KAR SZOCIOLÓGIA Szemeszter: (2) nyári Heti óraszám: 2+2 Kreditpont: 6 Előadó: Dr. Gábrity Molnár Irén, Egyetemi rendes tanár Tannyelvek: szerb, magyar A tantárgy

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz TÁMOP A/1-11/ INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS

Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz TÁMOP A/1-11/ INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS Kutatásmódszertan és prezentációkészítés 2. rész: Kutatási terv készítése Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz Második rész Kutatási terv készítése (Babbie 2008 alapján) Tartalomjegyzék Kutatási

Részletesebben

Induktív érvelések. Érveléselmélet, 2015. október 5.

Induktív érvelések. Érveléselmélet, 2015. október 5. Induktív érvelések Érveléselmélet, 2015. október 5. 0. Igazolás és/vagy meggyőzés Érvelések használata milyen kérdésre keres választ: Mi az érvelések funkciója: Milyen területek foglalkoznak ezzel: Az

Részletesebben

Az ellenpéldával történő cáfolás az elemi matematikában

Az ellenpéldával történő cáfolás az elemi matematikában Az ellenpéldával történő cáfolás az elemi matematikában Tuzson Zoltán, Székelyudvarhely Ismeretes, hogy a logika a helyes gondolkodás törvényeit leíró tudomány, ezért más tudományágakban sem nélkülözhető.

Részletesebben

MAGYAR TANNYELVŰ TANÍTÓKÉPZŐ KAR Szabadka

MAGYAR TANNYELVŰ TANÍTÓKÉPZŐ KAR Szabadka MAGYAR TANNYELVŰ TANÍTÓKÉPZŐ KAR Szabadka BEVEZETÉS A SZOCIOLÓGIÁBA Szemeszter: (2) nyári Heti óraszám: 1+1 Kreditpont: 3 Előadó: Dr. Gábrity Molnár Irén, Egyetemi rendes tanár Tannyelv: magyar A tantárgy

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1. Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz

Részletesebben

7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban. - valamilyen jelenségről, ill.

7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban. - valamilyen jelenségről, ill. 7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban Pedagógiai értékelés fogalma: Az értékelés során értéket állapítunk meg: közvetlenül: közvetve: - valamilyen

Részletesebben

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA 5 8. ALAPELVEK, CÉLOK MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Minőségfejlesztés kommunikációs dosszié MINŐSÉGFEJLESZTÉS. Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié

Minőségfejlesztés kommunikációs dosszié MINŐSÉGFEJLESZTÉS. Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MINŐSÉGFEJLESZTÉS Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MISKOLCI EGYETEM Műszaki Anyagtudományi Kar Energia- és Minőségügyi Intézet Minőségügyi Intézeti Kihelyezett Tanszék MISKOLC,

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

Margitay Tihamér Az érvelés mestersége

Margitay Tihamér Az érvelés mestersége Margitay Tihamér Az érvelés mestersége Margitay Tihamér Az érvelés mestersége Érvelések elemzése, értékelése és kritikája Budapest, 2007 A könyv első kiadása az OTKA (T037504), az MTA BME Tudományfilozófiai

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

EMBERISMERET ÉS ETIKA

EMBERISMERET ÉS ETIKA Emberismeret és etika emelt szint 080 ÉRETTSÉGI VIZSGA 008. május 6. EMBERISMERET ÉS ETIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM . Esszék

Részletesebben

Próba érettségi feladatsor 2008. április 11. I. RÉSZ

Próba érettségi feladatsor 2008. április 11. I. RÉSZ Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

TUDOMÁNYOS MÓDSZERTAN

TUDOMÁNYOS MÓDSZERTAN TUDOMÁNYOS MÓDSZERTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Közbeszerzési referens képzés Gazdasági és pénzügyi ismeretek modul 1. alkalom. A közgazdaságtan alapfogalmai Makro- és mikroökonómiai alapfogalmak

Közbeszerzési referens képzés Gazdasági és pénzügyi ismeretek modul 1. alkalom. A közgazdaságtan alapfogalmai Makro- és mikroökonómiai alapfogalmak Közbeszerzési referens képzés Gazdasági és pénzügyi ismeretek modul 1. alkalom A közgazdaságtan alapfogalmai Makro- és mikroökonómiai alapfogalmak ALAPKÉRDÉSEK TISZTÁZÁSA I. A gazdasági törvények lényege:

Részletesebben

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II.

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II. 2015/2016. 2. félév Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (gyak.) 0 + 1 Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős neve és

Részletesebben

Lakossági véleményfeltárás. A pályakezdők elhelyezkedési esélyei

Lakossági véleményfeltárás. A pályakezdők elhelyezkedési esélyei Lakossági véleményfeltárás A pályakezdők elhelyezkedési esélyei 2014. április 14. Készítette: Domokos Tamás tdomokos@echomail.hu A kutatás háttere és módszertana Az Enigma 2001 Kft. rendszeres társadalomtudományi

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Hol terem a magyar statisztikus?

Hol terem a magyar statisztikus? Hol terem a magyar statisztikus? 90 éves az MST jubileumi konferencia Balatonőszöd, 2012. november 15-16. Rappai Gábor PTE KTK Ki a statisztikus? Értelmező Szótár Statisztikával foglalkozó szakember. Etikai

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

szervezés a nyomdaiparban ( K nappali)

szervezés a nyomdaiparban ( K nappali) Budapesti Műszaki Főiskola Rejtő Sándor Könnyűipari és Környezetmérnöki Kar Médiatechnológiai Intézet Karbantartás-szervezés szervezés a nyomdaiparban ( K nappali) Budapesti Műszaki Főiskola Rejtő Sándor

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 6. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Programtanterv 12. évfolyam A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési terv Humánerőforrás-fejlesztési

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

Érvelés-Meggyőzés-Tárgyalástechnika Gyakorló feladatok, 1 ZH

Érvelés-Meggyőzés-Tárgyalástechnika Gyakorló feladatok, 1 ZH Érvelés-Meggyőzés-Tárgyalástechnika Gyakorló feladatok, 1 ZH Kidolgozta: Sipos-Takáts Bence 1. Mi a különbség a deduktív és az induktív érvek között? Ebben az érvben a premisszák és a konklúzió között

Részletesebben

PEDAGÓGIAI PROGRAM ÉS HELYI TANTERV MÓDOSÍTÁSA

PEDAGÓGIAI PROGRAM ÉS HELYI TANTERV MÓDOSÍTÁSA PEDAGÓGIAI PROGRAM ÉS HELYI TANTERV MÓDOSÍTÁSA Kiegészítés a NEM SZAKRENDSZERŰ OKTATÁS követelményeivel István Király Általános Iskola és Tagintézményei 1. Nevelési program 2. Helyi tantervek Szentistván,

Részletesebben

MINŐSÉGFEJLESZTŐ TECHNIKÁK

MINŐSÉGFEJLESZTŐ TECHNIKÁK MINŐSÉGFEJLESZTŐ TECHNIKÁK Anyagmérnök mesterképzés (MsC) Tantárgyi kommunikációs dosszié MISKOLCI EGYETEM Műszaki Anyagtudományi Kar Energia- és Minőségügyi Intézet Minőségügyi Intézeti Kihelyezett Tanszék

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják Helyi tanterv matematika általános iskola 5-8. évf. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Esszéírás 1X1. Mire kell ügyelni esszéírásnál? Dr. Török Erika oktatási dékánhelyettes január 6.

Esszéírás 1X1. Mire kell ügyelni esszéírásnál? Dr. Török Erika oktatási dékánhelyettes január 6. Esszéírás 1X1 Mire kell ügyelni esszéírásnál? Dr. Török Erika oktatási dékánhelyettes 2016. január 6. Mi az esszé? Az esszé a francia essay (=próba, próbálkozás) szóból ered. Eredetileg rövid terjedelmű

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Történelem és Filozófia 1.3 Intézet Magyar Filozófiai Intézet 1.4 Szakterület Filozófia

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Érveléstechnika-logika 6. óra

Érveléstechnika-logika 6. óra Érveléstechnika-logika 6. óra BME Filozófia és Tudománytörténet Tanszék http://www.filozofia.bme.hu/ Tartalom Deduktív és induktív érvelések Induktív érvelések értékelése Induktív általánosítások Adatok

Részletesebben

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Alba Radar. 4. hullám. Helyi politikai preferencia

Alba Radar. 4. hullám. Helyi politikai preferencia Alba Radar Lakossági közvélemény-kutatási program Székesfehérváron. hullám Helyi politikai preferencia. szeptember. Készítette: Domokos Tamás tdomokos@echomail.hu Echo Innovációs Műhely Echo Research Center

Részletesebben

Tantárgy: BEVEZETÉS A TUDOMÁNYOS KUTATÁS MÓD- SZERTANÁBA

Tantárgy: BEVEZETÉS A TUDOMÁNYOS KUTATÁS MÓD- SZERTANÁBA Tantárgy: BEVEZETÉS A TUDOMÁNYOS KUTATÁS MÓD- SZERTANÁBA Szak: BSc Testnevelő-Edző, Rekreáció-szervezés, Sportszervezés, Humánkineziológia Tagozat: nappali Tantárgyfelelős neve: DR. ZSIDEGH MIKLÓS Tanszék:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Jelentkezési Tendenciák Kutatási Program 2000 2010.

Jelentkezési Tendenciák Kutatási Program 2000 2010. Jelentkezési Tendenciák Kutatási Program 2000 2010. Szerzők: Fábri István (Educatio Nonprofit Kft., Felsőoktatási Igazgatóság) Híves Tamás (Oktatáskutató és Fejlesztő Intézet) Imre Anna (Oktatáskutató

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Alba Radar. 25. hullám

Alba Radar. 25. hullám Alba Radar Lakossági közvélemény-kutatási program Székesfehérváron. hullám Rádióhallgatási szokások Székesfehérváron 01. december 1. Készítette: Bokros Hajnalka bokros.hajnalka@echomail.hu www.echoinn.hu

Részletesebben

Alba Radar. 18. hullám. Az iskolai közösségi szolgálat megítélése

Alba Radar. 18. hullám. Az iskolai közösségi szolgálat megítélése Alba Radar Lakossági közvélemény-kutatási program Székesfehérváron 18. hullám Az iskolai közösségi szolgálat megítélése - ÁROP 1.1.14-2012-2012-0009 projekt keretén belül - 2013. június 17. Készítette:

Részletesebben

Intézkedési terv a bukások arányának csökkentésére 2013/2014. tanév I. félév 1/9.e osztály (szakács)

Intézkedési terv a bukások arányának csökkentésére 2013/2014. tanév I. félév 1/9.e osztály (szakács) Szentpáli István Kereskedelmi és Vendéglátó Szakközépiskola és Szakiskola Intézkedési terv a bukások arányának csökkentésére 2013/2014. tanév I. félév 1/9.e osztály (szakács) 1. Bukások tantárgyankénti

Részletesebben

I.4. BALATONI NYARALÁS. A feladatsor jellemzői

I.4. BALATONI NYARALÁS. A feladatsor jellemzői I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babes Bolyai Tudományegyetem 1.2 Kar Politika-, Közigazgatás- és Kommunikációtudományi Kar 1.3 Intézet Kommunikáció, Közkapcsolatok

Részletesebben

Érettségi feladatok: Halmazok, logika 1/5

Érettségi feladatok: Halmazok, logika 1/5 Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A

Részletesebben

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5 MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Tanmenetjavaslat 5. osztály

Tanmenetjavaslat 5. osztály Tanmenetjavaslat 5. osztály 1. A természetes számok A tanmenetjavaslatokban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

AZ ÉLELMISZERPIACI KUTATÓMUNKÁLATOK SZOCIÁLIS VONATKOZÁSAI ÍRTA:

AZ ÉLELMISZERPIACI KUTATÓMUNKÁLATOK SZOCIÁLIS VONATKOZÁSAI ÍRTA: AZ ÉLELMISZERPIACI KUTATÓMUNKÁLATOK SZOCIÁLIS VONATKOZÁSAI ÍRTA: BENE LAJOS A PIACKUTATÁS MUNKAKÖRE. Az emberi haladás jellemző sajátsága, hogy a jólétét egészen közvetlenül érintő kérdésekre legkésőbben

Részletesebben

Következtetések a tudományban

Következtetések a tudományban 0. a határok megvonása Következtetések a tudományban Tudományfilozófia, 2007. 02. 22. bár nem tűnik szükségszerűnek a továbbiakban a tudományos következtetéseket a nyelven belül írjuk le, és ezoterikusabb,

Részletesebben

Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály

Matematika. 1 4. évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály Matematika 1 4. évfolyam Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

A felnőttek tanulási problémái

A felnőttek tanulási problémái Eötvös Loránd Tudományegyetem Pedagógiai és Pszichológiai Kar Neveléstudományi Intézet Andragógia és Művelődéselmélet Tanszék, Andragógia MA szak Kurzus: Andragógiai kutatások és fejlesztések Tanár: dr.

Részletesebben

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Prezentációk készítése

Prezentációk készítése Prezentációk készítése 2009 1 / 14 Prezentációk készítése Beamer gyorstalpaló Írta: Kiss Emil ewkiss@cs.elte.hu 2009 Áttekintés Prezentációk készítése 2009 2 / 14 A beamer koncepciója A beamer egy L A

Részletesebben

Mintavétel a gyakorlatban

Mintavétel a gyakorlatban Mintavétel a gyakorlatban Tóth Gergely ELTE-TÁTK, Doktori iskola Statisztika tanszék 1 Hol találkozhatunk mintavétellel Közvéleménykutatások A XY Intézet 2011. október 17-19. között, 500 fő telefonos megkérdezésével,

Részletesebben

Alba Radar. 26. hullám

Alba Radar. 26. hullám Alba Radar Lakossági közvélemény-kutatási program Székesfehérváron 26. hullám Az elmúlt év értékelése és a jövőre vonatkozó lakossági várakozások 205. január 3. Készítette: Bokros Hajnalka bokros.hajnalka@echomail.hu

Részletesebben

Alba Radar. 20. hullám

Alba Radar. 20. hullám Alba Radar Lakossági közvélemény-kutatási program Székesfehérváron 20. hullám Adományosztási hajlandóság a Fehérváriak körében - ÁROP 1.1.14-2012-2012-0009 projekt keretén belül - 2013. december 17. Készítette:

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

Témaválasztás, kutatási kérdések, kutatásmódszertan

Témaválasztás, kutatási kérdések, kutatásmódszertan Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

GONDOLKODÁS ÉS NYELV

GONDOLKODÁS ÉS NYELV GONDOLKODÁS ÉS NYELV GONDOLKODÁS A. Propozicionális B. Képzeleti Propozicionális gondolkodás Propozíció kijelentés, amely egy tényállásra vonatkozik, meghatározott viszonyban összekombinált fogalmakból

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Matematika. Padányi Katolikus Gyakorlóiskola 1

Matematika. Padányi Katolikus Gyakorlóiskola 1 Matematika Alapelvek, célok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Mindenki tud úszni. Nincs olyan, aki ne tudna úszni.

Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. Kvantoros logikai ekvivalenciák Mindenki tud úszni. Nincs olyan, aki ne tudna úszni. x(úx) ~ x(~úx) Kvantoros logikai ekvivalenciák Mindenki tud úszni.

Részletesebben