A figurális számokról (II.)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A figurális számokról (II.)"

Átírás

1 A figurális számokról (II.) Tuzso Zoltá, Székelyudvarhely A figurális számok jelölése em egységes, ugyais mide yelve más-más féle képpe jelölik, legtöbb esetbe a megevez szó els betjével. A továbbiakba mi is sajátos jelöléseket haszáluk.. A gómo számok A gómo egy L-alakú tájoló mszer volt, ami aptárkét, iráytkét és órakét is szolgált. A pitagoreusok a páratla számokat evezték gómookak. Az egymást követ égyzetszámok külöbségét (a páratla számok) ugyais gómo formába ábrázolhatjuk: Mivel a gómoszámok a páratla természetes számok, ezért a képlete G mide pozitív természetes számra, és a reprezetációjuk így éz ki: G = G = G = 5 G 4 = 7. A keretszámok k = 8 k = k = Észrevehet, hogy a keretszámok tulajdoképpe a 4-gyel osztható pozitív egész számokat jeletik. Az -edik keretszám képlete: k 4, mide természetes számra.. A téglalapszámok T = T = T = T 4 = 0 Észrevehet, hogy a téglalap számok képlete T ( ) és mit láti fogjuk, éppe a háromszög számokak duplájával egyelk, de általáosabba téglalap számak * evezzük az ( k) típusú számokat is, ahol k N. 4. A trapézszámok Értelmezés szerit egy, vagy több egymás utái természetes szám összege. Vagyis egyel szárú trapéz formájába elhelyezett kavicsok.

2 A szkebb értelembe vett trapézszámok (amikor csak két egymás utái számból állak) képlete szité a páratla számok képlete, hisze + (+)= +. Azoba az általáos képlete az (k) Tr ( k) k( k) ( k)... ( k( )), ahol és k tetszleges természetes számok. Észrevehet, hogy a trapézszámok felírhatók két háromszögszám külöbségekét, vagyis (... ) (... ( k ) k( k)... ( k ). A továbbiakba térjük át a szabályos sokszögek alapjá származtatott figuratív számok ismertetésére. 5. A sokszögszámok A sokszögszámok közül külöös fotossággal redelkezek a háromszögszámok, ézzük tehát ezeket. 5.. A háromszögszámok ( ) ( ) Mivel..., ezért az -edik háromszögszám képlete H. A sokszögszámok közül vitathatatlaul a legfotosabbak és leghaszálatosabbak a égyzetszámok, lássuk ezeket. 5.. A égyzetszámok A ma is haszálatos égyzetszám elevezés még a pitagoreusoktól származik. Ugyaakkor a matematikába egy újabb mvelet jelet meg, a hatváyozás. Jele esetbe aa: a, és az a -t égyzetszámak vagy teljes égyzetek evezzük (itt a * ). Az -edik égyzetszám képlete: N, *. 5.. Az ötszög és hatszög számok

3 Megfigyelve ezeket próbáljuk képletet szerkesztei az -edik k-szögszámra. Értelmezés szerit az els k-szögszám, a második k, a harmadik pedig a második k-szög határá és belsejébe megjelölt potok száma. Az -edik k-szögszám az (+)-edik szabályos k-szög határá és belsejébe megjelölt potok száma. Ha az -edik k-szögszámot S ( k) -val jelöljük, akkor S( k) ( k) H ( k ), vagyis S( k) [( k) ( k 4) ] ahol k,,. ( ) Tehát az -edik -szög szám képlete: S() ( ), az -edik 4-szögszámé () S(4), az -edik ötszögszámé S (5) ( ), az -edik hatszögszámé pedig S() (4 ) () és így tovább. A sokszögszámokak va úgyevezett geerátor függvéyük, amelyekbe az együtthatók k, 4, 5, esetbe íme redre a geerátor éppe az illet sokszögszámot jeletik. A x 4 xx ( ) 4 függvéyek: f( x) xx x 0 x... ; f4( x) x4x 9x x... x(x) 4 x(x) 4 f5( x) x5x x x... ; f ( x) xx 5x 8 x... A k-szög számok további figuratív formái a következk:. A középpotos sokszögszámok Ahogy a evük is mutatja, a középpotos sokszögszámok egymásba teleszkópikusa behelyezett hasoló szabályos sokszögek, és még a középpot is. Íme éháy típus: Jelöljük C -el a az -edik középpotos k-szögszámot ( a cetered= középpotos agol szó k, k alapjá). Akkor eek a képlete: C kh, ( ) k ugyais a középpot köré az (-)-edik háromszögszámak k darab példáyát helyezzük. Eek alapjá az ábrá látható középpotos, 4, 5, oldalú sokszögszámok képlete: ( ) C, C ( ), 5 ( C ), C ( ). Érdekes kapcsolatok a, 4, 5,, következk: C, C, C,, valamit a C H,, továbbá ha K jelöli az -edik köbszámot (lásd késbb), akkor mivel C, ( ) K K, ezért C, k K k. (összefoglaló például itt: [], [], [], [4]). A középpotos sokszögszámokak is va geerátor függvéyük, ézzük a k, 4, 5, eseteket: x x g x x x x ( ) ; ( x) g x x x x 4( ) ;

4 x x x 4x g5( x) xx x... ; g ( x) 7x9x 7 x... Ugyacsak a sokszögszámokkal kapcsolatosak a következk is: 7. A csillagszámok Ahogy a szabályos kovex sokszögekbl csillagsokszögek származtatható, úgy a sokszögszámokból is származtathatók csillag sokszögszámok is. Azoba itt úgy is értelmezhetük csillagszámokat, hogy egy sokszögszám oldalára kifele háromszögszámokat illesztük. Két esetet külöböztethetük meg aszerit, hogy a sokszögszám középpotos-e vagy sem. Ha em középpotos, akkor a legkisebb ilye sokszögszám amelyre háromszögszámokat illesztve csillagot kapuk éppe a égyzetszám. Illesszük tehát az N égyzetszám oldalaira kifelé 4 darab H háromszögszámot. Majd illesszük tehát az Négyzetszám oldalaira kifelé 4 darab H háromszögszámot, és így tovább. Ekkor az alábbi, 8, illetve 40 pöttybl álló figurális számokat kapjuk: ( ) Folytatva az eljárást, az -edik ilye figurális szám képlete 4 ( ). A második esetbe, amikor a sokszögszám középpotos, ézzük a következket. Például a középpotos háromszögszámok oldalaira kifele szité kogrues háromszögszámokat illesztük, akkor ameyibe em háromszögszámot kapuk, csillagszámhoz jutuk: Köye belátható, hogy ezeket a csillagszámokat úgy is tekithetjük, mitha a középpotos hatszögszám külsejére illesztettük vola háromszögszámokat: Éppe ebbl kifolyólag a képletkeresés is sokkal köyebb, ugyais egy ilye S szám éppe a középpotos hatszögszám, és a külsejé darab el háromszögszám. Képletese: 4

5 ( ) S C, H. Érdekes összefüggés a csillagszám, C S H. a háromszögszám és a középpotos sokszögszám között:, S Csupá eze két példa alapjá belátható, hogy milye agy a csillagszámok szerkesztési lehetségeiek a száma, hisze csupá a sokszöget (középpotos sokszöget) kell változtatuk, ezért tehát megálluk itt. A továbbiakba rátérük a figurális számok térbeli reprezetációira. Elször is vegyük a em szabályos poliéderek esetét: 8. A k-gúla számok A -szög alapú gúlák a tetraéderek, ezeket kihagyjuk, mert a szabályos testek között tárgyaljuk. Következzeek tehát a k= 4 oldalú alappal redelkez gúlaszámok. G (4) = G (4) = 5 G (4) = 4 ( )() Észrevehet, hogy az -edik figurális szám képlete: G (4).... A k> 4 oldalú alap eseté pedig az -edik k-gúlaszámot jelöljük G (k)-val. Észrevehet, hogy G ( k) S ( k) S ( k)... S ( k), ahova beírva a k-szögszámokál lev képleteket, megkapjuk az ( ) -edik k-gúlaszám képletét: G( k) [( k) k5]; k, és k. 9. A poliéderszámok (Plátoi számok, v.ö. [5]) A poliéderszámok a síkbeli szabályos sokszögek alapjá szerkesztett sokszögszámokak a térbeli általáosításai. Míg azoba a síkba tetszleges oldalszámú sokszög létezik, addig a tére a szabályos térbeli testek száma véges, éspedig a következk: Tetraéder Hexaéder (Kocka) Oktaéder Dodekaéder Ikozaéder Nyilvávalóa, hogy ezekbl kiidulva defieáljuk a térbeli poliéderszámokat. A háromszögszámokak a térbeli aalógjai a tetraéderszámok, kezdjük ezekkel. 9.. A tetraéderszámok. 5

6 Észrevehet, hogy t = H, t = H +H, t = H +H +H, és így tovább. Az -edik tetraéderszám kk ( ) ( )() ( ) ( )( ) képlete: t k. 9.. A köbszámok K = K = 8 K = 7 K 4 = 4 A köbszámok a égyzetszámokak a térbeli megfeleljük. A figurális számokból ered a köbszám elevezés is, így tovább bvül a hatváyozás: aaa : a, ahol a -t köbszámak evezzük (esetükbe a ). Az -edik köbszám képlete: K,. 9.. Az oktaéder számok O = O = O = 9 Észrevehet, hogy a képletéek megadása érdekébe a következ számolásokat kell elvégezük: ( ) () ( ) O (... ( ) ), * A dodekaéder és az ikozaéder számok Ezekek a számokak a térbeli reprezetációjuk már eléggé boyolultak ahhoz, hogy ábrázolhassuk ket. Ezért csupá a két számtípus képletét adjuk meg. ()() (5 5) D illetve I (v.ö. [5] ) A térbeli poliéder számok is lehetek középpotos figuratív számok is, továbbá a síkbeli sokszögszámok mitájára, a poliéder számokak is va geerátor függvéyük is. A két és háromdimeziós figuratív számokat tovább lehet általáosítai ha a dimeziószámot öveljük. Így például a síkbeli háromszögszám és a térbeli tetraéderszám 4D-s általáosítása a petatóp számok, amelyek sajátos politóp számok. ( )( )( ) 4 Az -edik petatóp szám képlete: P C, vagyis éppe az ötödik 4 biomiális együttható. Ezek szerit az -edik k-dimeziós tetraéderszám (k-szimplex) k képlete éppe Pk, C lesz.

7 Forrásayag: [] [] [] [4] [5] [] [7] [8] [9] [0] [] [] [] [4] [5] [] Tuzso Zoltá: Hogya oldjuk meg aritmetikai feladatokat, Ábel kiadó, Kolozsvár, 0 7

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

11. előadás. Konvex poliéderek

11. előadás. Konvex poliéderek 11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

A figurális számokról (III.)

A figurális számokról (III.) A figurális számokról (III.) Tuzson Zoltán, Székelyudvarhely Az el részekben megismerkedhettünk a gnómonszámokkal is, amelyek a következ alakúak voltak: Ezeknek általános alakjuk Gn. Ezután megismerkedtünk

Részletesebben

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA 1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

A teveszabály és alkalmazásai

A teveszabály és alkalmazásai A teveszabály és alalmazásai Tuzso Zoltá, Széelyudvarhely Godolá-e valai, hogy a matematiáa lehete-e valami öze a tevéhez? Ha em aor a továbbiaba meggyzzü errl, mégpedig arról, hogy a matematiába ige is

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

A Cauchy függvényegyenlet és néhány rokon probléma

A Cauchy függvényegyenlet és néhány rokon probléma A Cauchy függvéyegyelet és éháy roko probléma Tuzso Zoltá, Székelyudvarhely A függvéyegyeletek egyik alapegyelete a Cauchy függvéyegyelet, amely a következő: Melyek azok az f : R R folytoos függvéyek,

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

1. gyakorlat - Végtelen sorok

1. gyakorlat - Végtelen sorok . gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )

Részletesebben

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok Algebra gyakorlat, 3. feladatsor, megoldásvázlatok 1. a) Z(G), mert az egységelem yilvá felcserélhet mide G-beli elemmel. Továbbá Z(G) zárt a szorzásra, mert ha a, b Z(G), akkor tetsz leges g G-re (ab)g

Részletesebben

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök Szalóki Dezső matematika, fizika, ábrázoló-geometria és biológia szakos vezetőtanár Lektorálta:

Részletesebben

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.) SZABÁLYOS TESTEK JOHANNES KEPLER (Weil der Stadt, 1571. december 27. Regensburg, Bajorország, 1630. november 15.) Német matematikus és csillagász, aki felfedezte a bolygómozgás törvényeit, amiket róla

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Variációk egy egyenlőtlenség kapcsán

Variációk egy egyenlőtlenség kapcsán Variációk egy egyelőtleség kapcsá Tuzso Zoltá, Székelyudvarhely Mit a régebbi, mit az újabb alteratív taköyvekbe valamit számos feladatgyűjteméybe, a matematikai idukció taítása fejezetbe megtalálható

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Függvénygörbe alatti terület a határozott integrál

Függvénygörbe alatti terület a határozott integrál Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

Számalakzatok Sorozatok 3. feladatcsomag

Számalakzatok Sorozatok 3. feladatcsomag Számalakzatok Sorozatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 13 18 év négyzetszámok háromszögszámok teljes indukció különbségi sorozatok Az ókori görögök szívesen játszottak a pozitív egész számokkal,

Részletesebben

Kombinatorika. A permutációk számának megállapítása: -a helyek sorszáma: I. II. III.

Kombinatorika. A permutációk számának megállapítása: -a helyek sorszáma: I. II. III. ombiatorika A kombiatorikába csak redezett halmazokkal foglalkozuk. Azt modjuk, hogy az A ( a, a,..., a ) halmaz egy redezett halmaz, ha az elemek bármely sorredcseréjére új halmazt kapuk (úgy modjuk:

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV 6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.

Részletesebben

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

= +, n + n + n... + n 3 6n = + = n + n (n 1) n(n 1)(2n 1)

= +, n + n + n... + n 3 6n = + = n + n (n 1) n(n 1)(2n 1) MATEMATIKAI INDUKCIÓ Michael Lambrou. Fejezet. Matematikatörtéeti bevezető A filozófiába és az alkalmazott tudomáyokba az idukció fogalma azt jeleti, hogy egyedi esetekből általáos következtetésre jutuk.

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

3 1, ( ) sorozat általános tagjának képletét, ha

3 1, ( ) sorozat általános tagjának képletét, ha Gyakolatok és feladatok. Hatáozd eg a kvetkező, ekuzíva ételezett soozatok általáos tagját: a), = = " ³, ; (felvételi feladat,99., Teesvá), b),, =, = " ³ ; (felvételi feladat, 99., Teesvá) c) =, = 4 =

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. 1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

SZÁMELMÉLET. Szigeti Jenő

SZÁMELMÉLET. Szigeti Jenő SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p

Részletesebben

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

N - edik gyökvonás. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Brósch Zoltá (Debrecei Egyetem Kossuth Lajos Gyakorló Gimáziuma) N - edik gyökvoás DEFINÍCIÓ: (Négyzetgyökvoás) Egy em egatív x valós szám égyzetgyöké azt a em egatív valós számot értjük, amelyek égyzete

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma? Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben