A geokémia csoportosítása:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A geokémia csoportosítása:"

Átírás

1 Az elemek eredete

2 A geokémia csoportosítása: - Nukleáris tulajdonságok alapján (stabil, radioaktív); - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd rendszerben (Univerzum); - Affinitásuk alapján (megjelenésük a földi szférákban) (pl. sziderofil, biofil); - Kompatibilitásuk szerint (szilárd/olvadék (oldat) relációban); - Gyakoriságuk alapján (mennyi a kéregben, talajban, folyókban, magban);

3 A Föld kontinentális kérgében ma 90 elem (H U): - Tc és Pm kivételével az első 82 (Pb) elem stabil nuklid formában is, - 83 (Bi) Z 92 (U) csak radioaktív nuklid formában fordul elő (~30 további elem radioktív nuklidjai ismertek; Np-237 /Tl-205, Bi-209/, Po, Pu /244/; kisérleti úton legalább további 1000, különböző stabilitású radionuklidot állítottak/anak elő!) - elemi sokszínűség Fémek Alkálifémek Alkáliföldfémek Átmenetifémek Lantanoidák és aktinoidák Másodfajú fémek Félfémek Nemfémek Egyéb nemfémek Halogének Nemesgázok

4 A hét leggyakoribb elem a Földben Relative atomic abundances of the seven most common elements that comprise 97% of the Earth's mass. An Introduction to Igneous and Metamorphic Petrology, by John Winter, Prentice Hall. The 10 most abundant elements by mass in the earth's crust and in the human body. All are main-group elements except Fe and Ti.

5 /Kontinentális/

6 H, O, C, N mellett Ca, S, Na, K, Cl, Mg 0,X-0,0X at% Univerzum (csillagok): H>He>O - H a világegyetem leggyakoribb eleme (~90 at%), - He a csillagokban a H tizede, - O a He százada - H- és He-től >Z elemek a H és He magreakciójából jött létre?

7 Az elemek szintézise Ősrobbanás (Big Bang) (kozmológiai nukleoszintézis) Csillagok magja (sztelláris nukleoszintézis) Szupernóva robbanás Kozmikus sugárzás (spalláció) Burbidge, Burbidge, Fowler, Hoyle (1957) B 2 FH Alpher, Bethe, Gamow (1948)

8 Ősrobbanás Ősrobbanás (Big Bang): 15 milliárd éve Univerzum kialakulása (energia, tömeg); nagy sűrűségű (~10 96 g/cm 3 ), nyomású (komprimált) és hőmérsékletű ún. quarksoup hirtelen felrobbanása csökkenő sűrűsség és T: ~10 32 K-ről ~10 12 K-re Robbanást követő tágulásban (~3. percben): elemi részecskékből (kvark) a protonok (H), neutronok, majd magfúzió (T elegendően lecsökken: 10 9 K ) deutérium (1p+1n), trícium (1p+2n) és hélium magok (2p+1n) és (2p+2n) keletkezése; Az Univerzum egy forró, sebesen táguló tűzgolyó volt.

9 Big Bang Nucleosynthesis Universe starts at temperature (or energy) too hot for normal matter At about 1 second, the universe was a hot and dense mixture of free electrons, protons, neutrons, neutrinos and photons. The ratio of protons to neutrons is kept at unity as long as energy is high enough for matter to interact strongly with neutrinos. At about 2 seconds, neutrino mediation ends. Since free neutrons decay with half life of 900 seconds, the proton-to-neutron (p/n) ratio began to increase. After ~30 minutes, when p/n ~ 7, temperatures reached stability range of small nuclei and 4 He (and a bit of 2 D and 3 He) nuclei consumed the free neutrons. This predicts a mass fraction 4 He/( 4 He+H) ~ 25%, which is indeed observed powerful evidence in favor of big bang hypothesis Since there is no stable mass 5 nucleus and synthesis of He occurred on cooling (not heating), no heavy nuclei are formed!

10 A kezdet Anyag + antianyag Anyag kedvező állapotban Baryonok kvarkok, leptonok, elektronok, fotonok Hadronok protonok, neutronok Hidrogén, hélium (10:1 = H:He) (magok, néhány perc) + egyéb könnyű elemek magjai? ~ év (3*10 3 K): az anyag és sugárzás elkülönülése elektron + H, He mag = ATOM és FÉNY anyag szerveződése (csillagok, galaxisok)

11

12 Az Ősrobbanás fő eseményei Univerzum átmérője mp 1 mp 180 mp 1 m m kvarkok, leptonok proton, neutron neutrínó leválása az anyagról könnyű magok (H, He) 100 milliárd K év fény 0,5 milliárd év kvazárok galaxisok, csillagok 50 K Gravitáció okozta sűrűségkülönbség nehéz elemek szupernóvákból 15 milliárd év 3 K

13 Nukleáris fúzió A tágulás miatt ~25% He formálódott (a legidősebb csillagok ezt a gyakoriságot mutatják nukleáris reakció T>10 9 K nincs). Kezdetben csak H és He magok keletkeztek, azonban:

14

15 Be, Li, B szintézise az Ősrobbanásban? a korábbi reakciók mellett: 3 He + 4 He 7 Be + γ; 7 Be + e - 7 Li +γ; p-ben ill. n-ben sűrűbb tartományok kialakulása esetén: p-dús térben: 7 Li +p 2 4 He, n-dús térben: 7 Li +n 8 Li (t 1/2 = 0.84 s β He), de bomlás előtt: 8 Li + 4 He 11 B + n, ami p-dús térben: 11 B+ p 3 4 He egyéb n-gazdag részecskék is keletkezhettek: 7 Li + 3 H 9 Be + n 9 Be + 3 H 11 B + n

16

17 The predicted abundance of elements heavier than hydrogen, as a function of the density of baryons in the universe

18 Bizonyítékok Kozmológiai nukleoszintézis: H, D, T, 3 He, 4 He / 7 Li/ Deutérium: - csillagközi felhőben kimutatható állandó koncentrációban (0.001%), (sőt: 7 Li/ 2 H = 10-9 ) - csillagokban nem keletkezik, egyetlen forrása az Ősrobbanás Hélium: - előfordulása mindenhol ~25%-os Csillagok vöröseltolódása: - a távoli galaxisokról érkező fény annál inkább a vörös felé mozdul el, minél nagyobb a fényforrás távolsága (Hubble megfigyelése) a világegyetem tágul Kozmikus mikrohullámú háttérsugárzás (Penzias & Wilson, 1964): - H atommag - foton lecsatolódása (~3000 K) sugárzás formájában detektálható - a T lecsökkent (~3 K) hullámhossz megnőtt, tágulás (a kozmikus háttérsugárzás az ősrobbanás maradványa)

19 Nukleoszintézis a csillagokban Az Ősrobbanást követően (~500 milliomodik évben) az Univerzumban a többé-kevésbé homogén forró gázban az agyagsűrűség megnövekszik (gravitáció miatt) inhomogenitás protogalaxisok, majd kollapszussal csillagok keletkeznek. Sűrűség = 6 g/cm 3, a gravitációs energia kinetikus (hő) energiává alakul át T = 10* *10 6 K, ami túllépi a magfúzió aktiválási energiáját és megkezdődik a csillag magjában az ún. hidrogénégés, a H kiindulási üzemanyag, amiből He keletkezik. Az elemek szintézise, illetve a tapasztalt mennyiségi eloszlása több lépcsőben írható le nukleáris reakciókkal, amelyek az ún. első generációs csillagok (kvazárok) különböző fejlődési stádiumában játszódn(t)ak le.

20 Stellar Nucleosynthesis I Until stars form, there is nothing except H and He Gravitational instabilities develop which lead to formation of galaxies and collapse of molecular clouds to form stars At sufficient temperature and density (~10 7 K), nuclear fusion begins in star cores Due to Coulomb repulsion between positively charged nuclei, nonresonant nuclear reaction rates obey a law of the form: nuclear charges reduced mass reaction rate number densities r 12 N 1 N 2 exp z Z 2 1 Z 2 2 A T 1 3 temperature So reaction is fastest between most abundant, least charged pairs of nuclei, and increase in T is needed to make slower reactions significant 20

21 Herzsprung-Russel-diagram (HRD) He-égés H-égés A csillagok fejlődése a Herzsprung-Russel-diagramon a születési vonaltól a fősorozatig. A kis tömegű csillagok majdnem függőlegesen (állandó hőmérséklettel) fejlődnek (Hayasi-nyom), a nagy tömegű csillagok majdnem vízszintesen (állandó fényesség, Henyeynyom). a csillagok 4 tartományban helyezkednek el

22 HERTZSPRUNG-RUSSELL DIAGRAM (HRD) A csillagokat jellemző paraméterek nem függetlenek egymástól, közöttük különböző empirikus összefüggések léteznek. Kapcsolat van a sugár és az abszolút fényesség, a sugár és a tömeg, valamint a felszíni hőmérséklet és az abszolút fényesség között is. Ezek az összefüggések nem véletlenek, hanem az ún. Vogt-Russell tétel következményei, mint ahogyan ebből származtatható a csillagászat legfontosabb állapotdiagramja, a Hertzsprung-Russell diagram. Ejnar Hertzsprung 1905-ben vette észre, hogy ugyanahhoz a színképtípushoz különböző abszolút fényességű csillagok tartozhatnak, törpék is és óriáscsillagok is ban Henry Norris Russell olyan grafikont rajzolt fel, amelynek vízszintes tengelyén az S p spektráltípust, függőleges tengelyén pedig az M V abszolút fényességet tüntette fel. Azonnal feltűnt, hogy a grafikonon a csillagok különböző ágak mentén, szabályosan helyezkednek el. Az ilyen típusú grafikonoknak a csillagászatban nagy jelentőségük van, s Hertzsprung-Russell diagramnak, vagy röviden HRD-nek hívjuk. A csillagok a HRD-n különböző ágak mentén helyezkednek el. A bal felső saroktól a jobb alsó felé húzódó ágat főágnak, a jobb felső sarokban található csoportosulást pedig óriáságnak nevezzük. A főágbeli csillagok az ún. fősorozati csillagok, míg az óriáság csillagai az ún. óriáscsillagok. A diagramon a bal alsó sarokban is vannak csillagok, ezek kb. 10m-val halványabbak, mint az ugyanolyan színképtípusú fősorozati csillagok, ezért sugaruk is jóval kisebb azoknál. Ezeket a csillagokat fehér törpéknek nevezzük.

23 H-égés (pp folyamat) - a csillagok főág csoportjában 0,422 MeV T=10 7 K, ς=6 g/cm 3 5,493 MeV elegendő H-égéshez, 12,859 MeV ~10% H égés után a gravitációs vonzás összehúzódás a magban, T, ς nő, a csillag tágul Ez a nukleáris energia az egyedüli forrás az első generációs csillagokban.

24 He-égés (hármas alfa fúzió), - a csillagok vörös óriások csoportjában a magban He koncentrálódik: 0,094 MeV T=2*10 8 K, ς=10 5 g/cm 3 He égés 20 Ne + 4 He 24 Mg + γ 24 Mg + 4 He 28 Si + γ 28 Si + 4 He 32 S+ γ 32 S+ 4 He 36 Ar + γ 36 Ar + 4 He 40 Ca + γ 40 Ca + 4 He 44 Ti + γ 44 Ti + 4 He 48 Cr + γ 48 Cr + 4 He 52 Fe + γ 7,281 MeV 7,148 MeV 4,75 MeV 9,31 MeV 9,98 MeV 6,95 MeV ha a ς és T nem növekszik pulzálás, tömegvesztés (H), zsugorodás fehér törpe csoport. vagy további fúzióval illetve α- folyamattal (α-részecskék beépülésével) α-részecske alapú magok, a T túl nagy Li, Be, B nem stabil nem szintetizálódik, de 12 C > 16 O >> 24 Mg képződik, miközben T=5*10 8 K, ς=10 6 g/cm 3, gravitáció nő 52 Fe + 4 He 56 Ni + γ ( elektron befogással: 56 Co, majd 56 Fe) 56 Ni + 4 He + γ 60 Zn ( energia elfogy, a csillag magja összeomlik)

25 Stellar Nucleosynthesis II : Hydrogen Burning None of the two-particle reactions between the major species in juvenile H+He matter produce a stable product: 1 H + 1 H = 2 He (unstable) = 1 H + 1 H 1 H + 4 He = 5 Li (unstable) = 1 H + 4 He 4 He + 4 He = 8 Be (unstable) = 4 He + 4 He However, Hans Bethe (1939) showed how hydrogen burning can begin with the exothermic formation of deuterium: 1 H + 1 H = 2 D MeV This reaction initiates the PPI chain: 2 ( 1 H + 1 H = 2 D H + 2 D = 3 He + 3 He + 3 He = 4 He + 2 Net: 4 1 H = 4 He D/ 1 H quickly approaches equilibrium value, but this is times smaller than the terrestrial value terrestrial 2 D is made elsewhere!

26 Stellar Nucleosynthesis III : Helium Burning, etc. If 1 H becomes so depleted that 1 H+ 1 H collisions become too rare to drive PPI chain fast enough to maintain thermal pressure (after ~10 6 y in a red giant star), the core collapses, temperature rises, and at ~2 x 10 8 K, He burning becomes possible This requires particle velocities fast enough that the reaction rate 4 He + 8 Be = 12 C + exceeds the decay rate of 8 Be (half-life 2.6 x s!), despite the large Coulomb repulsion: Z 12 Z 22 = 1024 Likewise, when 4 He runs out, another core collapse heats up the core enough to initiate C-burning This continues up through Si-burning This type of nuclear burning produces all the alpha-particle nuclides: 4 He, 12 C, 16 O, 20 Ne, 24 Mg, 28 Si, 32 S Smaller quantities of 14 N, 15 N, 13 C, Na, P also result Explains excesses of -particle nuclei up to 40 Ca, if solar system contains matter expelled from red giants

27

28 Három, különböző fejlődési szakaszban lévő csillag szuperóriás Égés a határfelületeken szuperóriás Brownlow, 1996

29 T=600*10 6 K, ς=5*10 5 g/cm 3 (nagy tömegű szuperóriások) C-O-Ne-égés: 12 C + 12 C 20 Ne + 4 He + γ /4.62 MeV/ 12 C + 12 C 24 Mg + γ /13.85 MeV/ 12 C + 12 C 23 Na + 1 H /2.23 MeV/ 12 C + 16 O 24 Mg + 4 He + γ 16 O + 16 O 28 Si + 4 He 16 O + 16 O 31 P + 1 He 16 O + 16 O 31 S + n 2 20 Ne 16 O + 24 Mg + γ /4.56 MeV/ +α-folyamat (α-részecske alapú magok): 12 C, 16 O 20 Ne, 24 Mg, 28 Si (+Al) T=1000*10 6 K, ς=10 7 g/cm 3 (nagy tömegű szuperóriások) Si-égés (Z>Fe nincs fúzió) + α-folyamat: α-folyamat: nehezebb, α-részecske alapú magok: 32 S, 36 Ar, 40 Ca, 44 Ca, 48 Ti, 52 Cr, 56 Fe (stabil) + Mg, Al, P és Cl is szintetizálódik, 28 Si + γ <-> 24 Ne + 4 He 28 Si + 4 He <-> 32 S + γ 32 S + 4 He <-> 36 Ar + γ az e-folyamat (a csillag életének utolsó pillanatai, T~3000*10 6 ): számos magreakció Ti és Cu közötti nuklidok: 28 Si + 28 Si 56 Ni + γ Ni-ig (6,1 nap) 56 27Co-ra (77,2 nap) stabil 56 26Fe!

30 Stellar Nucleosynthesis VII : nuclear statistical equilibrium Approach to nuclear statistical equilibrium makes definite predictions about abundance of species in the Si-to-Fe range, and provides a natural mechanism for the high nuclear binding energy of the Fe group to be translated into the peak in the solar abundance pattern This particular model shows a prediction of abundance after 10 seconds of Si-burning at a temperature of 4.2 x 10 9 K the lines connect isotopes of the same element overall agreement is not bad

31 CNO ciklus nagy tömegű (második és későbbi generációs!) csillagokban (a főágban): nagy tömeg nagy gravitáció a magban nagyobb T nagyobb termelt energia (a pphez képest) 12 C katalizátor - He képződés + viszonylag kis energia képződik (de sok reakció történik) ν nemcsak ciklus I, de II és III is működik White 2003/lect

32

33 Sztelláris nukleoszintézist összefoglalva: Mag kollapszus (égés miatt) T és ς növekedés égés (magfúzió) újabb könnyű elemek keletkezése az 56 Fe-ig! H H He Be C O Si H H 4 4 He He He 12 C 28 2 Si H e 4 He energy Be C O Si Fe Hélium égés Hidrogén égés Szén és oxigén égés Szilicium égés + CNO-, alfa- és e-folyamat A szuperóriás csillag magja az égés miatt összeomlik, ami főleg neutron termeléssel jár. Ez a neutron főleg a Fe atommagjához adva biztosítja a nehezebb elemek keletkezését (l. később).

34 A csillagok tömegüktöl függően kétféle fejlődési utat járhatnak be életük során. ELTE, FFI, Csillagászti Tanszék

35 White, 2003

36 Faure, 1998

37 The picture can't be displayed. Csak a 56 26Fe-ig tart Nukleáris reakciók Hogyan keletkezett a többi elem? Szupernóva robbanás: (már 1054-ben kínia csillagászok és 1604-ben Keppler is megfigyelte) hatalmas anyagmennyiség szétszóródása gravitáció hatására második és harmadik generációs csillag kondenzálódása (a kisebb tömegűekben a nehezebb nuklidok is megmaradnak) után előtt

38 WR 98a WR 104 Szupernóva robbanás előtt álló objektum (szupernóva jelölt) a Földtől 8000 fényévre, a Nyilas csillagképben található WR 104 katalógusjelű kettős rendszer egyik tagja, egy úgynevezett Wolf-Rayet csillag. Az Ötös-halmaz (Quintuplet) nevű csillagcsoportosulás, amelynek tagja a WR 104 és a WR 98a, amelyek a kettős rendszert alkotják (Forrás: NASA)

39 termális expanzió < - > gravitációs kollapszus For massive stars disaster takes the form of a supernova explosion. The core collapses inward in just one second to become a neutron star or black hole. The material in the core is as dense as that within a nucleus. The core can be compressed no further. When even more material falls into this hard core, it rebounds like a train hitting a wall. A wave of intense pressure traveling faster than sound a sonic boom thunders across the extent of the star. When the shock wave reaches the surface, the star suddenly brightens and explodes. For a few weeks, the surface shines as brightly as a billion suns while the emitting surface expands at several thousand kilometers per second. The abrupt energy release is comparable to the total energy output of our Sun over its entire lifetime.

40 Szupernóva állapot folyamatok: /e-folyamat (magreakciók)/ s-folyamat (a nukleoszintézissel együtt), r-folyamat (a csillagok magjában a szupernóva állapotban) p-folyamat (szupernóva állapotban) White, 2003

41 Szupernóva állapot e-folyamat (egyensúlyi): nagy kötésenergiájú magok nagy T és ς mellett: Ti, V, Cr, Mn, Fe, Co, Ni 56 26Fe s-folyamat (lassú n befogása, β vagy γ emisszióval): lassú n forrása (sztelláris nukleoszintézis): 13 C + 4 He 16 O + n 22 Ne + 4 He 25 Mg + n 17 O+ 4 He 20 Ne + n ` közötti tömegszámú magok keletkezése (és is): pl: 62 Ni + n 63 Ni + γ 63 Ni 63 Cu + β - / MeV/ 63 Cu + n 64 Cu + γ 64 Cu 64 Zn + β - /0.575 MeV/ 64 Cu 64 Ni + β + /1.678 MeV/ 69 Zn + n 70 Zn + γ továbbá: 89 Y, 90 Zr, 138 Ba, 140 Ce, 208 Pb, 209 Bi

42 s-folyamat: stabil magok Faure, 1998

43 r-folyamat (gyors n befogása): gyors n forrása (csillag magjának kollapszusa előtt sokk hullám hatására T megnő atommagok szétesnek: fotodezintegráció és szupernóva robbanás, gyors folyamat): 56 Fe + γ 13 4 He + 4n 4 He + γ 2 1 H+ 2n közötti tömegszámú és a transzurán n-gazdag magok keletkezése: pl: 65 Cu + 5n 70 Cu + 5γ 70 Cu 70 Zn + β - /7.2 MeV/ továbbá: 94 Zr, 96 Zr, 170 Er, 176 Yb, 192 Os, 204 Hg

44 stabil magok Faure, 1998

45 (Ni->Th, U, Np) (Ni->Pb) (Pb) N = 82 (Sn) (Ni) White, 2003

46 p-folyamat (p befogás): p befogása szupernova állapotban, nagy energia, kis gyakoriságú, p-gazdag nuklidok, az elemek legkönnyebb izotópjai keletkeznek: pl: 72 Ge H 74 Se 36 izotóp képződik így, valamennyi páros, legkönnyebb: 74 Se, legnehezebb: 196 Hg Továbbá: 84 Sr, 130 Ba, 144 Sm, 174 Hf

47 stabil magok Faure, 1998

48 x-folyamat (spalláció): C, N, O kölcsönhatása a kozmikus sugárzással, ami T, 3 He, 6 Li, 7 Li, 9 Be, 10 B, 11 B képződéséhez vezethet nagy energia, kis T a csillagok magjában a nagy T-n ezek a nuklidok nem stabilak, a láncreakció átugorja vagy a H-égési folyamatban eltűnnek /D, 3 He hiányzik a csillagok színképéből Ősrobbanás/

49 Folyamatok: H-égés He-égés alfa (α) egyensúlyi (e) gyors neutron befogás (r) lassú neutron befogás (s) proton befogás (p) kozmikus sugárzás (x) D H-burning 3 He O Ne Big Bang & H-burning He-burning Mg Si S (T~4*10 9o C) Ar Ca 7 Li 6 Li 11 B 10 B Be

50 7 Li Magképződési és -bomlási reakciók a csillagokban (SELBIN) Papp Kümmel 1992

51 N B 11 B 10 Be Atommagok stabilitása: legstabilabb magok, ahol a legnagyobb a kötési energia/mag (MeV), 56 Fe, 4 He <--> 1 H, 3 He, 6 Li, 10 B H-burning is by far the most effective means of converting mass into energy! 1 H White, 2003

52 -56 Albarede, 2006 Ahogy nő a nukleonok száma elérjük a vas környékén a kötési energia maximumát. A nagyobb tömegű magok kevésbé stabilak. (Energia nyerhető a kis magok fúziójából és a nagy magok hasadásából. Jellemző az alfa-bomlás a nehéz magok esetén.)

53 Plot of Z vs. N for nuclides up to tin (Z=50) showing the "stable" valley of the nuclides. The Z : N ratio is 1 for the light nuclides and increases towards 1.5 for the heavier nuclides. Increases or decreases in N for given element produces increasingly unstable isotopes (decreasing T½).

54 Magtáblázat Több, mint 2300 ismert nuklid, ebből 288 a primordiális nuklid: 35 (29+6) a radioactive primodiális nuklid 253 (90+163) stabil nuklid (29: t 1/2 >10 9 ; 6: t 1/2 >80*10 6 ) (90: E p.st. ; 163: E unst, nincs bomlás) A Tc (Z=43), Pm (Z=61) és a Bi-nál (Z=83) nehezebb elemek mind radioaktívak Magok stabilitásért a neutronok felelnek Mágikus proton- és neutronszámokkal rendelkező magok különösen stabilak - proton: 2, 8, 20, 28, 50, 82 - neutron: 2, 8, 20, 28, 50, 82, radioaktív mag alfa-bomlással (2p+2n) különösen stabil - számos radioaktív bomlás végtermék magja mágikus p és n szamú

55 Az elemek relatív gyakorisága a Naprendszerben

56 - Páros rendszámú elemek gyakoribbak, mint a páratlanok; - A könnyű elemek közül gyakoribbak azok, amelyeknek tömegszáma (A) néggyel osztható (pl. 16 O, 20 Ne, 24 Mg, 28 Si, 32 S, 36 Ar, 40 Ca)

57 Az elemek relatív gyakorisága a Naprendszerben

58 C O Ne N Mg Si S Naprendszer Ar Ca Ni Na Al Cr P Ti Mn Cl K Zn Co Cu Ge V Se Sr Zr Ga Te Xe Ba Mo Sn As Rb Y Pd Cd Ce Nd Nb I Sm Tc Ag La In Sb Eu Pm Pt Os Hg Yb Hf W Ir Au Tl Lu Re Ta Faure, 1998

59 X-folyamat Ha 7 Li kivételével Li, Be és B nem képződik az Ősrobbanás során, akkor kozmikus sugár és a csillagközi gáz/por kölcsönhatásával keletkezhetnek: a 1 H és 4 He valamint a C, N, O magok reakciója során. E reakciók nagyobb energiánál fordulnak elő, mint az Ősrobbanas, de a T kicsi (Li, Be és B túléli). Li, Be és B relatív mennyisége sokkal nagyobb a kozmikus sugárzásban, mint a Naprendszerben. Elemek relatív mennyisége a Naprendszerben és a kozmikus sugárzásban White 1998

60 X-folyamat Abundances of elements in galactic cosmic rays (GCR) and the solar system (SS) [Lodders, 2003] (adapted from George et al. [2009] and Rauch et al. [2009]). Reproduced by permission of the American Astronomical Society. Israel, 2012

61 Elemek gyakorisága az Naprendszerben és az Univerzumban Megfigyelések az elemek gyakoriságával kapcsolatban - A H és He messze a leggyakoribb elem, H:He ~ 9:1 (atm%) - Az első 50 elem mennyisége exponenciálisan csökken, - Az 50-nél nagyobb rendszámú elemek mennyisége kicsi, nem változik nagymértékben a rendszámmal, - A páros rendszámú elemek sokkal gyakoribbak, mint a páratlanok (Oddo-Harkins-szabály), - A Li, Be és B mennyisége rendellenesen kicsi (megsemmisül), - A Fe és Pb mennyisége rendellenesen nagy, - A Tc és Pm nem fordul elő természetben a Naprendszerben, - A 83-nál nagyobb rendszámú (Bi) elemnek nincs stabil izotópja; ilyen elemek csak azért fordulnak elő a természetben, mert az U és Th hosszú életű izotópjainak bomlástermékei

Az elemek eredete I.

Az elemek eredete I. Az elemek eredete I. A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,

Részletesebben

A geokémia csoportosítása:

A geokémia csoportosítása: Az elemek eredete A geokémia csoportosítása: - Nukleáris tulajdonságok alapján (stabil, radioaktív); - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd rendszerben (Univerzum); - Affinitásuk alapján

Részletesebben

Az elemek eredete II.

Az elemek eredete II. Az elemek eredete II. Nukleoszintézis a csillagokban Az Ősrobbanást követően (~500 milliomodik évben) az Univerzumban a többé-kevésbé homogén forró H és He gázban az agyagsűrűség megnövekszik (gravitáció

Részletesebben

Po, MCS-PC, 209 Bi+n 210 Po; Rn; Ra), - a további 20 ritka elem: radioktív nuklidjai ismertek ( 237 Np /2.14*10 6 a, 209

Po, MCS-PC, 209 Bi+n 210 Po; Rn; Ra), - a további 20 ritka elem: radioktív nuklidjai ismertek ( 237 Np /2.14*10 6 a, 209 Az elemek eredete A Föld kontinentális kérgében ma 90 elem (H U), de 112 ismert: - az első 82 (H Pb) stabil nuklid is (Tc és Pm nincs a természetben), - a 83-92 (Bi U) csak radioaktív nuklid ( 209 Bi,

Részletesebben

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf

Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C. -Mészáros Erik -Polányi Kristóf Csillagászat. A csillagok születése, fejlődése. A világegyetem kialakulása 12/C -Mészáros Erik -Polányi Kristóf - Vöröseltolódás - Hubble-törvény: Edwin P. Hubble (1889-1953) - Ősrobbanás-elmélete (Big

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

SZERVETLEN KÉMIA (Földtudomány BSc)

SZERVETLEN KÉMIA (Földtudomány BSc) SZERVETLEN KÉMIA (Földtudomány BSc) www.theodoregray.com/periodictable Csillagok fejlődése A kémiai elemek keletkezése: nukleoszintézis magreakciók típusai Exoterm reakciók: Hidrogénégés proton-proton

Részletesebben

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája

NEUTRÍNÓ DETEKTOROK. A SzUPER -KAMIOKANDE példája NEUTRÍNÓ DETEKTOROK A SzUPER -KAMIOKANDE példája Kamiokande = Kamioka bánya Nucleon Decay Experiment = nukleon bomlás kísérlet 1 TÉMAKÖRÖK A Szuper-Kamiokande mérőberendezés A Nap-neutrínó rejtély Legújabb

Részletesebben

Magszintézis neutronbefogással

Magszintézis neutronbefogással Magszintézis neutronbefogással Kiss Miklós, Berze Nagy János Gimnázium Gyöngyös Magyar Fizikus Vándorgyűlés Debrecen, 2013. augusztus 21-24. Tartalom 1. A magok táblája 2. Elemgyakoriság 3. Neutrontermelés

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

NYOMELEMEK 1. rész. Elemek keletkezése Az első elemek megjelenése 114

NYOMELEMEK 1. rész. Elemek keletkezése Az első elemek megjelenése 114 Magyar Kémiai Folyóirat - Összefoglaló közlemények 27 NYOMELEMEK. rész. Elemek keletkezése NEMECZ Ernő * Pannon Egyetem, 8002 Veszprém, Pfi ók 58 Az általunk érzékelhető anyagi világot kémiai elemek építik

Részletesebben

Az elektronpályák feltöltődési sorrendje

Az elektronpályák feltöltődési sorrendje 3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória

XLVI. Irinyi János Középiskolai Kémiaverseny 2014. február 6. * Iskolai forduló I.a, I.b és III. kategória Tanuló neve és kategóriája Iskolája Osztálya XLVI. Irinyi János Középiskolai Kémiaverseny 201. február 6. * Iskolai forduló I.a, I.b és III. kategória Munkaidő: 120 perc Összesen 100 pont A periódusos

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 07. Stabilitás & instabilitás, magmodellek, tömegparabolák Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala: http://nagysandor.eu/magkemia/

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

2011 Fizikai Nobel-díj

2011 Fizikai Nobel-díj 2011 Fizikai Nobel-díj MTA WFK SZFKI kollokvium SZFKI kollokvium 1 SZFKI kollokvium 2 SZFKI kollokvium 3 Galaxisunk rekonstruált képe SZFKI kollokvium 4 SZFKI kollokvium 5 SZFKI kollokvium 6 Cefeidák 1784

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

A világegyetem elképzelt kialakulása.

A világegyetem elképzelt kialakulása. A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Név:............................ Helység / iskola:............................ Beküldési határidő: Kémia tanár neve:........................... 2013.feb.18. TAKÁCS CSABA KÉMIA EMLÉKVERSENY, IX. osztály,

Részletesebben

Izotópkutató Intézet, MTA

Izotópkutató Intézet, MTA Izotópkutató Intézet, MTA Alapítás: 1959, Országos Atomenergia Bizottság Izotóp Intézete Gazdaváltás: 1967, Magyar Tudományos Akadémia Izotóp Intézete, de hatósági ügyekben OAB felügyelet Névváltás: 1988,

Részletesebben

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz

Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz Kémiai fizikai alapok I. Vízminőség, vízvédelem 2009-2010. tavasz 1. A vízmolekula szerkezete Elektronegativitás, polaritás, másodlagos kötések 2. Fizikai tulajdonságok a) Szerkezetből adódó különleges

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Prompt-gamma aktivációs analitika. Révay Zsolt

Prompt-gamma aktivációs analitika. Révay Zsolt Prompt-gamma aktivációs analitika Révay Zsolt Prompt-gamma aktivációs analízis gerjesztés: neutronnyaláb detektált karakterisztikus sugárzás: gamma sugárzás Panorámaanalízis Elemi összetétel -- elvileg

Részletesebben

Radioaktív izotópok a környezetben

Radioaktív izotópok a környezetben Radioaktív izotópok a környezetben Eredet Természetes bomlási sorok Radioaktív izotópok Anyaelemek: 235 U, 238 U, and 232 Th Hosszabb életű leányelemek és azok leányelemei: 226 Ra, 210 Pb, 210 Bi és 210

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Pulzáló változócsillagok és megfigyelésük I.

Pulzáló változócsillagok és megfigyelésük I. Pulzáló változócsillagok és megfigyelésük I. 3. Vörös óriás (és szuperóriás) változócsillagok Bognár Zsófia Sódor Ádám ELTE MTA CSFK CSI 2015.11.03. 2 Bognár Zsófia, Sódor Ádám Pulzáló váltcsill. és megfigy.

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők:

NE FELEJTSÉTEK EL BEÍRNI AZ EREDMÉNYEKET A KIJELÖLT HELYEKRE! A feladatok megoldásához szükséges kerekített értékek a következők: A Szerb Köztársaság Oktatási Minisztériuma Szerbiai Kémikusok Egyesülete Köztársasági verseny kémiából Kragujevac, 2008. 05. 24.. Teszt a középiskolák I. osztálya számára Név és utónév Helység és iskola

Részletesebben

FIZIKA. Atommag fizika

FIZIKA. Atommag fizika Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2

Részletesebben

A csillagok kialakulása és fejlődése; a csillagok felépítése

A csillagok kialakulása és fejlődése; a csillagok felépítése A csillagok kialakulása és fejlődése; a csillagok felépítése Készítette: Szalai Tamás (csillagász, PhD-hallgató, SZTE) Lektorálta: Dr. Szatmáry Károly (egy. docens, SZTE Kísérleti Fizikai Tsz.) 2011. március

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Hidrogéntől az aranyig

Hidrogéntől az aranyig Hidrogéntől az aranyig Hogyan keletkezett az Univerzum? Hogyan jöttek létre a periódusos rendszert benépesítő elemek? Számos könyv és híres tudós foglalkozik és foglalkozott vele a múlt évszázadban és

Részletesebben

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.

Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes. Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding

Részletesebben

RÖNTGEN-FLUORESZCENCIA ANALÍZIS

RÖNTGEN-FLUORESZCENCIA ANALÍZIS RÖNTGEN-FLUORESZCENCIA ANALÍZIS 1. Mire jó a röntgen-fluoreszcencia analízis? A röntgen-fluoreszcencia analízis (RFA vagy angolul XRF) roncsolás-mentes atomfizikai anyagvizsgálati módszer. Rövid idõ alatt

Részletesebben

A periódusos rendszer, periodikus tulajdonságok

A periódusos rendszer, periodikus tulajdonságok A periódusos rendszer, periodikus tulajdonságok Szalai István ELTE Kémiai Intézet 1/45 Az előadás vázlata ˆ Ismétlés ˆ Történeti áttekintés ˆ Mengyelejev periódusos rendszere ˆ Atomsugár, ionsugár ˆ Ionizációs

Részletesebben

GONDOLATOK A BOMLÁSI ÁLLANDÓRÓL

GONDOLATOK A BOMLÁSI ÁLLANDÓRÓL GONDOLATOK A BOMLÁSI ÁLLANDÓRÓL Szűcs László Budapest Főváros Kormányhivatala Metrológiai és Műszaki Felügyeleti Főosztály Sugárfizikai és Kémiai Mérések Osztály Előzetes A bomlási állandó/felezési idő.

Részletesebben

Kozmológia egzakt tudomány vagy modern vallás?

Kozmológia egzakt tudomány vagy modern vallás? Kozmológia egzakt tudomány vagy modern vallás? MOEV 2010. április 10. Előadó: Szécsi Dorottya ELTE Fizika Bsc III. Hit és tudomány Mit gondoltak őseink a Világról? A kozmológia a civilizációval egyidős

Részletesebben

Pulzáló változócsillagok és megfigyelésük I.

Pulzáló változócsillagok és megfigyelésük I. Pulzáló változócsillagok és megfigyelésük I. 6. Vörös óriás (és szuperóriás) változócsillagok Bognár Zsófia Sódor Ádám ELTE MTA CSFK CSI 2017.11.21. 2 Bognár Zsófia, Sódor Ádám Pulzáló váltcsill. és megfigy.

Részletesebben

A magkémia alapjai. Kinetika. Nagy Sándor ELTE, Kémiai Intézet

A magkémia alapjai. Kinetika. Nagy Sándor ELTE, Kémiai Intézet A magkémia alapjai Kinetika Nagy Sándor ELTE, Kémiai Intézet 09 The Radium Girls Festék világít Néhány egyszerű empirikus fogalomra teszünk egy pár triviális észrevételt. Egyetlen iterációban finomítjuk

Részletesebben

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl

15/2001. (VI. 6.) KöM rendelet. az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl 1. oldal 15/2001. (VI. 6.) KöM rendelet az atomenergia alkalmazása során a levegbe és vízbe történ radioaktív kibocsátásokról és azok ellenrzésérl Az atomenergiáról szóló 1996. évi CXVI. törvény (a továbbiakban:

Részletesebben

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35 Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus

Részletesebben

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel)

Az elemek periódusos rendszere (kerekített relatív atomtömegekkel) Kedves versenyző! A kémia feladatsor megoldására 60 perc áll rendelkezésedre. Nem kell arra törekedned, hogy ennyi idő alatt minden feladatot megoldj, az a fontos, hogy minél több pontot szerezz! A feladatok

Részletesebben

Az elemek rendszerezése, a periódusos rendszer

Az elemek rendszerezése, a periódusos rendszer Az elemek rendszerezése, a periódusos rendszer 12-09-16 1 A rendszerezés alapja, az elektronszerkezet kiépülése 12-09-16 2 Csoport 1 2 3 II III IA A B 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IV V VI VII

Részletesebben

Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325

Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325 Sindely Dániel Sindely László: Atommag modellek és szimmetriáik 325 MODELLEK ÉS SZIMMETRIÁK BEVEZETÉS Az atomokról alkotott elképzelésünket állandóan módosítják az újabb felfedezések. Az atom modelljének

Részletesebben

Maghasadás, láncreakció, magfúzió

Maghasadás, láncreakció, magfúzió Maghasadás, láncreakció, magfúzió Maghasadás 1938-ban hoztak létre először maghasadást úgy, hogy urán atommagokat bombáztak neutronokkal. Ekkor az urán két közepes méretű atommagra bomlott el, és újabb

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Hogyan termelik a csillagok az energiát?

Hogyan termelik a csillagok az energiát? Hogyan termelik a csillagok az energiát? Nagyon tanulságosak azok a gondolatok, amelyeket Dr. Kulin György fogalmazott meg Az ember kozmikus lény című könyvében: A Nap másodpercenként 3,86. 10 26 J energiát

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete

Részletesebben

Modern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék

Modern kozmológia. Horváth István. NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék Modern kozmológia Horváth István NKE HHK Katonai Logisztikai Intézet Természettudományi Tanszék 2015 a fény nemzetközi éve 1015 Ibn Al-Haytham optika 1815 Fresnel fény hullámelmélete 1865 Maxwell egyenletek

Részletesebben

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek 1. Atomspekroszkópiai módszerek 1.1. Atomabszorpciós módszerek, AAS 1.1.1. Láng-atomabszorpciós módszer, L-AAS 1.1.2. Grafitkemence atomabszorpciós

Részletesebben

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35 Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek

Részletesebben

Az univerzum szerkezete

Az univerzum szerkezete Az univerzum szerkezete Dobos László dobos@complex.elte.hu É 5.60 2017. május 16. Szatellitgalaxisok és galaxiscsoportok Szatellitgalaxisok a Tejút körül számos szatellitet találni alacsony felületi fényességűek

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Az ősrobbanás elmélete

Az ősrobbanás elmélete Az ősrobbanás elmélete Kozmológia és kozmogónia Kozmológia: a világmindenséggel mint összefüggő, egységes egésszel, tér- és időbeli szerkezetével, keletkezésével, fejlődésével foglalkozó tudomány. Kozmogónia:

Részletesebben

ALPHA spektroszkópiai (ICP és AA) standard oldatok

ALPHA spektroszkópiai (ICP és AA) standard oldatok Jelen kiadvány megjelenése után történõ termékváltozásokról, új standardokról a katalógus internetes oldalán, a www.laboreszközkatalogus.hu-n tájékozódhat. ALPHA Az alábbi standard oldatok fémek, fém-sók

Részletesebben

1.ábra A kadmium felhasználási területei

1.ábra A kadmium felhasználási területei Kadmium hatása a környezetre és az egészségre Vermesan Horatiu, Vermesan George, Grünwald Ern, Mszaki Egyetem, Kolozsvár Erdélyi Múzeum Egyesület, Kolozsvár (Korróziós Figyel, 2006.46) Bevezetés A fémionok

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Radioaktív izotópok előállítása. Általános módszerek

Radioaktív izotópok előállítása. Általános módszerek Radioaktív izotópok előállítása Általános módszerek Természetes radioaktív izotópok kinyerése U-238 Th-234 Pa-234 U-234 Th-230 Ra-226 Rn-222 4,5e9 év 24,1 nap 1,2 min 2,5e5 év 8e4 év 1620 év 3,825 nap

Részletesebben

Elemanalitika hidegneutronokkal

Elemanalitika hidegneutronokkal Elemanalitika hidegneutronokkal Szentmiklósi László MTA Izotópkutató Intézet, Nukleáris Kutatások Osztálya szentm@iki.kfki.hu http://www.iki.kfki.hu/nuclear/ Mik azok a hideg neutronok? A neutron semleges

Részletesebben

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.

Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,

Részletesebben

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.

Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat

Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus

Részletesebben

Az atom felépítése Alapfogalmak

Az atom felépítése Alapfogalmak Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet

Részletesebben

Stabil izotóp geokémia - Bevezetés

Stabil izotóp geokémia - Bevezetés Stabil izotóp geokémia - Bevezetés Izotópok mennyiségének (arányának) és elterjedésének, megoszlásának tanulmányozása geofázisokban. A geokémia tárgya és feladata. Modern fizika, magfizika fejlődése, neutron

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Elemek. A geokémia osztályozás:

Elemek. A geokémia osztályozás: Elemek A geokémia osztályozás: - Nukleáris tulajdonságok alapján (stabil, radioaktív), - Illékonyságuk (kondezációs képesség) alapján gáz-szilárd egyensúlyban, - Affinitásuk alapján (megjelenésük a földi

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

PÁZMÁNY PÉTER CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PÁZMÁNY PÉTER CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER SEMMELWEIS UNIVERSITY PÁZMÁNY PÉTER CATHOLIC UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PÁZMÁNY PÉTER

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

Maghasadás (fisszió)

Maghasadás (fisszió) http://www.etsy.com Maghasadás (fisszió) 1939. Hahn, Strassmann, Meitner neutronbesugárzásos kísérletei U magon új reakciótípus (maghasadás) Azóta U, Th, Pu (7 izotópja) hasadási sajátságait vizsgálták

Részletesebben

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (3) a NAH / nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (3) a NAH-1-1755/2014 1 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: ISOTOPTECH Nukleáris és Technológiai Szolgáltató Zrt. Vízanalitikai Laboratórium

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

Hidrogénfúziós reakciók csillagokban

Hidrogénfúziós reakciók csillagokban Hidrogénfúziós reakciók csillagokban Gyürky György MTA Atommagkutató Intézet 4026 Debrecen, Bem tér 18/c, 52/509-246 Napunk és a hozzá hasonló fősorozatbeli csillagok magfúziós reakciók révén termelik

Részletesebben

Mag- és neutronfizika

Mag- és neutronfizika Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

Első magreakciók. Exoterm (exoerg) és endoterm (endoerg) magreakciók. Coulomb-gát küszöbenergia

Első magreakciók. Exoterm (exoerg) és endoterm (endoerg) magreakciók. Coulomb-gát küszöbenergia Magreakciók 7 N 14 17 8 O p Első magreakciók 30 Al n P 27 13, 15. 7 N(, p) 14 17 8 O Targetmag Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben