Lebontható polimerek, adalékanyagok Dr. Tábi Tamás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lebontható polimerek, adalékanyagok Dr. Tábi Tamás"

Átírás

1 Lebontható polimerek, adalékanyagok Dr. Tábi Tamás Október 28.

2 Probléma a hagyományos műanyagokkal

3 Egy lehetséges megoldás

4 Egy lehetséges megoldás Biológiailag lebomló (lebontható) polimerek (röviden lebontható polimerek vagy biopolimerek) alatt olyan, általában természetes alapú, megújuló erőforrásból előállított polimereket értünk, amelyek a talajban komposztálva, vagy biotikus környezetbe helyezve a gombák, baktériumok vagy algák enzimatikus bontó képességének hatására hónapok, esetleg néhány év alatt szemmel nem látható részekre (humusz, víz, szén-dioxid) bomlanak és a bomlástermékek nem szennyezik a környezetet vagy a komposztot.

5 Szacharidok, mint az műanyagipar új építőkövei

6 Megújuló erőforrásból milyen polimerek állíthatóak elő? 6

7 Lebontható polimerek csoportosítása Agro-polimerek Lebontható poliészterek

8 A világban megvalósult pár biopolimer alkalmazás

9 Politejsav (PLA)

10 Tejsav, Politejsav Ez milyen polimer? A Politejsav (Poly(Lactic Acid) (PLA)) egy termoplasztikus (részben kristályos), alifás poliészter. Hogyan állítják elő? Megújuló erőforrásból, pontosabban keményítőből (poliszacharid) vagy cukorból (diszacharid). Első lépésként a keményítőt (vagy cukrot), mint glükóz-származékot savas hidrolízissel szőlőcukorra (glükóz) bontják, amelynek tejsavas erjesztésekor (fermentáció) pedig tejsav képződik. A tejsavbaktériumok (Lactobacillus) jelenlétében a folyamat során a szőlőcukorból (C 6 H 12 O 6 ) tejsav (C 3 H 6 O 3 ) képződik: C 6 H 12 O 6 = 2C 3 H 6 O 3 A tejsav alkalmazása? A tejsavat leginkább élelmiszeriparban hasznosítják antioxidánsként, élelmiszerek savanyítására (káposzta) vagy tartósítószerként (E270). Emellett az emberi szervezet is termeli (izomláz), valamint fertőtlenítő hatása is van, így például a szájban, belekben is megtalálható.

11 Tejsav, Politejsav Szőlőcukor (keményítőből előállítva) tejsavas erjesztése során tejsav képződik

12 Tejsav, Politejsav

13 A Politejsav tulajdonságai A PLA tulajdonságai: - Mechanikailag kiváló (60-65 MPa szilárdság, 3 GPa merevség), de rideg (PS-hez hasonló tulajdonságok), azaz csak 3-5% körüli szakadási nyúlással rendelkezik és ütőszilárdsága is kicsi - Zsugorodása csekély (0,3-0,5%) - Lassú kristályosodás jellemzi, ömledékállapotból lehűtve nagy valószínűséggel teljesen amorf terméket kapunk - Átlátszó termékek gyárthatóak belőle, de a kristályosság növelésével átlátszósága elvész - Mivel a T g =55-65 C, így a hőállósága is kicsi (amorf termék esetén) - T g fölé melegítve intenzív hideg-kristályosodás indul be - Hagyományos technológiákkal feldolgozható, de a feldolgozásra érzékeny (hőmérséklet, tartózkodási idő) - Hidrofil, de nem vízoldható; vízgőz és gázzáró képessége a PET-nél jelentősen rosszabb, ugyanakkor aromazárása és zsírállósága kitűnő, erősen poláros - UV fénynek, alkoholnak ellenáll, de savaknak, lúgoknak nem - Széleskörűen módosítható ömledékkeveréssel (extruzió) - Ára jelenleg a PC ára körül alakul (1,9 Euro/kg)

14 A Politejsav feldolgozása

15 PLA fröccsöntése

16 PLA vákuumformázása

17 PLA vákuumformázása

18 PLA palackfúvása

19 PLA habosítása PLA fizikai hab (CO 2 ) + Talkum + Lánchossz növelő PLA fizikai hab (CO 2 )

20 A Politejsav lebomlása

21 A Politejsav (PLA) lebomlása Lebomlása? Lebomlásával nem szennyezi a környezetet (víz, humusz, szén-dioxid keletkezik). Lebomlása komposztban (T>~60 C) pár hónap alatt végbemegy, ugyanakkor csakis egy kezdeti hidrolízis után indul meg (észter-kötés), azaz szobahőmérséklet mellett szinte teljesen stabil, és a belőle készített termék hosszútávon, évekig használható marad (biotikus környezetben nem bomlik). Sajnos még nem áll rendelkezésre akkora komposztálási kapacitás, ami meg tudna bírkózni több tonna PLA-val évente.

22 PLA laboratóriumi lebontása PLA PLA/30m% keményítő PLA/15m% cellulóz

23 PLA laboratóriumi lebontása Tömegváltozás [%] PLA PLA/30m%keményítő PLA/15m%cellulóz Tömegváltozás [%] PLA PLA/30m%keményítő PLA/15m%cellulóz -35 Lebontási idő [óra] -35 Lebontási idő [óra] Enzimes oldat Desztillált víz PLA PLA/30m% keményítő PLA/15m% cellulóz

24 Lebomló polimerek komposztálása

25 Lebomló polimerek komposztálása

26 Lebomló polimerek komposztálása

27 Lebomló polimerek komposztálása

28 Hőmérséklet a komposztban Hőmérséklet [ C] Idő [nap] ~1 hét

29 Termékek házi komposztálása (0.hét)

30 Termékek házi komposztálása (12.hét)

31 Politejsav Alkalmazása? Átlátszósága miatt potenciálisan alkalmazható a csomagolóiparban, ugyanakkor folyadékok esetében jelenleg még nem vagy csak korlátokkal alkalmazható a szén-dioxid, oxigén és vízgőz áteresztő képessége miatt. Tekintve, hogy ellenáll az alkoholnak, így parfümök csomagolására alkalmas. Elektronikai iparban már készítettek belőle különböző számítógép perifériákat, billentyűzetet, egeret (elsősorban a burkolatokat), vagy DVD lemezt. Szál és ezáltal szövet formájában is használható kendők, ruhák létrahozására.

32 Polikaprolakton (PCL)

33 Polikaprolakton Ez milyen polimer? A Polikaprolakton (PCL) egy részben kristályos, termoplasztikus, alifás poliészter. Hogyan állítják elő? Az ε-kaprolaktonból lehet előállítani gyűrűfelnyitásos polimerizációval. Napjainkban leginkább kőolajból állítják elő, nem pedig megújuló erőforrásból, ugyanakkor utóbbit is tervezik a jövőben. Tulajdonságai? Kis olvadási hőmérséklete miatt (65ºC) keverékként, kopolimerizálva, vagy térhálósítva hasznosítják, ugyanakkor ennek megfelelően kis mértékű a feldolgozási energiaigénye, egyben kicsi a viszkozitása. Alacsony üvegesedési hőmérséklettel rendelkezik (-60 C), kis mértékű kristályosság jellemzi. Jó víz-, olaj-, és oldószer állósággal rendelkezik.

34 Polikaprolakton Lebomlása? Komposztálva is, és biotikus környezetbe helyezve is gyorsan elbomlik enzimatikus úton, köszönhetően az alacsony olvadási hőmérsékletének. Alkalmazása? Biokompatibilitása és gyors lebomlása miatt gyógyszertartalmú kapszulák bevonásánál (időzített lebomlás), sebészetben varrófonalként, implantátumként, illetve csomagolástechnikában alkalmazzák (főleg keményítővel társítva) leginkább rugalmas termékek (fóliák) anyagaként. Európában leginkább a termoplasztikus keményítővel társított keverékből gyártott lebomló szemeteszsákként terjedt el (Mater-Bi). Keményítő jelenléte jelentősen gyorsítja a lebomlását, ugyanakkor a keményítő jelenléte a vízfelvételt növeli.

35 Polimerek adalékanyagai

36 Polimerek adalékanyagai Árcsökkentő adalékanyagok: - Töltőanyagok Feldolgozás-javító adalékanyagok: - Lágyítók, - Csúsztatók (formaleválasztók). Tulajdonság-módosító adalékanyagok: - Töltőanyagok, - Lágyítók, - Erősítőanyagok, - Színezékek, - Fehér és fekete pigmentek, - Stabilizátorok (Antioxidánsok, UV stabilizátorok, hőstabilizátorok, hidrolízis), - Égésgátlók, - Habosítók, - Ütésállóság-növelők, - Tapadásgátlók, - Bomlást elősegítők, - Kompatibilizálók, - Antisztatizálók (antisztatikumok),

37 Polimerek adalékanyagai Tulajdonság-módosító adalékanyagok: - Gócképzők (átlátszóság növelők), - Zsugorodáscsökkentők, - Anti-bakteriális, - Gázzáró-képesség növelők, - Páralecsapódás csökkentők, - Elektromos vezetőképesség növelők, - Hővezető-képesség növelők, - Savmegkötők (sósav-akceptorok), - Optikai fehérítők, -

38 Lágyítók

39 Lágyítók Fizikai háttér: Egyes polimerek rugalmassága, hajlékonysága nem megfelelő az adott célra. Az adalékanyag funkciója és működési mechanizmusa: A lágyítók használatával nő a polimer hajlékonysága, hidegállósága, nyúlása, esetlegesen az ütésállósága (ütőmunkája), javul a feldolgozhatóság, csökken az ömledék-viszkozitás (kisebb fröccsöntési nyomás), csökken a T g, és a rugalmassági modulusz és a szilárdság. A lágyítók kis molekulatömegű polimerek, vagy oligomerek, amelyek kompatibilisak a lágyítani kívánt polimerrel. Kis molekulatömegű lágyító hatásosabb (kevesebb kell belőle), de kimigrál(hat) a felületre vagy kioldódhat a polimerből (élelmiszeripari használata engedélyköteles), amíg a nagyobb molekulatömegű kisebb hatékonyságú, ugyanakkor jelentősen kevéssé migrál. A lágyítók 80%-át a PVC lágyítására és feldolgozhatóvá-tételére használják. Működésük szerint másodlagos kötéseket alakítanak ki a polimer láncmolekuláival, növelik a polimer molekulák közti távolságot, így növelik azok mobilitását és ezáltal deformálhatóságát. Részbenkristályos polimerek esetében a kristályos részarány változatlan marad, a lágyító csak az amorf részarányt módosítja. Gyorsítják a kristályosodás folyamatát.

40 Lágyítók Fizikai háttér: Egyes polimerek rugalmassága, hajlékonysága nem megfelelő az adott célra. Az adalékanyag funkciója és működési mechanizmusa: A lágyítók használatával nő a polimer hajlékonysága, hidegállósága, nyúlása, esetlegesen az ütésállósága (ütőmunkája), javul a feldolgozhatóság, csökken az ömledék-viszkozitás (kisebb fröccsöntési nyomás), csökken a T g, és a rugalmassági modulusz és a szilárdság. A lágyítók kis molekulatömegű polimerek, vagy oligomerek, amelyek kompatibilisak a lágyítani kívánt polimerrel. Kis molekulatömegű lágyító hatásosabb (kevesebb kell belőle), de kimigrál(hat) a felületre vagy kioldódhat a polimerből (élelmiszeripari használata engedélyköteles), amíg a nagyobb molekulatömegű kisebb hatékonyságú, ugyanakkor jelentősen kevéssé migrál. A lágyítók 80%-át a PVC lágyítására és feldolgozhatóvá-tételére használják. Működésük szerint másodlagos kötéseket alakítanak ki a polimer láncmolekuláival, növelik a polimer molekulák közti távolságot, így növelik azok mobilitását és ezáltal deformálhatóságát. Részbenkristályos polimerek esetében a kristályos részarány változatlan marad, a lágyító csak az amorf részarányt módosítja. Gyorsítják a kristályosodás folyamatát.

41 Lágyítók Főbb követelmények a lágyítókkal szemben: - Kis illékonyság, - Vízoldhatatlanság, - Jó hő-, és fényállóság, - Összeférhetőség a polimerrel, - Migrációállóság, tartós hatás, - Hidegállóság, - Vegyszerállóság, - Lángállóság, - Biológiai bonthatóság (víz és szén-dioxid képződik). További hatása a polimerre: Sok esetben a lágyító alkalmas egyben csúsztatóként, valamint formaleválasztóként és a molekulaláncok mozgékonyságát növelve növeli a kristály-gócok növekedési sebességét, azaz gyorsítja a kristályosodási folyamatot, de a gócképződési folyamatot nem (lásd gócképzők).

42 Lágyítók Példák adalékanyagra: A világ összes lágyító termelésének 85%-át a PVC lágyítására használják. - Ftalátok (ftálsav észterek), - Adipinsavak, - Foszforsavészterek, - Citrát-észterek (biológiailag lebomló).

43 Fehér és fekete pigmentek

44 Fehér és fekete pigmentek Az adalékanyag funkciója és működési mechanizmusa: A fény spektrumából szinte az összes hullámhossz-tartományt elnyelik (fekete) vagy épp visszasugározzák (fehér). Egyéb hatása a polimerre: Mindkét esetben UV stabilizátorként is működnek, megnövelt időjárásállóság. Példák fehér pigmentekre: Titán-dioxid (TiO 2 ): A leghatékonyabb, legelterjedtebb fehér pigment. Jó kémiai, termikus stabilitás, diszpergálhatóság jellemzi, valamint nem toxikus. Mivel elnyeli az UV sugárzást (és hővé alakítja), így megvédi a polimert. Cink-szulfid (ZnS): A Titán-dioxid alternatívája. A ZnS (3-mas Mohs keménység) jóval puhább anyag, mint a TiO 2 (6-7-es Mohs keménység) így kisebb a szerszám és egyéb alkatrészek kopása, ugyanakkor kevesebb UV fényt nyel el.

45 Egyéb hehér és fekete pigmentek További példák adalékanyagra: - Alimínium-szilikát - Bárium-szulfát - Kálcium-szilikát - Magnézium-szilikát (talkum) Fekete pigment (szinte kizárólag ezt használják): Korom: Ideális többfunkciós adalékanyag, mivel színez, erősít, UV állóságot növeli, antisztatizál (elektromosan vezető). Leginkább a gumiipar használ kormot a gumi kopás, kifáradás, valamint szakítás elleni erősítésére. Általánosan igaz, hogy a kisebb szemcseméretű korom jobb tulajdonságokat kölcsönöz a polimernek, ugyanakkor nehezebb eloszlatni.

46 Stabilizátorok

47 Az adalékanyag funkciója és működési mechanizmusa: A polimer oxigén (+ hő) és/vagy UV sugárzással szembeni ellenállóképességének növelése, hogy az adott polimert nagyobb hőmérsékleten fel lehessen dolgozni, vagy hosszú ideig bírja az emelt üzemhőmérsékletet vagy kültéri körülményeket. Stabilizátorok Fizikai háttér: A polimerek bomlása megindulhat: - Fizikai tényezők (hő, nyíróerők, napfény), - Kémiai behatás (oxigén, víz, vegyszerek), - Biológiai tényezők (gombák, baktériumok) hatására. Ezek alapján megkülönböztetünk UV stabilizátorokat, antioxidánsokat (hőstabilizátorokat). A tisztán termikus bomlás jellege háromféle lehet: - Statisztikus lánctördelődés (degradáció) - Depolimerizáció (polimerizációval ellentétes folyamat, oligomerek, monomerek keletkeznek) - Elimináció (oldalcsoportok leszakadnak, de a főlánc sértetlen)

48 Antioxidánsok

49 Antioxidánsok Fizikai háttér: Az oxidációt a levegő oxigénje (+ hő) inicializálja. Oxidáció során szabadgyökök képződnek, amelyek az oxigénnel reagálva peroxid gyököket, utóbbiak pedig a polimer lánccal tovább reagálva hidroperoxidokat hoznak létre. Ez a reakció degradálja, öregíti és ezáltal ridegíti a polimer terméket. Az oxidáció hatására esztétikai (sárgulás), optikai (átlátszóság-csökkenés) és mechanikai tulajdonságok romlása következik be. Az antioxidánsok semlegesítik ezeket a szabadgyököket. Az adalékanyag funkciója és működési mechanizmusa: Az oxidáció hatására létrejövő káros hatások megakadályozása. Az alkalmazott mennyiség 1-2%. Megkülönböztetünk elsőrendű és másodrendű antioxidánst. Az elsőrendű antioxidánsok a szabad gyökök létrejöttét gátolja ( gyökfogók ), a másodrendűek pedig a hidroperoxidot bontja le ( peroxid bontók ). Példák adalékanyagra: - Térben gátolt fenolok, aromás aminok (elsőrendű antioxidánsok) - Foszfitok, tioéterek (másodrendű antioxidánsok) - Kettőt együttesen szokták alkalmazni a szinergikus hatás miatt

50 UV stabilizátorok

51 UV stabilizátorok Fizikai háttér: A napsugárzás UV tartományának energiája azonos nagyságrendű mint a fővegyérték-erők energiája, így a polimerek kültéri használat esetén fotodegradálódhatnak (foto-oxidálódhatnak), ami ridegedéshez, a termék/alkatrész berepedezéséhez, ütésállóságának (és a többi mechanikai tulajdonság) drasztikus csökkenéséhez, elszíneződéshez vezethet. A fény a polimer terméken visszaverődhet, szóródhat, áthatolhat rajta, vagy elnyelődhet. Foto-oxidációt az elnyelt fénysugárzás okozza és leginkább a polimer láncban található kettős kötésekre van hatással, mivel azokat gerjeszti. Egyes hullámhossz tartományok egyes polimerekre károsabbak, míg másokra nem. Pl. PP esetében a 330 nm alatti hullámhossz tartomány a veszélyesebb, amíg PE esetében a 330 nm feletti. Részben kristályos polimereknél a kristályos részarány szétszórja a fényt, így ezek a polimerek még jobban ki vannak téve a foto-oxidációnak.

52 UV stabilizátorok Az adalékanyag funkciója és működési mechanizmusa: A napsugárzás okozta oxidáció káros hatásának csökkentésére. Az alkalmazott mennyiség 0,01-2%. Működési mechanizmus (hasonló az antioxidánsokhoz) szerint lehetnek: - UV-abszorberek, vagy UV-árnyékolók (elnyelik a sugárzást és hőenergiává alakítják vagy leárnyékolják az UV tartományt) - Kioltók (a fény által gerjesztett atomcsoportok energiáját átveszik és leadják) - Hidroperoxid-bontók (a fotooxidáció következtében létrejövő hidroperoxidcsoportokat bontják) - Gyökfogók (a bomlás első lépéseként létrejövő csoportokat, szabadgyököket megkötik)

53 UV stabilizátorok Példák adalékanyagra: UV-árnyékolók: Kálcium-karbonát (önmagában használva fehér színt kölcsönöz a terméknek) UV-abszorberek: Benzofenon vegyületek Kioltók: Nikkel alapú stabilizátorok Gyökfogók, hidroperoxid-bontók: Úgynevezett HALS (Hindered Amine Light Stabilizers) vegyületek

54 Hidrolízis elleni stabilizátorok

55 Példák adalékanyagra: - Polikarbodiimidek Hidrolízis elleni stabilizátorok Fizikai háttér: Egyes polimerek hajlamosak hidrolízis útján (víz és nagy hőmérséklet együttes hatására) degradálódni. A hidrolízis tulajdonképpen a polikondenzációs reakció megfordítása. A poliolefinek nem, de a poliészterek vagy poliamidok ki vannak téve a hidrolízis veszélyének. A hidrolízis során a poliészter észter csoportjaiból sav és alkohol csoportok jönnek létre, amelyek katalizálják a reakciót, így az autokatalitikussá (önfenntartó) válik. A reakció során a polimer lánc tördelődik, a polimer termék/alkatrész pedig ridegebbé válik, majd szétesik. Az alapanyag nem megfelelő szárítása esetén a hidrolízis már a feldolgozó berendezésben megindulhat. A Politejsav (PLA) mint lebontható polimer tulajdonképpen hidrobontható, azaz egy kezdeti hidrolízis után képesek csak a bontó baktériumok feldolgozni a most már csak oligomer formában jelen lévő tejsavat. Az adalékanyag funkciója és működési mechanizmusa: A hidrolízis lassítása. Az adalékanyag reagál a hidrolízis által létrehozott savakkal, így nem lesz autokatalitikus a reakció.

56 Égésgátlók

57 Az adalékanyag funkciója és működési mechanizmusa: Égés folyamatának gátlása főként villamos-, jármű és építőipari termékekben/alkatrészekben. Működésük során az égéshez szükséges egyik elem (hő, éghető anyag, oxigén) utánpótlását megszakítják. Működésük legtöbb esetben az oxigén elvonásával (nitrogén gáz vagy halogének képződésével), vagy a hő elvonásával (vízképződéssel), vagy az éghető anyag hozzáférhetőségének elzárásával (elszenesedett réteg létrehozásával) jár, de nem az égés a legveszélyesebb, hanem az égés során keletkező toxikus melléktermékek és a sűrű füst. Az égésgátlók további feladata, hogy meggátolja az égő anyag csöpögését, és csökkentse az utóizzást. Jelenleg a kutatások arra irányulnak, hogy a lehető legkevesebb füstöt képezzen a folyamatosan égésben tartott polimer termék. Égésgátlók Fizikai háttér: A polimerek többsége szerves molekulák révén könnyen éghető. A PE, PP, PS, PET, PUR, UP, EP könnyen égnek, de a PVC, a nagy hőállóságú polimerek, klór, valamint fluor (PTFE) tartalmú polimerek bizonyos mértékig természetüknél fogva égésgátoltak, azaz a gyújtóláng eltávolítását követően égésük megszűnik, önkioltók. Az éghetőségüket a LOI index segítségével minősítik.

58 Az adalékanyag funkciója és működési mechanizmusa: Égés folyamatának gátlása főként villamos-, jármű és építőipari termékekben/alkatrészekben. Működésük során az égéshez szükséges egyik elem (hő, éghető anyag, oxigén) utánpótlását megszakítják. Működésük legtöbb esetben az oxigén elvonásával (nitrogén gáz vagy halogének képződésével), vagy a hő elvonásával (vízképződéssel), vagy az éghető anyag hozzáférhetőségének elzárásával (elszenesedett réteg létrehozásával) jár, de nem az égés a legveszélyesebb, hanem az égés során keletkező toxikus melléktermékek és a sűrű füst. Az égésgátlók további feladata, hogy meggátolja az égő anyag csöpögését, és csökkentse az utóizzást. Jelenleg a kutatások arra irányulnak, hogy a lehető legkevesebb füstöt képezzen a folyamatosan égésben tartott polimer termék. Égésgátlók Fizikai háttér: A polimerek többsége szerves molekulák révén könnyen éghető. A PE, PP, PS, PET, PUR, UP, EP könnyen égnek, de a PVC, a nagy hőállóságú polimerek, klór, valamint fluor (PTFE) tartalmú polimerek bizonyos mértékig természetüknél fogva égésgátoltak, azaz a gyújtóláng eltávolítását követően égésük megszűnik, önkioltók. Az éghetőségüket a LOI index segítségével minősítik.

59 Égésgátlók Példák adalékanyagra (többségük tartalmaz brómot, klórt, foszfort, antimont, vagy alumíniumot): - Alumínium-trihidrát (legelterjedtebb égésgátló): kettős hatás, hőt von el és vizet fejleszt - Antimon-trioxid - Magnézium-hidroxid - Szerves halogén (Cl, Br) vegyületek: környezetvédelmi előírások miatt háttérbe szorultak (füstöt képez égés közben) - Szerves foszforvegyületek - Nanorészecskék: legújabb kutatások irányvonala

60 Bomlást elősegítő adalékok

61 Az adalékanyag funkciója és működési mechanizmusa: Az adalékanyag segítségével hagyományos, kőolaj alapú polimerek is bonthatóak lesznek, méghozzá időzíthetően. Az adalékanyag UV fény, vagy oxigéndús környezetben felgyorsítja a polimer termék bomlását, így csökken a molekulatömeg, a termék berepedezik, szétesik, és a kis darabok vízoldhatóak lesznek, valamint feldolgozhatóak a bontó baktériumok által. Megoszlanak a vélemények, hogy a talajban az apró darabokat a bontó baktériumok fel tudják-e dolgozni, azaz valóban biológiai úton bontható válik-e a termék, vagy csak szétesővé. Mindezek alapján komoly viták folynak a biopolimeresek és az adalékanyagosok között, hogy melyik megoldás a környezetbarát és melyik lesz a jövő (még ha az adalék működik is, továbbra is kőolaj alapú a polimer). Példák adalékanyagra: - EPI TDPA nevű adalékanyaga - d w nevű adalékanyag Bomlást elősegítő adalékok Fizikai háttér: Habár a piacon léteznek megújuló erőforrásból előállított, és egyben biológiai úton lebontható polimerek, ugyanakkor ezek tulajdonsága, feldolgozhatósága nem mindig megfelelő a kívánt célra.

62 Gócképzők (átlátszóság növelő adalékok)

63 Gócképzők (átlátszóság növelő adalékok) Kristályosodás folyamata: A kristályosodás a részben-kristályos polimerekre jellemző folyamat, amint az ömledékből hűtve (ömledékállapotban nincs kristályos részarány) létrejön a kristályos szerkezet. A kristályosodás úgynevezett kristálygócok képződéséből, valamint azok növekedési szakaszából áll. A gócképződés lehet homogén (spontán) vagy heterogén. Homogén gócképződés esetén az ömledékből hűtve a molekulaláncok spontán csoportosulásai alkotnak kristálygócokat. Heterogén gócképződés esetén kívülről bevitt gócképzők, vagy bármilyen idegen anyag indukálja a kristálygócok kialakulását. A kristályosodás sebességét a kristálygócok képződésének sebessége és növekedésük sebessége együttesen határozza meg.

64 Gócképzők (átlátszóság növelő adalékok) Kristályosodás folyamata: A kristályosodás a részben-kristályos polimerekre jellemző folyamat, amint az ömledékből hűtve (ömledékállapotban nincs kristályos részarány) létrejön a kristályos szerkezet. A kristályosodás úgynevezett kristálygócok képződéséből, valamint azok növekedési szakaszából áll. A gócképződés lehet homogén (spontán) vagy heterogén. Homogén gócképződés esetén az ömledékből hűtve a molekulaláncok spontán csoportosulásai alkotnak kristálygócokat. Heterogén gócképződés esetén kívülről bevitt gócképzők, vagy bármilyen idegen anyag indukálja a kristálygócok kialakulását. A kristályosodás sebességét a kristálygócok képződésének sebessége és növekedésük sebessége együttesen határozza meg.

65 Gócképzők (átlátszóság növelő adalékok) Gócképzés szükségességének fizikai háttere: - Egyes részben kristályos polimerek nagyon lassan kristályosodnak ömledékből való hűtéskor (pl. PLA), így nem érik el a lehető legnagyobb kristályos részarányt (gócképzők). - Egyes részben kristályos polimerek ugyan kellően gyorsan kikristályosodnak, de átlátszóságuk megszűnik a kristályos részarány következtében, így azok nem vagy csak korlátozva alkalmazhatóak orvostechnikai és csomagolástechnikai célokra (átlátszóság növelő). Többféle kristályos módosulat létezik, pl. PP esetében: α, β, γ, PLA esetében α, β, γ, és η. A gócképzők általában egyfajta kristálymódosulat képződését segítik elő. Amely gócképző hatékony az egyik polimer esetében az egyáltalán nem biztos, hogy hatékony lesz egy másik polimer esetén.

66 Gócképzők (átlátszóság növelő adalékok) Az adalékanyag funkciója és működési mechanizmusa: - Lassú kristályosodás esetén (pl. PLA) a gócképzők feladata a kristálygócok képződésének elősegítése, és ezáltal a kristályos részarány növelése. A kristályos részarány növelésével növelhető a polimer hőállósága, csökkenthető a gyártáshoz szükséges ciklusidő. - Kellően gyors kristályosodás esetén (pl. PP) a megszilárdult ömledék átlátszósága nem lehet tökéletes a kristályos részarány miatt, amely megtöri a fényt (az amorf polimerek az átlátszóak), ugyanakkor a kristályos részecskenagyság csökkentésével (kisebb szferolitok) az átlátszóság javítható. Ebben az esetben a gócképzők feladata az átlátszóság növelése, mivel a kristálygócok képződésének elősegítésével több, de kisebb krisztallitok jönnek létre.

67 Gócképzők (átlátszóság növelő adalékok) Az adalékanyag funkciója és működési mechanizmusa: - Lassú kristályosodás esetén (pl. PLA) a gócképzők feladata a kristálygócok képződésének elősegítése, és ezáltal a kristályos részarány növelése. A kristályos részarány növelésével növelhető a polimer hőállósága, csökkenthető a gyártáshoz szükséges ciklusidő. - Kellően gyors kristályosodás esetén (pl. PP) a megszilárdult ömledék átlátszósága nem lehet tökéletes a kristályos részarány miatt, amely megtöri a fényt (az amorf polimerek az átlátszóak), ugyanakkor a kristályos részecskenagyság csökkentésével (kisebb szferolitok) az átlátszóság javítható. Ebben az esetben a gócképzők feladata az átlátszóság növelése, mivel a kristálygócok képződésének elősegítésével több, de kisebb krisztallitok jönnek létre.

68 Gócképzők (átlátszóság növelő adalékok) Példák adalékanyagra: - Bármi - Adipinsav - Fém sók - Szorbitol - Foszfátok - Szervetlen töltőanyagok (Titánium-dioxid, talkum, aluminim-oxid, krétapor)

69 Anti-bakteriális adalékok

70 Anti-bakteriális adalékok Fizikai háttér: A természetes (pl. cellulóz vagy keményítő) alapú polimereket a baktériumok, gombák vagy algák könnyen megtámadják és károsítják. A szintetikus műanyagok többnyire nincsenek kitéve a baktériumok hatásának, ugyanakkor a lágyító, csúsztató tartalmuk, amely kimigrál(hat) a termék felületére elősegíti a baktériumok megtapadását, ugyanis ez tápanyagot jelent számukra. Az adalékanyag funkciója és működési mechanizmusa: Megakadályozni a baktériumok, gombák káros hatását (élettartam csökkenés, elszíneződés, kellemetlen szag) a polimer termékekre/alkatrészekre. Az alkalmazott vegyületek As (arzén), Sb (antimon), Cu (réz), Sn (ón), illetve halogén tartalmúak, így az emberre is veszélyesek, de nagyon kis mennyiségben alkalmazzák ezeket (0,1-0,2%). A működésük során az anti-bakteriális adalékanyagok kimigrálnak a felületre és gátolják a mikroorganizmusok anyagcseréjét, szaporodását, vagy meg is ölik azokat. Példák adalékanyagra: - Difenil-antimon-2-etil-hexanoát - Réz-8-oxi-kinolin - Tributil-ón-oxid - Ezüst részecskék

71 Alapanyagok célzott módosítása 71

Polimerek adalékanyagai Dr. Tábi Tamás

Polimerek adalékanyagai Dr. Tábi Tamás Polimerek adalékanyagai Dr. Tábi Tamás 2015. Szeptember 30. Mi is az a polimer és a műanyag? Polimer: Olyan hosszúláncú vegyület (makromolekula) amelyben sok ezer építőegység kapcsolódik össze egymással.

Részletesebben

Biopolimerek alkalmazása Dr. Tábi Tamás

Biopolimerek alkalmazása Dr. Tábi Tamás Biopolimerek alkalmazása Dr. Tábi Tamás 2015. Szeptember 9. Mi is az a polimer és a műanyag? Polimer: Olyan hosszúláncú vegyület (makromolekula) amelyben sok ezer építőegység kapcsolódik össze egymással.

Részletesebben

Házi feladat témák: Polimerek alkalmazástechnikája tárgyból, 2014-2015. I félév

Házi feladat témák: Polimerek alkalmazástechnikája tárgyból, 2014-2015. I félév Házi feladat témák: Polimerek alkalmazástechnikája tárgyból, 2014-2015. I félév Orvostechnikai alkalmazások 1. Egyszer használatos orvosi fecskendő gyártása, sterilezése. 2. Vérvételi szerelék gyártása,

Részletesebben

Biopolimerek, biopolimer kompozitok

Biopolimerek, biopolimer kompozitok Biopolimerek, biopolimer kompozitok Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék

Részletesebben

Biopolimerek 2. Dr. Tábi Tamás Tudományos Munkatárs

Biopolimerek 2. Dr. Tábi Tamás Tudományos Munkatárs Biopolimerek 2 Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék 2016. December 2.

Részletesebben

Biopolimerek, biopolimer kompozitok

Biopolimerek, biopolimer kompozitok Biopolimerek, biopolimer kompozitok Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék

Részletesebben

Biopolimerek, biopolimer kompozitok

Biopolimerek, biopolimer kompozitok Biopolimerek, biopolimer kompozitok Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék

Részletesebben

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em. Műanyagok Pukánszky Béla - Tel.: 20-15 Műanyag- és Gumiipari Tanszék, H ép. 1. em. Tudnivalók: előadás írott anyag kérdések, konzultáció vizsga Vizsgajegyek 2003/2004 őszi félév 50 Jegyek száma 40 30 20

Részletesebben

Mőanyagok újrahasznosításának lehetıségei. Készítette: Szabó Anett A KÖRINFO tudásbázishoz

Mőanyagok újrahasznosításának lehetıségei. Készítette: Szabó Anett A KÖRINFO tudásbázishoz Mőanyagok újrahasznosításának lehetıségei Készítette: Szabó Anett A KÖRINFO tudásbázishoz A mőanyagok definíciója A mőanyagok olyan makromolekulájú anyagok, melyeket mesterségesen, mővi úton hoznak létre

Részletesebben

Fa-műanyag kompozitok (WPC) és termékek gyártása. Garas Sándor

Fa-műanyag kompozitok (WPC) és termékek gyártása. Garas Sándor Fa-műanyag kompozitok (WPC) és termékek gyártása 1 CÉL Kőolajszármazékok (polimerek) helyettesítése természetes, megújuló forrásból származó anyagokkal A polimerek tulajdonságainak módosítása Súlycsökkentés

Részletesebben

Biopolimerek 1. Dr. Tábi Tamás Tudományos Munkatárs

Biopolimerek 1. Dr. Tábi Tamás Tudományos Munkatárs Biopolimerek 1 Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék 2016. Május 3. Mi

Részletesebben

Mindennapi műanyagaink a környezetben Tények és tévhitek

Mindennapi műanyagaink a környezetben Tények és tévhitek Mindennapi műanyagaink a környezetben Tények és tévhitek Menyhárd Alfréd, Móczó János Műanyag- és Gumiipari Laboratórium Fizikai Kémia és Anyagtudományi Tanszék Budapest Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Szerkezet és tulajdonságok

Szerkezet és tulajdonságok Szerkezet és tulajdonságok Bevezetés Molekulaszerkezet és tulajdonságok Kristályos polimerek a kristályosodás feltétele, szabályos lánc kristályos szerkezet kristályosodás, gócképződés kristályosodás,

Részletesebben

Műanyagok tulajdonságai. Horák György 2011-03-17

Műanyagok tulajdonságai. Horák György 2011-03-17 Műanyagok tulajdonságai Horák György 2011-03-17 Hőre lágyuló műanyagok: Lineáris vagy elágazott molekulákból álló anyagok. Üvegesedési (kristályosodási) hőmérséklet szobahőmérséklet felett Hőmérséklet

Részletesebben

Anyagválasztás Dr. Tábi Tamás

Anyagválasztás Dr. Tábi Tamás Anyagválasztás Dr. Tábi Tamás 2018. Február 7. Mi a mérnök feladata? 2 Mit kell tudni a mérnöknek ahhoz, hogy az általa tervezett termék sikeres legyen? Világunk anyagai 3 Polimerek Elasztomerek Fémek,

Részletesebben

MEGÚJULÓ ERŐFORRÁSBÓL ELŐÁLLÍTOTT LEBOMLÓ

MEGÚJULÓ ERŐFORRÁSBÓL ELŐÁLLÍTOTT LEBOMLÓ HUNEST BIOREFINERY KFT. MEGÚJULÓ ERŐFORRÁSBÓL ELŐÁLLÍTOTT LEBOMLÓ POLIMER TERMÉKEK TERVEZÉSE PÁLYÁZATI KIÍRÁS 2010. SZEMPTEMBER 20. TARTALOMJEGYZÉK 1. BEVEZETÉS... 1 2. A POLITEJSAV, MINT LEBOMLÓ POLIMER...

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben

Szigetelőanyagok. Műanyagok; fajták és megmunkálás

Szigetelőanyagok. Műanyagok; fajták és megmunkálás Szigetelőanyagok Műanyagok; fajták és megmunkálás Mi a műanyag? Minden rövidebb láncolatú (kis)molekulából mesterségesen előállított óriásmolekulájú anyagot így nevezünk. természetben nem fordul elő eleve

Részletesebben

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, 2011. X. 18

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, 2011. X. 18 Kecskeméti Főiskola GAMF Kar Poliolefinek öregítő vizsgálata Szűcs András Budapest, 211. X. 18 1 Tartalom Műanyagot érő öregítő hatások Alapanyag és minta előkészítés Vizsgálati berendezések Mérési eredmények

Részletesebben

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció

Polimerek. Alapfogalmak. Alapstruktúra : Természetes polimerek: Mesterséges polimerek, manyagok. Szabad rotáció Polimerek Alapfogalmak Természetes polimerek: Poliszacharidok (keményít, cellulóz) Polipeptidek, fehérjék Kaucsuk, gumi Mesterséges polimerek, manyagok Monomer: építegység Polimer: fképp szénlánc, különböz

Részletesebben

Műanyaghulladék menedzsment

Műanyaghulladék menedzsment Műanyaghulladék menedzsment 2015. október 16. Dr. Ronkay Ferenc egyetemi docens ronkay@pt.bme.hu PET újrahasznosítás Polietilén-tereftalát: telített poliészter Tulajdonságai: jó gázzáró tulajdonságok (főleg

Részletesebben

A POLIPROPILÉN TATREN IM

A POLIPROPILÉN TATREN IM TATREN IM 6 56 A POLIPROPILÉN TATREN IM 6 56 blokk kopolimer típust akkumulátor házak, háztartási eszközök, autó - és egyéb műszaki alkatrészek fröccsöntésére fejlesztettük ki, ahol a tartós hőállóság

Részletesebben

Nagyhőállóságú műanyagok. Grupama Aréna november 26.

Nagyhőállóságú műanyagok. Grupama Aréna november 26. Nagyhőállóságú műanyagok Grupama Aréna 2015. november 26. Tartalom Jellemzők Műanyagok összehasonlítása A hőállóság növelésének lehetőségei (Adalékanyagok, erősítő anyagok) Alkalmazási példák Kiemelt termékek

Részletesebben

Műanyag-feldolgozó Műanyag-feldolgozó

Műanyag-feldolgozó Műanyag-feldolgozó A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Kínálatunkban megtalálhatók a szilikon tömítőgyűrűk és forgalmazott NBR gumi gyűrűk metrikus és coll méretben darabos és dobozos kiszerelésekben.

Kínálatunkban megtalálhatók a szilikon tömítőgyűrűk és forgalmazott NBR gumi gyűrűk metrikus és coll méretben darabos és dobozos kiszerelésekben. Szilikon O gyűrű szilikonok.hu /szilikon/szilikon-termekek/preselt-szilikon-formadarabok/szilikon-o-gyuru/ Egyedi és szabványos szilikon tömítő O gyűrűk gyártása Kínálatunkban megtalálhatók a szilikon

Részletesebben

Anyagismeret a gyakorlatban

Anyagismeret a gyakorlatban Égési tulajdonságok Elméleti áttekintés: A gyakorlat célja a polimerek égési tulajdonságainak megismerése és az adott anyagra jellemző égési folyamat ismeretében ismeretlen anyagú termékek esetén azok

Részletesebben

Degradáció, stabilizálás

Degradáció, stabilizálás Degradáció, stabilizálás Bevezetés Degradáció fogalmak, definíció, osztályozás depolimerizáció elimináció lánctördelődés, térhálósodás egyéb degradációs mechanizmusok Stabilizálás a PVC stabilizálása poliolefinek

Részletesebben

Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal

Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán

Részletesebben

Abroncsgyártó Gumiipari technológus

Abroncsgyártó Gumiipari technológus A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Kínálatunkban megtalálhatók a szilikon tömítőgyűrűk és forgalmazott NBR gumi gyűrűk metrikus és coll méretben darabos és dobozos kiszerelésekben.

Kínálatunkban megtalálhatók a szilikon tömítőgyűrűk és forgalmazott NBR gumi gyűrűk metrikus és coll méretben darabos és dobozos kiszerelésekben. Szilikon O gyűrű szilikongumi.com /szilikon-termekek/preselt-szilikon-formadarabok/szilikon-o-gyuru/ Egyedi és szabványos szilikon tömítő O gyűrűk gyártása Kínálatunkban megtalálhatók a szilikon tömítőgyűrűk

Részletesebben

Műanyag csővezetékek összehasonlítása

Műanyag csővezetékek összehasonlítása Műanyag-Csőgyártók Szövetsége Műanyag csővezetékek összehasonlítása 2018. január 25. Szepesi Vince Pipelife Tartalom A szerelőipari feladatok, A rendelkezésre álló anyagok, Az alkalmazások, UV és vegyi

Részletesebben

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június

VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK május - június 1. Méréstechnika 1.1. Méréstechnika alapjai VEGYIPAR ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZÉPSZINTEN SZÓBELI TÉMAKÖRÖK 2019. május - június méréstechnikai alapfogalmak (mérés, mért érték, mérőszám)

Részletesebben

Rugalmas műanyagok. Lakos Tamás Groupama Aréna nov. 26.

Rugalmas műanyagok. Lakos Tamás Groupama Aréna nov. 26. Rugalmas műanyagok Lakos Tamás Groupama Aréna 2015. nov. 26. Tartalom TPE áttekintés Tulajdonságok Összefoglalás Termékújdonságaink Rugalmas műanyagok Az elasztomerek felépítése 200-300A E-Modulusz E-Modulusz

Részletesebben

Tejsav alapú polimérek

Tejsav alapú polimérek Tejsav alapú polimérek Majdik Kornélia, Kakes Melinda Babes Bolyai Tudományegyetem, Kolozsvár Tartalom Klasszikus polimérek Biopolimérek Politejsav Biodegradació Kutatási eredmények A jövő polimérjei Polimérek

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

MŰANYAGOK ÉGÉSGÁTLÁSA. Garas Sándor

MŰANYAGOK ÉGÉSGÁTLÁSA. Garas Sándor MŰANYAGOK ÉGÉSGÁTLÁSA 1 Az égésgátlás szükségessége Az égés Elvárások az égésgátlással kapcsolatban Az égésgátlás vizsgálatai Az égésgátló adalékanyagok 2 Az égésgátlás szükségessége A műanyagok, ezen

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Komplex hatású csúsztatók Egyes műanyagtípusok feldolgozásában jelentős szerep jut a csúsztatószereknek. Az alábbiakban olyan adalékokat (fluorozott olajok, montánviasz) ismertetünk,

Részletesebben

A projekt rövidítve: NANOSTER A projekt időtartama: 2009. október 2012. december

A projekt rövidítve: NANOSTER A projekt időtartama: 2009. október 2012. december A projekt címe: Egészségre ártalmatlan sterilizáló rendszer kifejlesztése A projekt rövidítve: NANOSTER A projekt időtartama: 2009. október 2012. december A konzorcium vezetője: A konzorcium tagjai: A

Részletesebben

Vízálló faragasztók TÍPUSOK, TULAJDONSÁGOK ÉS TAPASZTALATOK. Aktualitások a faragasztásban 2016 Sopron, szeptember 9. Dr.

Vízálló faragasztók TÍPUSOK, TULAJDONSÁGOK ÉS TAPASZTALATOK. Aktualitások a faragasztásban 2016 Sopron, szeptember 9. Dr. Vízálló faragasztók TÍPUSOK, TULAJDONSÁGOK ÉS TAPASZTALATOK Aktualitások a faragasztásban 2016 Sopron, 2016. szeptember 9. Dr. Daku Lajos Faipari ragasztók vizsgálata (vízállóság EN 204, hőállóság: WATT

Részletesebben

Forgalmazó: P+K 3000 Kkt. Mobil: H-2363 Felsőpakony, Rákoczi u 16.

Forgalmazó: P+K 3000 Kkt. Mobil: H-2363 Felsőpakony, Rákoczi u 16. BEMUTÁS A rugalmas tartály paplan: különböző folyadékok ideiglenes vagy állandó tárolására alkalmas eszköz. Telepítés után úgy néz ki mint egy nagy földre terített paplan. Ezt a technológiát már 1965 óta

Részletesebben

KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT

KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT FRÖCCSÖNTÖTT LEBOMLÓ POLIMEREK FELDOLGOZÁSÁNAK ÉS FELHASZNÁLHATÓSÁGÁNAK

Részletesebben

Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok

Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok Hidrosztatikus hajtások, BMEGEVGAG11 Munkafolyadékok Dr. Hős Csaba, cshos@hds.bme.hu 2017. október 16. Áttekintés 1 Funkciók 2 Viszkozitás 3 Rugalmassági modulusz 4 Olajtípusok A munkafolyadék...... funkciói

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 03.

Részletesebben

Műanyag hegesztő, hőformázó Műanyag-feldolgozó

Műanyag hegesztő, hőformázó Műanyag-feldolgozó A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Műanyagok és környezetvédelem

Műanyagok és környezetvédelem Műanyagok és környezetvédelem 1 Vázlat Műanyagok és környezet mennyiség energia Megoldás életút-analízis megelőzés, tervezés újrafeldolgozás kémiai hasznosítás égetés Biológiailag lebontható polimerek

Részletesebben

KEIM Ecosil-ME. Legjobb műszaki teljesítmény erősen igénybe vett belső helyiségekhez

KEIM Ecosil-ME. Legjobb műszaki teljesítmény erősen igénybe vett belső helyiségekhez KEIM Ecosil-ME Legjobb műszaki teljesítmény erősen igénybe vett belső helyiségekhez Átváltozóművész fotokatalízis Mit jelent ez és hogyan hat Fotokatalízis a természetben és a technikában A fotokatalízis

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408 MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és

Részletesebben

Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata

Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata Hosszú szénszállal ersített manyagkompozitok mechanikai tulajdonságainak vizsgálata Varga Csilla*, Miskolczi Norbert*, Bartha László*, Falussy Lajos** *Pannon Egyetem Vegyészmérnöki és Folyamatmérnöki

Részletesebben

PiAndTECH FluidKAT katalitikus izzóterek

PiAndTECH FluidKAT katalitikus izzóterek PiAndTECH FluidKAT katalitikus izzóterek Hő felszabadítás katalitikus izzótéren, (ULE) ultra alacsony káros anyag kibocsátáson és alacsony széndioxid kibocsátással. XIV. TÁVHŐSZOLGÁLTATÁSI KONFERENCIÁT

Részletesebben

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév

Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.

Részletesebben

A tételekhez segédeszköz nem használható.

A tételekhez segédeszköz nem használható. A vizsgafeladat ismertetése: Egy kiválasztott műanyag jellemző fizikai és kémiai tulajdonságainak ismertetése Adott műanyag termék gyártásához anyag, gép és szerszám választása, majd a gyártástechnológia

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerek. Üreges testek gyártása

Budapesti Műszaki és Gazdaságtudományi Egyetem. Polimertechnika Tanszék. Polimerek. Üreges testek gyártása Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimerek Üreges testek gyártása Üreges testek gyártástechnológiái 2 Mi az, hogy üreges test? Egy darabból álló (általában nem összeszerelt),

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK VEGYIPAR ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK 1. feladat 8 pont A mérőműszerek felépítése A mérőműszer mely részére vonatkozik az alábbi állítás? Írja az állítás utáni kipontozott helyre

Részletesebben

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok DR Hargitai Hajnalka 2011.10.19. Polimerek

Részletesebben

LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA

LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA LABORATÓRIUMI PIROLÍZIS ÉS A PIROLÍZIS-TERMÉKEK NÉHÁNY JELLEMZŐJÉNEK VIZSGÁLATA TOLNERLászló -CZINKOTAImre -SIMÁNDIPéter RÁCZ Istvánné - SOMOGYI Ferenc Mit vizsgáltunk? TSZH - Települési szilárd hulladék,

Részletesebben

Természetes polimer szerkezeti anyagok: Makromolekulák

Természetes polimer szerkezeti anyagok: Makromolekulák POLIMERTECHNIKA TANSZÉK Dr. Morlin Bálint Dr. Tábi Tamás Természetes polimer szerkezeti anyagok: Makromolekulák 2016. Szeptember 9. Természetes polimer szerkezeti anyagok - Természetes polimer szerkezeti

Részletesebben

Műanyagfeldolgozó gépek és szerszámok

Műanyagfeldolgozó gépek és szerszámok Műanyagfeldolgozó gépek és szerszámok I. előadás Előkészítési lépések Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Fizikai Kémiai és Anyagtudományi Tanszék A tantárgy

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

Poliaddíció. Polimerek kémiai reakciói. Poliaddíciós folyamatok felosztása. Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben

Poliaddíció. Polimerek kémiai reakciói. Poliaddíciós folyamatok felosztása. Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben Polimerek kémiai reakciói 6. hét Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben Poliaddíció bi- vagy polifunkciós monomerek lépésenkénti összekapcsolódása: dimerek, trimerek oligomerek

Részletesebben

Az élelmiszerek tartósítása. Dr. Buzás Gizella Áruismeret bolti eladóknak című könyve alapján összeállította Friedrichné Irmai Tünde

Az élelmiszerek tartósítása. Dr. Buzás Gizella Áruismeret bolti eladóknak című könyve alapján összeállította Friedrichné Irmai Tünde Az élelmiszerek tartósítása Dr. Buzás Gizella Áruismeret bolti eladóknak című könyve alapján összeállította Friedrichné Irmai Tünde https://prezi.com/vht6rdoxwqf_/azelelmiszerek-valtozasa-es-a-tartositasieljarasok/

Részletesebben

Műanyagok és környezetvédelem Pukánszky Béla

Műanyagok és környezetvédelem Pukánszky Béla Műanyagok és környezetvédelem Pukánszky Béla BME Műanyag- és Gumiipari Tanszék 2002. december 13. Vázlat Műanyagok és környezet - mennyiség - becslés - életút-analízis -energia Megoldás - megelőzés, tervezés

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés σ [MPa] Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április

Részletesebben

SiAlON. , TiC, TiN, B 4 O 3

SiAlON. , TiC, TiN, B 4 O 3 ALKALMAZÁSOK 2. SiAlON A műszaki kerámiák (Al 2 O 3, Si 3 N 4, SiC, ZrO 2, TiC, TiN, B 4 C, stb.) fémekhez képest igen kemény, kopásálló, ugyanakkor rideg, azaz dinamikus igénybevételek elviselésére csak

Részletesebben

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából Dr SZABÓ Imre SZABÓ Attila GEOSZABÓ Bt IMRE Sándor TRELLEBORG Kft XVII. Országos Környezetvédelmi Konferencia

Részletesebben

Műanyagok alkalmazása

Műanyagok alkalmazása Műanyagok alkalmazása Bevezetés Degradáció fogalmak, definíció, osztályozás depolimerizáció elimináció lánctördelődés, térhálósodás egyéb degradációs mechanizmusok Stabilizálás a PVC stabilizálása poliolefinek

Részletesebben

3D bútorfrontok (előlapok) gyártása

3D bútorfrontok (előlapok) gyártása 3D bútorfrontok (előlapok) gyártása 1 2 3 4 5 6 7 8 9 MDF lapok vágása Marás rakatolás Tisztítás Ragasztófelhordás 3D film laminálás Szegély eltávolítása Tisztítás Kész bútorfront Membránpréses kasírozás

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

27/2012. (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

27/2012. (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. 27/2012. (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 34 521 09 Műanyagfeldolgozó Tájékoztató

Részletesebben

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006674T2! (19) HU (11) Lajstromszám: E 006 674 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 7326 (22) A bejelentés napja:

Részletesebben

MŰANYAGOK ÉS A KÖRNYEZET

MŰANYAGOK ÉS A KÖRNYEZET MŰANYAGOK ÉS A KÖRNYEZET Bioműanyagok: immár az EU iparpolitikájának részét képezik Az EU új iparpolitikája megteremtheti a biopolimereket gyártó európai vállalatok növekedése számára. A klasszikus, általában

Részletesebben

Vízben oldott antibiotikumok (fluorokinolonok) sugárzással indukált lebontása

Vízben oldott antibiotikumok (fluorokinolonok) sugárzással indukált lebontása Vízben oldott antibiotikumok (fluorokinolonok) sugárzással indukált lebontása Doktori beszámoló 5. félév Készítette: Tegze Anna Témavezető: Dr. Takács Erzsébet ÓBUDAI EGYETEM ANYAGTUDOMÁNYOK ÉS TECHNOLÓGIÁK

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Soba. FlamLINE. Fugaszalag 3 dimenziós hézagmozgáshoz

Soba. FlamLINE. Fugaszalag 3 dimenziós hézagmozgáshoz Soba Fugaszalag 3 dimenziós hézagmozgáshoz Egyszerû beépíthetôség lángolvasztással 1 Szigetelôlemez elvágása a dilatációnál fugaszalag elhelyezése és lángolvasztással történô rögzítése 2 fugaszalag fugaszalag

Részletesebben

Társított és összetett rendszerek

Társított és összetett rendszerek Társított és összetett rendszerek Bevezetés Töltőanyagot tartalmazó polimerek tulajdonságok kölcsönhatások szerkezet Polimer keverékek elegyíthetőség összeférhetőség Többkomponensű rendszerek Mikromechanikai

Részletesebben

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam

Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak

Részletesebben

A tételek: Elméleti témakörök. Általános kémia

A tételek: Elméleti témakörök. Általános kémia A tételek: Elméleti témakörök Általános kémia 1. Az atomok szerkezete az atom alkotórészei, az elemi részecskék és jellemzésük a rendszám és a tömegszám, az izotópok, példával az elektronszerkezet kiépülésének

Részletesebben

tervezési szempontok (igénybevétel, feszültségeloszlás,

tervezési szempontok (igénybevétel, feszültségeloszlás, Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet

Részletesebben

Műanyag és gumi adalékok Angyal, András, Pannon Egyetem

Műanyag és gumi adalékok Angyal, András, Pannon Egyetem Műanyag és gumi adalékok Angyal, András, Pannon Egyetem Műanyag és gumi adalékok írta Angyal, András Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon Egyetemen a TÁMOP-4.1.2/A/2-10/1-2010-0012

Részletesebben

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor 2015. november 18. Előadásvázlat 2 / 32 Fröccsöntés (szálas) Ciklus (kiemelve a száltöltés szerepét) Anyagok (mátrix, szál, adhézió) Rövidszálas

Részletesebben

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag )

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag ) 2. tétel - A nemfémes szerkezeti anyagok tulajdonságai, felhasználásuk. - Vasfémek és ötvözeteik, tulajdonságaik, alkalmazásuk. - A könnyűfémek fajtái és jellemzői, ötvözése, alkalmazása. - A színesfémek

Részletesebben

SZERVES KÉMIAI REAKCIÓEGYENLETEK

SZERVES KÉMIAI REAKCIÓEGYENLETEK SZERVES KÉMIAI REAKCIÓEGYENLETEK Budapesti Reáltanoda Fontos! Sok reakcióegyenlet több témakörhöz is hozzátartozik. Szögletes zárójel jelzi a reakciót, ami más témakörnél található meg. Alkánok, cikloalkánok

Részletesebben

A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI?

A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI? A POLIMERKÉMIA ESZKÖZTÁRA, AVAGY HOGYAN ÁLLÍTHATÓK BE EGY ÓRIÁSMOLEKULA TULAJDONSÁGAI? Szabó Ákos Magyar Tudományos Akadémia Természettudományi Kutatóközpont Anyag- és Környezetkémiai Intézet Polimer Kémiai

Részletesebben

A cukrok szerkezetkémiája

A cukrok szerkezetkémiája A cukrok szerkezetkémiája A cukrokról,szénhidrátokról általánosan o o o Kémiailag a cukrok a szénhidrátok,vagy szacharidok csoportjába tartozó vegyületek. A szacharid arab eredetű szó,jelentése: édes.

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

7. évfolyam kémia osztályozó- és pótvizsga követelményei Témakörök: 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2.

7. évfolyam kémia osztályozó- és pótvizsga követelményei Témakörök: 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2. 7. évfolyam kémia osztályozó- és pótvizsga követelményei 1. Anyagok tulajdonságai és változásai (fizikai és kémiai változás) 2. Hőtermelő és hőelnyelő folyamatok, halmazállapot-változások 3. A levegő,

Részletesebben

Polimer alapanyagok alkalmazásának előnyei-hátrányai Dr. Tábi Tamás

Polimer alapanyagok alkalmazásának előnyei-hátrányai Dr. Tábi Tamás Polimer alapanyagok alkalmazásának előnyei-hátrányai Dr. Tábi Tamás 2015. Szeptember 23. Anyagok csoportosítása 2 Al-oxid Si-karbid Kerámiák Si-nitrid Acél Öntöttvas Al-ötvözet Fémek, ötvözetek Ni-ötvözet

Részletesebben

Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf

Részletesebben

NYOMDAIPARI ALAPISMERETEK

NYOMDAIPARI ALAPISMERETEK Nyomdaipari alapismeretek középszint 0621 ÉRETTSÉGI VIZSGA 2007. május 25. NYOMDAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

ÉLELMISZER-IPARI ALAPISMERETEK

ÉLELMISZER-IPARI ALAPISMERETEK Élelmiszer-ipari alapismeretek középszint 11 ÉRETTSÉGI VIZSGA 01. május 5. ÉLELMISZER-IPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Funkcionális töltőanyagok... 2 Pigmentek... 2 Lángkésleltetők... 3 Műanyag adalékanyagok... 4 Gumi-adalékanyagok... 6

Funkcionális töltőanyagok... 2 Pigmentek... 2 Lángkésleltetők... 3 Műanyag adalékanyagok... 4 Gumi-adalékanyagok... 6 Termékportfólió Adalékanyagok HUNGARY Tartalomjegyzék Funkcionális töltőanyagok... 2 Pigmentek... 2 Lángkésleltetők... 3 Műanyag... 4 Gumi-... 6 1 Funkcionális töltőanyagok Karbonszál ZOLTEK PX35 ZOLTEK

Részletesebben

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1

12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1 12. Polimerek anyagvizsgálata 2. Anyagvizsgálat NGB_AJ029_1 Ömledék reológia Viszkozitás Newtoni folyadék, nem-newtoni folyadék Pszeudoplasztikus, strukturviszkózus közeg Folyásgörbe, viszkozitás görbe

Részletesebben

Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0

Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0 Szárazjeges tisztítás hatásai hegesztő szerszámokon 2012 GESTAMP 0 Karbantartás Szárazjeges tisztítás hatásai hegesztő szerszámokon Október 2014. október 15. Készítette: Kemény Béla Gestamp Hungária Kft

Részletesebben

Veszprémi Egyetem, Ásványolaj- és Széntechnológiai Tanszék

Veszprémi Egyetem, Ásványolaj- és Széntechnológiai Tanszék Petrolkémiai alapanyagok és s adalékok eláll llítása manyag m hulladékokb kokból Angyal András PhD hallgató Veszprémi Egyetem, Ásványolaj és Széntechnológiai Tanszék Veszprém, 2006. január 13. 200 Mt manyag

Részletesebben

raw material partnership know-how

raw material partnership know-how raw material partnership know-how A VALPLAST CZ és VALPLAST SK testvérvállalatok a Közép és Kelet Európai régió műanyagfeldolgozó vállalaltainak alapanyag-ellátását tűzték ki elsődleges feladatuknak. A

Részletesebben

Biotechnológiai alapismeretek tantárgy

Biotechnológiai alapismeretek tantárgy Biotechnológiai alapismeretek tantárgy A biotechnológiai alapismeretek tantárgy magába foglalja a kémia, fizikai kémia és a biológia tantárgyak témaköreit. 1. A) Ismertesse az atomok elektronszerkezetét!

Részletesebben

Antibakteriális hatóanyagot tartalmazó kapszulák előállítása, jellemzése és textilipari alkalmazása. Nagy Edit Témavezető: Dr.

Antibakteriális hatóanyagot tartalmazó kapszulák előállítása, jellemzése és textilipari alkalmazása. Nagy Edit Témavezető: Dr. Antibakteriális hatóanyagot tartalmazó kapszulák előállítása, jellemzése és textilipari alkalmazása Nagy Edit Témavezető: Dr. Telegdi Judit Megvalósítás lépései Oligomer és polimer előállítás, jellemzése

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Műanyagok fizikai öregedése A polimerek fizikai öregedése azért következik be, mert a gyakorlatban előállított műanyag termékekben a polimer láncok soha nincsenek termodinamikailag

Részletesebben