az alapiskola 9. és a nyolcosztályos gimnázium 4. osztálya számára

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "az alapiskola 9. és a nyolcosztályos gimnázium 4. osztálya számára"

Átírás

1 FIZIKA az alapiskola 9. és a nyolcosztályos gimnázium 4. osztálya számára doc. RNDr. Viera Lapitková, CSc. Mgr. Ľubica Morková

2 Szerzők Autori doc. RNDr. Viera Lapitková, CSc., Mgr. Ľubica Morková Lektorálták Lektorovali: Mgr. Zuzana Klaudíniová, Mgr. Mária Oravcová, doc. RNDr. František Kundracik, CSc. Az illusztrációk szerzői Autori ilustrácií Mgr. Zuzana Lapitková, doc. RNDr. Václav Koubek, CSc., RNDr. Peter Kohaut Fordította Prekladateľ Mgr. Lacza Tihamér Jóváhagyta a Szlovák Köztársaság Oktatási, Tudomány- és Kutatásügyi és Sportminisztériuma szeptember 24-én a /42141:4-919 szám alatt, mint fizika tankönyvet az alapiskola 9. és a nyolcosztályos gimnázium 4. osztálya számára. A jóváhagyási záradék 5 évig érvényes. Schválilo Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky pod č /42141:4-919 zo dňa 24. septembra 2012 ako učebnicu fyziky pre 9. ročník základnej školy a 4. ročník gymnázia s osemročným štúdiom. Schvaľovacia doložka má platnosť 5 rokov. Minden jog fenntartva. A könyv vagy bármely része nem használható fel, nem reprodukálható, nem terjeszthető semmilyen módon, akár mechanikus, fotografikus vagy elektronikus eszközökkel nyomtatott formában, fotokópiaként, illetve információs rendszer útján stb. a kiadó előzetes írásos beleegyezése nélkül. Všetky práva vyhradené. Žiadna časť tejto knihy nesmie byť použitá, reprodukovaná ani šírená akýmkoľvek spôsobom a prostriedkami, či už mechanickými, fotografickými alebo elektronickými a to vo forme tlačenej, fotokópií či záznamov, alebo prostredníctvom informačného systému a pod. bez predchádzajúceho písomného súhlasu vydavateľa. Első kiadás Prvé vydanie, 2012 ISBN

3 Hogyan tájékozódjunk gyorsan a tankönyvben? Kísérlet Feladat Oldd meg a faladatokat Fontos kifejezések Házi felkészülés a tanítási órára Projekt Összefoglaló tananyag Megjegyzés: Tudod-e, hogy Az információk összegyűjtésére és feldolgozására irányuló feladatok Kiegészítő tananyag A tankönyvhöz az interneten a következő helyeken találhatók elektronikus anyagok vagy

4 4 TARTALOM Mit fogunk tanulni... 6 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI... 8 Az anyagok mágneses tulajdonságai Vizsgáljuk az anyagok mágneses tulajdonságait Hogyan készítsünk mágnest A Föld mint mágnes Az anyagok elektromos tulajdonságai Vizsgáljuk az anyagok elektromos tulajdonságait. Az elektromos töltés Az elektromos töltés átvitele. Elektroszkóp Elektromos mező. Testek elektromos mezőben projekt Amit megtanultunk teszt feleltesd le önmagadat II. ELEKTROMOS ÁRAM Elektromos áram vezetése fémvezetőkben Elektromos áramkör. Elektromos vezetők és szigetelők Elektromos áram fémvezetőben. Az áram hőhatása Elektromos áramerősség mint fizikai mennyiség. Az áramerősség mérése Elektromos erők és elektromos mező a vezetőben Elektromos feszültség. A feszültség mérése Ohm törvénye. A vezető elektromos ellenállása Az elektromos ellenállás függése a vezető tulajdonságaitól Változó ellenállású rezisztor Amit megtanultunk... 61

5 5 2. teszt feleltesd le önmagadat A fogyasztók soros kapcsolása az elektromos áramkörben A fogyasztók párhuzamos kapcsolása az elektromos áramkörben Elektromos munka. Elektromos bemenő teljesítmény Mágneses mező az árammal átjárt vezető körül. Az árammal átjárt tekercs mágneses mezeje Elektromágnes és alkalmazása Amit megtanultunk teszt feleltesd le önmagadat Elektromos áram vezetése folyadékokban és gázokban Elektromos áram vezetése folyadékokban. Elektrolízis és hasznosítása Kémiai áramforrások Elektromos áram vezetése gázokban Az elektromos áram hatása az emberi szervezetre. Biztonság az elektromos berendezésekkel végzett munka közben Elektromos energia és átalakulásai projekt Amit megtanultunk teszt feleltesd le önmagadat

6 6 Mit fogunk tanulni Ebben a tanévben az anyagok elektromos és mágneses tulajdonságait, valamint az elektromos árammal összefüggő jelenségeket fogjuk vizsgálni a szilárd, a cseppfolyós és a gáznemű anyagokban. Az elektromos jelenségekkel kapcsolatos legkorábbi beszámoló Milétoszi Thalész görög filozófustól származik, aki i. e. a 6. században élt. A borostyánkövet dörzsölve, amely egy megszilárdult természetes gyanta és különböző tárgyak készíthetők belőle, azt látjuk, hogy apró testeket vonz magához. A borostyánkőből készült szerszám a len fonásánál használt berendezés része volt. Munka közben a szerszám súrlódott és mindenféle apró anyagmaradványokat: szalma- és lenszáltörmelékeket vonzott magához, miközben a lenfonalak taszították egymást. Ezeket az ókori megfigyeléseket az elektron kifejezés őrizte meg, ami a borostyánkő görög neve. Később, 1600 táján William Gilbert angol orvos ismét leírta ezt a jelenséget, és ezzel ösztönzést adott a további kutatásokhoz. borostyánkő A görögök azt is megfigyelték, hogy bizonyos természetes kövek, pl. a magnetit nevű ásvány, vonzzák a vastárgyakat. Ez volt az elektromos és mágneses jelenségekkel foglalkozó tudomány kezdete. Később az ún. Oersted kísérlet során (1820-ban) kiderült, hogy ez a két jelenség összefügg egymással. A dán Hans Oersted (örszted) megfigyelte, hogy a vezetőben haladó áram kitéríti az iránytű mágnestűjét. Ez a történelmi kísérlet megtalálható a tankönyvben is. A tudományos kutatás új területével, az elektromágnességgel számos ország tudósai foglalkoznak és sok új műszaki találmány alapját képezi. A bevezetőnek szánt két egyszerű kísérlet összefügg a tankönyvben feldolgozott fizikai ismeretekkel. Végezzétek el a kísérleteket és gondolkodjatok el a lefolyásukon. mágnesvaskő 1. kísérlet Figyeljétek meg és magyarázzátok meg a fonalra függesztett golyócska viselkedését, ha elektromosan töltött vonalzóval közelítünk felé. (Dolgozzatok csoportokban.) Eszközök: 6 x 2 cm-es alufólia, hosszú műanyagvonalzó, cm hosszú fonal, olló, Bunsen-állvány (főzőpohár), grafitceruza, papír zsebkendő Végrehajtás: a) A 6 2 cm nagyságú alufóliából készítsetek egy kis golyót és erősítsetek rá egy fonalat. b) A fonal másik végén alakítsatok ki egy hurkot, hogy a golyócskát fel tudjátok akasztani a ceruzára. c) A ceruzát erősítsétek az állványra vagy fektessétek keresztbe egy magasabb főzőpoháron úgy, hogy a golyócska szabadon függjön. d) Papír zsebkendővel dörzsöljétek meg a műanyagvonalzót, majd közelítsétek a golyócskához. 1. ábra A golyócskával és az elektromosan feltöltött vonalzóval végzett kísérlet eszközei

7 7 Válaszolj: 1. Hogyan viselkedett a golyócska, amikor az elektromosan feltöltött vonalzóval közelítettél hozzá? 2. A megfigyelés során csak egy jelenséget észleltetek vagy volt több is? 3. Hogyan magyarázod az egyes megfigyeléseket? 2. kísérlet Egy laposelemből és egy kis izzóból állíts össze elektromos áramkört, hogy az izzó világítson. Eszközök: laposelem (telep, 4,5 V), kis izzó 2. ábra A teleppel és az izzóval végzett kísérlet eszközei Válaszolj: 1. Írd le, hogyan kell az izzót a telephez csatlakoztatni, hogy meggyulladjon. 2. Rajzold le, hogyan képzeled el az elektromos áram áthaladását az izzón. 3. Mi az oka, hogy az izzó akkor gyullad meg, amikor helyesen csatlakoztatjuk a telephez? Ha a golyócskával végzett kísérletnél ilyen kifejezéseket használtál, mint elektromos töltés, vonzó vagy taszító erő, a tapasztalatodra épülő magyarázatod nagyon közel volt a szakmai magyarázathoz. A második kísérlet, az izzó kigyulladása és a világítás magyarázata valakinek nagyon egyszerű lehet, de vannak felnőttek is, akik nem képesek az izzót helyesen csatlakoztatni a telephez. A megfelelő magyarázathoz legalább az elektromos áramkör, az izzó és a telep szerkezetének legfontosabb elemeit ismerni kell.

8 8 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI Az anyagok mágneses tulajdonságai A mágneseket és a mágneses anyagokat mindennapjainkban széles körben alkalmazzák. Hasznosítják őket az elektronikai iparban (pl. számítógépek merevlemezei, a hitelkártyák mágneses vonalai), amely a mágneses anyagok tulajdonságainak ismerete nélkül nem létezne. Bizonyára találkoztatok már az iránytűvel, a tájolóval vagy a tárgyak egyszerű mágneses rögzítésével. Az iskolában valószínűleg mágneses táblát használtok. A mindennapi életben gyakran használnak elektromágneseket is. Példaként a mágnes vasutat vagy a rejtett betegségek feltárására szolgáló képalkotó orvos-diagnosztikai berendezéseket (mágneses magrezonancia készülék) stb. említhetjük. Ezek a mágnesség jelenségének korszerű magyarázatán alapuló berendezések Vizsgáljuk az anyagok mágneses tulajdonságait Az ókorban a magnetit (mágnesvaskő) ásvány csak szórakozásra szolgált, pl. bizonyos fémtárgyak vonzására. A mágnesvaskő természetes mágnes. Ma már mesterséges mágneseket készítenek (acélból vagy speciális ötvözetekből) vagy akár elektromágneseket is, amelyekről bővebben szó lesz az elektromos árammal foglalkozó fejezeben. A következő feladatban lehetőségetek lesz megvizsgálni a rúdmágnes tulajdonságait. Az iskolai eszközként használt rúdmágnes egyik végét a mágnes egyik pólusát (sarkát) pirosra festik, a másik végét (pólusát, sarkát) pedig kékre.

9 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI 9 Kísérlet A kísérletek alapján jellemezzétek két rúdmágnes kölcsönös viselkedését. Írjátok le a rúdmágnes tulajdonságait és viselkedését a különböző anyagú tárgyakkal szemben. (Dolgozzatok csoportokban.) Eszközök: 2 rúdmágnes, acél szögecskék (acélreszelékek, kis mágnesek vagy apró tárgyak) és a feladat végrehajtásához szükséges egyéb eszközök belátásotok szerint Javaslatok további eszközökre: Végrehajtás: a) Javasoljatok és végezzetek el kísérleteket két rúdmágnessel úgy, hogy megválaszolhassátok a feladat kérdéseit. b) Hajtsatok végre kísérleteket kis acéltárgyakkal és mágnessel. c) Javasoljatok kísérleteket, amelyek alapján következtetéseket tudtok levonni a mágnes és a különböző tárgyak közötti viselkedésről. d) Prezentáljátok megállapításaitok eredményét a kísérletekkel együtt az osztály előtt, majd közösen állítsátok össze a mágnes tulajdonságainak a jegyzékét. Válaszolj: 1. Hogyan viselkednek egymással szemben a mágnesek ellenkező színű ellentétes pólusai? 2. Hogyan viselkednek egymással szemben a mágnesek azonos színű megegyező pólusai? 3. A mágnes két sarka és a középső része hasonlóan viselkedik, amikor magához vonzza az apró acélszögeket vagy egyéb tárgyakat? 4. Milyen anyagokból készült tárgyakat vonz magához a mágnes, és milyen anyagúakat nem vonz? 5. Milyen közegben nyilvánul meg a mágnes hatása? Az előző feladat célja az volt, hogy megmutassuk a rúdmágnes közismert tulajdonságait. A kísérletek során meggyőződhettetek róla, hogy a mágnes és a vasból, az acélból (valamint a nikkelből, a kobaltból) készült tárgyak között mágneses erő hat. Azokat az anyagokat, amelyekre a mágnes hat, gyűjtőnévvel ferromágneses anyagoknak nevezzük. A mágneses erő láthatóan nem mutatkozik meg (igen gyenge), ha a mágnes közelében olyan anyagok találhatók, mint a műanyagok, a papír, a fa vagy az alumínium, de akár a réz, az ón vagy a sárgaréz is. Ha a kísérletek során a rúdmágnessel a szögekhez (acél iratkapcsokhoz) közelítettetek, megfigyelhettétek, hogy a legtöbb a mágnes sarkaihoz tapadt, ahol az erőhatások a leginkább megnyilvánulnak. A mágnes közepénél egyetlen szögecske sem tapadt meg. A mágnesnek ezt a részét semleges övezetnek nevezik.

10 10 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI pólusok 3. ábra Az acél szögecskék megtapadása a rúdmágnesen A rúdmágnesnek két eltérő pólusa van. Erről meggyőződhettek, ha a mágnest ceruzákra helyezzük és a piros színű sarokhoz a másik mágnes kék színű sarkával közelítünk. Megállapítható, hogy a mágnesek kölcsönösen vonzzák egymást (4.a ábra). Ha a ceruzákra helyezett mágnes valamelyik sarkához egy másik mágnes ugyanolyan színű sarkával közelítünk, a mágnesek kölcsönösen taszítják egymást (4.b ábra) a b 4. ábra A rúdmágnesnek eltérő pólusai (sarkai) vannak A mágnesek pólusai mágneses erővel hatnak egymásra. Az iskolai mágneseken az egyik pólus feltűnő vörös festékkel van megjelölve, ez az északi pólus és N betűvel jelölik (az angol North = észak nyomán). A másik a déli pólus, amelyet S betűvel jelölnek (South = dél). Az egymáshoz közelített mágnesek már egy bizonyos távolságból hatnak egymásra, még azt megelőzően, hogy érintkeznének. Hasonlóan viselkednek a mágnessel szemben a ferromágneses anyagokból készült testek is. Érintkezés nélkül a mágneses erőhatást a mágneses mező közvetíti, amely a mágnesek körül alakul ki. A mágnesek közeledésével a mágneses erőhatás egyre intenzívebb lesz és fordítva, a mágneseket fokozatosan eltávolítva gyengül. Végezzünk el egy kísérletet, amelyben feldaraboljuk a rúdmágnest, akárcsak az iskolai krétát. A mágnest feldarabolva azt várnánk, hogy elválasztjuk egymástól a mágnes pólusait. Meglepetésünkre azonban ez nem következik be. Nem történik meg ez akkor sem, amikor a mágnest igen kis részekre törjük, akár molekulákra, atomokra bontjuk. Minden mágnesdarabnak van északi és déli pólusa.

11 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI 11 S N S N S N S N S 5. ábra Kisebb darabokra osztva a mágnest minden résznek lesz északi és déli pólusa Minden mágnes nagyszámú kis (elemi) mágnesből áll. Ezek a mágnesben megőrzik az eredeti irányukat. A mágnes feldarabolása után az irányuk nem változik, ezért marad meg az új mágnesdarabok mindkét pólusa. N A mágnesek mágneses erőkkel hatnak egymásra. A mágneses erők lehetnek vonzók és taszítók. A mágneses erők nagysága csökken a mágnestől távolodva. A mágneses erőhatást a mágneses mező közvetíti. A mágneses hatás a legintenzívebb a mágnes pólusainál. Minden mágnesnek van északi (N) és déli (S) pólusa. Oldd meg a feladatokat 1. Végezd el a kísérletet: Hasonlítsd össze két rúdmágnes erőhatását, amelyek először ellentétes pólusaikkal, majd azonos pólusaikkal fordulnak egymás felé. Eszközök: két rúdmágnes, Bunsen-állvány, szorító, nagyobb mennyiségű acél szögecske (acél iratkapocs) Végrehajtás: a) Helyezz egymás mellé két rúdmágnest ellentétes pólusaikkal szemben és tegyél a közelükbe nagyobb számú acél szögecskét (gemkapcsot). Helyezd őket az ellentétes pólusokhoz. b) Számold meg, hány szögecskét vonzott magához a mágnes. c) Helyezz egymáshoz két rúdmágnest azonos pólusaikkal szemben és tegyél a közelükbe nagyobb mennyiségű acél szögecskét (gemkapcsot). Helyezd őket a mágnes azonos pólusaihoz. d) Számold meg a mágnesekhez tapadt szögecskéket. Válaszolj: 1. Hasonlítsd össze és jellemezd a két rúdmágnessel végzett kísérlet eredményeit. 2. Általánosítsd a kísérlet eredményeit. 2. Állapítsd meg, hogy az elektronikai iparban mire használják az anyagok mágneses tulajdonságait. 3. Feladatul kaptad, hogy megmérjed annak az erőnek a nagyságát, amellyel két rúdmágnes ellentétes pólusai vonzzák egymást. Javasolj eszközöket és végezd el a mérést Hogyan készítsünk mágnest Az acélból készült tárgyak, mint a szögek, a kulcsok, a különböző szerszámok, általában nem mágnesesek. Amikor erős mágneses mezőbe helyezzük őket, megállapíthatjuk, hogy mágneseződnek és rúdmágnesként viselkednek.

12 12 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI Ha a tárgyak ún. mágnesesen lágy acélból készültek, a mágnest, tehát a mágneses mezőt eltávolítva, megszűnnek mágnesként viselkedni. Ilyenkor ideiglenes mágnesekről beszélünk. Készíthetünk persze tartós mágnest is. Ez esetben egy mágnesesen kemény acélból készült tárgyat kell mágneseznünk. Mi történik az anyagban, amely mágnessé válik? Mielőtt a mágneses mezőbe helyeznénk a tárgyat, az anyagban levő kis mágnesek rendezetlenek és a közeli északi és déli pólusok hatásai kölcsönösen kioltják egymást (6.a ábra). Mágneses mezőbe helyezve a tárgyat a kis mágnesek a 6.b ábrán szemléltetett módon rendeződnek el. a b 6. ábra A mágnes keletkezésének magyarázata Az anyagban az elemi mágnesek elrendeződését követően a tárgy középső részében az északi és a déli pólusok hatása kioltja egymást, csak a test végében jelentkezik. Feladat Állapítsd meg, a tárgyak közül melyek vannak mágnesesen kemény, és melyek mágnesesen lágy acélból. Eszközök: 6 7 cm hosszú acélcsavar, 6 7 cm hosszú varrótű, apró szögek (acél gemkapcsok) Végrehajtás: Hogyan végeznéd el a kísérletet és hogyan értékelnéd ki? Leírunk egy kísérletet, amely lehetővé teszi, hogy közelebbről jellemezzük a mágneses mezőt. Az asztalra helyezünk egy rúdmágnest (7. a ábra) és a mágnesre egy nagyobb üveglapot fektetünk. A lapra durvább acélreszeléket szórunk. Minden részecske reszelékdarabka mágnessé válik. Az üveglapon a reszelékek a 7.a ábrán látható módon rendeződnek el. A reszelékekből kialakult vonalak rendszere a mágneses mező erőhatását szemlélteti. a b c 7. ábra A mágneses mező indukcióvonalainak modellje az acélreszelék elrendeződése A reszelékláncból kialakult vonalakat a mágneses mező indukcióvonalainak nevezzük. Hasonló módon acélreszelékekkel szemléltetjük az erőhatást az ellentétes pólusok közeledésekor (7. b ábra). A mágneses mező indukcióvonalai úgy irányulnak, mintha a mágnes egyik pólusából indulnának ki és a másikba érkeznének meg. A mágnes azonos pólusainak közeledésekor (7. c ábra) a mágneses mező indukcióvonalai a mágnesek taszítását szemléltetik.

13 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI 13 A mágneses mező indukcióvonalait azokkal a görbékkel ábrázolhatjuk, amelyek a mágneses erőhatás irányát szemléltetik a mágneses mezőben. A mágneses mező indukcióvonalai úgy irányulnak, hogy a mágnesen kívül az északi pólusból indulnak ki és belépnek a déli pólusba. A mágnes belsejében az indukcióvonalak a déli pólustól az északi pólus felé irányulnak. Az indukcióvonal zárt görbe. A 7. ábrán bemutatott kísérlet fényképeit vonalak segítségével ábrázoljuk (8. a, 8. b és 8. c ábra). a b c 8. ábra A mágneses mező indukcióvonalainak szemléltetése Az indukcióvonalakat akár a 7. ábrán, akár a 8. ábrán látható módon acélreszelékkel vagy rajz segítségével szemléltetjük, csak két dimenzióban tehetjük. A mágneses mező azonban a mágnest az egész térben körbeveszi és nincs éles határa. A ferromágneses anyagokból készült testeket mágnesezhetjük, ha mágneses mezőbe helyezzük azokat. Mágnesezéskor az elemi mágnesek elrendeződnek az anyagban. A mágneses mezőt szemléltethetjük modellezhetjük a mágneses mező indukcióvonalainak a rendszerével. Az indukcióvonalak szemléltetik a mágnes körüli térben jelentkező mágneses erőhatás irányát. Oldd meg a feladatokat 1. Az ábrákon az acélszög mágnesezését szemléltettük. Magyarázd meg, mit szemléltet az a, b, c ábra a szög belső szerkezete szempontjából. a b c 2. Van két egyforma nagyságú acélrudad. Az egyiket mágnesezték. Javasolj néhány módszert, hogyan állapítanád meg, hogy melyik rúd mágnesezett. 3. A következő ábrán a rúdmágnes metszetén a két pólus, valamint egy mágnespatkó látható. a) Rajzold le vagy másold le az ábrákat és a mágneses mező indukcióvonalaival szemléltesd a mágneses erőhatás irányát a környezetükben. b) Mi a különbség a mágneses mező indukcióvonalainak kétdimenziós és a mágneses erőhatás reális ábrázolása között a mágnesek körül? 4. Van egy mágnesezett tűd. A tűzbe tartva izzásig hevül. a) Fogalmazz meg egy hipotézist, vajon a tű a kihűlés után is mágnesezett marad. Indokold meg a hipotézised. b) Állapítsd meg, mit jelent a Curie hőmérséklet a ferromágneses anyagok számára. S N

14 14 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI 1.3. A Föld mint mágnes A Föld egy hatalmas mágnes. A Föld körüli mágneses mezőt úgy ábrázolhatjuk, mint egy óriási rúdmágnes mezejét, amely áthalad a bolygó középpontján. Sok ezer, sőt százezer kilométer távolságig terjed. A Föld mágneses mezejében mágneses erő hat. Föld forgástengelye M déli mágneses pólus R északi földrajzi pólus déli mágneses pólus északi földrajzi pólus S N R M 9. ábra A Föld mágneses pólusai, a pólusok megjelölése A Föld magja jobbára olvadt vasból és nikkelből áll, és a mágneses mezőt elektromos áramok gerjesztik. El kell azonban mondani, hogy a földmágnesség pontos magyarázatát egyelőre nem ismerjük. A földi mágneses mező déli pólusa az Arktisz térségében található, az északi földrajzi pólus közelében. Megjegyzés: A térképeken a Föld mágneses pólusai ellenkező módon vannak jelölve. A déli mágneses pólus északi geomágneses pólusként van jelölve, az északi mágneses pólus pedig déli geomágneses pólusként. A Föld mágneses mezejének képzeletbeli indukcióvonalai az északi féltekén hatolnak be a Földbe. A déli féltekén viszont épp ellenkezőleg, az Antarktisz térségének kb. arról a pontjáról indulnak ki az indukcióvonalak, amelyet mint északi mágneses pólust jelölünk. A mágneses és a földrajzi pólusok nem ugyanazon a helyen találhatók, ez a 9. ábrán is látható. A Föld mágneses pólusait összekötő vonal M jelenleg a Föld forgástengelyével R mintegy 12 fokos szöget zár be. A világtájak meghatározására általában az iránytűt használják, amelynek a legfontosabb része egy kis mágnes (szabadon forog a függőleges tengely körül) és a szögskála, esetleg a szélrózsa. Hasonló berendezés a busszola, amely emellett az azimut vagyis az irányszög meghatározására is alkalmas. A déli-északi irány meghatározása iránytűvel vagy a busszolával pontatlan a mágneses és a földrajzi pólusok eltérő helyzete miatt. Napjainkban a tájékozódás már nem függ ezeknek a műszereknek az alkalmazásától. A helyzetünket bárhol a Föld felszínén a GPS műholdas rendszer segítségével nagyon gyorsan meg tudjuk állapítani, amely 24 Föld körül keringő műholdról kapja a jeleket. A Föld mágneses mezejét egyszerű eszközökkel mi is igazolhatjuk, amiről a következő kísérlet végrehajtásával győződhetünk meg. 1. kísérlet Egyszerű eszközökkel győződjetek meg az észak-déli irány meghatározásának elvéről és feltételeiről a Föld felszínén. (Dolgozzatok csoportban.)

15 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI 15 Eszközök: 6 7 cm-es varrótű, rúdmágnes, kis mágnes, esetleg más eszközök választásotok szerint Javaslatok a kísérlet végrehajtásához: Végrehajtás: a) Beszéljétek meg a csoportban a kísérlet elvégzésének módját. b) Bizonyítsátok be, hogy a berendezésetek nem határozza meg pontosan az észak-déli irányt, ha a radiátorhoz vagy más fémes berendezéshez közelítitek a tanteremben. c) Az osztály előtt prezentáljátok a megoldásokat és a magyarázatot is. Válaszolj: 1. Milyen fizikai ismereteket hasznosítottál a kísérlet végrehajtásánál? 2. Mivel magyarázod a tényt, hogy az iránytűt vagy a tájolót nem használhatod a világtájak meghatározására acélból készült berendezések közelében? Ahogy fentebb már utaltunk rá, a kis mágnes fontos része az iránytűnek vagy a tájolónak és gyakori eszköze az iskolai fizikai szertáraknak. Tulajdonképpen egy kemény acélból készült rombusz alakú kis mágnesről van szó. A kis mágnes egy éles csúcson van elhelyezve, hogy szabadon foroghasson. Ennek segítségével meghatározhatjuk a mágneses erőhatás irányát, ahogy azt a rúdmágnesen szemléltettük (10. ábra). 10. ábra A mágneses erőhatás irányának meghatározása kis mágnessel A tudományos kutatások szerint a Föld mágneses mezője már 3,9 milliárd évvel ezelőtt létezett. A Föld mágneses mezője sok ezer kilométeren át szétterül a világűrben. magnetoszféra 11. ábra A napszél által deformált földi mágneses mező

16 16 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI Ez a mező állandóan ki van téve a napszél nyomásának. A napszél főleg pozitív töltésű protonokból és negatív töltésű elektronokból áll, ezeket a Nap löki ki magából. Az ember egészségét ezek a részecskék veszélyeztetik, ezért fontos, hogy a Föld mágneses mezője megakadályozza a behatolásukat a bioszférába. A mágneses mezőre ható nyomás hatására ez a mező deformálódik. A Földnek a Nap felé néző oldalán a mező összenyomódott, a túlsó felén elnyúlt és eközben messzire behatol a bolygóközi térbe (kb km). A Föld körül mágneses mező van. A déli mágneses pólus az északi földrajzi pólus (északi sark) közelében, míg az északi mágneses pólus a déli földrajzi pólus (déli sark) közelében található. A mágneses és a földrajzi pólusok nem ugyanazon a helyen találhatók. A világtájak (égtájak) meghatározására általában iránytűt vagy tájolót használunk. A Föld mágneses mezője megvéd bennünket a Napból érkező részecskéktől. Oldd meg a feladatokat 1. Hasonlítsd össze a Föld mágneses mezőjét a rúdmágnes mágneses mezőjével. Állapítsd meg az azonos és az eltérő jegyeket a földmagban található mágnesben és a szertári rúdmágnesben. A feladat megoldásához keress további információkat a föld- magban található mágnesről és az átmágneseződéséről. 2. Keress információkat: a) Ki próbálkozott meg a múltban az északi mágneses pólus helyének a meghatározásával? b) A Föld mellett vannak más bolygók is, amelyeknek mágneses mezőjük van? c) Kik és mikor kezdték először meghatározni a világtájakat iránytű segítségével? 3. Az ábrán a földgömböt szemléltettük és bejelöltük azokat a helyeket, ahol a kis mágnes helyzetét kell berajzolni. a) Másold le az ábrát és szemléltesd rajta a Föld forgástengelyét és a mágneses tengelyét. b) Tüntesd fel az ábrán a földrajzi és a mágneses pólusokat. c) Rajzold be a mágneses indukcióvonalak haladását a Föld körül. d) A kijelölt körökben kis nyíllal rajzold be a kis mágneseket. A nyílban végződő vonal vége legyen a kis mágnes északi pólusa. a Föld forgástengelye Tudjátok-e, hogy bizonyos állatok képesek visszatérni eredeti helyükre anélkül, hogy a tájban látható tájékozódási pontokra lenne szükségük? A tájékozódáshoz a mágneses mező nagyságával kapcsolatos információkat hasznosítják. A mágneses mező érzékelésének képességét magnetorecepciónak nevezik. Érdekes, hogy ezzel a képességgel sokféle élőlény rendelkezik, a baktériumoktól kezdve, a puhatestűeken, rovarokon, bizonyos halfajokon, kétéltűeken és madarakon át egészen az emlősökig, mint pl. a cetek. A mágneses mező érzékelésének módjai eltérőek és egyelőre keveset tudunk róluk. Például a galambok koponyájában találtak egy idegekkel átszőtt területet, ahol egy, a mágneses mezőre érzékeny biológiai magnetit található. A magnetit megtalálható a fókák, a delfinek, a bálnák, a teknősök fejében és bizonyos madárfajok nyakizmaiban is. Az emberi orr körüli csontokban is előfordul kevés magnetit, ami talán kis mértékben segíti a tájékozódásunkat.

17 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI 17 Az anyagok elektromos tulajdonságai Ha műanyag szövetből készült ruhát öltünk magunkra, megfigyelhetjük, hogy a hajunk elektromossá válik, akárcsak fésülködés közben, amikor a hajszálak a fésűhöz tapadnak. Ha a hajunk nedves, akkor ezt a jelenséget nem tapasztaljuk. De a pulóverek sem mindig egyformán gerjesztik villamosan a hajunkat. Ez függ a szövet anyagától és a külső körülményektől. A tankönyv elején olvasható a villamosan gerjesztett borostyánkő megfigyelése, amely apró lenszál darabkákat vonzott magához, és ez ösztönzést adott az elektromos jelenségek megfigyeléséhez. A hajszálak is dörzsöléssel villamosan gerjeszthetők. A testek villamos gerjesztését különböző módon valósíthatjuk meg. A testeknek ezt az állapotát magával az anyag szerkezetével magyarázhatjuk: az anyag elektromos tulajdonságaival. A mágneses tulajdonságokhoz hasonlóan az anyagok elektromos tulajdonságait is hasznosíthatjuk. Példa erre a másolatok készítése a másológépeken vagy a gépkocsik festése festékporlasztóval. A gépjármű karosszériája és a festékcseppek ellenkező elektromos töltésűek. Ez a technológia jobb minőségű és kíméletesebb festést tesz lehetővé Vizsgáljuk az anyagok elektromos tulajdonságait. Az elektromos töltés Gyakran a dörzsölés során a testek nem kívánatos módon is villamosan gerjesztődnek. Már említettük a műanyag szálas ruhák vagy a száraz haj és a fésű esetét, sőt a villamos gerjesztés jelenségét a hópelyheken is megfigyelhetjük hóviharban, amikor a hulló hópelyhek a levegőhöz súrlódnak. Előfordultak olyan esetek, amikor a villamos töltés tüzet okozott. A következő kísérletben lehetőségetek nyílik megfigyelni néhány anyag elektromos tulajdonságait. A vizsgálat és az elektromos tulajdonságok leírásának alapjául szolgálhatna a polietilén tasakból levágott két villamosan gerjesztett csík. Kísérlet A kísérletek alapján jellemezzétek két ugyanolyan anyagú villamosan gerjesztett tárgy kölcsönös viselkedését. Jellemezzétek továbbá a villamosan gerjesztett polietiléncsík viselkedését különböző anyagú tárgyakkal szemben. (Dolgozzatok csoportokban.) Eszközök: 2 polietiléncsík, apró papírszeletkék, fésű, két hosszú vonalzó, 2 felfújt léggömb, fonalra függesztett polisztirol golyócskák, alufóliából készített, fonalra függesztett golyócska, papír zsebkendő és további, magatok javasolta eszközök, amelyekre esetleg szükség lehet a feladat elvégzésénél.

18 18 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI Javaslatok további eszközökre: Végrehajtás: a) Dörzsöléssel villamosan gerjesszetek két azonos anyagú tárgyat (léggömböket, polietilén tasakokat) és figyeljétek meg, hogyan viselkednek egymással szemben. b) Végezzetek kísérletet villamosan gerjesztett polietiléncsíkkal és más anyagokból készült tárgyakkal. A polietiléncsíkot úgy gerjeszthetjük, hogy félbe hajtjuk és ujjainkkal megdörzsöljük. A megfigyeléseket egy táblázatba jegyezzétek fel. c) Nedvesítsétek meg a villamosan gerjesztett polietiléncsíkokat és figyeljétek meg a viselkedésüket. d) Az osztály előtt prezentáljátok megfigyeléseitek eredményeit a kísérletekkel együtt. Készítsetek egy közös jegyzéket a villamosan gerjesztett tárgyak tulajdonágairól. Válaszolj: 1. Hogyan viselkedik egymással szemben két azonos anyagú villamosan gerjesztett tárgy? 2. Hogyan viselkedik a villamosan gerjesztett polietiléncsík más anyagokból készült tárgyakkal szemben? 3. Hogyan viselkedtek a villamosan gerjesztett tárgyak a megnedvesítést követően? 4. Hogyan vélekedsz a megfigyelt jelenségekről? 5. Milyen közegben nyilvánul meg leginkább a villamosan gerjesztett tárgyak hatása a környező tárgyakra? Két villamosan gerjesztett polietiléncsík taszítja egymást, de ha összedörzsölünk egy papírlapot és egy polietilén tasakot, akkor azt látjuk, hogy vonzzák egymást. A testek elektromos állapotát az elektromos töltés idézi elő. Az iménti egyszerű kísérletekből kitűnik, hogy a papír és a polietiléncsík ellentétes elektromos töltésű. A polietiléncsíkok között a villamos gerjesztést követően elektromos erő jelentkezett. A villamosan gerjesztett papír és a polietiléncsík vonzotta egymást, mert szintén elektromos erő lépett fel köztük. A polietiléncsíkokon a dörzsölés nyomán jelentkező töltés negatív töltés ( ). A papírlap töltése pozitív töltés (+). Ha tehát ismerjük a polietiléncsík töltéstípusát, ennek alapján meg tudjuk határozni más villamosan gerjesztett testek töltéstípusát is. A polietiléncsíkkal és a papírlappal végzett kísérletből két további következtetés is leszűrhető. Két azonos töltésekkel rendelkező test taszítja egymást (pl. a két polietiléncsík), az ellentétes töltésű testek vonzzák egymást (a papírlap és a polietilén tasak).

19 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI kísérlet Állapítsd meg, hogy a villamosan gerjesztett tárgyakon, pl. a műanyagvonalzón, a léggömbön, az üvegtárgyon vagy más tárgyakon az elektromos töltés pozitív vagy negatív. Használd fel azt a tényt, hogy a villamosan gerjesztett polietiléncsíknak negatív töltése van. (A feladat megoldásának eredményeit jegyezd fel.) A dörzsölés előtt a testek nem mutattak semmilyen elektromos erőhatást a környező tárgyakra. Honnan kerül a töltés a testekre a villamos gerjesztést követően. A magyarázatot az anyagokat alkotó atomokban találjuk. Ismételjük át a kémiaórákon tanultakat az atomok felépítéséről. Tudjuk, hogy minden atom atommagból és elektronburokból áll. Az atommagban pozitív töltésű protonok és elektromos töltéssel nem rendelkező neutronok találhatók. Az atommag körül, az elektronburokban elektronok mozognak, amelyeknek negatív elektromos töltésük van. Az elektronok száma a burokban és a protonok száma az atommagban megegyezik. Az atom külsőleg nem mutat elektromos tulajdonságokat nincs elektromos töltése. Azt mondjuk, hogy elektromosan semleges állapotú. Az ábrán a szénatom modellje látható, amelynek magjában 6 proton, az elektronburkában pedig 6 elektron található. A legegyszerűbb atom a hidrogénatom. Ez egy protonból és egy elektronból áll. A tudósoknak sikerült megállapítaniuk, hogy a legkisebb, tovább már nem osztható töltés, az elektron töltése (jele: e). Ezt elemi töltésnek tekintjük, mert ennél kisebb önálló töltést még nem láttunk. Az elektron negatív töltése ugyanakkora, mint a proton pozitív töltése, tehát a proton töltése is elemi töltés. A töltés nagysága mérhető, ez fizikai mennyiség és a jele Q. Az elektromos töltés mértékegysége a coulomb (ejtsd: kulomb), jele C. Az elektromos töltés egysége az elektromos áramerősség egységéből van levezetve, erről majd a következő tematikus egységben fogtok tanulni. A coulomb egység bevezetése azért volt szükséges, mert az elemi töltés nagyon kicsi egység lett volna. Az elemi elektromos töltés az egyik legfontosabb fizikai állandó. Méréssel megállapították, hogy 1 C megközelítőleg e. Foglalkoztunk a két villamosan gerjesztett test között fellépő elektromos erőhatással. Az elektromos erő (pontosabban az elektrosztatikus erő) a töltések között hat. Ez végbemehet úgy, hogy a töltések kölcsönösen vonzzák, illetve taszítják egymást. Az erő nagysága meghatározható. Az elektromos erő nagysága egyenesen arányos a töltések nagyságával és fordítottan arányos a köztük levő távolsággal. A mérések alapján ezt a következtetést 1785-ben Charles Augustin Coulomb fogalmazta meg és a pontos kifejezését Coulomb-törvényének nevezzük. Megjegyzés: A 8. osztály számára készült fizikatankönyvben a gravitációs erővel kapcsolatban találkoztatok egy megállapítással: A gravitációs erő nagysága, amely két test között hat, összefügg a tömegükkel és a köztük levő távolsággal. Newton 1666-ban két, m 1 és m 2 tömegű test között fellépő vonzóerővel kapcsolatban megfogalmazott egy törvényt, amely hasonlónak tűnik, mint a Coulomb-törvény (1785), de jóval korábban. A gravitációs erők azonban csak vonzóerők, míg az elektrosztatikus erők lehetnek vonzók és taszítók is. az elektronok taszítják egymást a protonok szintén taszítják egymást az elektronok és a protonok vonzzák egymást 12. ábra A részecskék között ható erők szemléltetése A 12. ábrán szemléltettük a a töltések közötti erőhatást, az 1. táblázatban pedig feltüntettük a részecskéket, a jelölésüket és a töltésük jelölését. 1. táblázat Részecskék, jelölésük és töltésük jelölése Részecske Jelölés A töltés jelölése elektron e e proton p +e neutron n 0

20 20 I. AZ ANYAGOK MÁGNESES ÉS ELEKTROMOS TULAJDONSÁGAI Az elektronburokból néhány elektron könnyen kiszabadul és az egyik testről átmegy egy másik testre. Ezért van az egyik testnek elektronhiánya és pozitív töltésű lesz. A másik testen elektronfelesleg keletkezik, és negatív töltésű lesz. A polietiléncsíkokat száraz ujjal dörzsölve az ujjunkon levő elektronok átugrottak a polietiléncsíkokra. A csíkoknak ezáltal elektrontöbbletük lett, negatív töltésre tettek szert. A csíkok és az ujjak szoros érintkezésekor egy kis mennyiségű töltés áthelyeződik, és a testek már nem maradnak semleges állapotban. Ha a testben több az elektron, mint a proton, a test negatív töltésű. Elektronjaikat elvesztve az ujjaknak pozitív töltésük van. A csíkokon a töltés növelhető vagy épp ellenkezőleg, a csíkok más tárggyal érintkezve leadhatják azt. A csíkok azonban gyorsan el is veszíthetik a töltésüket, ha pl. nedves kézzel érintjük meg azokat. A pozitív villamos gerjesztés jellegzetes kísérlete az üvegbot dörzsölése selyemkendővel. A negatív elektromos töltések az elektronok az üvegbotról áthelyeződnek a selyemkendőre. Az üvegbot pozitív töltésű, a selyemkendő negatív töltésű lesz. Mindkét villamos gerjesztés esetén a dörzsölésen van a hangsúly. A dörzsölés azért fontos, hogy az anyagok között szorosabb érintkezést érjünk el, és ezáltal növeljük az átvitt elektronok számát is. A dörzsöléskor a töltések átrendeződnek a töltések az egyik testről áthelyeződnek a másik testre. Így a testek már nem maradnak semleges állapotban. A testek elektromos állapotát az elektromos töltés okozza. Kétféle elektromos töltés létezik: pozitív és negatív. Az azonos és az ellentétes töltések között elektromos erő hat. Az elektromos töltés fizikai mennyiség és a jele Q. Az elektromos töltés egysége: C (coulomb) Kisebb egységeket is használnak: μc (mikrocoulomb) 1 μc = 0, C Az e elemi elektromos töltés értéke az egyik legfontosabb fizikai állandó. Oldd meg a feladatokat 1. Az ábrán két üvegbot látható, amelyek azonos töltésűek (a. ábra) és két különböző anyagból készült rúd, amelyek ellenkező töltésűek (b. ábra). Mindkét üvegbotot dörzsöléssel gerjesztették. a b üveg üveg üveg ebonit a) Hogyan fog viselkedni a két üvegbot az a ábrán? b) Hogyan fog viselkedni az üvegbot és az ebonitrúd a b ábrán? c) A rudakat dörzsöléssel gerjesztettük. Magyarázd meg, hogyan sikerült dörzsöléssel villamosan gerjeszteni az üvegbotot és az ebonitrudat. 2. Gyűjts információkat, vagy akár mutasd is be a gyakorlatban, hogy a klasszikus tévéképernyőnek elekt- romos töltése van. Villamosan gerjesztett polietiléncsík segítségével állapítsd meg, hogy ez pozitív vagy negatív töltés-e.

FIZIKA ÓRA. Tanít: Nagy Gusztávné

FIZIKA ÓRA. Tanít: Nagy Gusztávné F FIZIKA ÓRA Tanít: Nagy Gusztávné Iskolánk 8.-os tanulói az Esze Tamás Gimnázium európai színvonalon felszerelt természettudományos laboratóriumában fizika órán vettek részt. Az óra témája: a testek elektromos

Részletesebben

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám

ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat. Fizika 10. osztály. II. rész: Elektrosztatika. Készítette: Balázs Ádám ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Biológia tagozat Fizika 10. osztály II. rész: Elektrosztatika Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék II. rész:

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Mágneses kölcsönhatás

Mágneses kölcsönhatás Mágneses kölcsönhatás Kísérlet A mágnesesség története https://www.youtube.com/watch?v=ptkdiqdhle8 Mágnesesség A milétoszi THALÉSZ i.e. 600-ban a kisázsiai MAGNESIA városában, mely a mai Törökország területén

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

Elektromosság, áram, feszültség

Elektromosság, áram, feszültség Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás

1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői. 2. A gyorsulás 1. Az egyenes vonalú egyenletes mozgás kísérleti vizsgálata és jellemzői Kísérlet: Határozza meg a Mikola féle csőben mozgó buborék mozgásának sebességét! Eszközök: Mikola féle cső, stopper, alátámasztó

Részletesebben

Elektromos töltés, áram, áramkörök

Elektromos töltés, áram, áramkörök Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk onzóerőt? a) A mágnesrúd északi pólusához asdarabot közelítünk. b) A mágnesrúd közepéhez asdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Elektromos töltés, áram, áramkör

Elektromos töltés, áram, áramkör Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ

Tartalom ELEKTROSZTATIKA AZ ELEKTROMOS ÁRAM, VEZETÉSI JELENSÉGEK A MÁGNESES MEZÕ Tartalom ELEKTROSZTATIKA 1. Elektrosztatikai alapismeretek... 10 1.1. Emlékeztetõ... 10 2. Coulomb törvénye. A töltésmegmaradás törvénye... 14 3. Az elektromos mezõ jellemzése... 18 3.1. Az elektromos

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Elektromágneses indukció kísérleti vizsgálata

Elektromágneses indukció kísérleti vizsgálata A kísérlet célkitűzései: Kísérleti úton tapasztalja meg a diák, hogy mi a különbség a mozgási és a nyugalmi indukció között, ill. milyen tényezőktől függ az indukált feszültség nagysága. Eszközszükséglet:

Részletesebben

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások

I. tétel Egyenes vonalú mozgások. Kísérlet: Egyenes vonalú mozgások I. tétel Egyenes vonalú mozgások Kísérlet: Egyenes vonalú mozgások Mikola-cső; dönthető állvány; befogó; stopperóra; mérőszalag. II. tétel A dinamika alaptörvényei Kísérlet: Newton törvényei Két egyforma,

Részletesebben

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag

Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök segítségével! Eszközök: Kiskocsi-sín, Stopperóra, Mérőszalag Fizika érettségi 2017. Szóbeli tételek kísérletei és a kísérleti eszközök képei 1. Egyenes vonalú, egyenletesen változó mozgás Mérje meg a lejtőn legördülő kiskocsi gyorsulását a rendelkezésre álló eszközök

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

A középszintű fizika érettségi kísérleteinek képei 2017.

A középszintű fizika érettségi kísérleteinek képei 2017. A középszintű fizika érettségi kísérleteinek képei 2017. 1. Kísérlet: Feladat: A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált

Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált Mágnesesség, elektromágnes, indukció Tudománytörténeti háttér Már i. e. 600 körül Thalész felfedezte, hogy Magnesia város mellett vannak olyan talált ércek, amelyek vonzzák a vasat. Ezeket mágnesnek nevezték

Részletesebben

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017

Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017 Középszintű fizika érettségi kísérlet és eszközlista képekkel 2017 1. Nehézségi gyorsulás értékének meghatározása Audacity számítógépes akusztikus mérőprogram segítségével Nagyobb méretű acél csapágygolyó;

Részletesebben

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok

Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok Középszintű fizika érettségi (2018. május-június) Nyilvánosságra hozható adatok I. Szóbeli témakörök: A szóbeli vizsgán a jelöltnek 20 tételből kell húznia egyet. A tételek tartalmi arányai a témakörökön

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság 2. Minta feladatsor 1. Fizikai mennyiségek Jele: (1), (2), (3) R, (4) t, (5) Mértékegysége: (1), (2), (3) Ohm, (4) s, (5) V 3:06 Normál Számítása: (1) /, (2) *R, (3) *t, (4) /t, (5) / Jele Mértékegysége Számítása dő Töltés

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete

FIZIKA munkafüzet. o s z t ály. A Siófoki Perczel Mór Gimnázium tanulói segédlete A Siófoki Perczel Mór Gimnázium tanulói segédlete FIZIKA munkafüzet Tanulói kísérletgyűjtemény-munkafüzet az általános iskola 8. osztálya számára 8. o s z t ály CSODÁLATOS TERMÉSZET TARTALOM 1. Elektrosztatika

Részletesebben

Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli.

Töltődj fel! Az összes kísérlet egyetlen eszköz, a Van de Graaff-generátor, vagy más néven szalaggenerátor használatát igényli. Tanári segédlet Ajánlott évfolyam: 8. Időtartam: 45 Töltődj fel! FIZIKA LEVEGŐ VIZSGÁLATAI Kötelező védőeszköz: Balesetvédelmi rendszabályok: Pacemakerrel vagy hallókészülékkel élő ember ne végezze a kísérleteket!

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés

mágnes mágnesesség irányt Föld északi déli pólus mágneses megosztás influencia mágneses töltés MÁGNESESSÉG A mágneses sajátságok, az elektromossághoz hasonlóan, régóta megfigyelt tapasztalatok voltak, a két jelenségkör szoros kapcsolatának felismerése azonban csak mintegy két évszázaddal ezelőtt

Részletesebben

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése:

MUNKAANYAG. Danás Miklós. Elektrotechnikai alapismeretek - villamos alapfogalmak. A követelménymodul megnevezése: Danás Miklós Elektrotechnikai alapismeretek - villamos alapfogalmak A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata. Eszközszükséglet: Mechanika I. készletből: kiskocsi, erőmérő, súlyok A/4-es írólap, smirgli papír gyurma

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás

Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások. A dinamika alaptörvényei. A körmozgás Elvégzendő mérések, kísérletek: Egyenes vonalú mozgások Mérje meg a Mikola csőben lévő buborék sebességét, két különböző alátámasztás esetén! Több mérést végezzen! Milyen mozgást végez a buborék? Milyen

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku 58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku Megjegyzés a feladatok megoldásához: A feladatok szövegezésében használjuk a vektor kifejezést,

Részletesebben

Kísérleti doboz Vasporos doboz Mágnesrúd. Játékmezők Fémlemezek. Gemkapcsok. Kivágható ívek Arcok Tengelyklipsz és rúd

Kísérleti doboz Vasporos doboz Mágnesrúd. Játékmezők Fémlemezek. Gemkapcsok. Kivágható ívek Arcok Tengelyklipsz és rúd kísérletek, teljesen segítség nélkül mégsem végezhetők el. Segítsenek a kis kutatóknak, mivel gyakran a kíváncsiságuk és felfogó képességük megvan, sőt, jobban kifejlődött, mint a kézügyességük. Gondoskodjanak

Részletesebben

SLOVENSKÁ KOMISIA TECHNICKEJ OLYMPIÁDY TECHNICKÁ OLYMPIÁDA 5. ročník, školský rok 2014/2015 Okresné kolo Zadanie teoretického testu kategória A

SLOVENSKÁ KOMISIA TECHNICKEJ OLYMPIÁDY TECHNICKÁ OLYMPIÁDA 5. ročník, školský rok 2014/2015 Okresné kolo Zadanie teoretického testu kategória A SLOVENSKÁ KOMISIA TECHNICKEJ OLYMPIÁDY TECHNICKÁ OLYMPIÁDA 5. ročník, školský rok 2014/2015 Okresné kolo Zadanie teoretického testu kategória A A tanuló kódszáma: Alapiskola : Összesített pontszám: 1.

Részletesebben

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket)

Magnesia. Itt találtak már az ókorban mágneses köveket. Μαγνησία. (valószínű villámok áramának a tere mágnesezi fel őket) Mágnesség Schay G. Magnesia Μαγνησία Itt találtak már az ókorban mágneses köveket (valószínű villámok áramának a tere mágnesezi fel őket) maghemit Köbös Fe 2 O 3 magnetit Fe 2 +Fe 3 +2O 4 mágnesvasérc

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás Vegyes témakörök 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom F. M.

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Mágnesség, elektromosság Természetismeret 5. Szaktanári segédlet

Mágnesség, elektromosság Természetismeret 5. Szaktanári segédlet Mágnesség, elektromosság Természetismeret 5. Szaktanári segédlet Készítette: Klemné Lipka Dorottya Lektorálta: Rapavi Róbert Kiskunhalas, 2014. december 31. Természetismeret 5. ~ 2 ~ Mágnesesség és elektromosság

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Mechanika 1. Az egyenes vonalú mozgások

Mechanika 1. Az egyenes vonalú mozgások I. Mechanika 1. Az egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést! elvégzendő kísérlet Mikola-cső; dönthető

Részletesebben

SZÁMÍTÁSOS FELADATOK

SZÁMÍTÁSOS FELADATOK 2015 SZÁMÍTÁSOS FELADATOK A következő négy feladatot tetszőleges sorrendben oldhatod meg, de minden feladat megoldását külön lapra írd! Csak a kiosztott, számozott lapokon dolgozhatsz. Az eredmény puszta

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

rugós erőmérő parafa dugó kapilláris csövek drótkeret cérnaszállal műanyag pohár víz, mosogatószer

rugós erőmérő parafa dugó kapilláris csövek drótkeret cérnaszállal műanyag pohár víz, mosogatószer A kísérlet célkitűzései: A folyadék felületén lejátszódó jelenségek értelmezése, adhéziós és kohéziós erők fogalmának megismerése Eszközszükséglet: kristályosító csésze rugós erőmérő parafa dugó üveglap

Részletesebben

Elektronikus fekete doboz vizsgálata

Elektronikus fekete doboz vizsgálata Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanulói segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

. T É M A K Ö R Ö K É S K Í S É R L E T E K

. T É M A K Ö R Ö K É S K Í S É R L E T E K T É M A K Ö R Ö K ÉS K Í S É R L E T E K Fizika 2018. Egyenes vonalú mozgások A Mikola-csőben lévő buborék mozgását tanulmányozva igazolja az egyenes vonalú egyenletes mozgásra vonatkozó összefüggést!

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban

TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban TÁMOP 3.1.3. Természettudományos oktatás komplex megújítása a Móricz Zsigmond Gimnáziumban Fizika tanári segédletek, 8. évfolyam Műveltség terület Ember és természet fizika Összeállította Kardos Andrea

Részletesebben

1. Newton-törvényei. Az OH által ajánlott mérés

1. Newton-törvényei. Az OH által ajánlott mérés 1. Newton-törvényei Kísérlet: Feladat: A rugós ütközőkkel ellátott kocsik és a rájuk rögzíthető súlyok segítségével tanulmányozza a rugalmas ütközés jelenségét! Az OH által ajánlott mérés Szükséges eszközök:

Részletesebben

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

ELEKTROMOSSÁG ÉS MÁGNESESSÉG ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy

Részletesebben

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI 1. Egyenes vonalú mozgások 2012 Mérje meg Mikola-csőben a buborék sebességét! Mutassa meg az út, és az idő közötti kapcsolatot! Három mérést végezzen, adatait

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Mit tanultunk kémiából?2.

Mit tanultunk kémiából?2. Mit tanultunk kémiából?2. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske Mól az anyagmennyiség mértékegysége. 1 mol atom= 6. 10 23 db atom 600.000.000.000.000.000.000.000

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

8. A vezetékek elektromos ellenállása

8. A vezetékek elektromos ellenállása 8. A vezetékek elektromos ellenállása a) Fémbôl készült vezeték van az elektromos melegítôkészülékekben, a villanymotorban és sok más elektromos készülékben. Fémhuzalból vannak a távvezetékek és az elektromos

Részletesebben

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel!

Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel! 1. tétel. Egyenes vonalú mozgások Igazolja, hogy a buborék egyenletes mozgást végez a Mikola-csőben! Határozza meg a buborék sebességét a rendelkezésre álló eszközökkel! Mi okozhat mérési hibát? Eszközök:

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Elektromos áram, áramkör, kapcsolások

Elektromos áram, áramkör, kapcsolások Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az

Részletesebben

MÁGNESESSÉG. Türmer Kata

MÁGNESESSÉG. Türmer Kata MÁGESESSÉG Türmer Kata HOA? év: görög falu Magnesia, sok természetes mágnes Ezeket iodestones (iode= vonz), magnetitet tartalmaznak, Fe3O4. Kínaiak: iránytű, két olyan hely ahol maximum a vonzás Kínaiak

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

1. Cartesius-búvár. 1. tétel

1. Cartesius-búvár. 1. tétel 1. tétel 1. Cartesius-búvár Feladat: A rendelkezésre álló eszközök segítségével készítsen el egy Cartesius-búvárt! A búvár vízben való mozgásával mutassa be az úszás, a lebegés és az elmerülés jelenségét!

Részletesebben