A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István"

Átírás

1 A villamosenergia-termelés rendszerszintű megbízhatóságának jellemzésére széleskörűen alkalmazzák a Loss-of-Load Probability (LOLP) értéket. A mutató fontos szerepet játszik a rendszerszintű teljesítőképesség-tervezési és megbízhatóság számítási feladatokban ([], [2]). Használata a hazai teljesítőképesség-tervezési gyakorlatban is elterjedt. Mindennek ellenére szakmai körökben is kevéssé ismertek e megbízhatóságot jellemző valószínűségi mérték alkalmazásának korlátai. Számos esetben tévesen értelmezik a LOLP értéket, ami félrevezető lehet a teljesítőképesség-mérlegek, a rendszerszintű villamosenergia-termelés megbízhatósági szempontból való minősítésekor. Jelen cikk célkitűzése annak bemutatása, hogy milyen következtetések vonhatók le e valószínűségi mértékből és milyenek következtetések levonására nem alkalmas ez a sokszor idézett és hivatkozott mutató. Tekintettel a terjedelmi korlátokra jelen összefoglaló áttekintés nem ismerteti a mutató meghatározásának elvét, számítási módszerét, azt ismertnek feltételezi. A LOLP értelmezésével kapcsolatban négy fontosabb témakört tekint át a cikk.. A LOLP által jelzett teljesítőképesség-hiány értelmezése A LOLP értéke valószínűség érték. Annak az együttes valószínűsége, hogy a rendszerszinten rendelkezésre álló teljesítőképesség adott nagyságú (), és a rendszerszintű terhelés meghaladja ezt az értéket (2). A definícióból következően a rendszerszintű teljesítőképesség-hiány valószínűségi mértékét két valószínűségelméleti értelemben egymástól független véletlen esemény (() és (2)) egyszerre való bekövetkezésének eredő valószínűsége adja. A LOLP tehát az értelmezésből következően felvilágosítást ad arra vonatkozóan, hogy milyen valószínűséggel lesz teljesítőképesség-hiányos az adott villamosenergia-rendszer. A teljesítőképesség-hiány alatt az értendő, hogy a forrásoldalon rendelkezésre álló, az aktuális fogyasztói igények kielégítésére bevethető villamos teljesítőképesség kisebb, mint a rendszerszintű fogyasztói teljesítmény-igény. A verbális értelmezés első közelítésben többé-kevésbé világosnak tűnik. Kérdésként vetődik fel azonban rögtön, hogy milyen módon értelmezett ebben az esetben a valószínűség. Nem belemenve az egzakt valószínűségelméleti levezetés részleteibe, a valószínűség a köztudatban hányados értékként él. Mégpedig a valamilyen szempontból releváns esetek bekövetkezésének (előfordulási számának) és az összes esetek számának hányadosaként (pontosabban e hányados határértékeként, ha a vizsgált esetek ( kísérletek ) száma a végtelen számosság felé tart). A villamosenergia-termelés és fogyasztás szinkron folyamat, így az esetek száma nehezen értelmezhető. Nyilvánvaló az első pillantásra, hogy nem erről van szó. A LOLP, mint valószínűségi mérték lényegében geometriai valószínűségként értelmezett, időtartamok hányadosaként. A teljesítőképesség-hiányos időtartam (vagyis azon időtartam, amikor az előbbiekben említett rendelkezésre álló bevethető rendszerszintű teljesítőképesség alatta marad a rendszerszintű fogyasztói teljesítményigénynek) és a vonatkoztatási időtartam hányadosaként. Ebből következően a LOLP értelmezése minden esetben feltételezi a vonatkoztatási időtartam (általában év) ismeretét. Így válik érthetővé, hogy miért adják meg a LOLP értékét néha időtartamként, például 48 h formájában. Ekkor feltételezett, hogy ismert a vonatkoztatási időtartam. Az időtartam formájában megadott LOLP érték is valószínűséget jelent, ami olyan módon értelmezendő, hogy a megadott időtartamot osztani kell a vonatkoztatási időtartam (jelen esetben 8760 h) hosszával. Az osztás eredményeként adódó érték a tulajdonképpeni keresett valószínűségi érték. A példa szerinti esetekben a teljesítőképesség-hiány előfordulási valószínűsége LOLP 48h /8760 0, Máskor a LOLP értékét eleve valószínűségi értékként adják meg. h A LOLP meghatározásának elvét és számításának menetét ismerteti az alábbi két összefoglaló cikk: : A rendszerszintű teljesítőképesség-hiány valószínűségi mértéke: A LOLP / A számítási eljárás ismertetése. Magyar Energetika, 2008/2, p : A LOLP meghatározásának alapjául szolgáló rendszer konfiguráció számítások. Magyar Energetika, 2008/3, p FAZEKAS_D_060_ENG_C_v0.doc :08:00 /9

2 0,250,250 2,250 3,250 4,250 5,250 6,250 7,250 8,250 9,250 0,250,250 2,250 3,250 4,250 5,250 6,250 7,250 8,250 9,250 20,250 2,250 22,250 23,250 TELJESÍTMÉNYIGÉNY [MW] Világosan kell látni azonban, hogy a LOLP értéke függetlenül a megadásának módjától mindig valószínűségi mérték. Mindezek után kézenfekvőnek tűnik az az értelmezés, hogy a példa szerinti LOLP érték azt fejezi ki, hogy az éves rendszerszintű terheléslefutást figyelembe véve a terhelési tartamdiagramban első 48 órás időtartamában jelentkező legnagyobb terhelések lesznek azok a terhelések, amikor a rendszerszintű rendelkezésre álló ténylegesen bevethető teljesítőképesség elmarad a rendszerszintű teljesítményigények mögött. Ezt a látszólag kézenfekvő értelmezést magyarázza az. ábra. A helyzet azonban nem ez! A LOLP nem értelmezhető ilyen módon! Az ábrázolhatóság és a könnyebb áttekintés érdekében a továbbiakban a vonatkoztatási időtartam nem év, hanem egy nap, másrészt a LOLP értéke időtartamban kifejezve,5 h, azaz LOLP,5 h / 24h 0, ábra A teljesítőképesség-hiányos időszakok időtartamának meghatározása ([3]) RENDSZERSZINTŰ (NAPI) TERHELÉSI TARTAMDIAGRAM HIÁNYZÓ TELJESÍTŐKÉPESSÉG ÓRA [h] Nem igaz tehát az, hogy a példa szerint 48 h időtartamnak megfelelő LOLP érték a rendszerszintű terhelési tartamdiagram legnagyobb terhelésű első 48 órás időszakában jelentkező teljesítményigények esetén fellépő teljesítőképesség-hiányra utal! A magyarázatot a LOLP számítási módszere adja. A LOLP valószínűségi mérték meghatározása a korábbiakban említetteknek megfelelően két valószínűség meghatározását jelenti, majd ezek eredőjeként adódik a keresett LOLP érték. Az első meghatározandó valószínűség az ún. rendszer konfigurációk előfordulásának a valószínűsége. Közismert az a tény, hogy az erőműegységek véletlenszerű meghibásodásának következtében teljesítőképesség-vesztés léphet fel. Az erőműrendszer rendelkezésre álló teljesítőképessége ebből következően véletlenszerűen csökkenhet, az éppen kiesett erőműegység vagy erőműegységek miatt fellépő teljesítőképesség-vesztések következtében. Rendszer konfiguráció alatt minden esetben az üzemképes erőműegységek által alkotott halmaz értendő. Ez az elmondottak szerint időben változhat a különböző erőműegység meghibásodások következtében. A mindenkori rendszer konfiguráció meghatározza, hogy az adott időpillanatban mely erőműegységek üzemképesek és mekkora a rendszerszinten bevethető teljesítőképesség. A lehetséges FAZEKAS_D_060_ENG_C_v0.doc :08:00 2/9

3 rendszerkonfigurációk száma a valószínűségszámítás (kombinatorika) szabályai szerint határozható meg. A LOLP számítások első lépéseként tehát minden esetben meg kell határozni a lehetséges rendszer konfigurációkat, majd ezt követően meg kell határozni azt, hogy az egyes lehetséges rendszer konfigurációk milyen valószínűséggel lépnek fel. Példaképpen a számítás alapjául szolgáló erőműrendszer (erőműpark) jellemzői az. táblázat szerintiek ([3]). A számítási példában alapadatként használt megbízhatósági jellemzők (például az erőműegységek [pl. d - ] meghibásodási, illetve [pl. d - ] javítási rátája, és értelemszerűen az ezekből számolt A [-] készenléti tényezők stb.) szándékosan eltérnek a műszaki gyakorlatban szokásosan előforduló értékektől. A gyakorlatban előforduló értékektől történő eltérést ebben az esetben is ábrázolástechnikai megfontolások indokolják. A példában szereplő értékek esetében a kapott eredmények jól ábrázolhatók és segítik a megértést.. táblázat Az erőműrendszer megbízhatósági szempontból releváns jellemzői ERŐMŰEGYSÉG BT A - MW - d - d - U 00 0,60 0,2 0,3 U ,70 0,3 0,7 U ,50 0, 0, U ,80 0, 0,4 A táblázatban: BT beépített villamos teljesítőképesség [MW]; A készenléti tényező [-]; meghibásodási ráta [d - ]; javítási ráta [d - ]. A példa szerinti erőműrendszer négy erőműegységből egységből áll (U, U2, U3, U4), az erőműegységek beépített villamos teljesítőképessége az. táblázat szerinti. Az erőműrendszerben az összes beépített villamos teljesítőképesség BT 200MW. Az eredő teljesítőképesség azonban az erőműegységek véletlen meghibásodásának következtében nem mindig áll rendelkezésre rendszerszinten. Az erőműegységek különböző lehetséges üzemállapotait tekintve különböző rendszerkonfigurációk adódnak a rendszerszintű teljesítőképesség rendelkezésre állására. Nem részletezve a számítás hogyanját, a 2. táblázat tartalmazza az egyes lehetséges rendszer konfigurációkban a rendszerszinten rendelkezésre álló teljesítőképességet (bal oldali oszlop), míg ugyanezen táblázatban megtalálhatók az egyes esetekhez rendelt számított előfordulási valószínűségek (jobb oldali oszlop). Az eredményeket szemlélteti a 2. ábra. A számított eredményekből, az ábrából jól látható, hogy igen jelentős különbség van az egyes esetek előfordulási valószínűsége között. Feltételezett a LOLP számítások esetében, hogy az eseménytér teljes eseményrendszert reprezentál. A legnagyobb valószínűséggel ( p 0, 840) az az esemény fordul elő, hogy a rendszer rendelkezésre álló villamos teljesítőképessége BT 000 MW, míg a legkisebb ( p 0,020) annak a valószínűsége, hogy BT 0 MW az erőműpark rendelkezésre álló teljesítőképessége. Az eredmények világosan mutatják, hogy messze nem egyenletes a teljesítőképesség-vesztések következtében előálló (megmaradó) teljesítőképesség valószínűségi eloszlása. A teljes rendszer konfiguráció vonatkozóan az egyes események előfordulási valószínűségeinek összege biztos eseményt reprezentál, azaz értéke P ( ). Magától értetődik, hogy a komplementaritás elve alapján meghatározható a teljesítményvesztések valószínűségi eloszlása is. Azaz megválaszolható az a kérdés is, hogy a különböző lehetséges teljesítményvesztések milyen valószínűséggel fordulnak elő. Nem részletezve ennek bemutatását, csak egyetlen példát említve: a legnagyobb valószínűséggel ( p 0, 840) a példa szerinti erőműrendszer rendelkezésre álló teljesítőképessége BT 000 MW. Ez a kijelentés ekvivalens azzal, hogy a legnagyobb valószínűséggel az összes beépített teljesítőképesség ( BT 200 MW) és az aktuálisan FAZEKAS_D_060_ENG_C_v0.doc :08:00 3/9

4 Valószínűség [-] meglévő teljesítőképesség különbsége, jelen esetben BT 200 MW elvesztése várható. Ennek valószínűsége értelemszerűen: p 0, táblázat A rendelkezésre álló teljesítőképesség valószínűségi eloszlása ([3]) Rendelkezésre álló teljesítőképesség Rendelkezésre álló teljesítőképesség (diszkrét) valószínűségi eloszlása BT [MW] P [-] 200 0, , , , , , , , , , , , ábra A rendelkezésre álló rendszerszintű teljesítőképesség valószínűségi eloszlása ([3]) RENDELKEZÉSRE ÁLLÓ TELJESÍTŐKÉPESSÉG VALÓSZÍNŰSÉGI ELOSZLÁSA 0,2000 0,800 0,600 0,400 0,200 0,000 0,0800 0,0600 0,0400 0,0200 0, MW Mindezek után meg kell határozni azt, hogy milyen valószínűséggel lép fel a példa szerinti erőműrendszerben P 000MW rendszerszintű terhelés. Nem részletezve ebben az esetben sem a számítás módját, vagyis azt, hogy miképpen transzformálható a rendszerszintű terhelési tartamdiagram a rendszerszintű terhelések valószínűségi eloszlásfüggvényévé, a 3. táblázat tartalmazza az egyes rendszerszintű terhelések előfordulási valószínűségét. Mindezek után csak egy lépés maradt hátra: annak meghatározása, hogy mekkora a valószínűsége annak, hogy a rendszerszintű terhelés meghaladja az említett értéket ( P 000MW) és ugyanekkor a rendelkezésre álló teljesítőképesség a rendszerben kisebb, mint a rendszerszintű teljesítményigény. FAZEKAS_D_060_ENG_C_v0.doc :08:00 4/9

5 SÚLYOZOTT ELŐFORDULÁSI IDŐTARTAM [h] Ennek meghatározásához szükséges a rendelkezésre álló teljesítőképesség valószínűségi eloszlásfüggvényének (nem eloszlásának!) a számítása ([2]). Ezt követően utolsó lépésként a két valószínűségi értelemben egymástól független esemény egyidejű előfordulásának valószínűségét kell meghatározni. 3. táblázat A teljesítőképesség-hiányos időszakok hozzájárulása a LOLP értékéhez (A teljesítőképesség-hiányos időszakok a teljesítőképesség függvényében) ([3]) Meglévő teljesítőképesség rendszerszinten Kiesett teljesítőképesség rendszerszinten Teljesítőképességhiányos időszak időtartama (a rendszerszintű terhelési tartamdiagram alapján A teljesítőképességhiányos időtartam előfordulási valószínűsége (lásd 4. táblázat) A teljesítőképességhiányos időtartam előfordulási valószínűségével súlyozott időtartam MW MW h/d - h/d * , , , , , ,25 0, , ,25 0, , ,25 0, , ,25 0, , ,75 0, , , , , , , , , , , , Az eredő teljesítőképesség-hiányos időtartam 4, ábra Az előfordulás valószínűségével súlyozott teljesítőképesség-hiányos időtartam alakulása a hiányzó teljesítőképesség függvényében ([3]) AZ ELŐFORDULÁS VALÓSZÍNŰSÉGÉVEL SÚLYOZOTT TELJESÍTŐKÉPESSÉG-HIÁNYOS IDŐTARTAMOK ALAKULÁSA A HIÁNYZÓ TELJESÍTŐKÉPESSÉG FÜGGVÉNYÉBEN 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,0 0, HIÁNYZÓ TELJESÍTŐKÉPESSÉG [MW] FAZEKAS_D_060_ENG_C_v0.doc :08:00 5/9

6 TELJESÍTŐKÉPESSÉG Az eredmények alapján belátható, hogy az egyes hiányzó teljesítőképességeknek mekkora a súlyozott előfordulási időtartama. A példa ezt kívánta bizonyítni. Szó sincs tehát arról, hogy a legnagyobb rendszerigények esetében lép fel mindig a hiány (. és 3. ábra). 2. Amiről a LOLP nem ad felvilágosítást Világosan kell látni, hogy a LOLP valószínűségi mérték a definíciójából és a származtatásából következően nem ad felvilágosítást arra vonatkozóan, hogy mekkora a rendszerszintű teljesítőképesség-hiány és mekkora a kiesett villamos energia. Másképpen fogalmazva ez azt jelenti, hogy adott időtartamon keresztül jelentkező és 00 MW teljesítőképesség-hiány esetében a LOLP értéke ugyanakkora! Ugyanez a helyzet a kiesett villamos energiát illetően. Az említett esetekben a kiesett villamosenergia-termelés h hiány esetében MWh, illetve 00 MWh. A LOLP értéke mindkét esetben ugyanakkora! Az elmondottakat világítja meg a 4. ábra. Az ábra mutatta esetekben a LOLP értéke minden esetben ugyanaz, jóllehet igen különbözőek a rendszerszinten jelentkező teljesítőképesség-hiányok, illetve a kiesett villamos energia mennyisége. A 4. ábrán ábrán 4 görbe arra mutat példát, hogy mind a LOLP, mind a kiesett villamos energia értéke ugyanakkora, a rendszerszintű teljesítőképesség-hiány lefutása azonban különböző. 4. ábra A hiányzó teljesítőképesség különböző lefutása azonos LOLP értékek esetében,2 A HIÁNYZÓ TELJESÍTŐKÉPESSÉG KÜLÖNBÖZŐ LEFUTÁSA AZONOS ÉRTÉKŰ LOLP ESETÉN 0,8 0, ,4 0, IDŐOSZTÁSOK 3. Erőműegységek megbízhatósági leírása a LOLP számítások során A hazai alkalmazásokban az erőműrendszerek megbízhatósági analízise során az erőműegységeket általában kétállapotú rendszerelemként modellezik. Szükséges annak nyomatékos kiemelése, hogy a kétállapotú megbízhatósági leírás az alaperőművi egységek esetében alkalmazott általános gyakorlat! Külön magyarázat nélkül belátható, hogy ez a leírási mód a menetrendtartó, a csúcserőművi, kis éves kihasználási óraszámú erőműegységek megbízhatósági modellezésére nem alkalmas, abból következően, hogy ezen erőműegységek esetében az üzemen kívüli állásidő igen jelentős, általában jóval meghaladja az üzemben töltött időt. Általános gyakorlat szerint ebben az esetben négyállapotú modellt alkalmaznak, mely szerint négy jellemző üzemállapot definiálható a megbízhatósági FAZEKAS_D_060_ENG_C_v0.doc :08:00 6/9

7 MEGHIBÁSODÁSOK SZÁMA viselkedés leírására. Ezek a következők: () üzemképes üzemben, (2) üzemképes tartalékban, (3) üzemképtelen igényelt üzemi időszakban, (4) üzemképtelen nem igényelt (tartalék) időszakban. A LOLP eredmények értékelésekor ezt a lényeges egyszerűsítést nem szabad figyelmen kívül hagyni! 4. További egyszerűsítő feltételezések: exponenciális eloszlás és időben állandó meghibásodási (és javítási) ráta feltételezése Az erőműegységek életciklusa a meghibásodás szempontjából a megbízhatóság-elméletben ismert kádgörbének megfelelően alakul (5. ábra). 5. ábra Erőműegység teljes műszaki élettartama alatti meghibásodások (üzemzavarok) alakulása 6 ERŐMŰEGYSÉG TELJES MŰSZAKI ÉLETTARTAMA ALATTI MEGHIBÁSODÁSOK (ÜZEMZAVAROK) ALAKULÁSA 4 2 λ const IDŐ (0 HETES PERIÓDUSOK) A teljes életciklust leíró görbe értelmezésekor szükséges az értelmezés peremfeltételeinek, a különböző feltételezéseknek a pontos leírása, a különböző egyszerűsítő feltételezések rögzítése. Általános tapasztalat, hogy az energiatermelő egységek, erőműegységek életciklusának első szakaszában a meghibásodások száma viszonylag magas, később e meghibásodások száma csökken. Ez annak a következménye, hogy az erőműegységek komplex, többszörösen összetett, igen nagyszámú összetevőből, elemből álló rendszerek, amelyekben mindig vannak rejtett hibás elemek, alrendszerek, amelyek a rendszer üzembe lépést követően, részlegesen vagy teljesen üzemképtelenné válnak. Ezt a periódust bejáratási, kezdeti periódusnak, vagy más néven a selejtes elemek kiégetési periódusának nevezik. Az életciklus második szakaszát a meghibásodások számának stabilizálódása jellemzi. Ez az úgynevezett normális működési periódus. Az utolsó szakaszt öregedési periódusnak nevezi a szaknyelv, utalva arra az általános tapasztalatra, hogy a meghibásodások száma ebben az üzemi életciklusban ismét nő. Ez a tapasztalat alapvetően a rendszert alkotó részrendszerekben, elemekben bekövetkező irreverzibilis fizikai, kémiai változások, következtében előálló minőség-romlásnak a következménye. A meghibásodások számának ugrásszerű növekedése ebben az üzemi életciklusban alapvetően ezekre az elváltozásokra vezethető vissza ([6]). A korszerű erőműegységek esetében a görbe középső szakasza év időtartamot ölel fel. Mindezek alapján megalapozottan kijelenthető, hogy az erőműegységek esetében létezik egy olyan hosszú időszakasz, amelyre nézve FAZEKAS_D_060_ENG_C_v0.doc :08:00 7/9

8 VALÓSZÍNŰSÉG ( t ) const. () Ez a tapasztalt tény ad alapot arra a feltételezésre, ami az erőműegység megbízhatósági viselkedését leíró összefüggések jelentős egyszerűsödését eredményezi. Ebben az esetben ugyanis az ún. megbízhatósági függvény a következő egyszerű alakot nyeri: t F ( t) exp[ t] e. (2) U A kapott eredmény azt jelenti, hogy a meghibásodási függvény ( F U ( t)), A meghibásodási függvény ebből következően t F ( t) F ( t) exp[ t] e. (3) D U Az exponenciális eloszlás feltételezése nemcsak a számításokat egyszerűsíti, hanem jól egyezik a tapasztalattal. Elméleti és gyakorlati szempontból van azonban még egy igen nagy jelentőséggel bíró konzekvenciája. Bizonyítható, hogy exponenciális eloszlás esetén adott ( t, t t) időintervallumbeli hibamentes működés valószínűsége nem függ az előző t működési időtől, hanem kizárólagosan csak a t időintervallum hosszának a függvénye. Ez a feltételezés azonban csak a kádgörbe középső szakaszára vonatkozóan érvényes. A 6. ábra az erőműegységek megbízhatósági függvényét mutatja, különböző értékek esetében, míg a 7. ábra a meghibásodási függvény alakját mutatja különböző értékek esetében. 6. ábra Erőműegységek megbízhatósági függvényei különböző értékek esetében ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI FÜGGVÉNYEI KÜLÖNBÖZŐ LAMBDA ÉRTÉKEK ESETÉN 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, LAMBDA = 0, LAMBDA = LAMBDA = 2 LAMBDA = 0,5 0 IDŐOSZTÁS IDŐOSZTÁSOK FAZEKAS_D_060_ENG_C_v0.doc :08:00 8/9

9 VALÓSZÍNŰSÉG 7 ábra Erőműegységek megbízhatósági függvényei különböző értékek esetében ERŐMŰEGYSÉGEK MEGHIBÁSODÁSI FÜGGVÉNYEI, KÜLÖNBÖZŐ ÉRTÉKEK ESETÉN 0,9 0,8 0,7 0,6 0,5 0,4 MŰ = MŰ = MŰ = 0,3 0,2 0, IDŐ Felhasznált irodalom: [] : Villamosenergia-rendszerek rendszerszintű tervezése, I. kötet. Akadémiai Kiadó, Budapest, p.4-6. [2] : Villamosenergia-rendszerek rendszerszintű tervezése, II. kötet. Akadémiai Kiadó, Budapest, megjelenés alatt, ( A villamosenergia-termelés rendszerszintű megbízhatósági számításai fejezet) [3] : A rendszerszintű teljesítőképesség-hiány valószínűségi mértéke: A LOLP / A számítási eljárás ismertetése. Magyar Energetika, 2008/2, p [4] : A LOLP meghatározásának alapjául szolgáló rendszer konfiguráció-számítások. Magyar Energetika, 2008/3, p [5] Gnyegyenko Beljajev Szolovjev: A megbízhatóságelmélet matematikai módszrei. Műszaki Könyvkiadó, Budapest, 970., p. 0. FAZEKAS_D_060_ENG_C_v0.doc :08:00 9/9

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015 A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

1 Energetikai számítások bemutatása, anyag- és energiamérlegek

1 Energetikai számítások bemutatása, anyag- és energiamérlegek 1 Energetikai számítások bemutatása, anyag- és energiamérlegek Előzőleg a következőkkel foglalkozunk: Fizikai paraméterek o a bemutatott rendszer és modell alapján számítást készítünk az éves energiatermelésre

Részletesebben

Jogszabályi környezet

Jogszabályi környezet A Magyar Energetikai és Közmű-szabályozási Hivatal tájékoztatása a villamosenergiatermeléshez, illetve fogyasztáshoz kapcsolódó kapacitás-kiesések közzétételi kötelezettségének alsó határára vonatkozóan

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Alapvető karbantartási stratégiák

Alapvető karbantartási stratégiák Alapvető karbantartási stratégiák MBA képzés 2009 Erdei János 4. Tervszerű karbantartás teljesítőképess pesség 00% Teljesítm tménytartalék-diagram kiesési si ciklikus állapotfüggő teljesítménymaradék t

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Tárgyi eszköz-gazdálkodás

Tárgyi eszköz-gazdálkodás Tárgyi eszköz-gazdálkodás Gazdálkodás, gazdaságosság, kontrolling Termelési eszközök és megtérülésük A tárgyi eszközök értéküket több termelési perióduson belül adják át a készterméknek, miközben használati

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Energiamenedzsment kihívásai a XXI. században

Energiamenedzsment kihívásai a XXI. században Energiamenedzsment kihívásai a XXI. században Bertalan Zsolt vezérigazgató MAVIR ZRt. HTE Közgyűlés 2013. május 23. A megfizethető energia 2 A Nemzeti Energiastratégia 4 célt azonosít: 1. Energiahatékonyság

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

Méretlánc átrendezés elmélete

Méretlánc átrendezés elmélete 1. Méretlánc átrendezés elmélete Méretlánc átrendezés elmélete Egyes esetekben szükség lehet, hogy arra, hogy a méretláncot átrendezzük. Ezeknek legtöbbször az az oka, hogy a rajzon feltüntetett méretet

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

A pedagógia mint tudomány. Dr. Nyéki Lajos 2015

A pedagógia mint tudomány. Dr. Nyéki Lajos 2015 A pedagógia mint tudomány Dr. Nyéki Lajos 2015 A pedagógia tárgya, jellegzetes vonásai A neveléstudomány tárgya az ember céltudatos, tervszerű alakítása. A neveléstudomány jellegét tekintve társadalomtudomány.

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Merev vagy rugalmas nyugdíjkorhatárt?

Merev vagy rugalmas nyugdíjkorhatárt? Simonovits András: Bevezetés Merev vagy rugalmas nyugdíjkorhatárt? A kedvezményes nyugdíjazásról szóló népszavazási kezdeményezés a 2011-ben nők számára bevezetett kedvezményt kiterjesztené a férfiakra

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem modellje az adós büntetésével Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem Nyitott gazdaságok makroökonómiája 1. Bevezetés modellje az adós büntetésével Teljes piacok, Arrow-Debreu-értékpapírok

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

1. ábra. A 2015. szeptemberi teljesítmények változása

1. ábra. A 2015. szeptemberi teljesítmények változása PE Energia Akadémia 99 Németország megújuló energiatermelése 2015 szept. Németországban az Energiewende keretében 2015 szept. végéig a szél és naperőművek beépített teljesítőképessége már elérte a 82 675

Részletesebben

Papp Tibor Karbantartási menedzser Sinergy Kft.

Papp Tibor Karbantartási menedzser Sinergy Kft. Gázmotor üzemeltetés új kihívásai a Virtuális Erőmű (VE) korszakban, az üzemeltető tapasztalatai Balatonfüred, 2015. március 26. Papp Tibor Karbantartási menedzser Sinergy Kft. Gázmotor üzemeltetés új

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Jelen projekt célja Karácsond Község egyes közintézményeinek energetikai célú korszerűsítése.

Jelen projekt célja Karácsond Község egyes közintézményeinek energetikai célú korszerűsítése. Vezetői összefoglaló Jelen projekt célja Karácsond Község egyes közintézményeinek energetikai célú korszerűsítése. A következő oldalakon vázlatosan összefoglaljuk a projektet érintő főbb jellemzőket és

Részletesebben

Az előadásdiák gyors összevágása, hogy legyen valami segítség:

Az előadásdiák gyors összevágása, hogy legyen valami segítség: Az előadásdiák gyors összevágása, hogy legyen valami segítség: Az elektronikai gyártás ellenőrző berendezései (AOI, X-RAY, ICT) 1. Ismertesse az automatikus optikai ellenőrzés alapelvét (a), megvilágítási

Részletesebben

Hitelintézeti Szemle Lektori útmutató

Hitelintézeti Szemle Lektori útmutató Hitelintézeti Szemle Lektori útmutató Tisztelt Lektor Úr/Asszony! Egy tudományos dolgozat bírálatára szóló felkérés a lektor tudományos munkásságának elismerése. Egy folyóirat szakmai reputációja jelentős

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

KÖZGAZDASÁGI ALAPISMERETEK, ELMÉLETI GAZDASÁGTAN ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KÖZGAZDASÁGI ALAPISMERETEK, ELMÉLETI GAZDASÁGTAN ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZGAZDASÁGI ALAPISMERETEK, ELMÉLETI GAZDASÁGTAN ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint (elméleti gazdaságtan) Emelt szint (elméleti gazdaságtan) 180 perc 15 perc 180 perc 20

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

Segédlet a gördülőcsapágyak számításához

Segédlet a gördülőcsapágyak számításához Segédlet a gördülőcsapágyak számításához Összeállította: Dr. Nguyen Huy Hoang Budapest 25 Feladat: Az SKF gyártmányú, SNH 28 jelű osztott csapágyházba szerelt 28 jelű egysorú mélyhornyú golyóscsapágy üzemi

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

A 2011-es év kompetencia-méréseinek elemzése

A 2011-es év kompetencia-méréseinek elemzése A 2011-es év kompetencia-méréseinek elemzése SIOK Dr. Faust Miklós Általános Iskola Nagyberény Készítette: Kristáné Soós Melinda Nagyberény, 2012. április 2. 6. osztály Matematika 3. oldal Az első grafikonon

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés

Részletesebben

3. A vezetékekre vonatkozó fontosabb jellemzk

3. A vezetékekre vonatkozó fontosabb jellemzk 3. A vezetékekre vonatkozó fontosabb jellemzk 3.1 Ersáramú vezetékek nemzetközi jelölése (HD 361 szerint) A CENELEC a HD 361. a vezetékek, kábelek nemzetközi jelölésére vonatkozó szabványban részlegesen

Részletesebben

PÉCS: Pécs SALG: Salgótarján. MOSD: Mosdós NYH: Nyíregyháza

PÉCS: Pécs SALG: Salgótarján. MOSD: Mosdós NYH: Nyíregyháza PARLAGFŰ POLLENTERHELÉS ÉRTÉKELÉSE, MAGYARORSZÁG 1992-2010 Az Aerobiológiai Hálózat: Az ÁNTSZ Aerobiológiai Hálózata 1992-ben alakult 3 állomással, folyamatosan bővült 2007-ig (19 mérőállomás: Nyíregyháza,

Részletesebben

Vezetői számvitel / Controlling XIII. előadás. Eltéréselemzés I.

Vezetői számvitel / Controlling XIII. előadás. Eltéréselemzés I. Vezetői számvitel / Controlling XIII. előadás Eltéréselemzés I. Kiindulópont Információk a tulajdonosok számára a vállalkozás vezetői számára Cél folyamatosan ismerni a vállalkozás tevékenységét a gazdálkodás

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

A TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN

A TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN Agrárgazdasági Kutató és Informatikai Intézet A TESZTÜZEMEK FŐBB ÁGAZATAINAK KÖLTSÉG- ÉS JÖVEDELEMHELYZETE 2002-BEN A K I I Budapest 2003 Agrárgazdasági Tanulmányok 2003. 6. szám Kiadja: az Agrárgazdasági

Részletesebben

KOMPLEX RONCSOLÁSMENTES HELYSZÍNI SZIGETELÉS- DIAGNOSZTIKA

KOMPLEX RONCSOLÁSMENTES HELYSZÍNI SZIGETELÉS- DIAGNOSZTIKA Budapesti i Műszaki és Gazdaságtudományi Egyetem KOMPLEX RONCSOLÁSMENTES HELYSZÍNI SZIGETELÉS- DIAGNOSZTIKA MEE VÁNDORGYŰLÉS 2010. Tamus Zoltán Ádám, Cselkó Richárd tamus.adam@vet.bme.hu, cselko.richard@vet.bme.hu

Részletesebben

GÖRGŐS LÁNCHAJTÁS tervezése

GÖRGŐS LÁNCHAJTÁS tervezése MISKOLCI EGYETEM GÉPELEMEK TANSZÉKE OKTATÁSI SEGÉDLET a GÉPELEMEK II. c. tantárgyhoz GÖRGŐS LÁNCHAJTÁS tervezése Összeállította: Dr. Szente József egyetemi docens Miskolc, 008. A lánchajtás tervezése során

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

ÚTMUTATÓ AZ EGYÜTTES VÉGREHAJTÁSI PROJEKTEK ADDICIONALITÁSÁNAK ELLEN- ŐRZÉSÉHEZ ÉS AZ ENERGETIKAI PROJEKTEK ALAPVONAL KIBOCSÁTÁSAINAK MEGHATÁROZÁSÁHOZ

ÚTMUTATÓ AZ EGYÜTTES VÉGREHAJTÁSI PROJEKTEK ADDICIONALITÁSÁNAK ELLEN- ŐRZÉSÉHEZ ÉS AZ ENERGETIKAI PROJEKTEK ALAPVONAL KIBOCSÁTÁSAINAK MEGHATÁROZÁSÁHOZ ÚTMUTATÓ AZ EGYÜTTES VÉGREHAJTÁSI PROJEKTEK ADDICIONALITÁSÁNAK ELLEN- ŐRZÉSÉHEZ ÉS AZ ENERGETIKAI PROJEKTEK ALAPVONAL KIBOCSÁTÁSAINAK MEGHATÁROZÁSÁHOZ I. ADDICIONALITÁS Addicionalitás: a projektalapú tevékenységekkel

Részletesebben

SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM. Szóbeli vizsgatevékenység

SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM. Szóbeli vizsgatevékenység SZOCIÁLIS ÉS MUNKAÜGYI MINISZTÉRIUM Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 2658-06/3 Egy aktuális gazdaságpolitikai esemény elemzése a helyszínen biztosított szakirodalom alapján

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

UPS technika. Villamos hálózatok zavaranalizis vizsgálata. Mérésszolgáltatás. 1

UPS technika. Villamos hálózatok zavaranalizis vizsgálata. Mérésszolgáltatás. 1 UPS technika. Villamos hálózatok zavaranalizis vizsgálata. Mérésszolgáltatás. 1 ENTERPRICE UPS kezelői útmutató. Az angol gyári dokumentáció sajátos "fordítása". Ver.: 1.0 Utolsó módosítás : 2005.04.17.

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

I. A 2012. január 1. és december 31. között érvényes szabályozás

I. A 2012. január 1. és december 31. között érvényes szabályozás Válasz az Emberi Jogok Európai Bírósága által a magánnyugdíjpénztár-tagok által tulajdonjogukkal összefüggésben megvalósuló diszkrimináció kapcsán beadott kérelemmel kapcsolatban feltett kérdésre, illetve

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

OP, KOP A HITELINTÉZETEK MŰKÖDÉSI KOCKÁZATA TŐKEKÖVETELMÉNYÉNEK SZÁMÍTÁSA

OP, KOP A HITELINTÉZETEK MŰKÖDÉSI KOCKÁZATA TŐKEKÖVETELMÉNYÉNEK SZÁMÍTÁSA OP, KOP A HITELINTÉZETEK MŰKÖDÉSI KOCKÁZATA TŐKEKÖVETELMÉNYÉNEK SZÁMÍTÁSA Azonosító Megnevezés HIVATKOZÁSOK MAGYAR JOGSZABÁLYOKRA ÉS MEGJEGYZÉSEK OSZLOPOK 1,2,3 Bruttó jövedelem A bruttó jövedelem meghatározását

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Budapesti Mûszaki Fõiskola Rejtõ Sándor Könnyûipari Mérnöki Kar Médiatechnológiai Intézet Nyomdaipari Tanszék. Karbantartás-szervezés a nyomdaiparban

Budapesti Mûszaki Fõiskola Rejtõ Sándor Könnyûipari Mérnöki Kar Médiatechnológiai Intézet Nyomdaipari Tanszék. Karbantartás-szervezés a nyomdaiparban Budapesti Mûszaki Fõiskola Rejtõ Sándor Könnyûipari Mérnöki Kar Médiatechnológiai Intézet Nyomdaipari Tanszék Karbantartás-szervezés a nyomdaiparban 6. előadás Karbantartás irányítási információs rendszer

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Sorbanállási modellek

Sorbanállási modellek VIII. előadás Sorbaállási modellek Sorbaállás: A sorbaállás, a várakozás általáos probléma közlekedés, vásárlás, takolás, étterem, javításra várás, stb. Eze feladatok elmélete és gyakorlata a matematikai

Részletesebben

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE

AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA ENERGETIKAI SZÁMÍTÁS A HŐMÉRSÉKLETELOSZLÁS JELENTŐSÉGE AZ ÉPÜLETEK ENERGETIKAI JELLEMZŐINEK MEGHATÁROZÁSA Három követelményszint: az épületek összesített energetikai jellemzője E p = összesített energetikai jellemző a geometriai viszonyok függvénye (kwh/m

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Az alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai

Az alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai OKTATÁSIRÁNYÍTÁS ÉS OKTATÁSPOLITIKA A BALKÁNON Az alábbi áttekintés Délkelet-Európa (a volt Jugoszlávia országai Szlovénia kivételével, Bulgária, Románia és Albánia) oktatási rendszerei előtt álló kihívásokat

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Az értékelés során következtetést fogalmazhatunk meg a

Az értékelés során következtetést fogalmazhatunk meg a Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben