A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A LOLP valószínűségi mérték értelmezésével kapcsolatos néhány kérdés Dr. Fazekas András István"

Átírás

1 A villamosenergia-termelés rendszerszintű megbízhatóságának jellemzésére széleskörűen alkalmazzák a Loss-of-Load Probability (LOLP) értéket. A mutató fontos szerepet játszik a rendszerszintű teljesítőképesség-tervezési és megbízhatóság számítási feladatokban ([], [2]). Használata a hazai teljesítőképesség-tervezési gyakorlatban is elterjedt. Mindennek ellenére szakmai körökben is kevéssé ismertek e megbízhatóságot jellemző valószínűségi mérték alkalmazásának korlátai. Számos esetben tévesen értelmezik a LOLP értéket, ami félrevezető lehet a teljesítőképesség-mérlegek, a rendszerszintű villamosenergia-termelés megbízhatósági szempontból való minősítésekor. Jelen cikk célkitűzése annak bemutatása, hogy milyen következtetések vonhatók le e valószínűségi mértékből és milyenek következtetések levonására nem alkalmas ez a sokszor idézett és hivatkozott mutató. Tekintettel a terjedelmi korlátokra jelen összefoglaló áttekintés nem ismerteti a mutató meghatározásának elvét, számítási módszerét, azt ismertnek feltételezi. A LOLP értelmezésével kapcsolatban négy fontosabb témakört tekint át a cikk.. A LOLP által jelzett teljesítőképesség-hiány értelmezése A LOLP értéke valószínűség érték. Annak az együttes valószínűsége, hogy a rendszerszinten rendelkezésre álló teljesítőképesség adott nagyságú (), és a rendszerszintű terhelés meghaladja ezt az értéket (2). A definícióból következően a rendszerszintű teljesítőképesség-hiány valószínűségi mértékét két valószínűségelméleti értelemben egymástól független véletlen esemény (() és (2)) egyszerre való bekövetkezésének eredő valószínűsége adja. A LOLP tehát az értelmezésből következően felvilágosítást ad arra vonatkozóan, hogy milyen valószínűséggel lesz teljesítőképesség-hiányos az adott villamosenergia-rendszer. A teljesítőképesség-hiány alatt az értendő, hogy a forrásoldalon rendelkezésre álló, az aktuális fogyasztói igények kielégítésére bevethető villamos teljesítőképesség kisebb, mint a rendszerszintű fogyasztói teljesítmény-igény. A verbális értelmezés első közelítésben többé-kevésbé világosnak tűnik. Kérdésként vetődik fel azonban rögtön, hogy milyen módon értelmezett ebben az esetben a valószínűség. Nem belemenve az egzakt valószínűségelméleti levezetés részleteibe, a valószínűség a köztudatban hányados értékként él. Mégpedig a valamilyen szempontból releváns esetek bekövetkezésének (előfordulási számának) és az összes esetek számának hányadosaként (pontosabban e hányados határértékeként, ha a vizsgált esetek ( kísérletek ) száma a végtelen számosság felé tart). A villamosenergia-termelés és fogyasztás szinkron folyamat, így az esetek száma nehezen értelmezhető. Nyilvánvaló az első pillantásra, hogy nem erről van szó. A LOLP, mint valószínűségi mérték lényegében geometriai valószínűségként értelmezett, időtartamok hányadosaként. A teljesítőképesség-hiányos időtartam (vagyis azon időtartam, amikor az előbbiekben említett rendelkezésre álló bevethető rendszerszintű teljesítőképesség alatta marad a rendszerszintű fogyasztói teljesítményigénynek) és a vonatkoztatási időtartam hányadosaként. Ebből következően a LOLP értelmezése minden esetben feltételezi a vonatkoztatási időtartam (általában év) ismeretét. Így válik érthetővé, hogy miért adják meg a LOLP értékét néha időtartamként, például 48 h formájában. Ekkor feltételezett, hogy ismert a vonatkoztatási időtartam. Az időtartam formájában megadott LOLP érték is valószínűséget jelent, ami olyan módon értelmezendő, hogy a megadott időtartamot osztani kell a vonatkoztatási időtartam (jelen esetben 8760 h) hosszával. Az osztás eredményeként adódó érték a tulajdonképpeni keresett valószínűségi érték. A példa szerinti esetekben a teljesítőképesség-hiány előfordulási valószínűsége LOLP 48h /8760 0, Máskor a LOLP értékét eleve valószínűségi értékként adják meg. h A LOLP meghatározásának elvét és számításának menetét ismerteti az alábbi két összefoglaló cikk: : A rendszerszintű teljesítőképesség-hiány valószínűségi mértéke: A LOLP / A számítási eljárás ismertetése. Magyar Energetika, 2008/2, p : A LOLP meghatározásának alapjául szolgáló rendszer konfiguráció számítások. Magyar Energetika, 2008/3, p FAZEKAS_D_060_ENG_C_v0.doc :08:00 /9

2 0,250,250 2,250 3,250 4,250 5,250 6,250 7,250 8,250 9,250 0,250,250 2,250 3,250 4,250 5,250 6,250 7,250 8,250 9,250 20,250 2,250 22,250 23,250 TELJESÍTMÉNYIGÉNY [MW] Világosan kell látni azonban, hogy a LOLP értéke függetlenül a megadásának módjától mindig valószínűségi mérték. Mindezek után kézenfekvőnek tűnik az az értelmezés, hogy a példa szerinti LOLP érték azt fejezi ki, hogy az éves rendszerszintű terheléslefutást figyelembe véve a terhelési tartamdiagramban első 48 órás időtartamában jelentkező legnagyobb terhelések lesznek azok a terhelések, amikor a rendszerszintű rendelkezésre álló ténylegesen bevethető teljesítőképesség elmarad a rendszerszintű teljesítményigények mögött. Ezt a látszólag kézenfekvő értelmezést magyarázza az. ábra. A helyzet azonban nem ez! A LOLP nem értelmezhető ilyen módon! Az ábrázolhatóság és a könnyebb áttekintés érdekében a továbbiakban a vonatkoztatási időtartam nem év, hanem egy nap, másrészt a LOLP értéke időtartamban kifejezve,5 h, azaz LOLP,5 h / 24h 0, ábra A teljesítőképesség-hiányos időszakok időtartamának meghatározása ([3]) RENDSZERSZINTŰ (NAPI) TERHELÉSI TARTAMDIAGRAM HIÁNYZÓ TELJESÍTŐKÉPESSÉG ÓRA [h] Nem igaz tehát az, hogy a példa szerint 48 h időtartamnak megfelelő LOLP érték a rendszerszintű terhelési tartamdiagram legnagyobb terhelésű első 48 órás időszakában jelentkező teljesítményigények esetén fellépő teljesítőképesség-hiányra utal! A magyarázatot a LOLP számítási módszere adja. A LOLP valószínűségi mérték meghatározása a korábbiakban említetteknek megfelelően két valószínűség meghatározását jelenti, majd ezek eredőjeként adódik a keresett LOLP érték. Az első meghatározandó valószínűség az ún. rendszer konfigurációk előfordulásának a valószínűsége. Közismert az a tény, hogy az erőműegységek véletlenszerű meghibásodásának következtében teljesítőképesség-vesztés léphet fel. Az erőműrendszer rendelkezésre álló teljesítőképessége ebből következően véletlenszerűen csökkenhet, az éppen kiesett erőműegység vagy erőműegységek miatt fellépő teljesítőképesség-vesztések következtében. Rendszer konfiguráció alatt minden esetben az üzemképes erőműegységek által alkotott halmaz értendő. Ez az elmondottak szerint időben változhat a különböző erőműegység meghibásodások következtében. A mindenkori rendszer konfiguráció meghatározza, hogy az adott időpillanatban mely erőműegységek üzemképesek és mekkora a rendszerszinten bevethető teljesítőképesség. A lehetséges FAZEKAS_D_060_ENG_C_v0.doc :08:00 2/9

3 rendszerkonfigurációk száma a valószínűségszámítás (kombinatorika) szabályai szerint határozható meg. A LOLP számítások első lépéseként tehát minden esetben meg kell határozni a lehetséges rendszer konfigurációkat, majd ezt követően meg kell határozni azt, hogy az egyes lehetséges rendszer konfigurációk milyen valószínűséggel lépnek fel. Példaképpen a számítás alapjául szolgáló erőműrendszer (erőműpark) jellemzői az. táblázat szerintiek ([3]). A számítási példában alapadatként használt megbízhatósági jellemzők (például az erőműegységek [pl. d - ] meghibásodási, illetve [pl. d - ] javítási rátája, és értelemszerűen az ezekből számolt A [-] készenléti tényezők stb.) szándékosan eltérnek a műszaki gyakorlatban szokásosan előforduló értékektől. A gyakorlatban előforduló értékektől történő eltérést ebben az esetben is ábrázolástechnikai megfontolások indokolják. A példában szereplő értékek esetében a kapott eredmények jól ábrázolhatók és segítik a megértést.. táblázat Az erőműrendszer megbízhatósági szempontból releváns jellemzői ERŐMŰEGYSÉG BT A - MW - d - d - U 00 0,60 0,2 0,3 U ,70 0,3 0,7 U ,50 0, 0, U ,80 0, 0,4 A táblázatban: BT beépített villamos teljesítőképesség [MW]; A készenléti tényező [-]; meghibásodási ráta [d - ]; javítási ráta [d - ]. A példa szerinti erőműrendszer négy erőműegységből egységből áll (U, U2, U3, U4), az erőműegységek beépített villamos teljesítőképessége az. táblázat szerinti. Az erőműrendszerben az összes beépített villamos teljesítőképesség BT 200MW. Az eredő teljesítőképesség azonban az erőműegységek véletlen meghibásodásának következtében nem mindig áll rendelkezésre rendszerszinten. Az erőműegységek különböző lehetséges üzemállapotait tekintve különböző rendszerkonfigurációk adódnak a rendszerszintű teljesítőképesség rendelkezésre állására. Nem részletezve a számítás hogyanját, a 2. táblázat tartalmazza az egyes lehetséges rendszer konfigurációkban a rendszerszinten rendelkezésre álló teljesítőképességet (bal oldali oszlop), míg ugyanezen táblázatban megtalálhatók az egyes esetekhez rendelt számított előfordulási valószínűségek (jobb oldali oszlop). Az eredményeket szemlélteti a 2. ábra. A számított eredményekből, az ábrából jól látható, hogy igen jelentős különbség van az egyes esetek előfordulási valószínűsége között. Feltételezett a LOLP számítások esetében, hogy az eseménytér teljes eseményrendszert reprezentál. A legnagyobb valószínűséggel ( p 0, 840) az az esemény fordul elő, hogy a rendszer rendelkezésre álló villamos teljesítőképessége BT 000 MW, míg a legkisebb ( p 0,020) annak a valószínűsége, hogy BT 0 MW az erőműpark rendelkezésre álló teljesítőképessége. Az eredmények világosan mutatják, hogy messze nem egyenletes a teljesítőképesség-vesztések következtében előálló (megmaradó) teljesítőképesség valószínűségi eloszlása. A teljes rendszer konfiguráció vonatkozóan az egyes események előfordulási valószínűségeinek összege biztos eseményt reprezentál, azaz értéke P ( ). Magától értetődik, hogy a komplementaritás elve alapján meghatározható a teljesítményvesztések valószínűségi eloszlása is. Azaz megválaszolható az a kérdés is, hogy a különböző lehetséges teljesítményvesztések milyen valószínűséggel fordulnak elő. Nem részletezve ennek bemutatását, csak egyetlen példát említve: a legnagyobb valószínűséggel ( p 0, 840) a példa szerinti erőműrendszer rendelkezésre álló teljesítőképessége BT 000 MW. Ez a kijelentés ekvivalens azzal, hogy a legnagyobb valószínűséggel az összes beépített teljesítőképesség ( BT 200 MW) és az aktuálisan FAZEKAS_D_060_ENG_C_v0.doc :08:00 3/9

4 Valószínűség [-] meglévő teljesítőképesség különbsége, jelen esetben BT 200 MW elvesztése várható. Ennek valószínűsége értelemszerűen: p 0, táblázat A rendelkezésre álló teljesítőképesség valószínűségi eloszlása ([3]) Rendelkezésre álló teljesítőképesség Rendelkezésre álló teljesítőképesség (diszkrét) valószínűségi eloszlása BT [MW] P [-] 200 0, , , , , , , , , , , , ábra A rendelkezésre álló rendszerszintű teljesítőképesség valószínűségi eloszlása ([3]) RENDELKEZÉSRE ÁLLÓ TELJESÍTŐKÉPESSÉG VALÓSZÍNŰSÉGI ELOSZLÁSA 0,2000 0,800 0,600 0,400 0,200 0,000 0,0800 0,0600 0,0400 0,0200 0, MW Mindezek után meg kell határozni azt, hogy milyen valószínűséggel lép fel a példa szerinti erőműrendszerben P 000MW rendszerszintű terhelés. Nem részletezve ebben az esetben sem a számítás módját, vagyis azt, hogy miképpen transzformálható a rendszerszintű terhelési tartamdiagram a rendszerszintű terhelések valószínűségi eloszlásfüggvényévé, a 3. táblázat tartalmazza az egyes rendszerszintű terhelések előfordulási valószínűségét. Mindezek után csak egy lépés maradt hátra: annak meghatározása, hogy mekkora a valószínűsége annak, hogy a rendszerszintű terhelés meghaladja az említett értéket ( P 000MW) és ugyanekkor a rendelkezésre álló teljesítőképesség a rendszerben kisebb, mint a rendszerszintű teljesítményigény. FAZEKAS_D_060_ENG_C_v0.doc :08:00 4/9

5 SÚLYOZOTT ELŐFORDULÁSI IDŐTARTAM [h] Ennek meghatározásához szükséges a rendelkezésre álló teljesítőképesség valószínűségi eloszlásfüggvényének (nem eloszlásának!) a számítása ([2]). Ezt követően utolsó lépésként a két valószínűségi értelemben egymástól független esemény egyidejű előfordulásának valószínűségét kell meghatározni. 3. táblázat A teljesítőképesség-hiányos időszakok hozzájárulása a LOLP értékéhez (A teljesítőképesség-hiányos időszakok a teljesítőképesség függvényében) ([3]) Meglévő teljesítőképesség rendszerszinten Kiesett teljesítőképesség rendszerszinten Teljesítőképességhiányos időszak időtartama (a rendszerszintű terhelési tartamdiagram alapján A teljesítőképességhiányos időtartam előfordulási valószínűsége (lásd 4. táblázat) A teljesítőképességhiányos időtartam előfordulási valószínűségével súlyozott időtartam MW MW h/d - h/d * , , , , , ,25 0, , ,25 0, , ,25 0, , ,25 0, , ,75 0, , , , , , , , , , , , Az eredő teljesítőképesség-hiányos időtartam 4, ábra Az előfordulás valószínűségével súlyozott teljesítőképesség-hiányos időtartam alakulása a hiányzó teljesítőképesség függvényében ([3]) AZ ELŐFORDULÁS VALÓSZÍNŰSÉGÉVEL SÚLYOZOTT TELJESÍTŐKÉPESSÉG-HIÁNYOS IDŐTARTAMOK ALAKULÁSA A HIÁNYZÓ TELJESÍTŐKÉPESSÉG FÜGGVÉNYÉBEN 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,0 0, HIÁNYZÓ TELJESÍTŐKÉPESSÉG [MW] FAZEKAS_D_060_ENG_C_v0.doc :08:00 5/9

6 TELJESÍTŐKÉPESSÉG Az eredmények alapján belátható, hogy az egyes hiányzó teljesítőképességeknek mekkora a súlyozott előfordulási időtartama. A példa ezt kívánta bizonyítni. Szó sincs tehát arról, hogy a legnagyobb rendszerigények esetében lép fel mindig a hiány (. és 3. ábra). 2. Amiről a LOLP nem ad felvilágosítást Világosan kell látni, hogy a LOLP valószínűségi mérték a definíciójából és a származtatásából következően nem ad felvilágosítást arra vonatkozóan, hogy mekkora a rendszerszintű teljesítőképesség-hiány és mekkora a kiesett villamos energia. Másképpen fogalmazva ez azt jelenti, hogy adott időtartamon keresztül jelentkező és 00 MW teljesítőképesség-hiány esetében a LOLP értéke ugyanakkora! Ugyanez a helyzet a kiesett villamos energiát illetően. Az említett esetekben a kiesett villamosenergia-termelés h hiány esetében MWh, illetve 00 MWh. A LOLP értéke mindkét esetben ugyanakkora! Az elmondottakat világítja meg a 4. ábra. Az ábra mutatta esetekben a LOLP értéke minden esetben ugyanaz, jóllehet igen különbözőek a rendszerszinten jelentkező teljesítőképesség-hiányok, illetve a kiesett villamos energia mennyisége. A 4. ábrán ábrán 4 görbe arra mutat példát, hogy mind a LOLP, mind a kiesett villamos energia értéke ugyanakkora, a rendszerszintű teljesítőképesség-hiány lefutása azonban különböző. 4. ábra A hiányzó teljesítőképesség különböző lefutása azonos LOLP értékek esetében,2 A HIÁNYZÓ TELJESÍTŐKÉPESSÉG KÜLÖNBÖZŐ LEFUTÁSA AZONOS ÉRTÉKŰ LOLP ESETÉN 0,8 0, ,4 0, IDŐOSZTÁSOK 3. Erőműegységek megbízhatósági leírása a LOLP számítások során A hazai alkalmazásokban az erőműrendszerek megbízhatósági analízise során az erőműegységeket általában kétállapotú rendszerelemként modellezik. Szükséges annak nyomatékos kiemelése, hogy a kétállapotú megbízhatósági leírás az alaperőművi egységek esetében alkalmazott általános gyakorlat! Külön magyarázat nélkül belátható, hogy ez a leírási mód a menetrendtartó, a csúcserőművi, kis éves kihasználási óraszámú erőműegységek megbízhatósági modellezésére nem alkalmas, abból következően, hogy ezen erőműegységek esetében az üzemen kívüli állásidő igen jelentős, általában jóval meghaladja az üzemben töltött időt. Általános gyakorlat szerint ebben az esetben négyállapotú modellt alkalmaznak, mely szerint négy jellemző üzemállapot definiálható a megbízhatósági FAZEKAS_D_060_ENG_C_v0.doc :08:00 6/9

7 MEGHIBÁSODÁSOK SZÁMA viselkedés leírására. Ezek a következők: () üzemképes üzemben, (2) üzemképes tartalékban, (3) üzemképtelen igényelt üzemi időszakban, (4) üzemképtelen nem igényelt (tartalék) időszakban. A LOLP eredmények értékelésekor ezt a lényeges egyszerűsítést nem szabad figyelmen kívül hagyni! 4. További egyszerűsítő feltételezések: exponenciális eloszlás és időben állandó meghibásodási (és javítási) ráta feltételezése Az erőműegységek életciklusa a meghibásodás szempontjából a megbízhatóság-elméletben ismert kádgörbének megfelelően alakul (5. ábra). 5. ábra Erőműegység teljes műszaki élettartama alatti meghibásodások (üzemzavarok) alakulása 6 ERŐMŰEGYSÉG TELJES MŰSZAKI ÉLETTARTAMA ALATTI MEGHIBÁSODÁSOK (ÜZEMZAVAROK) ALAKULÁSA 4 2 λ const IDŐ (0 HETES PERIÓDUSOK) A teljes életciklust leíró görbe értelmezésekor szükséges az értelmezés peremfeltételeinek, a különböző feltételezéseknek a pontos leírása, a különböző egyszerűsítő feltételezések rögzítése. Általános tapasztalat, hogy az energiatermelő egységek, erőműegységek életciklusának első szakaszában a meghibásodások száma viszonylag magas, később e meghibásodások száma csökken. Ez annak a következménye, hogy az erőműegységek komplex, többszörösen összetett, igen nagyszámú összetevőből, elemből álló rendszerek, amelyekben mindig vannak rejtett hibás elemek, alrendszerek, amelyek a rendszer üzembe lépést követően, részlegesen vagy teljesen üzemképtelenné válnak. Ezt a periódust bejáratási, kezdeti periódusnak, vagy más néven a selejtes elemek kiégetési periódusának nevezik. Az életciklus második szakaszát a meghibásodások számának stabilizálódása jellemzi. Ez az úgynevezett normális működési periódus. Az utolsó szakaszt öregedési periódusnak nevezi a szaknyelv, utalva arra az általános tapasztalatra, hogy a meghibásodások száma ebben az üzemi életciklusban ismét nő. Ez a tapasztalat alapvetően a rendszert alkotó részrendszerekben, elemekben bekövetkező irreverzibilis fizikai, kémiai változások, következtében előálló minőség-romlásnak a következménye. A meghibásodások számának ugrásszerű növekedése ebben az üzemi életciklusban alapvetően ezekre az elváltozásokra vezethető vissza ([6]). A korszerű erőműegységek esetében a görbe középső szakasza év időtartamot ölel fel. Mindezek alapján megalapozottan kijelenthető, hogy az erőműegységek esetében létezik egy olyan hosszú időszakasz, amelyre nézve FAZEKAS_D_060_ENG_C_v0.doc :08:00 7/9

8 VALÓSZÍNŰSÉG ( t ) const. () Ez a tapasztalt tény ad alapot arra a feltételezésre, ami az erőműegység megbízhatósági viselkedését leíró összefüggések jelentős egyszerűsödését eredményezi. Ebben az esetben ugyanis az ún. megbízhatósági függvény a következő egyszerű alakot nyeri: t F ( t) exp[ t] e. (2) U A kapott eredmény azt jelenti, hogy a meghibásodási függvény ( F U ( t)), A meghibásodási függvény ebből következően t F ( t) F ( t) exp[ t] e. (3) D U Az exponenciális eloszlás feltételezése nemcsak a számításokat egyszerűsíti, hanem jól egyezik a tapasztalattal. Elméleti és gyakorlati szempontból van azonban még egy igen nagy jelentőséggel bíró konzekvenciája. Bizonyítható, hogy exponenciális eloszlás esetén adott ( t, t t) időintervallumbeli hibamentes működés valószínűsége nem függ az előző t működési időtől, hanem kizárólagosan csak a t időintervallum hosszának a függvénye. Ez a feltételezés azonban csak a kádgörbe középső szakaszára vonatkozóan érvényes. A 6. ábra az erőműegységek megbízhatósági függvényét mutatja, különböző értékek esetében, míg a 7. ábra a meghibásodási függvény alakját mutatja különböző értékek esetében. 6. ábra Erőműegységek megbízhatósági függvényei különböző értékek esetében ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI FÜGGVÉNYEI KÜLÖNBÖZŐ LAMBDA ÉRTÉKEK ESETÉN 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, LAMBDA = 0, LAMBDA = LAMBDA = 2 LAMBDA = 0,5 0 IDŐOSZTÁS IDŐOSZTÁSOK FAZEKAS_D_060_ENG_C_v0.doc :08:00 8/9

9 VALÓSZÍNŰSÉG 7 ábra Erőműegységek megbízhatósági függvényei különböző értékek esetében ERŐMŰEGYSÉGEK MEGHIBÁSODÁSI FÜGGVÉNYEI, KÜLÖNBÖZŐ ÉRTÉKEK ESETÉN 0,9 0,8 0,7 0,6 0,5 0,4 MŰ = MŰ = MŰ = 0,3 0,2 0, IDŐ Felhasznált irodalom: [] : Villamosenergia-rendszerek rendszerszintű tervezése, I. kötet. Akadémiai Kiadó, Budapest, p.4-6. [2] : Villamosenergia-rendszerek rendszerszintű tervezése, II. kötet. Akadémiai Kiadó, Budapest, megjelenés alatt, ( A villamosenergia-termelés rendszerszintű megbízhatósági számításai fejezet) [3] : A rendszerszintű teljesítőképesség-hiány valószínűségi mértéke: A LOLP / A számítási eljárás ismertetése. Magyar Energetika, 2008/2, p [4] : A LOLP meghatározásának alapjául szolgáló rendszer konfiguráció-számítások. Magyar Energetika, 2008/3, p [5] Gnyegyenko Beljajev Szolovjev: A megbízhatóságelmélet matematikai módszrei. Műszaki Könyvkiadó, Budapest, 970., p. 0. FAZEKAS_D_060_ENG_C_v0.doc :08:00 9/9

Modulzáró ellenőrző kérdések és feladatok (2)

Modulzáró ellenőrző kérdések és feladatok (2) Modulzáró ellenőrző kérdések és feladatok (2) 1. Definiálja az alábbi, technikai eszközök üzemi megbízhatóságával kapcsolatos fogalmakat (1): Megbízhatóság. Használhatóság. Hibamentesség. Fenntarthatóság.

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I.

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. Dr. Kovács Zsolt egyetemi tanár Megbízhatóság-elméleti alapok A megbízhatóságelmélet az a komplex tudományág, amely a meghibásodási

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015 A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Jogszabályi környezet

Jogszabályi környezet A Magyar Energetikai és Közmű-szabályozási Hivatal tájékoztatása a villamosenergiatermeléshez, illetve fogyasztáshoz kapcsolódó kapacitás-kiesések közzétételi kötelezettségének alsó határára vonatkozóan

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.

Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr. Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Adaptív menetrendezés ADP algoritmus alkalmazásával

Adaptív menetrendezés ADP algoritmus alkalmazásával Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

1 Energetikai számítások bemutatása, anyag- és energiamérlegek

1 Energetikai számítások bemutatása, anyag- és energiamérlegek 1 Energetikai számítások bemutatása, anyag- és energiamérlegek Előzőleg a következőkkel foglalkozunk: Fizikai paraméterek o a bemutatott rendszer és modell alapján számítást készítünk az éves energiatermelésre

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Németország energiadiktatúrája a megújuló villamosenergia termelés tükrében (2015. október)

Németország energiadiktatúrája a megújuló villamosenergia termelés tükrében (2015. október) PE Energia Akadémia 103 Németország energiadiktatúrája a megújuló villamosenergia termelés tükrében (2015. október) A megújuló energiák hasznosításának megítéléséhez elsősorban Németország eredményeit

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Szabó-bakoseszter. Makroökonómia. Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe

Szabó-bakoseszter. Makroökonómia. Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe Szabó-bakoseszter Makroökonómia Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe Számítási és geometriai feladatok 1. feladat Tételezzük fel, hogy az általunk vizsgált gazdaságban a gazdasági

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11. ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Alapvető karbantartási stratégiák

Alapvető karbantartási stratégiák Alapvető karbantartási stratégiák MBA képzés 2009 Erdei János 4. Tervszerű karbantartás teljesítőképess pesség 00% Teljesítm tménytartalék-diagram kiesési si ciklikus állapotfüggő teljesítménymaradék t

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Energiamenedzsment kihívásai a XXI. században

Energiamenedzsment kihívásai a XXI. században Energiamenedzsment kihívásai a XXI. században Bertalan Zsolt vezérigazgató MAVIR ZRt. HTE Közgyűlés 2013. május 23. A megfizethető energia 2 A Nemzeti Energiastratégia 4 célt azonosít: 1. Energiahatékonyság

Részletesebben

Méretlánc átrendezés elmélete

Méretlánc átrendezés elmélete 1. Méretlánc átrendezés elmélete Méretlánc átrendezés elmélete Egyes esetekben szükség lehet, hogy arra, hogy a méretláncot átrendezzük. Ezeknek legtöbbször az az oka, hogy a rajzon feltüntetett méretet

Részletesebben

R36. A rendszerszintű teljesítőképesség-mérleg fogalma

R36. A rendszerszintű teljesítőképesség-mérleg fogalma R36. A rendszerszintű teljesítőképesség-mérleg fogalma Az erőművi beépített teljesítményekből kiinduló VER szinten készített összeállítás (éves, havi, heti, napi, órás, pillanatnyi bontásban), amely a

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Tárgyi eszköz-gazdálkodás

Tárgyi eszköz-gazdálkodás Tárgyi eszköz-gazdálkodás Gazdálkodás, gazdaságosság, kontrolling Termelési eszközök és megtérülésük A tárgyi eszközök értéküket több termelési perióduson belül adják át a készterméknek, miközben használati

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Nemzetközi számvitel. 12. Előadás. IAS 8 Számviteli politika, a számviteli becslések változásai és hibák. Dr. Pál Tibor

Nemzetközi számvitel. 12. Előadás. IAS 8 Számviteli politika, a számviteli becslések változásai és hibák. Dr. Pál Tibor Dr. Pál Tibor Nemzetközi számvitel 12. Előadás IAS 8 Számviteli politika, a számviteli becslések változásai és hibák 2014.05.13. IAS 8 Bevételek 2 Az IAS 8 célja A fejezet célja, hogy bemutassa Hogyan

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem modellje az adós büntetésével Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem Nyitott gazdaságok makroökonómiája 1. Bevezetés modellje az adós büntetésével Teljes piacok, Arrow-Debreu-értékpapírok

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2? HIPERGEO. BINOM. POISSON 4.1. Egy üzletben 100-an vásárolnak, közülük 80-an rendelkeznek bankkártyával. A pénztárnál 10-en állnak sorba, mi a valószínűsége, hogy 7-nek lesz bankkártyája? 4.2. Egy üzletben

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK

I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I. ANALITIKAI ADATOK MEGADÁSA, KONVERZIÓK I.2. Konverziók Geokémiai vizsgálatok során gyakran kényszerülünk arra, hogy különböző kémiai koncentrációegységben megadott adatokat hasonlítsunk össze vagy alakítsuk

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Geometriai valo szí nű se g

Geometriai valo szí nű se g Geometriai valo szí nű se g Szűk elméleti áttekintő Klasszikus valószínűség: Geometriai valószínűség: - 1 dimenzióban: - dimenzióban: - + dimenzióban: jó esetek összes eset jó szakaszok teljes szakasz

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Transzformátor, Mérőtranszformátor Állapot Tényező szakértői rendszer Vörös Csaba Tarcsa Dániel Németh Bálint Csépes Gusztáv

Transzformátor, Mérőtranszformátor Állapot Tényező szakértői rendszer Vörös Csaba Tarcsa Dániel Németh Bálint Csépes Gusztáv Transzformátor, Mérőtranszformátor Állapot Tényező szakértői rendszer Vörös Csaba Tarcsa Dániel Németh Bálint Csépes Gusztáv Áttekintés A Rendszer jelentősége Állapotjellemzők MérőTranszformátor Állapot

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

A szélenergiából villamos energiát termelő erőművek engedélyezése

A szélenergiából villamos energiát termelő erőművek engedélyezése Budapest, 26. január 19. A szélenergiából villamos energiát termelő erőművek engedélyezése A villamos energiáról szóló 21. évi CX. Törvény (VET) és annak végrehajtási rendelete (Vhr) 25. évi módosítása

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben