l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSA ÉS LOKÁLIS SZÉLSŐÉRTÉKEI

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSA ÉS LOKÁLIS SZÉLSŐÉRTÉKEI"

Átírás

1 l.ch TÖBBVÁLTOZÓS ÜGGVÉNYEK DERIVÁLÁSA ÉS LOKÁLIS SZÉLSŐÉRTÉKEI A kétváltoós üggvénk úg működnk hog két valós sámho rndk hoá g harmadik valós sámot másként ogalmava sámpárokho rndk hoá g harmadik sámot. Ekt a sámpárokat tkinthtjük úg mint g sík pontjainak koordinátáit. A kétváltoós üggvénk nnk a síknak a pontjaiho rndk hoá g harmadik koordinátát g magasságot. A értlmési tartomán mindn pontjáho hoárndlv t a harmadik magasság koordinátát kirajolódik a sík ltt a üggvén ami g lült. A gváltoós üggvénk bionos tulajdonságai átörökíthtők a kétváltoós str míg vannak olan tulajdonságok amik nm. Nincs értlm például kétváltoós stbn monotonitásról bséi g lültről uganis nhé n ldöntni hog éppn nő- vag csökkn. P A minimum és maimum ogalma visont már átörökíthtő. Eg kétváltoós üggvén maimumát úg kll lképünk mit g hgcsúcsot míg a minimumát pdig úg mint g völgt. matking.hu Lássunk néhán kétváltoós üggvént. LOKÁLIS MINIMUM NYEREGPONT LOKÁLIS MAXIUM bmbmnb A ladatunk a ls hog kidrítsük hol van a kétváltoós üggvénknk minimuma maimuma vag éppn i nrgpontja. A gváltoós üggvénkh hasonlóan most is drivái kll majd itt visont van és is íg hát srint és srint is ogunk drivái ami kétsr olan sórakotató ls. Ekt a driváltakat parciális driváltaknak nvük. Lássuk a parciális driváltakat.

2 PARCIÁLIS DERIVÁLTAK AZ ÜGGVÉNY SZERINTI PARCIÁLIS DERIVÁLTJA AZ ÜGGVÉNY SZERINTI PARCIÁLIS DERIVÁLTJA a driválás során -t driváljuk és csak konstans a driválás során -t driváljuk és csak konstans 6 6 srint driválunk most csak konstansnak sámít ha önállóan áll akkor driváltja nulla ha sorova van valami -ssl akkor marad srint driválunk most csak konstansnak sámít ha önállóan áll akkor driváltja nulla ha sorova van valami -ossal akkor marad matking.hu MÁSODIK DERIVÁLTAK Mindkét lső rndű parciális driváltat tovább driválhatjuk srint is és srint is. Íg nég darab második driváltat kapunk: 6 srint srint 6 srint srint srint srint 6 6 Young-tétl: Ha kétsr totálisan dirnciálható akkor

3 KÉTVÁLTOZÓS ÜGGVÉNYEK LOKÁLIS SZÉLSŐÉRTÉKE. PARCIÁLIS DERIVÁLTAK driválunk. MEGOLDJUK AZ EGYENLETRENDSZERT MEGOLDÁSAI A STAC. PONTOK mgoldjuk a gnltrndsrt p ; p ;. MÁSODIK DERIVÁLTAK matking.hu JACOBI-MÁTRIX HESSE-MÁTRIX lássuk a második driváltakat 6 A Jacobi-mátri: A STAC. PONTOK VIZSGÁLATA HA A JACOBI-MÁTRIX POZITÍV DEINIT AKKOR SZIG. LOK. MINIMUM VAN HA A JACOBI-MÁTRIX NEGATÍV DEINIT AKKOR SZIG. LOK. MAXIMUM VAN HA A JACOBI-MÁTRIX INDEINIT AKKOR NYEREGPONT VAN néük mg hog a stac. pontok köül mlik minimum mlik maimum lősör néük mg a p pontot. ; X és hlér is nullát írunk: E g indinit vagis ; atán lássuk p pontot ; X és hlér is gt írunk: 6 6 p nrgpont E g poitív dinit vagis lokális minimum

4 HÁROMVÁLTOZÓS ÜGGVÉNYEK LOKÁLIS SZÉLSŐÉRTÉKE. PARCIÁLIS DERIVÁLTAK driválunk. MEGOLDJUK AZ EGYENLETRENDSZERT MEGOLDÁSAI A STAC. PONTOK. MÁSODIK DERIVÁLTAK matking.hu JACOBI-MÁTRIX HESSE-MÁTRIX mgoldjuk a gnltrndsrt 6 két stac. pont: lássuk Jacobi-mátriot: p ;; és p ;;. A STAC. PONTOK VIZSGÁLATA HA A JACOBI-MÁTRIX POZITÍV DEINIT AKKOR SZIG. LOK. MINIMUM VAN HA A JACOBI-MÁTRIX NEGATÍV DEINIT AKKOR SZIG. LOK. MAXIMUM VAN HA A JACOBI-MÁTRIX INDEINIT AKKOR NYEREGPONT VAN lássuk a stac. pontokat! lősör néük mg a p pontot. ;; X és hlér is nullát írunk: E g indinit vagis ;; atán lássuk p pontot ;; p nrgpont X és hlér -t hlér nullát írunk: E g poitív dinit vagis lokális minimum

5 AZ ÉRINTŐSÍK EGYENLETE P üggvént a P A pontban érintő sík gnlt: n vktor könnn látsik A érintősík normálvktora a ha a érintősík gnltébn -t átvissük a jobb oldalra. matking.hu A DERIVÁLT-VEKTOR ÉS AZ IRÁNYMENTI DERIVÁLT A drivált-vktorának hívunk. Ím a drivált-vktor: üggvén és srinti driváltjaiból álló vktort a rövidn. üggvén A drivált-vktor sgítségévl tudjuk kisámítani a iránmnti driváltat. E a iránmnti drivált at jti hog g általunk mgadott ttsőlgs v irán mntén mi mrdkn mlkdik a üggvén lült. Arról van thát só hog van g hgmásó aki a P pontban áll a lültn és úg dönt hog a v iránban indul l. A iránmnti drivált at mondja mg hog mi mrdkn kll mnni. v A iránmnti drivált kisámolása nagon gsrű a drivált-vktor és a v gségni hossú pontban: vktor skaláris sorata. A üggvén v iránmnti driváltja a v v Lássunk rr g példát! itt v gségvktor

6 Sámoljuk ki a iránmnti driváltját a a R pontban. A képlt srint a iránmnti drivált v v v irán srint Itt a ura jl a driválás jl és d-nk kll mondani d van g kicsit barátságosabb jlölés is v. a iránmnti driváltra: A drivált-vktor kisámolásáho klk a parciális driváltak. bhlttsítjük a R pont koordinátáit A drivált-vktor thát A iránmnti driváltat úg kapjuk hog a drivált-vktort mgsorouk a csakhog nm gségni hossúságú hanm matking.hu v Úg csinálunk blől gségni hossúságú vktort hog lostjuk saját hossával: v v vktorral A iránmnti drivált thát v 8 8 v 6 thát i mrdkn mg a hgmásó IMPLICIT ÜGGVÉNY DERIVÁLÁSI SZABÁLYA g plicit üggvén driváltja annak rndj és módja srint A Eg üggvén akkor implicit ha nincs kijv vagis nm = alakú. Implicit üggvént kapunk ha a üggvént lrontjuk mondjuk úg hog például a -t és a -at átvissük: sőt még gököt is vonunk Na g implicit üggvén. 6

7 Ha most a íg kapott implicit üggvént driváunk kén t kétélképpn thtjük mg. Driválhatjuk a gnlt mindkét oldalát úg hog -t g üggvénnk tkintjük lvégr a is hisn. Vag driválhatjuk a implicit üggvén driválási sabálával. Ha gsrűn driválunk akkor a bal oldal össttt üggvén és itt g üggvén a jobb oldalon álló driváltja : / thát a drivált. jük bből ki -t. / thát / / mivl pdig matking.hu / vagis éppn a plicit drivált. ha t bírjuk hlér: / Vannak atán olan üggvénk amlknk nincs plicit alakjuk. Itt van például : Ebbn shog sm jhtő ki ért sajna csak implicit módon tudunk drivái. Vagis mindkét oldalt driváljuk d n ljtsük l hog itt g üggvén. Thát például g össttt üggvén amink driváltja a össttt üggvén driválási sabála srint Ha mindkét oldalt driváljuk: Nkünk driváltjára van sükségünk ért a gik oldalon össgűjtjük a össs -t a többikt átküldjük a másik oldalra: Atán kimljük -t. 7

8 8 matking.hu és végül lostunk: E thát a implicit módon mgadott üggvénünk driváltja. A implicit driválási sabál g olan módsr ami t a lőbbi driválgatást lgsrűsíti. At mondja hog ha g implicit üggvén akkor driváltja: és Estünkbn a implicit üggvén amit nullára rndünk: Milőtt végts tévdésk áldoatául snénk tistáuk hog itt nm kétváltoós üggvén hanm implicit üggvén. A és a köötti különbség uganis óriási. Lássuk mi is a különbség! ténlg kétváltoós üggvén és sabadon mgadható ám nm kétváltoós mrt próbáljuk csak mg hlér -t és hlér a -t bírni. A jön ki hog = ami nm iga vagis itt és köül csak a gik adható mg sabadon a másik nm. Thát és köül csak a gik váltoó csak a gikt adhatjuk mg ttsés srint a másikat nm. Na ért ls a üggvén gváltoós. A driváltja a implicit driválás képlt srint a sokásos parciális driválással: Ha mgnéük mi jött ki korábban látsik hog ugan csak most íg sokkal gsrűbbn. Err jó a implicit driválási sabál.

9 9.. Adjuk mg a kövtkő üggvén lokális sélsőértékhlit és nrgpontjait. 6.. Adjuk mg a kövtkő üggvén lokális sélsőértékhlit és nrgpontjait... Adjuk mg a kövtkő üggvén lokális sélsőértékhlit és nrgpontjait... Adjuk mg a kövtkő üggvén lokális sélsőértékhlit és nrgpontjait. matking.hu IMPLICIT ÜGGVÉNY DERIVÁLÁSI SZABÁLYÁNAK ÁLTALÁNOSÍTÁSA Lgn a... n g n váltoós implicit üggvén. n+ darab van bnn d a gnlőségjl miatt csak n db adható mg sabadon ahog a lőő példában és stét láttuk kkor a i mint implicit üggvén driváltja a j váltoó srint: n i n j j i Néünk rr g példát! E g kétváltoós implicit üggvén. Ugan három btű van bnn és d köülük csak kttő adható mg sabadon a gnlőség miatt. A kétváltoós üggvénkbn és sokott ni a váltoó thát loghatjuk t a üggvént úg hog és valami Driváljuk akkor most és srint!

10 .. Adjuk mg a kövtkő üggvén lokális sélsőértékhlit és nrgpontjait..6. Határouk mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait! 6.7. Határouk mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait! 6.8. Határouk mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait!.9. Határouk mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait!.. Határouk mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait!. Határoa mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait!.. Határoa mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait! 8.. Határoa mg a alábbi kétváltoós üggvén lokális sélsőértékhlit és nrgpontjait! 6.. Határouk mg a alábbi üggvén lokális sélsőértékhlit és nrgpontjait!.. Határouk mg a alábbi üggvén lokális sélsőértékhlit és nrgpontjait!

11 .. Határouk mg a alábbi üggvén lokális sélsőértékhlit és nrgpontjait!.6. Írjuk öl a érintősík gnltét a P pontban!.7. Írjuk öl a érintősík gnltét a 6 P pontban!.8. Írjuk öl annak a érintősíknak a gnltét aml párhuamos a 7 síkkal és a üggvént érinti!.9. Mi paramétr stén halad át a P pontban a üggvénh húott érintő a R ponton?.. Mi paramétr stén halad át a P pontban a üggvénh húott érintő a R ponton?.. Mi paramétr stén halad át a P pontban a üggvénh húott érintő a R ponton?

12. Kétváltozós függvények

12. Kétváltozós függvények . Kétváltoós üggvénk Értlmés: a = képlt g kétváltoós üggvént ad mg ha a sík bárml pontjáho és üggtln váltoók a üggő váltoó lgljbb g érték tartoik. Ha g sm akkor a üggvén nm értlmtt abban a pontban ha g

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot

5. modul: Szilárdságtani Állapotok. 5.3. lecke: A feszültségi állapot 5 modul: Silárdságtai Állapotok 53 lck: A fsültségi állapot A lck célja: A taaag flhasálója mgismrj a fsültségi állapot fogalmait valamit mg tudja határoi g lmi pot körték fsültségi állapotát Kövtlmék:

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

anal2_03_szelsoertek_demo.nb 1

anal2_03_szelsoertek_demo.nb 1 anal szelsoertek_demo.nb parciális deriválás f x^ y^; f Sin x Cos y ; g D f, x ; h D f, y ; Show GraphicsArray PlotD f, x,,, y,,, AxesLabel StringForm "f ``", f, None, None, DisplayFunction Identity, PlotD

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Mágneses anyagok elektronmikroszkópos vizsgálata

Mágneses anyagok elektronmikroszkópos vizsgálata Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Egyváltozós függvények differenciálszámítása II.

Egyváltozós függvények differenciálszámítása II. Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn

Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi

Részletesebben

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban

Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban Szrkztk numrikus modllzés az éítőmérnöki gakorlatban intéztigazgató hltts, tanszékvztő, őiskolai docns a Magar Éítész Kamara tagja, a Magar Mérnöki Kamara tagja a ib Nmztközi Btonszövtség Magar Tagozatának

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA

Mezőszimuláció végeselem-módszerrel házi feladat HANGSZÓRÓ LENGŐTEKERCSÉRE HATÓ ERŐ SZÁMÍTÁSA Mősimuláció végslm-módsl hái fladat HNGSZÓRÓ LENGŐTEKERCSÉRE HTÓ ERŐ SZÁMÍTÁS Késíttt: Gaamvölgyi Zsolt, 2007 visgált nds ábán látható fogássimmtikus nds komponnsi a kövtkők: állandómágns gyűű fémlmk tkcs

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Országos Szilárd Leó fizikaverseny feladatai

Országos Szilárd Leó fizikaverseny feladatai Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI

EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI I.Feladat: Egyváltozós függvény grafikonjához húzható érintőkkel kapcsolatos feladatok. 1.feladat: Határozza meg az függvény x = 1 abszcisszájú pontjába

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van? NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG

Részletesebben

Elemi függvények, függvénytranszformációk

Elemi függvények, függvénytranszformációk Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

3. Szerkezeti elemek méretezése

3. Szerkezeti elemek méretezése . Serkeeti elemek méreteése.. Serkeeti elemek méreteési elvei A EC serint a teherbírási határállapotok ellenőrése során a alábbi visgálatokat kell elvégeni: - Kerestmetseti ellenállások visgálata, ami

Részletesebben

A lᔗ卧 ᔗ卧 s l ok l pj h f él om s k s és, v g m s s v l ᔗ卧kö p lés g ol ol g om f l, m l síkm s és g képsíko k ll vég h j s l ok s v l. A m g o s vo l

A lᔗ卧 ᔗ卧 s l ok l pj h f él om s k s és, v g m s s v l ᔗ卧kö p lés g ol ol g om f l, m l síkm s és g képsíko k ll vég h j s l ok s v l. A m g o s vo l ᔗ卧 ), 2012 A f él om s k s és ol g om g po os s l ok l pj lé ho o ᔗ卧fo m m gs k s ésé j l ví s s, f lül é ) o. K ul ké ᔗ卧 s vo l sm jük, m s fo m c cs s ükség. hh cs k k ll l, hog ᔗ卧 f lül é m l ᔗ卧h jl

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata

Teherhordó üveg födémszerkezet: T gerenda ragasztott öv-gerinc kapcsolatának numerikus vizsgálata Tudományos Diákköri Konrncia Thrhordó üvg ödémszrkzt: T grnda ragasztott öv-grinc kapcsolatának numrikus vizsgálata Készíttt: Gál Tamás F17JCS építőmérnök hallgató Konzulns: Dr. Vigh László Grgly Egytmi

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.

EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths. www.symhs.hu mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ

Részletesebben

Függvények menetének vizsgálata, szöveges széls érték feladatok

Függvények menetének vizsgálata, szöveges széls érték feladatok Függvények menetének vizsgálata, szöveges széls érték feladatok 2015. március 29. 1. Alapfeladatok 1. Feladat: Hol növekv az f() függvény, ha deriváltja f () = ( + 2)( 5) 2? Megoldás: Egy függvény növekedését,

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Robotok irányítása. főiskolai jegyzet javított változat. írta: Tukora Balázs

Robotok irányítása. főiskolai jegyzet javított változat. írta: Tukora Balázs Robotok ránítása főskola jgt javított váltoat írta: Tukora Balás Pécs, 4 . Bvtés Jln jgt a Pécs Tudomángtm Pollack Mhál Műsak Főskola Karán foló Műsak Informatka képés Robotránítás rndsrk I-II. tantárgaho

Részletesebben

Többváltozós függvények Riemann integrálja

Többváltozós függvények Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Villamos érintésvédelem

Villamos érintésvédelem Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1)

A Mozilla ThunderBird levelezőprogram haszálata (Készítette: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Version 1.1) A Mozilla ThundrBird lvlzőprogram haszálata (Készíttt: Abonyi-Tóth Zsolt, SZIE ÁOTK, 2004-04-15, Vrsion 1.1) Tartalomjgyzék Tartalomjgyzék...1 A Központi Lvlző Szrvr használata... 1 A ThundrBird lvlzőprogram

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen 10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,

Részletesebben

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális

Részletesebben

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY,

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, IMPLICIT FÜGGVÉNY TÉTEL DR NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-B-0//KONV-00-000

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

JT 379 www.whirlpool.com

JT 379 www.whirlpool.com JT 379.hirlpool.com A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ÜZEMBE HELYEZÉS ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LEMEZEKET,

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval :

1.) = grafikont kell ábrázolnunk. Megj.: 5 1+ A = 1 ill. B = 10 -szeresei. Ábrázolás Függvénytranszformációval : 0 október Függvényábrázolások, Összetett üggvény, Inverz üggvény Bev Mat BME ( Válogatás a eladatgyüjteményből ) ) 0 0 0 0 ( ) ( ) 5 5 5 5 Ábrázolás Függvénytranszormációval : y y 5 ( tengely mentén eltolás

Részletesebben

Függvények szélsőérték vizsgálata

Függvények szélsőérték vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények szélsőérték vizsgálata BSc Szakdolgozat Készítette: Sághy Enikő Kata Matematika BSc, Matematikai elemző szakirány Témavezető: Gémes Margit

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Múlt BETSBŐL Szombaton 23. 3tán. 1787.-

Múlt BETSBŐL Szombaton 23. 3tán. 1787.- Múlt BETSBŐL Szombaton 23. 3tán. 1787.- : o-^a a' közl fkvő dolgot4s homállyofon látó, ** -R- fávól l é v ő k t pdig tsak képzlni fm tudd né- "ljy Bétsi köz uéptől tudakoznók: mikor érkzika' F. Mónárkha?

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium

KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium válaszolására iránuló, még folamatban lévô (a dekoherencia és a hullámcsomag kollapszusa tárgkörökbe esô) elméleti próbálkozások ismertetésétôl. Ehelett inkább a kísérletek elôfeltételét képezô kvantumhûtés

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van? NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

A szeretet tanúi. 2013. március 31. 18. évfolyam, 1. szám. Az algy i egyházközség kiadványa KRISZTUS FELTÁMADT! ÚJ PÁPÁNK

A szeretet tanúi. 2013. március 31. 18. évfolyam, 1. szám. Az algy i egyházközség kiadványa KRISZTUS FELTÁMADT! ÚJ PÁPÁNK 2013. március 31. 18. évfolyam, 1. szám A szrtt tanúi Az algy i gyházközség kiadványa KRISZTUS FELTÁMADT! A Húsvét a Fltámadás - és nm a nyuszi - ünnp Ádám és Éva az s-b nnl vszíttt l az örök éltt. Az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Életkor (Age) és szisztolés vérnyomás (SBP)

Életkor (Age) és szisztolés vérnyomás (SBP) Lináris rgrsszió Éltkor (Ag) és szisztolés vérnyomás (SBP) Ag SBP Ag SBP Ag SBP 22 131 41 139 52 128 23 128 41 171 54 105 24 116 46 137 56 145 27 106 47 111 57 141 28 114 48 115 58 153 29 123 49 133 59

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Külső konzulens: Maza Gábor /E-ON Dél-dunántúli Áramhálózati Zrt./

Külső konzulens: Maza Gábor /E-ON Dél-dunántúli Áramhálózati Zrt./ Péc Tudoángt Pollack Mhál Műzak é Inoratka Kar Műzak Inoratka é llao Intézt Tudoáno Dákkör Dolgozat Középzültégű zabadvztékk lktroo trénk záítáa a gakorlatban / Practcal calculaton o th lctrc ld trngth

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak

adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak 1. Hálózi olymok Diníció: Lgyn G = (V, E) gy irányío grá, mlynk minn (u, v) élén o gy nmngív c(u, v) kpciá. A gránk kiünjük ké ponjá: z rmlő é ogyzó. Ekkor (G; c; ; ) négy hálóznk nvzzük. Szmléléképpn

Részletesebben