Szerkesztette: BIHARI PÉTER

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Szerkesztette: BIHARI PÉTER"

Átírás

1 ERŐMŰVEK Szerkesztette: BIHARI PÉTER BUDAPEST, 2000

2 ERŐMŰVEK Írta: Balogh Antal, okleveles gépészmérnök, Bihari Péter, okleveles gépészmérnök, Lektorálta: Dr. Gács Iván, okleveles gépészmérnök, a műszaki tudomány kandidátusa, Szerkesztette: Bihari Péter Bihari Péter, Balogh Antal ii

3 KÖSZÖNETNYILVÁNÍTÁS A könyv szerzői ehelyütt fejezik ki köszönetüket Gács Ivánnak a könyv írása közben és a lektorálás során tett értékes javaslataiért és tanácsaiért. A Szerkesztő köszönet mond Szivek Ferencnek és Pintér Lászlónak, akik az ábrák készítésében működtek közre, valamint Kurucz Balázsnak, aki a kézirat szövegének ellenőrzésében segített. iii

4 iv

5 ELŐSZÓ Az erőművek (mely alatt e tankönyvben alapvetően a hő- és atomerőműveket értjük) szintetizáló szaktárgy. Felhasználja az energetikai, a hőtani és az áramlástani alapismereteket, valamint az energiaátalakítással foglalkozó szaktárgyak keretében tanultakat, s ezeket az erőművek szakterület keretébe helyezi. A tankönyv hat fejezetre oszlik. Az első fejezet az erőművi villamosenergiafejlesztés és a villamosenergia-szállítás és elosztás alapvető fogalmaival ismerteti meg az olvasót. A 2. fejezet az erőművi energiaátalakítás gazdasági vonatkozásaival és a gazdaságilag optimális terhelésvitellel foglakozik. A 3. fejezet, mely e tankönyv gerincét alkotja, a gőzkörfolyamatú erőművek lényegi kérdéseit tárgyalja. A 4. és 5. fejezet a gáz és gáz/gőz munkaközegű erőművek sajátosságait mutatja be. Az utolsó fejezet azon új technológiákkal (megújuló energiák hasznosítása, tüzelőanyagcellák alkalmazása stb.) foglalkozik, melyek jelentősége az elkövetkező évtizedekben várhatóan növekedni fog. A tankönyv szemléletmódjában a LÉVAI ANDRÁS nevével fémjelzett erőműves iskola hagyományaira és tárgyalásmódjára épít. Az erőművi energiaátalakítást alapvetően berendezésközpontúan vizsgálja. Ugyanakkor a szükséges mélységben és módon felhasználja a BÜKI GERGELY által jegyzett hőmérséklet/entrópia szemléletmód egyes módszereit. v

6 vi

7 Fontosabb jelölések Az itt nem közölt jelölések értelmezését első előfordulási helyükön adjuk meg. Jel Megnevezés Mértékegység A felület, keresztmetszet m 2 a teljesítőképességre vonatkoztatott fajlagos Ft/kW beruházási költség Á éves árbevétel Ft/a B beruházási költség Ft B0 diszkontált beruházási költség Ft C évi költség Ft/a Ca az évi költség állandó része Ft/a Cv, Cü az évi költség változó része Ft/a cp izobár fajhő J/(kg K) E villamos energia J H entalpia J Hü tüzelőanyag fűtőérték J/kg H! entalpiaáram W h fajlagos entalpia J/kg k energia egységköltség Ft/kWh hőátviteli tényező W/(m 2 K) ka az energia egységköltség állandó része Ft/kWh kv, kü az energia egységköltség változó része Ft/kWh m tömeg kg m! tömegáram kg/s P (villamos) teljesítmény W p nyomás bar kamatláb 1 (%/a) pü tüzelőanyag ár Ft/kg; Ft/m 3 pq tüzelőanyag hőár Ft/J Q hő J Q! hőteljesítmény, hőáram W q fajlagos hőfogyasztás 1 (kj/kwh) A táblázat folytatódik. vii

8 A táblázat folytatása. Jel Megnevezés Mértékegység r párolgáshő J/kg tartaléktényező 1 S entrópia J/K S! entrópiaáram W/K s fajlagos entrópia J/(kg K) t hőmérséklet C időpont s T abszolút termodinamikai hőmérséklet K T termodinamikai átlaghőmérséklet K V térfogat m 3 V! térfogatáram m 3 /s v fajtérfogat m 3 /kg W munka J w sebesség m/s x gőz fajlagos gőztartalma 1 (%) y gőz fajlagos nedvességtartalma 1 (%) α annuitás 1/a αl leírási hányad 1/a αtmk karbantartási tényező 1/a δ az optimális hatásfoktól való eltérés 1 rontótényezője ε önfogyasztási hányad 1 (%) η hatásfok 1 (%) ρ sűrűség kg/m 3 τ időtartam s Φ felületi hőcserélő kihasználási tényezője 1 viii

9 Egyéb jelölések és indexek Az itt nem szereplő jelöléseket első előfordulási helyükön magyarázzuk. Jel Értelmezés Jel Értelmezés GE gőzerőmű k kondenzációs GM gázmotor ell ellennyomású GT gázturbina irr irrevezibilis GK gőzkazán m mennyiségi GF gőzfejlesztő 0 ideális, elméleti G/G gáz/gőz erőmű be belépő H hőközlés ki kilépő T gőzturbina min minimális K kompresszor max maximális kondenzációs F hőkiadás, fűtés opt optimális E villamos energia cs csúcs- KE kondenzációs erőmű ü tüzelőanyag, üzemanyag * valós folyamat Δ növekmény- ix

10 x

11 Rajzi jelek Vezetékek Jel Megnevezés Szín Megjegyzés gőz tápvíz, kondenzátum, fűtési forró/melegvíz, hűtővíz iszap, lúg frissgőz (vörös) főtápvíz (kék) nyersvíz, lágyított víz, pótvíz (ibolya) levegő, nem éghető gáz füstgáz gáznemű tüzelőanyag olaj szén vezérlés (mellék) csapadékvíz (cián) fűtési forróvíz/melegvíz (világoszöld) hűtővíz (sötétzöld) Berendezések Hőforrások Jel Megnevezés Jel Megnevezés gőzkazán általában nyomottvizes atomreaktor gőzkazán túlhevítővel atomerőművi gőzfejlesztő gőzkazán túlhevítővel és újrahevítővel gázturbina égőkamra gőzkazán túlhevítővel, széntüzeléssel, levegő- és tápvízelőmelegítő résszel (kombinált rajzjel) póttüzelés kombinált ciklusú blokknál xi

12 Berendezések Turbinák, kompresszorok és szivattyúk Jel Megnevezés Jel Megnevezés gőzturbina általában gázturbina gőzturbina szabályozott megcsapolással gázkompresszor gőzturbina szabályozatlan megcsapolással gőzkompresszor folyadékszivattyú ventilátor Berendezések Szerelvények Jel Megnevezés Jel Megnevezés szelep visszacsapószelep (az áramlás a fehér mező felől a fekete felé irányul) tolózár csap szabályozó impulzus, növekvő értékre működik szabályozó impulzus, csökkenő értékre működik nyomáscsökkentő szelep (a háromszög csúcsa a kisebb nyomás felé mutat) csapadékvíz elvezető automata vegyi vízlágyító vízbefecskendezéses gőzhőmérséklet szabályozó gőzsugár-légszivattyú mennyiségmérő regisztrálással nyomásmérő hőmérő xii

13 Berendezések Hőcserélők Jel Megnevezés Jel Megnevezés általános célú folyadékfolyadék hőcserélő keverő előmelegítő gőzfűtésű felületi tápvízelőmelegítő felületi gőzkondenzátor kondenzálódó gőzzel fűtött gőztúlhevítő keverő kondenzátor gőzhűtő gáztalanítós táptartály felületi kondenzációs tápvízelőmelegítő főáramkörű gőzhűtővel és csapadék utóhűtővel felületi kondenzációs tápvízelőmelegítő mellákáramkörű gőzhűtővel és csapadék utóhűtővel (RICARD-kapcsolás) gőzfűtésű levegő előmelegítő xiii

14 xiv

15 TARTALOMJEGYZÉK 1. A VILLAMOSENERGIA-FEJLESZTÉS ALAPFOGALMAI Bevezetés A villamosenergia-rendszer (VER) A VER általános ismertetése A magyar villamosenergia-rendszer Az erőműrendszer szervezeti felépítése A villamosenergia-fejlesztés primer energiahordozó felhasználása A jelenlegi erőműpark Szállítás és elosztás Teherelosztás, koordináció Villamosenergia-igények A teljesítőképesség mérleg Előtervezési teljesítőképesség mérleg A tényleges teljesítménymérleg A kényszerű kiesések vizsgálata Tartalékok Tartalékok a szigetüzemű erőművekben Tartalékok az erőműrendszerben A VILLAMOSENERGIA-FEJLESZTÉS GAZDASÁGI ÉRTÉKELÉSE Alapfogalmak A pénz időértéke, kamat Az erőművek költségei Az erőmű életciklusa Általános költségmodell Beruházási költség A működési időtartam alatt felmerülő évi költségek A villamos energia egységköltsége Az erőművek árbevétele, nyeresége Költség- és árbevétel függvények Egységköltség az erőműrendszer tagjainál Beruházási döntések Mennyiségi értékelés statikus gazdaságossági számítások A megtérülési idő (payback period) A megtérülési ráta Mennyiségi értékelés dinamikus gazdaságossági számítások A megtérülési ráta (rate of return) A megtérülési idő Nettó jelenérték (net present value, NPV) A belső megtérülési ráta (internal rate of return, IRR) Pótlólagos beruházások és az egységköltség Optimális kiépítés pont A villamosenergia-rendszer gazdaságos üzemvitele...56 xv

16 Erőművi jelleggörbék Gazdaságos terheléselosztás A megszakításos üzemvitel gazdaságossága Rendszerszintű optimálás A tüzelőanyag elosztás optimálása Gazdaságos terheléselosztás nagyszámú blokk között A villamosenergia-rendszer bővítésének tervezése Az állami irányítás és az európai normák hatása a villamosenergia-iparra Törvényi keretek, hatóságok befolyása A Villamos Energia Törvény Árképzési módszerek A villamos energia árának hatósági szabályozása Az új kihívás: az Európai Unió (EU) irányelvei GŐZ MUNKAKÖZEGŰ ERŐMŰVEK Reverzibilis gőzkörfolyamatok A Rankine Clausius-körfolyamat A telített gőzös körfolyamat Körfolyamat elemzés és veszteségfeltárás Termodinamikai szemléletmód Az energiaátalakítás veszteségei Mennyiségi veszteségek Minőségi veszteségek Összetett veszteségek Hatásfoknövelő módszerek Valóságos körfolyamatok Az alapok feltárása Hatásfokok, relatív jellemzők Az erőmű strukturális felépítése Technológiai modell Erőművi hőkapcsolások A Láng-BBC 215 MW-os kondenzációs blokk A VVER-440 atomerőművi blokk Korszerű kondenzációs blokk Hőforrások Tüzelőanyag ellátás Szénellátás Fűtőolajellátás Gázellátás Kazánok és segédberendezéseik Alapfogalmak, energetikai jellemzők Kazánszerkezetek Segédberendezések Atomerőművek, atomreaktorok Nukleáris üzemanyag ciklus Atomerőművek típusai Üzembiztonság A gőzfejlesztés lehetőségei xvi

17 3.6. A gőzturbina és segédrendszerei Alapfogalmak A turbinafokozat jellemzői A turbinafokozat veszteségei és hatásfoka Többfokozatú turbinák Kondenzációs és hűtési rendszerek. Vízellátás A kondenzációs berendezés Keverő kondenzátorok Felületi kondenzátorok A felületi kondenzátoron belüli termikus folyamatok A felületi kondenzátorok kihasználási tényezője A felületi kondenzátorok szerkezete és üzeme Gáztalanítás a felületi kondenzátorban Felületi kondenzátorok tisztítása Kondenzátorok vízszintszabályozása A kondenzátor segédberendezései Az atomerőművi kondenzátorok üzemeltetési sajátosságai Az erőmű vízellátása A hőkörfolyamat vízvesztesége A hűtőkörfolyamat vízveszteségei Hasznos párolgás Természetes párolgás Lebocsátás Elszivárgási veszteség A salak és pernyeeltávolítás vízigénye Egyéb vízfogyasztások A vízveszteségek összegeződése A vízigények kielégítése Források Kutak Felszíni vízfolyások Hűtési rendszerek Frissvízhűtés Közvetlen léghűtés Hűtőtavas hűtés A hűtőtavak létesítési és üzemeltetési kérdései Nedves hűtőtornyos hűtés A nedves hűtőtornyok szerkezeti kialakítása Nedves hűtőtornyok műszaki-gazdaságossági mutatói A nedves hűtőtornyok hőtechnikai méretezése A nedves hűtőtornyok üzemeltetési kérdései Közvetett léghűtés. A Heller-Forgó-féle száraz hűtőtorony Száraz/nedves kombinált (hibrid) hűtőtornyos rendszerek A hűtőrendszerek egyéb elemei Tápvízelőmelegítő rendszer Termikus gáztalanítás és vegyi vízkezelés Gáztalanítás xvii

18 A gáztartalom és a korrózió kapcsolata A gázok bejutásának lehetőségei A gáztalanítás célja és elvi lehetőségei A termikus gáztalanítás elméleti alapjai Gáztalanító szerkezetek A gáztalanítás nyomásának megválasztása Állandó és változó nyomású gáztalanítás Gáztalanítás a VVER-440-es blokk szekunderkörében Korrózió és vegyi vízkezelés Kőképződés és gőzelsózódás Vízoldali korrózió A tápvíz vegyi előkészítése Ioncserélők Különleges vízkezelési eljárások Szivattyúk A gőzkörfolyamat főparamétereinek megválasztása Újrahevítés Indítás, leállítás és terhelésváltoztatás GÁZ MUNKAKÖZEGŰ ERŐMŰVEK Alcím GÁZ/GŐZ MUNKAKÖZEGŰ ERŐMŰVEK Alcím ÚJ TECHNOLÓGIÁK, MEGÚJULÓ ENERGIAFORRÁSOK Új technológiák Megújuló energiaforrások hasznosítása Naperőművek Szélenergia hasznosítás Vízerőművek A geotermális energia hasznosítása FELHASZNÁLT FORRÁSOK, AJÁNLOTT SZAKIRODALOM xviii

19 1. fejezet A VILLAMOSENERGIA-FEJLESZTÉS ALAPFOGALMAI 1. A VILLAMOSENERGIA-FEJLESZTÉS ALAPFOGALMAI ÍRTA RTA: BIHARI PÉTER

20

21 1.1. Bevezetés Az erőművek rendeltetése, hogy a természetben előforduló energiahordozókat jobban hasznosítható, nemesített energiahordozókká alakítsák át a mindenkori fogyasztói igényeknek megfelelően. Ilyen nemesített energiafajták: a hő, a mechanikai energia és az abból nyert villamos energia. Az erőművekben előállított nemesített energiahordozók között kiemelt szerepet tölt be a villamos energia, melynek felhasználását jó tulajdonságai és határtalan lehetőségei biztosítják. A villamos energia az egyetlen, általánosan felhasználható energiafajta, mely a fogyasztók szinte minden igényét világítás, fűtés, hűtés, mozgatás, közlekedés stb. képes kielégíteni a megfelelő átalakító berendezés közbeiktatásával. További előnye, hogy felhasználása jól szabályozható és egyszerűen szállítható. Hátránya a többi energiafajtához képest a viszonylag nagy előállítási költség, az előállításával járó környezetszennyezés, valamint az a tulajdonsága, hogy közvetlenül nem vagy csak rendkívül korlátozott mértékben tárolható. Előnyös tulajdonságai okán mára a villamos energia elsőrendű energiafajtává vált, olyannyira, hogy életünk már elképzelhetetlen nélküle. Mindezek szükségessé teszik, hogy megfelelő ismeretekkel rendelkezzünk a villamosenergia-fejlesztéssel kapcsolatos műszaki, gazdasági és környezetvédelmi feladatokról A villamosenergia-rendszer (VER) A villamosítás kezdeti korszakában az 1800-as és 1900-as évek fordulóján az energiaszolgáltatást még semmilyen tervszerűség nem jellemezte. Ebben az időszakban a fejlődést két irány jellemezte: az egyik, az ún. horizontális fejlődés, mely egyre nagyobb területek (egyre több fogyasztó) rendszerbe kapcsolását jelentette; a másik irányvonal a vertikális bővülés, mely a már villamosított körzetekben az ellátás kimélyítésében jelentkezett. Ez részben több fogyasztó bekapcsolását, részben pedig a fogyasztói igények kibővülését jelentette. Magyarország a villamosításban a kezdeti időszakban élenjáró szerepet töltött be, hiszen az európai szárazföld első villamosműve 1882-ben, Temesvárott kezdte meg működését. A rendszer fejlődését az 1920-as évekig a bányaerőművek és a kis vízerőművek megjelenése (Ikervár, Gelbárt, Felsődobsza) jelentette. Az ben életbe a villamos energia fejlesztéséről és szolgáltatásáról szóló törvény, mely új távlatokat nyitott az egységes villamosenergia-rendszer kialakulása felé. A második világháborút követően megkezdődhetett az országos szintű egységes villamosenergia-rendszer kialakítása, mely igen sok új, szénbázisú erőmű (mátrai, ajkai és inotai) építését jelentette az es években. Az es években léptek be a rendszerbe a szénhidrogén tüzelésű erőművek (dunamenti és tiszai), majd az 1980-as években a paksi atomerőmű blokkjai. Ezután közel másfél évtizedes szünet következett az erőműépítésben, melyet az 1990-es évek végén és a 2000-es évek elején ismét fellendülő erőműépítés tört meg. E korszak domináns erőművei az alapüzemre tervezett kombinált (gáz/gőz) ciklusú hőszolgáltató erőművek. A jövőt illetően megoszlanak a vélemények. Egyes kutatók a megújuló energiák mind szélesebb körű hasznosításában látják a fejlődés útját, teljes egészében lemondva az atomenergiáról és jelentősen korlátozva a hagyományos tüzelőanyagok szerepét. Mások szerint az emberiség 3

22 A VILLAMOSENERGIA-RENDSZER (VER) nem mondhat le az atomenergiáról és a fosszilis energiahordozók esetében is található olyan megoldás a hasznosításukra, mely a környezetre nézve a lehető legkisebb terhelést jelenti. Valószínűleg mindkét tábor érvelésében vannak részigazságok, ugyanakkor jó döntést csak akkor lehet hozni, ha a döntéshozók kellően tájékozottak a lehetséges alternatívák jellemzőiről és következményeiről A VER ÁLTALÁNOS ISMERTETÉSE A fogyasztók villamosenergia-igényét az egyes erőművek nem elszigetelten, hanem egységes villamos hálózatra kapcsoltan látják el. A villamosenergiarendszer további részrendszerekre oszlik (1 1. ábra), ezek a rendszer energiafejlesztő elemeit, azaz az erőműveket tartalmazó erőművi alrendszer, az alap- és főelosztó hálózatot magában foglaló szállítási alrendszer (ezen alrendszer feladata a nemzetközi villamosenergia kereskedelem is), az elosztási alrendszer, azaz a közép- és kisfeszültségű fogyasztói elosztóhálózat, valamint a fogyasztói alrendszer, azaz a fogyasztóknál található villamos berendezések összessége. ERŐMŰVI ALRENDSZER export/import SZÁLLÍTÁSI ALRENDSZER ELOSZTÁSI ALRENDSZER FOGYASZTÓI ALRENDSZER 1 1. ábra. A VER alrendszerei Az együttműködő országos erőműrendszer létrehozását a villamosenergiaellátás biztonsága és gazdaságossága indokolta. Az együttműködésben rejlő előnyök kiszélesítése érdekében, valamint a villamosenergia-export vagy import lehetővé tétele szükségessé tette az országos villamosenergia-rendszerek összekapcsolását. Az évig hazánk tagja volt a KGST VERE (villamosenergia-rendszerek egyesülése) rendszernek. Ennek megszűnte után Lengyelország, Csehország, Szlovákia, Magyarország és Németország keleti területe (volt NDK) nemzeti villamosenergia-rendszerei a CENTREL nevű rendszerben egyesültek. A rendszer központja a Prágában található CDO (Central Dispatching Organisation). Nyugat-Ukrajna, Románia és Bulgária szintén egy rendszerben maradt. Az európai országok nemzeti villamosenergia-rendszerei szintén részei egy egységes nemzetközi hálózatnak, az UCPTE 1 -nek (Union pour la coordination de júliusától UCTE 4

23 A VILLAMOSENERGIA-RENDSZER (VER) la production et du transport de l'electricite). Magyarország villamosenergiarendszere (MVER) 1996 óta az UCPTE rendszerrel párhuzamosan jár. A következőkben bemutatjuk azon egységeket, melyekből a villamosenergiarendszerek felépülnek. Ezek az egységeket többféle szempont alapján csoportosíthatjuk. Az első szempont a rendszerben ellátott feladat. E feladatok a következők lehetnek: energiafejlesztés, elosztás-szállítás, végső felhasználás. A következő pontban ezen szempontok alapján tovább vizsgáljuk a rendszer egyes elemeit. Energiafejlesztő egységek A rendszer energiafejlesztő elemei az erőművek. Az erőműveket az alábbi szempontok alapján csoportosíthatjuk: cél alapján: közcélú vagy ipari (nem közcélú); kooperáció alapján: kooperációba bevont vagy kooperációba nem bevont; kihasználás alapján: alap-, menetrendtartó- vagy csúcserőmű; felhasznált tüzelőanyag fajta alapján: szén, szénhidrogén vagy nukleáris, valamint a megújuló energiaforrásokat (napenergia, szélenergia, geotermikus energia, vízenergia stb.) hasznosító erőművek; kapcsolás alapján (a hagyományos hő- és atomerőművek): kondenzációs erőmű (KE), fűtőerőmű (FE) vagy fűtőmű (FM). A továbbiakban részletesen vizsgáljuk az egyes szempontok alapján történő besorolásokat, de ez előtt néhány alapvető, a továbbiakban gyakran használt fogalmat kell definiálnunk. Ezek a következők: Közcélú és nem közcélú erőművek Az adott erőművet közcélúnak tekintjük, ha feladata az adott ország, vagy egy régió ipari és kommunális fogyasztóinak ellátása. Az MVM Rt. erőművei közcélú erőművek. Az erőművet iparinak (saját célúnak) tekintjük, ha feladata elsődlegesen egy ipari üzem energiaigényeinek kielégítése. Az ipari erőműveket bevonhatják a közcélú villamosenergia-ellátásba (kooperáció). Kooperáló és nem kooperáló erőművek Az erőművet kooperálónak nevezzük ha része az országos (regionális) villamosenergia-rendszernek (villamosenergia-rendszerek egyesülésének), és ezen hálózaton együttműködik a többi erőművel. A kooperáló erőművek rendszerszintű irányítását, teherelosztását a közcélú erőműveket irányító diszpécserközpont végzi. Az erőművet nem kooperálónak nevezzük, ha nem része villamosenergiarendszernek, feladata kizárólag egy adott ipari üzem energiaigényeinek kiszolgálása. Ilyenek például a nagyobb élelmiszeripari (cukorgyár), vegyipari, kohászati üzemeket ellátó kisebb erőművek. Ezek célja általában hőkiadás valamilyen formában e mellett fejlesztenek villamos energiát is. Alap-, menetrendtartó- és csúcserőművek Az erőművet alaperőműnek nevezzük, ha csúcskihasználási időtartama (definícióját lásd az 1.3. alfejezetben) igen magas (évi 5500 óra felett), közel 5

24 A VILLAMOSENERGIA-RENDSZER (VER) állandó teljesítményen üzemel. Az alaperőművek általában a korszerű, jó hatásfokkal és olcsó tüzelőanyaggal üzemelő, rendszerint új erőművek. (Magyarországon: Paksi Atomerőmű). A menetrendtartó erőművek követik a villamosenergia-igények változásait. Viszonylag rugalmasan és tág határok között képesek terhelésüket változtatni. Menetrendtartásra építhetünk új erőművet is, de rendszerint a régebbi alaperőművek válnak fokozatosan menetrendtartóvá. (Mátrai, Tiszai, Dunamenti erőművek.) A csúcserőművek csak a villamos csúcsfogyasztás időszakában üzemelnek. Csúcskihasználási óraszámuk h/a alatt van. Erre a célra olcsó (alacsony beruházási költségű) erőműveket indokolt létesíteni, melyeknél drága tüzelőanyag és alacsony hatásfok is megengedhető A MAGYAR VILLAMOSENERGIA-RENDSZER Az erőműrendszer szervezeti felépítése A villamosenergia-fejlesztés feladatát hazánkban döntően a villamosenergiarendszer közcélú erőművei látják el. Az erőművek részben nagyobb városok, valamint ipari központok közelében találhatók, melyek nagy része az es években épült. Az 1 1. ábrán a különböző erőmű részvénytársaságok, valamint az erőművek elhelyezkedése látható. Több esetben az erőmű-bánya integráció keretén belül az erőművekhez csatolták a körzetben található energetikai célú szenet termelő bányákat is (pl. Pécsi Erőmű Rt., Vértesi Erőmű Rt.). A fent említett erőművek részben nagyobb városok, valamint ipari központok közelében találhatók, melyek nagy része ugyancsak az es években épült. Bakonyi Erőmű Rt. Ajka Vértesi Erőmű Rt. Bánhida Oroszlány Inota Tbánya Paksi Atom- erőmű Rt. Pécsi Erőmű Rt. Dorog Mátrai Erőmű Rt. Budapesti Erőmű Rt. PowerGen Rt. Dunamenti Erőmű Rt. EMA Power Hernádvíz Kft. Borsod Tiszalök Tisza I. II. Tiszai Erőmű Rt. Kisköre Tiszavíz Vízerőmű Kft. szén szénhidrogén atom víz 1 1. ábra. A magyar villamosenergia-rendszer jelentősebb erőművei és erőműtársaságai (1998) 6

25 A VILLAMOSENERGIA-RENDSZER (VER) A villamosenergia-fejlesztés primer energiahordozó felhasználása A villamosenergia-fejlesztés több fajta tüzelőanyag-bázison történik, így nagy szerepe van a szénnek, a kőolajszármazékoknak, valamint a Paksi Atomerőmű üzembe helyezése óta az atomenergiának. Az egységes villamosenergia-rendszer kialakulása óta azonban a primer-energiahordozó felhasználás összetétele folyamatos átalakulásban van. Az 1950-es években szinte a teljes villamosenergia-fejlesztés szénbázison történt. ezekben az években épült a Mátrai erőmű, az Inotai erőmű és a Borsodi Hőerőmű. A szénerőművek építése egészen az 1960-as évekig folytatódott, így épült a Pécsi Hőerőmű is. A szinte csak szénen alapuló villamosenergia-fejlesztés azzal magyarázható, hogy az akkori igények kielégítésére megfelelő mennyiségű szén bányászatára volt lehetőség. Változást az 1960-as évek közepe hozott, amikor üzembe helyezték az első hazai olajtüzelésű erőművet, a Dunamenti Erőművet Százhalombattán. Azonban ekkor is még tovább folyt a szenes erőművek bővítése. Az 1970-es években a villamosenergia-rendszer fejlesztésében továbbra is két forrás volt a meghatározó, a szén (lignit) és az olaj. Ekkor több nagy erőművi blokkot helyeztek üzembe a Dunamenti Erőműben a Tiszai Erőműben és a Mátrai Erőműben. A dinamikusan növekedő igények kielégítésére már elkezdődött a Paksi Atomerőmű építése is, melynek első blokkját 1982-ben kapcsolták párhuzamosan a hálózattal. A négy blokkot tartalmazó erőmű 1987 óta teljes kapacitással üzemel a villamos energia rendszerben. Az 1980-as években a földgáz háttérbe szorította az olajszármazékokat, mely folyamat jelenleg is tart. Az MVM Rt. primer energiahordozó felhasználását az 1 1. ábra mutatja. PJ/év Szén Olaj Földgáz Nukleáris ábra. A villamosenergia-fejlesztés primer energiahordozó felhasználása A jelenlegi erőműpark A jelenlegi erőműpark néhány nagyobb és több kisebb erőműből áll. A primer energiahordozó felhasználás alapján három nagy csoportot lehet megkülönböztetni, a szén- ill. olaj- vagy földgáztüzelésű erőműveket, valamint az 7

26 A VILLAMOSENERGIA-RENDSZER (VER) atomerőművet. A közcélú erőművek főbb műszaki adatait az 1 1. táblázat tartalmazza. A szénerőművek a rendszer legrégebben épült berendezései. Ez maga után vonja azt, hogy ezen erőművek az es évek technikai színvonalnak felelnek meg, így a körfolyamat kezdőjellemzői a jelenlegi értékekhez viszonyítva alacsonyak, ennélfogva nem érhető a mai kor műszaki színvonalának megfelelő hatásfok. További probléma ezen erőművek esetén, hogy nincsenek felszerelve, a porleválasztón kívül, semmilyen légköri szennyezőanyag kibocsátást csökkentő berendezésekkel, így magas a kén-dioxid és kén-trioxid, valamint a nitrogén-oxid kibocsátás. A magas kén-dioxid kibocsátáshoz hozzájárul a tüzelőanyag magas kéntartalma. Ezen erőművek a Bakonyi Erőmű Rt.-hez, a Vértesi Erőmű Rt.-hez, a Pécsi Erőmű Rt.-hez és a Mátrai Erőmű Rt.-hez tartozó erőművek valamint a Tiszai Erőmű Rt. több blokkja (Tisza I., Tiszapalkonya). Az olaj- és földgáztüzelésű erőmű a Dunamenti Erőmű Rt., a Budapesti Erőmű Rt. erőművei és a Tiszai Erőmű néhány blokkja (Tisza II.). A Dunamenti Erőmű Rt. blokkjainak nagy része már újabb konstrukció, azonban már ezek a műszaki konstrukciók is elavultak, hatásfokuk jobb, mint a szenes erőműveké, de itt is jelentős probléma a környezetszennyezés. Szintén problémát jelent olajszármazékok eltüzelése esetén a magas kén-dioxid, kén-trioxid, és nitrogénoxid valamint nehézfém kibocsátás. Földgáztüzelés estén csak a nitrogén-oxid kibocsátás okoz gondot. Ugyanez mondható el a Tiszai Erőmű Rt. olaj ill. gáztüzelésű blokkjairól. A Budapesti Erőmű Rt. erőművei szintén régi konstrukciók, kedvezőtlen energetikai jellemzőkkel rendelkezők. Változást hozott és jelenleg is hoz, hogy a Dunamenti erőműben már üzemel, valamint építés alatt van egy modern jó hatásfokú és környezetkímélő gázturbinás kombinált ciklusú erőművi blokk (G1 ill. G2 blokk). Ugyan így a Budapesti Erőműhöz tartozó Kelenföldi Erőműben is felépült egy hasonló, gázturbinás kombinált ciklusú hőszolgáltató fűtőerőmű. A harmadik fő csoportba tartozik a Paksi Atomerőmű. Ezen erőmű esetén elmondható, hogy alacsony a hatásfok, azonban ez a mai modern nyomottvizes atomerőművek esetén sem sokkal magasabb. A legalacsonyabb üzemeltetési költség miatt ez az erőmű viszi a villamosenergia-fejlesztés alapját. Környezetvédelmi szempontok alapján sem mondható rossznak az erőmű, azonban meg kell oldani a kiégett fűtőelemek, valamint a kis és közepes aktivitású hulladékok tárolását. Jelenleg erre a célra a kiégett kazetták átmenti tárolója (KKÁT) szolgál. Összefoglalva elmondható, hogy a magyar erőműparkhoz tartozó erőművek nagy része rossz hatásfokú (gazdaságtalan), rosszul szabályozható, környezetszennyező. Több erőműből történik hőszolgáltatás is a lakosság, illetve ipari fogyasztók felé. Erre az üzletágra is igaz, hogy gazdaságtalan (ez a magas hőárakban jelenik meg) és környezetszennyező. 8

27 A VILLAMOSENERGIA-RENDSZER (VER) 1 1. táblázat. Magyarország jelenlegi közcélú erőművei (1996) Kapacitás Energiaszolgáltatás Hatásfok Tüzelőanyag Erőmű BT Vill. energia Hő Fajta MW GWh TJ % Dunamenti ,3 OG Paks ,5 N Tisza ,4 OG Mátra ,6 L Pécs ,4 HC Palkonya ,8 BC Oroszlány ,2 BC Borsod ,3 BC Inota GT 170 0,2 0 17,3 O Ajka ,9 BC Bánhida ,2 BC Inota ,8 BC Kelenföld ,0 OG Vízerőmű(8 db) V Tatabánya ,2 BC Kelenföld GT 32 0,05 0 7,5 O Kispest ,8 OG Kőbánya ,7 OG Dorog ,4 BC Újpest ,8 OG Angyalföld ,7 OG Nyíregyháza ,2 OG Sopron ,2 O Győr ,0 O Komló ,4 O Salgótarján ,1 O Szeged ,5 G Székesfehérvár ,6 O Debrecen OG Révész utca G Békéscsaba G Kecskemét G Lőrinci O Összesen ,5 Rövidítések: OG: olaj- és gáztüzelés, O: olajtüzelés, N: nukleáris, L: lignit, BC: barnaszén, HC: feketeszén, V: víz, G: földgáz Szállítás és elosztás A villamos energia elosztása és szállítása különböző feszültségszinteken megy végbe, ennek függvényében beszélhetünk: alap-, főelosztó (szabadvezetékes és kábeles), középfeszültségű és kisfeszültségű hálózatról (1 1. ábra). A következőkben sorra vesszük ezen hálózattípusok néhány jellemző tulajdonságát. Alaphálózat Alaphálózatnak tekintjük mindazon hálózatokat, illetve a hálózatok azon vezetékszakaszait, melyek a villamos energia rendszerben elsőrendűen: az alaperőműveknek az országon belüli vagy nemzetközi kooperációjára szolgálnak; 9

Szerkesztette: BIHARI PÉTER

Szerkesztette: BIHARI PÉTER ERŐMŰVEK Szerkesztette: BIHARI PÉTER BUDAPEST, 2002 ERŐMŰVEK Írta: Balogh Antal, okleveles gépészmérnök, Bihari Péter, okleveles gépészmérnök, Lektorálta: Dr. Gács Iván, okleveles gépészmérnök, a műszaki

Részletesebben

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13

A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13 A villamos energiát termelő erőművekről EED ÁHO Mérnökiroda 2014.11.13 A villamos energia előállítása Az ember fejlődésével nőtt az energia felhasználás Egyes energiafajták megtestesítői az energiahordozók:

Részletesebben

Nagyok és kicsik a termelésben

Nagyok és kicsik a termelésben Nagyok és kicsik a termelésben Tihanyi Zoltán osztályvezető Forrástervezési Szolgálat MAVIR Magyar Villamosenergia-ipari Átviteli Rendszerirányító ZRt. Smart Grid Hungary Budapest, 26. november 3. 1 45

Részletesebben

A villamosenergia-termelés szerkezete és jövője

A villamosenergia-termelés szerkezete és jövője A villamosenergia-termelés szerkezete és jövője Dr. Aszódi Attila elnök, MTA Energetikai Bizottság igazgató, BME Nukleáris Technikai Intézet Energetikáról Másként Budapest, Magyar Energetikusok Kerekasztala,

Részletesebben

2008-2009. tanév tavaszi félév. Hazánk energiagazdálkodása, és villamosenergia-ipara. Ballabás Gábor bagi@ludens.elte.hu

2008-2009. tanév tavaszi félév. Hazánk energiagazdálkodása, és villamosenergia-ipara. Ballabás Gábor bagi@ludens.elte.hu Magyarország társadalmi-gazdasági földrajza 2008-2009. tanév tavaszi félév Hazánk energiagazdálkodása, és villamosenergia-ipara Ballabás Gábor bagi@ludens.elte.hu Forrás: GKM Alapkérdések a XXI. század

Részletesebben

különös tekintettel a kapcsolt termelésre

különös tekintettel a kapcsolt termelésre Dr. Stróbl Alajos A villamosenergiatermelés változásai különös tekintettel a kapcsolt termelésre XVIII. MKET Konferencia Balatonalmádi, 2015. március 27. A főbb változások 2013 és 2014 között (előzetes,

Részletesebben

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon

A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon A nagy hatásfokú hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés terén elért előrehaladásról Magyarországon (az Európai Parlament és a Tanács 2004/8/EK irányelv 6. cikk (3) bekezdésében

Részletesebben

Az alaphálózati stratégia megvalósítása

Az alaphálózati stratégia megvalósítása Az alaphálózati stratégia megvalósítása Tari Gábor 2012. október 4. Az átviteli hálózat fejlıdése 19. század vége Villamosenergia szolgáltatás kezdete 20. század első fele Feszültségszint növekedése (60-ról

Részletesebben

Napenergia kontra atomenergia

Napenergia kontra atomenergia VI. Napenergia-hasznosítás az épületgépészetben és kiállítás Napenergia kontra atomenergia Egy erőműves szakember gondolatai Varga Attila Budapest 2015 Május 12 Tartalomjegyzék 1. Napelemmel termelhető

Részletesebben

Miért van szükség új erőművekre? Az erőmű építtetője. Új erőmű a régi üzemi területen. Miért Csepelre esett a választás?

Miért van szükség új erőművekre? Az erőmű építtetője. Új erőmű a régi üzemi területen. Miért Csepelre esett a választás? Csepel III Erőmű 2 Miért van szükség új erőművekre? A technikai fejlődés folyamatosan szükségessé teszi az erőműpark megújítását. Megbízható, magas hatásfokú, környezetbarát erőműpark tudja biztosítani

Részletesebben

2. Település szintű jellemzése: az ellátórendszerek helyzetére távlati fejlesztési feladatokra Előadás anyaga

2. Település szintű jellemzése: az ellátórendszerek helyzetére távlati fejlesztési feladatokra Előadás anyaga BME Közgazdaságtudományi Kar: TELEPÜLÉS- ÉS TERÜLETFEJLESZTÉS szakirányt választott IV. éves hallgatók MŰSZAKI INFRASTRUKTÚRA szaktárgya keretében, a: TERÜLETI ENERGIAGAZDÁLKODÁS és ENERGIAELLÁTÁS és HÍRKÖZLÉS

Részletesebben

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban

Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Villamos hálózati csatlakozás lehetőségei itthon, és az EU-ban Molnár Ágnes Mannvit Budapest Regionális Workshop Climate Action and renewable package Az Európai Parlament 2009-ben elfogadta a megújuló

Részletesebben

A nem nukleáris alapú villamosenergia-termelés lehetőségei

A nem nukleáris alapú villamosenergia-termelés lehetőségei A nem nukleáris alapú villamosenergia-termelés lehetőségei Büki Gergely Villamosenergia-ellátás Magyarországon a XXI. században MTA Energiakonferencia, 2014. február 18 Villamosenergia-termelés, 2011 Villamos

Részletesebben

Energiamenedzsment kihívásai a XXI. században

Energiamenedzsment kihívásai a XXI. században Energiamenedzsment kihívásai a XXI. században Bertalan Zsolt vezérigazgató MAVIR ZRt. HTE Közgyűlés 2013. május 23. A megfizethető energia 2 A Nemzeti Energiastratégia 4 célt azonosít: 1. Energiahatékonyság

Részletesebben

A magyarországi kapcsolt villamosenergia-termelés alakulásáról

A magyarországi kapcsolt villamosenergia-termelés alakulásáról Dr. Stróbl Alajos A magyarországi kapcsolt villamosenergia-termelés alakulásáról XVII. MKET Konferencia Siófok, 2014. március 18. A bruttó villamosenergia-felhasználás fejlődése TWh Az erőműveink tavaly

Részletesebben

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások

Távhőszolgáltatás és fogyasztóközeli megújuló energiaforrások szolgáltatás és fogyasztóközeli megújuló energiaforrások Pécs, 2010. szeptember 14. Győri Csaba műszaki igazgatóhelyettes Németh András üzemviteli mérnök helyett/mellett megújuló energia Megújuló Energia

Részletesebben

A rendszerirányítás. és feladatai. Figyelemmel a változó erőművi struktúrára. Alföldi Gábor Forrástervezési osztályvezető MAVIR ZRt.

A rendszerirányítás. és feladatai. Figyelemmel a változó erőművi struktúrára. Alföldi Gábor Forrástervezési osztályvezető MAVIR ZRt. A rendszerirányítás szerepe és feladatai Figyelemmel a változó erőművi struktúrára Alföldi Gábor Forrástervezési osztályvezető MAVIR ZRt. Kihívások a rendszerirányító felé Az évtized végéig számos hazai

Részletesebben

Fosszilis energiák jelen- és jövőképe

Fosszilis energiák jelen- és jövőképe Fosszilis energiák jelen- és jövőképe A FÖLDGÁZELLÁTÁS HELYZETE A HAZAI ENERGIASZERKEZET TÜKRÉBEN Dr. TIHANYI LÁSZLÓ egyetemi tanár, Miskolci Egyetem MTA Energetikai Bizottság Foszilis energia albizottság

Részletesebben

25 ábra 14:40-től 15:05-ig

25 ábra 14:40-től 15:05-ig 25 ábra 14:4-től 15:5-ig 38 631 39 588 4 414 41 85 41 18 41 97 41 422 43 65 43 866 43 928 42 566 42 626 42 294 42 184 42 737 43 75 Az összes évi villamosenergia-felhasználásunk 45 GWh 44 43 42 41 átlagos:

Részletesebben

Paksi Atomerőmű Zrt. termelői működési engedélyének 7. sz. módosítása

Paksi Atomerőmű Zrt. termelői működési engedélyének 7. sz. módosítása 1081 BUDAPEST, KÖZTÁRSASÁG TÉR 7. ÜGYSZÁM: VEFO-414/ /2009 ÜGYINTÉZŐ: HORVÁTH KÁROLY TELEFON: 06-1-459-7777; 06-1-459-7774 TELEFAX: 06-1-459-7764; 06-1-459-7770 E-MAIL: eh@eh.gov.hu; horvathk@eh.gov.hu

Részletesebben

A vizsgafeladat ismertetése: A központilag összeállított tételsor a következő témaköröket tartalmazza:

A vizsgafeladat ismertetése: A központilag összeállított tételsor a következő témaköröket tartalmazza: A vizsgafeladat ismertetése: A központilag összeállított tételsor a következő témaköröket tartalmazza: Hőenergetika alapjai Villamos energetikai alapismeretek Gőzturbinák felépítése és működése, turbinalapátok

Részletesebben

A fenntartható energetika kérdései

A fenntartható energetika kérdései A fenntartható energetika kérdései Dr. Aszódi Attila igazgató, Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technikai Intézet elnök, MTA Energetikai Bizottság Budapest, MTA, 2011. május 4.

Részletesebben

Hulladékhasznosító mű létesítésének vizsgálata a Tiszai Erőmű telephelyén

Hulladékhasznosító mű létesítésének vizsgálata a Tiszai Erőmű telephelyén TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Hulladékhasznosító mű létesítésének vizsgálata a Tiszai Erőmű telephelyén Pintácsi Dániel Energetikai mérnök MSc hallgató pintacsi.daniel@eszk.org

Részletesebben

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag ? A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag Tartalom MAGYAR KAPCSOLT ENERGIA TÁRSASÁG A biogáz és a fosszilis energiahordozók A biogáz felhasználásának

Részletesebben

Vállalati szintű energia audit. dr. Balikó Sándor energiagazdálkodási szakértő

Vállalati szintű energia audit. dr. Balikó Sándor energiagazdálkodási szakértő Vállalati szintű energia audit dr. Balikó Sándor energiagazdálkodási szakértő Audit=összehasonlítás, értékelés (kategóriába sorolás) Vállalatok közötti (fajlagosok alapján) Technológiai paraméterek (pl.

Részletesebben

Miskolci geotermikus és biomassza projektek tapasztalatai, a távhő rendszer fejlesztése

Miskolci geotermikus és biomassza projektek tapasztalatai, a távhő rendszer fejlesztése Miskolci geotermikus és biomassza projektek tapasztalatai, a távhő rendszer fejlesztése 2014. 11. 13. Nyíri László MIHŐ Miskolci Hőszolgáltató Kft. Áttekintés Miskolci távhőszolgáltató bemutatása Mutatószámok

Részletesebben

9. Előadás: Földgáztermelés, felhasználás fizikája.

9. Előadás: Földgáztermelés, felhasználás fizikája. 9. Előadás: Földgáztermelés, felhasználás fizikája. 9.1. Földgáz kitermelés. Földgáz összetevői. 9.2. Földgázszállítás, tárolás. 9.3. Földgáz feldolgozás termékei, felhasználásuk. 9.4. Nagyfogyasztó: Elektromos

Részletesebben

OROSZLÁNY Város távfűtésének jövője

OROSZLÁNY Város távfűtésének jövője MET Energia Fórum 2012. OROSZLÁNY Város távfűtésének jövője Közbenső értékelés Előadó: Takács Károly, polgármester Balatonalmádi, 2012. március 22.. Oroszlányi távfűtés jövője Termelő oldali előzmények

Részletesebben

Nukleáris alapú villamosenergiatermelés

Nukleáris alapú villamosenergiatermelés Nukleáris alapú villamosenergiatermelés jelene és jövője Dr. Aszódi Attila igazgató, egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Nukleáris Technikai Intézet Villamosenergia-ellátás Magyarországon

Részletesebben

1. TÉTEL. 1. Ismertesse a forgó mozgást létrehozó erőhatás lehetséges módjait! 2. TÉTEL

1. TÉTEL. 1. Ismertesse a forgó mozgást létrehozó erőhatás lehetséges módjait! 2. TÉTEL 1. TÉTEL 1. Ismertesse a forgó mozgást létrehozó erőhatás lehetséges módjait! 2. A) Ismertesse az erőművek párhuzamos üzemét! B) Ismertesse a paksi turbinák csappantyú szervóinak működését! 3. A) Ismertesse

Részletesebben

"Lehetőségek" a jelenlegi villamos energia piaci környezetben

Lehetőségek a jelenlegi villamos energia piaci környezetben "Lehetőségek" a jelenlegi villamos energia piaci környezetben SZAPPANOS Sándor Siófok, 2014. 03. 18. EHU termelő kapacitások Rugalmas és hatékony kapcsolt energiatermelési portfolió Szabályozás United

Részletesebben

Szilárd biomassza energetikai hasznosíthatóságának vizsgálata a Tiszai Erőmű telephelyén

Szilárd biomassza energetikai hasznosíthatóságának vizsgálata a Tiszai Erőmű telephelyén TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Szilárd biomassza energetikai hasznosíthatóságának vizsgálata a Tiszai Erőmű telephelyén Egri Tamás Gépészkari alelnök egri.tamas@eszk.org 2014.

Részletesebben

Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 6202-11 Épületgépészeti rendszerismeret

Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 6202-11 Épületgépészeti rendszerismeret Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 6202-11 Épületgépészeti rendszerismeret Vizsgarészhez rendelt vizsgafeladat megnevezése: 6202-11/1 Általános épületgépészeti ismeretek Szóbeli

Részletesebben

Napenergia-hasznosító rendszerekben alkalmazott tárolók

Napenergia-hasznosító rendszerekben alkalmazott tárolók Dr. Szánthó Zoltán egyetemi docens BME Épületgépészeti és Gépészeti Eljárástechnika Tanszék Nevelős Gábor okleveles gépészmérnök Naplopó Kft. Napenergia-hasznosító rendszerekben alkalmazott tárolók Zöldül

Részletesebben

Magyarország kereskedelmi áruházai

Magyarország kereskedelmi áruházai Kaszkád hőtéstechnikai rendszer és hıszivattyús főtési-hőtési rendszer együttmőködése Magyarország kereskedelmi áruházai A B C D E F G H I J össz db m2 átlag össz m2 Diszkont áruházak 190 83 153 65 1500

Részletesebben

Új fogyasztók bekapcsolása a távhőszolgáltatásba A felszabaduló kapacitások kihasználása

Új fogyasztók bekapcsolása a távhőszolgáltatásba A felszabaduló kapacitások kihasználása Kaposvári Vagyonkezelő Zrt Távfűtési Üzem Új fogyasztók bekapcsolása a távhőszolgáltatásba A felszabaduló kapacitások kihasználása Zanatyné Uitz Zsuzsanna okl. gépészmérnök Nyíregyháza, 2011. szeptember

Részletesebben

Bevezetés. Az 1. táblázat összefoglalóan mutatja a kapcsolt termelés főbb adatainak változását 2004-2007 között.

Bevezetés. Az 1. táblázat összefoglalóan mutatja a kapcsolt termelés főbb adatainak változását 2004-2007 között. A nagy hatásfokú, hasznos hőigényen alapuló kapcsolt hő- és villamosenergia-termelés alkalmazására rendelkezésre álló lehetőségekről Magyarországon (beleértve a nagy hatásfokú kapcsolt energiatermelő mikroegységeket

Részletesebben

A megújuló energiahordozók szerepe

A megújuló energiahordozók szerepe Magyar Energia Szimpózium MESZ 2013 Budapest A megújuló energiahordozók szerepe dr Szilágyi Zsombor okl. gázmérnök c. egyetemi docens Az ország energia felhasználása 2008 2009 2010 2011 2012 PJ 1126,4

Részletesebben

3. Előadás: Az ember tevékenységeinek energia igénye.

3. Előadás: Az ember tevékenységeinek energia igénye. 3. Előadás: Az ember tevékenységeinek energia igénye. 3.1. Az emberi tevékenységek és azok energiában mérve. 3.2. Az elérhető energiaforrások megoszlása, felhasználásuk szerkezete 3.1. Az emberi tevékenységek

Részletesebben

Hőtárolók a kapcsolt energiatermelésben

Hőtárolók a kapcsolt energiatermelésben Hőtárolók a kapcsolt energiatermelésben XIX. Főenergetikusi és Innovációs Szeminárium Visegrád, 2012. május 9-11. Kapcsolt energiatermelés Azonos technológiai folyamatban hő- és villamosenergia egyidejű

Részletesebben

1. ábra. A 2015. szeptemberi teljesítmények változása

1. ábra. A 2015. szeptemberi teljesítmények változása PE Energia Akadémia 99 Németország megújuló energiatermelése 2015 szept. Németországban az Energiewende keretében 2015 szept. végéig a szél és naperőművek beépített teljesítőképessége már elérte a 82 675

Részletesebben

KÉNYSZER ÉS ADAPTÁCIÓ. Avagy: Az út amit választottunk!

KÉNYSZER ÉS ADAPTÁCIÓ. Avagy: Az út amit választottunk! KÉNYSZER ÉS ADAPTÁCIÓ Avagy: Az út amit választottunk! A hőtermelő gépcsoport allokáció 2006-tól: - 2 db Láng-Borsig kazán (28 t/h, 42 bar, 400 c o ), 1 db ellennyomású fűtőturbina (1960-as évek eleje)

Részletesebben

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra

7. Hány órán keresztül világít egy hagyományos, 60 wattos villanykörte? a 450 óra b 600 óra c 1000 óra Feladatsor a Föld napjára oszt:.. 1. Mi a villamos energia mértékegysége(lakossági szinten)? a MJ (MegaJoule) b kwh (kilówattóra) c kw (kilówatt) 2. Napelem mit állít elő közvetlenül? a Villamos energiát

Részletesebben

Tapasztalatok és tervek a pécsi erőműben

Tapasztalatok és tervek a pécsi erőműben Tapasztalatok és tervek a pécsi erőműben Péterffy Attila erőmű üzletág-vezető ERŐMŰ FÓRUM 2012. március 22-23. Balatonalmádi Tartalom 1. Bemutatkozás 1.1 Tulajdonosi háttér 1.2 A pécsi erőmű 2. Tapasztalatok

Részletesebben

Energetika II. Gács, Iván

Energetika II. Gács, Iván Energetika II. Gács, Iván Energetika II. írta Gács, Iván Publication date 2012 Szerzői jog 2012 Gács Iván Kézirat lezárva: 2012. január 31. Készült a TAMOP-4.1.2.A/2-10/1 pályázati projekt keretében A

Részletesebben

VILLAMOSENERGIA-TERMELÉS GAZDASÁGI ÉRTÉKELÉSE

VILLAMOSENERGIA-TERMELÉS GAZDASÁGI ÉRTÉKELÉSE VILLAMOSENERGIA-TERMELÉS GAZDASÁGI ÉRTÉKELÉSE Gács Iván BME Energetikai Gépek és Rendszerek Tsz. 2012. február 2 Tartalomjegyzék Bevezetés... 5 1. Villamosenergia-rendszer felépítése és működése... 6 1.1.

Részletesebben

Dr. Stróbl Alajos. ENERGOexpo 2012 Debrecen, 2012. szeptember 26. 11:50 12:20, azaz 30 perc alatt 20 ábra időzítve, animálva

Dr. Stróbl Alajos. ENERGOexpo 2012 Debrecen, 2012. szeptember 26. 11:50 12:20, azaz 30 perc alatt 20 ábra időzítve, animálva Dr. Stróbl Alajos Erőműépítések Európában ENERGOexpo 2012 Debrecen, 2012. szeptember 26. 11:50 12:20, azaz 30 perc alatt 20 ábra időzítve, animálva egyéb napelem 2011-ben 896 GW 5% Változás az EU-27 erőműparkjában

Részletesebben

«A» Energetikai gazdaságtan 1. nagy zárthelyi Sajátkezű névaláírás:

«A» Energetikai gazdaságtan 1. nagy zárthelyi Sajátkezű névaláírás: «A» Energetikai gazdaságtan Név: 1. nagy zárthelyi Sajátkezű névaláírás: Munkaidő: 90 perc Azonosító: Gyakorlatvezető: Vass Bálint Lipcsei Gábor Buzea Klaudia Zárthelyi hallgatói értékelése Mennyiség 1:kevés

Részletesebben

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre

Részletesebben

A Mátrai Erőmű működése és környezeti hatásai, fejlesztési lehetőségei

A Mátrai Erőmű működése és környezeti hatásai, fejlesztési lehetőségei A Mátrai Erőmű működése és környezeti hatásai, fejlesztési lehetőségei Készítette: Nagy Gábor Környezettan Alapszakos Hallgató Témavezető: Dr. Kiss Ádám Professzor Téziseim Bemutatni az erőmű és bányák

Részletesebben

Megújuló energiák fejlesztési irányai

Megújuló energiák fejlesztési irányai Megújuló energiák fejlesztési irányai Büki Gergely az MTA doktora Energiagazdálkodási és Megújuló Energia Konferencia Szeged, 2010. szept. 23. Megújuló energiák az energiaellátás rendszerében V égenergia-felhasználás,

Részletesebben

K+F lehet bármi szerepe?

K+F lehet bármi szerepe? Olaj kitermelés, millió hordó/nap K+F lehet bármi szerepe? 100 90 80 70 60 50 40 Olajhozam-csúcs szcenáriók 30 20 10 0 2000 2020 Bizonytalanság: Az előrejelzések bizonytalanságának oka az olaj kitermelési

Részletesebben

Aktuális kutatási trendek a villamos energetikában

Aktuális kutatási trendek a villamos energetikában Aktuális kutatási trendek a villamos energetikában Prof. Dr. Krómer István 1 Tartalom - Bevezető megjegyzések - Általános tendenciák - Fő fejlesztési területek villamos energia termelés megújuló energiaforrások

Részletesebben

MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS

MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS HÍDFŐ-PLUSSZ IPARI,KERESKEDELMI ÉS SZOLGÁLTATÓ KFT. Székhely:2112.Veresegyház Ráday u.132/a Tel./Fax: 00 36 28/384-040 E-mail: laszlofulop@vnet.hu Cg.:13-09-091574

Részletesebben

Két szóból kihoztuk a legjobbat... Altherma hibrid

Két szóból kihoztuk a legjobbat... Altherma hibrid Két szóból kihoztuk a legjobbat... Altherma hibrid Elromlott a gázkazánom és gyorsan ki kell cserélnem Az ügyfelek elvárásai szeretnék hőszivattyút használni, de azt hallottam, hogy nem lenne hatékony

Részletesebben

+ 2000 MW Út egy új energiarendszer felé

+ 2000 MW Út egy új energiarendszer felé + 2000 MW Út egy új energiarendszer felé egyetemi docens Pécsi Tudományegyetem Közgazdaságtudományi Kar Stratégiai Tanulmányok Tanszéke Interregionális Megújuló Energiaklaszter Egyesület somogyv@videant.hu

Részletesebben

Kapcsolt energia termelés, megújulók és a KÁT a távhőben

Kapcsolt energia termelés, megújulók és a KÁT a távhőben Kapcsolt energia termelés, megújulók és a KÁT a távhőben A múlt EU Távlatok, lehetőségek, feladatok A múlt Kapcsolt energia termelés előnyei, hátrányai 2 30-45 % -al kevesebb primerenergia felhasználás

Részletesebben

A tételhez segédeszközök nem használható.

A tételhez segédeszközök nem használható. A vizsgafeladat ismertetése A központilag összeállított tételsor a következő témaköröket tartalmazza: Hőenergetika alapjai Víz-gőz állapotjelzők Víz- gőztermelés elmélete Villamos energetikai alapismeretek

Részletesebben

Ipari kondenzációs gázkészülék

Ipari kondenzációs gázkészülék Ipari kondenzációs gázkészülék L.H.E.M.M. A L.H.E.M.M. egy beltéri telepítésre szánt kondenzációs hőfejlesztő készülék, mely több, egymástól teljesen független, előszerelt modulból áll. Ez a tervezési

Részletesebben

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor 2015. május 6.

A VPP szabályozó központ működési modellje, és fejlődési irányai. Örményi Viktor 2015. május 6. A VPP szabályozó központ működési modellje, és fejlődési irányai Örményi Viktor 2015. május 6. Előzmények A Virtuális Erőművek kialakulásának körülményei 2008-2011. között a villamos energia piaci árai

Részletesebben

23/2001. (XI. 13.) KöM rendelet

23/2001. (XI. 13.) KöM rendelet 23/2001. (XI. 13.) KöM rendelet a 140 kwth és az ennél nagyobb, de 50 MWth-nál kisebb névleges bemenő hőteljesítményű tüzelőberendezések légszennyező anyagainak technológiai kibocsátási határértékeiről

Részletesebben

Kiserőművek az Átviteli Rendszerirányító szemével

Kiserőművek az Átviteli Rendszerirányító szemével 2 Kiserőművek az Átviteli Rendszerirányító szemével Alföldi Gábor Rendszerirányítási igazgató MKET Konferencia, 2015. március 26-27. 3 Tartalom A magyar villamosenergia-rendszer helyzetképe Energiamérleg

Részletesebben

BINÁRIS GEOTERMIKUS ERŐMŰVEK TECHNOLÓGIAI FEJLŐDÉSE 1990- TŐL NAPJAINKIG

BINÁRIS GEOTERMIKUS ERŐMŰVEK TECHNOLÓGIAI FEJLŐDÉSE 1990- TŐL NAPJAINKIG BINÁRIS GEOTERMIKUS ERŐMŰVEK TECHNOLÓGIAI FEJLŐDÉSE 1990- TŐL NAPJAINKIG Készítette: Koncz Ádám PhD hallgató Miskolci Egyetem Kőolaj és Földgáz Intézet Kutatás és innováció a magyar geotermiában Budapest,

Részletesebben

NCST és a NAPENERGIA

NCST és a NAPENERGIA SZIE Egyetemi Klímatanács SZENT ISTVÁN EGYETEM NCST és a NAPENERGIA Tóth László ACRUX http://klimatanacs.szie.hu TARTALOM 1.Napenergia potenciál 2.A lehetséges megoldások 3.Termikus és PV rendszerek 4.Nagyrendszerek,

Részletesebben

MAGYAR ENERGIA HIVATAL 1081 BUDAPEST KÖZTÁRSASÁG TÉR 7.

MAGYAR ENERGIA HIVATAL 1081 BUDAPEST KÖZTÁRSASÁG TÉR 7. 1081 BUDAPEST KÖZTÁRSASÁG TÉR 7. ÜGYSZÁM: VEFO- 542/ /2010 ÜGYINTÉZŐ: DR. MATLÁK ZSUZSANNA, DR. MAGYAR ATTILA TELEFON: 06-1-459-7777; 06-1-459-7772 TELEFAX: 06-1-459-7764; 06-1-459-7770 E-MAIL: eh@eh.gov.hu;

Részletesebben

23/2001. (XI. 13.) KöM rendelet

23/2001. (XI. 13.) KöM rendelet 23/2001. (XI. 13.) KöM rendelet a 140 kw th és az ennél nagyobb, de 50 MW th -nál kisebb névleges bemenő hőteljesítményű tüzelőberendezések légszennyező anyagainak technológiai kibocsátási határértékeiről

Részletesebben

Major Ferenc részlegvezető ACIS Benzinkúttechnika kft.

Major Ferenc részlegvezető ACIS Benzinkúttechnika kft. Kompresszor állomások telepítésének feltételei, hatósági előírások és beruházási adatok. Gázüzemű gépjárművek műszaki kialakítása és az utólagos átalakítás módja Major Ferenc részlegvezető ACIS Benzinkúttechnika

Részletesebben

Towards the optimal energy mix for Hungary. 2013. október 01. EWEA Workshop. Dr. Hoffmann László Elnök. Balogh Antal Tudományos munkatárs

Towards the optimal energy mix for Hungary. 2013. október 01. EWEA Workshop. Dr. Hoffmann László Elnök. Balogh Antal Tudományos munkatárs Towards the optimal energy mix for Hungary 2013. október 01. EWEA Workshop Dr. Hoffmann László Elnök Balogh Antal Tudományos munkatárs A Magyarországi szélerőmű-kapacitásaink: - ~330 MW üzemben (mind 2006-os

Részletesebben

Az átviteli hálózat távkezelése

Az átviteli hálózat távkezelése Az átviteli hálózat távkezelése MEE 20 éves a hazai alállomási számítógépes kezelés 2009.11.18. Bencsik Tibor MAVIR ZRt. üzemviteli igazgató 2 Távvezetékek nyomvonalhossza: 3.600 km Alállomások száma:

Részletesebben

Háztartási kiserőművek. Háztartási kiserőművek

Háztartási kiserőművek. Háztartási kiserőművek Háztartási kiserőművek Háztartási kiserőművek FINANSZÍROZÁS BEFEKTETÉS ENERGIATERMELÉS MCHP 50 kwe Mikro erőmű Hőenergia termelés hagyományos kazánnal Hatékonyabb hőenergia termelés kondenzációs kazánnal

Részletesebben

Energiagazdálkodás és környezetvédelem 3. Előadás

Energiagazdálkodás és környezetvédelem 3. Előadás Energiagazdálkodás és környezetvédelem 3. Előadás Tüzeléstechnika Kapcsolódó államvizsga tételek: 15. Települési hulladéklerakók Hulladéklerakó helyek fajtái kialakítási lehetőségei, helykiválasztás szempontjai.

Részletesebben

Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt.

Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt. Az atomenergia jövője Magyarországon Új blokkok a paksi telephelyen Horváth Miklós Törzskari Igazgató MVM Paks II. Zrt. 2015. Szeptember 24. Háttér: A hazai villamosenergia-fogyasztás 2014: Teljes villamosenergia-felhasználás:

Részletesebben

Kooperatív tréningek a MAVIR ZRt. egyesített tréningszimulátorán

Kooperatív tréningek a MAVIR ZRt. egyesített tréningszimulátorán 2 Kooperatív tréningek a MAVIR ZRt. egyesített tréningszimulátorán Decsi Gábor üzemirányítási üzemvezető MAVIR ZRt. 2015. szeptember 17. 3 Visszatekintés: 2000-2009 SIEMENS Diszpécseri Tréning Szimulátor

Részletesebben

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek? Körny. Fiz. 201. november 28. Név: TTK BSc, AKORN16 1 K-II-2.9. Mik egy fűtőrendszer tagjai? Mi az energetikai hatásfoka? 2 KF-II-6.. Mit nevezünk égésnek és milyen gázok keletkezhetnek? 4 KF-II-6.8. Mit

Részletesebben

Az épületek fűtéskorszerűsítésének és szigetelésének hatása a távfűtés üzemvitelére Kaposváron 10 év tapasztalata

Az épületek fűtéskorszerűsítésének és szigetelésének hatása a távfűtés üzemvitelére Kaposváron 10 év tapasztalata Kaposvári Vagyonkezelő Zrt Távfűtési Üzem Az épületek fűtéskorszerűsítésének és szigetelésének hatása a távfűtés üzemvitelére Kaposváron 10 év tapasztalata Zanatyné Uitz Zsuzsanna okl. gépészmérnök távfűtési

Részletesebben

Energetikai pályázatok 2012/13

Energetikai pályázatok 2012/13 Energetikai pályázatok 2012/13 Összefoglaló A Környezet és Energia Operatív Program keretében 2012/13-ban 8 új pályázat konstrukció jelenik meg. A pályázatok célja az energiahatékonyság és az energiatakarékosság

Részletesebben

Tervezzük együtt a jövőt!

Tervezzük együtt a jövőt! Tervezzük együtt a jövőt! gondolkodj globálisan - cselekedj lokálisan CÉLOK jövedelemforrások, munkahelyek biztosítása az egymásra épülő zöld gazdaság hálózati keretein belül, megújuló energiaforrásokra

Részletesebben

A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint.

A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint. MESZ, Energetikai alapismeretek Feladatok Árvai Zita KGFNUK részére A szükségesnek ítélt, de hiányzó adatokat keresse ki könyvekben, segédletekben, rendeletekben, vagy vegye fel legjobb tudása szerint.

Részletesebben

A henergia termelés jelene és jövje Tatabánya városában. Tatabánya, 2010. október 22. Készítette: Kukuda Zoltán 1

A henergia termelés jelene és jövje Tatabánya városában. Tatabánya, 2010. október 22. Készítette: Kukuda Zoltán 1 A henergia termelés jelene és jövje Tatabánya városában Tatabánya, 2. október 22. Készítette: Kukuda Zoltán Tartalom Bevezet Alapítás, tulajdonosi szerkezet Minségirányítás és környezetvédelem Az erm története

Részletesebben

1. tétel. a) Alapismeretek

1. tétel. a) Alapismeretek 1. tétel - Milyen alakváltozások léphetnek fel a külső terhelés, illetve igénybevétel (húzó feszültség) hatására kis és nagy hőmérsékleten (T > 350 o C)? - Mit nevezünk karbonát keménységnek, illetve nem

Részletesebben

Előadó: Varga Péter Varga Péter

Előadó: Varga Péter Varga Péter Abszorpciós folyadékhűtők Abszorpciós folyadékhűtők alkalmazási lehetőségei alkalmazási lehetőségei a termálvizeink világában a termálvizeink világában Előadó: Varga Péter Varga Péter ABSZORPCIÓS FOLYADÉKHŰTŐ

Részletesebben

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás 2011. 09. 02.

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás 2011. 09. 02. Hajdúnánás geotermia projekt lehetőség Előzetes értékelés Hajdúnánás 2011. 09. 02. Hajdúnánástól kapott adatok a 114-es kútról Általános információk Geotermikus adatok Gázösszetétel Hiányzó adatok: Hő

Részletesebben

A szélenergia termelés hazai lehetőségei. Dr. Kádár Péter peter.kadar@powerconsult.hu

A szélenergia termelés hazai lehetőségei. Dr. Kádár Péter peter.kadar@powerconsult.hu A szélenergia termelés hazai lehetőségei Dr. Kádár Péter peter.kadar@powerconsult.hu 2008. dec. 31-i állapot (forrás www.mszet.hu) Energia másképp 2009.04.02. 2 Hány darab erőmű torony képvisel 1000 MW

Részletesebben

A MAVIR ZRt. átviteli hálózati alállomásai

A MAVIR ZRt. átviteli hálózati alállomásai A MAVIR ZRt. átviteli hálózati alállomásai Tisztelt Olvasó! A magyar átviteli hálózat 2011-ben a nemzetközi összeköttetésekkel Gönyű Bicske Dél A magyar villamosenergia-rendszer hálózatának fejlesztése

Részletesebben

TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP KÖRNYEZETI HATÁSOK MUNKACSOPORT. 2014. június 27.

TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP KÖRNYEZETI HATÁSOK MUNKACSOPORT. 2014. június 27. Fenntartható energetika megújuló energiaforrások optimalizált integrálásával TÁMOP-4.2.2.A-11/1/KONV-2012-0041 WORKSHOP KÖRNYEZETI HATÁSOK MUNKACSOPORT 2014. június 27. A biomassza és a földhő energetikai

Részletesebben

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13.

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13. Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése Kódszám: KMOP-3.3.3-13. Támogatható tevékenységek köre I. Megújuló energia alapú villamosenergia-, kapcsolt hő- és villamosenergia-,

Részletesebben

Megvalósítási javaslat SiófokVáros Önkormányzata részére 2014. május

Megvalósítási javaslat SiófokVáros Önkormányzata részére 2014. május Megvalósítási javaslat SiófokVáros Önkormányzata részére 2014. május A Balaton-parti Kft. földgázos hőtermelői rendszereinek részleges kiváltása biomasszán alapuló hőtermeléssel A biomassza tüzelőanyaggal

Részletesebben

Hőközpont-korszerűsítés távfelügyeleti rendszer kiépítésével a FŐTÁV Zrt. távhőrendszereiben KEOP-5.4.0/12-2013-0030 azonosító számú projekt

Hőközpont-korszerűsítés távfelügyeleti rendszer kiépítésével a FŐTÁV Zrt. távhőrendszereiben KEOP-5.4.0/12-2013-0030 azonosító számú projekt Hőközpont-korszerűsítés távfelügyeleti rendszer kiépítésével a FŐTÁV Zrt. távhőrendszereiben KEOP-5.4.0/12-2013-0030 azonosító számú projekt MOM Kulturális Központ, 2014. március 27. A FŐTÁV a hazai távhő

Részletesebben

Hűtőkalorifer csere 2008. 3-as mező szekunder rekonstrukció 2008. SF-6 megszakító csere 2008. 3-4. blokki dízelgépek átalakítás tervezése 2008

Hűtőkalorifer csere 2008. 3-as mező szekunder rekonstrukció 2008. SF-6 megszakító csere 2008. 3-4. blokki dízelgépek átalakítás tervezése 2008 A köztulajdonban álló gazdasági társaságok takarékosabb működéséről szóló. évi CXXII. törvény alapján közzétett adatok: 1.) Vállalkozási szerződések: Szerződés tárgya Szerződés kötés éve Hűtőkalorifer

Részletesebben

A szén dioxid leválasztási és tárolás energiapolitikai vonatkozásai

A szén dioxid leválasztási és tárolás energiapolitikai vonatkozásai A szén dioxid leválasztási és tárolás energiapolitikai vonatkozásai Gebhardt Gábor energetikai mérnök BSc Magyar Energetikai Társaság Ifjúsági Tagozat Magyar Energia Fórum, Balatonalmádi, 2011 Tartalom

Részletesebben

Havasi Patrícia Energia Központ. Szolnok, 2011. április 14.

Havasi Patrícia Energia Központ. Szolnok, 2011. április 14. Az Új Széchenyi Terv Zöldgazdaság-fejlesztési Programjához kapcsolódó megújuló energiaforrást támogató pályázati lehetőségek Havasi Patrícia Energia Központ Szolnok, 2011. április 14. Zöldgazdaság-fejlesztési

Részletesebben

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS

SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS SZÉL A KIMERÍTHETETLEN ENERGIAFORRÁS MEGÚJULÓ ENERGIAFORRÁSOK Napenergia Vízenergia Szélenergia Biomassza SZÉL TERMÉSZETI ELEM Levegő vízszintes irányú mozgása, áramlása Okai: eltérő mértékű felmelegedés

Részletesebben

ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD

ELSŐ SZALMATÜZELÉSŰ ERŐMŰ SZERENCS BHD ELSŐ SZALMATÜZEL ZELÉSŰ ERŐMŰ SZERENCS BHD HőerH erőmű Zrt. http:// //www.bhd.hu info@bhd bhd.hu 1 ELŐZM ZMÉNYEK A fosszilis készletek kimerülése Globális felmelegedés: CO 2, CH 4,... kibocsátás Magyarország

Részletesebben

A geotermikus energiában rejlő potenciál használhatóságának kérdései. II. Észak-Alföldi Önkormányzati Energia Nap

A geotermikus energiában rejlő potenciál használhatóságának kérdései. II. Észak-Alföldi Önkormányzati Energia Nap A geotermikus energiában rejlő potenciál használhatóságának kérdései II. Észak-Alföldi Önkormányzati Energia Nap Buday Tamás Debreceni Egyetem Ásvány- és Földtani Tanszék 2011. május 19. A geotermikus

Részletesebben

Energetikai minőségtanúsítvány összesítő

Energetikai minőségtanúsítvány összesítő Energetikai minőségtanúsítvány 1 Energetikai minőségtanúsítvány összesítő Épület: 29 LAKÁSOS TÁRSASHÁZ ÉS ÜZLET VERESEGYHÁZ, SZENT ISTVÁN TÉR (HRSZ:8520.) Megrendelő: L&H STNE KFT. 3561 FELSŐZSOLCA KAZINCZY

Részletesebben

Elemzés a megújuló energia ágazatról - Visegrádi négyek és Románia 2012

Elemzés a megújuló energia ágazatról - Visegrádi négyek és Románia 2012 Elemzés a megújuló energia ágazatról - Visegrádi négyek és Románia 2012 2012. január info@trinitinfo.hu www.trinitinfo.hu Tartalomjegyzék 1. Vezetői összefoglaló...5 2. A megújuló energiaforrások helyzete

Részletesebben

A Paksi Atomerőmű bővítése és annak alternatívái. Századvég Gazdaságkutató Zrt. 2014. október 28. Zarándy Tamás

A Paksi Atomerőmű bővítése és annak alternatívái. Századvég Gazdaságkutató Zrt. 2014. október 28. Zarándy Tamás A Paksi Atomerőmű bővítése és annak alternatívái Századvég Gazdaságkutató Zrt. 2014. október 28. Zarándy Tamás Az európai atomerőművek esetében 2025-ig kapacitásdeficit várható Épülő atomerőművek Tervezett

Részletesebben

Energiatakarékossági szemlélet kialakítása

Energiatakarékossági szemlélet kialakítása Energiatakarékossági szemlélet kialakítása Nógrád megye energetikai lehetőségei Megújuló energiák Mottónk: A korlátozott készletekkel való takarékosság a jövő generációja iránti felelősségteljes kötelességünk.

Részletesebben

EnergoBit KÖF technikai megoldásai és fejlesztései a Mátrai Erőmű 15 MW-os naperőművének megvalósításában

EnergoBit KÖF technikai megoldásai és fejlesztései a Mátrai Erőmű 15 MW-os naperőművének megvalósításában EnergoBit KÖF technikai megoldásai és fejlesztései a Mátrai Erőmű 15 MW-os naperőművének megvalósításában ZÖLD ÚT A ZÖLD PROJEKTNEK, megkezdődik a Mátrai Erőmű Zrt. 15 MW-os naperőművének építése, Magyarország

Részletesebben

Az ESPAN (WP 4) Pilotprojekt zárójelentésének rövid összefoglalója: Savas ólomakkumulátor bázisú, helyhez kötött energiatároló rendszerek vizsgálata

Az ESPAN (WP 4) Pilotprojekt zárójelentésének rövid összefoglalója: Savas ólomakkumulátor bázisú, helyhez kötött energiatároló rendszerek vizsgálata ESPAN- Pilotprojekt: Savas ólomakkumulátor bázisú, helyhez kötött energiatároló rendszerek vizsgálata Az ESPAN (WP 4) Pilotprojekt zárójelentésének rövid összefoglalója: Savas ólomakkumulátor bázisú, helyhez

Részletesebben