A plazmamembrán klasszikus fluid mosaic modellje (Singer és Nicholson, 1972 ) A plazmamembrán felépítése I. lipidek - lipoidok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A plazmamembrán klasszikus fluid mosaic modellje (Singer és Nicholson, 1972 ) A plazmamembrán felépítése I. lipidek - lipoidok"

Átírás

1 Neurofiziológiai kurzus tervezett program I. Félév celluláris neurofiziológia A neuronok elektrofiziológiája: membrán potenciál, ioncsatornák és ion transzporterek; elektrotónusos és akciós potenciálok ionális mechanizmusai, a membrán passzív elektromos tulajdonságai és ennek következményei az ionáramok mérése és jellemzése Szinaptikus transzmisszió: a szinapszis felépítése és típusai, pre- és posztszinaptikus celluláris folyamatok a kémiai szinapszisban, neurotranszmitterek és transzmitter receptorok, intracelluláris szignalizáció, posztszinaptikus potenciálok, a szinaptikus plaszticitás alapjai, wiring versus volume transmission A szenzoros transzdukció celluláris alapjai: a szenzoros inger neurális aktivitás összefüggés általános törvényszerűségei, a szenzoros (generátor) potenciál keletkezése különböző szenzoros modalitásokban, a szenzoros információ kódolása a neuronokban A neuronok kalcium háztartása és annak élettani és kórélettani vonatkozásai az ic. Ca2+ tranziensek mérése Intracelluláris transzport folyamatok a neuronokban: az axonális transzport mechanizmusai és jelentősége, a neuronális (membrán) fehérjék életciklusa az axonális és az intraneuronális transzport folyamatok vizsgálata Neurogenezis, differenciálódás (cell faith), fejlődés és regeneráció, neuronális őssejtek, de novo neurogenezis, neurotrophikus faktorok és egyéb trofikus szignálmolekulák, axonal guidance A neuronok intermedier anyagcseréjének és energiaháztartásának jellegzetességei. A neuronális energiaháztartás zavarai, a mitochondriumok szerepe a neuronális funkciókban és a neuronok károsodásában, neurodegeneráció és apaptózis Ajánlott irodalom: Principles of Neural Science (Eric R. Kandel, James Schwartz, and Thomas Jessell) Neuroscience, 2nd ed. (Dale Purves, George J Augustine, David Fitzpatrick, Lawrence C Katz, Anthony-Samuel LaMantia, James O McNamara, and S Mark William) Official web site of the Nobel Prize Élettan tankönyvek (Fonyó A. Ligeti E.: Orvosi Élettan) A molekuláris élettan alapjai (Dr. Erdélyi Lajos) Basic Neurochemistry, 6th ed. (George J Siegel, MD, Bernard W Agranoff, Wayne Albers, Stephen K Fisher and Michael D Uhler) A plazmamembrán klasszikus fluid mosaic modellje (Singer és Nicholson, 1972 ) A plazmamembrán felépítése I. lipidek - lipoidok Amphiphyl lipid molekolák által képzett lipid kettősréteg: foszfolipidek: foszfatidilkolin, foszfatidilszerin, foszfatidiletanolamin, stb. sphingomyelin glikolipidek: gangliozidok koleszterin Spontán membrán képződés (mesterséges membránok) + micellák, liposzómák A lipidmembrán permeabilitása: hirofób anyagok >> hidrofil anyagok Plaszticitás: deformáció, lefűződés, összeolvadás Lipid Raft -ok: koleszterinben és glikolipidekben gazdag membrán szigetek (raftok): Detergent Resistant Lipid Microdomain Schmidt/Thews: Physiologie des Menschen 27. Auflage

2 Lipid kettősréteg Diffúziós konstans függ: hőmérséklettől A diffundáló anyag és a diffúziós barrier fiziko-kémiai tulajdonságaitól: Zsír- és vízoldékonyság Palzmamembrán esetében magas permeabilitás: gázok, etilalkohol, urea, lipidek nagyméretű vízoldékony molekulák és ionok: nagyon csekély permeabilitás Suggested definition of lipid rafts (Pike LJ J. Lipid Research "Membrane rafts are small ( nm), heterogeneous, highly dynamic, steroland sphingolipid-enriched domains that compartmentalize cellular processes. Small rafts can sometimes be stabilized to form larger platforms through proteinprotein and protein-lipid interactions." Schmidt/Thews: Physiologie des Menschen 27. Auflage 1997 A lipid raftok A plazmamembrán alkotói II. - fehérjék (a tömeg 25-70%-a) Az hidrofób amninósav oldalláncok és a zsírsav láncok közötti apoláros kölcsönhatások rögzítik az egyes fehérjéket -transzmembrán domének hidrofób aminósav oldalláncok dominálnak (Val, Leu, Ile stb.) A fehérjék (és a lipoidok) transzport vezikulák segítségével recirkulálnak Intraceluláris transzport folyamatok biztosítják a fehérjék célzott mozgását Trafficking, axonális (dendritikus) transzport Jelentőségük: platform egyes fehérjék felszíni sűrűségének növelésére, fehérje komplexek kialakulására és stabilizálására (jelátvitel, endo-/exocitózis, stb.) Laterális diffúzió: a membrán alkotó molekulák mozgása a membrán síkjában Single Particle Imaging/Tracking de: a laterális diffúziót különböző kölcsönhatások akadályozhatják: más membrán fehérjék, citoszkeleton, membránszkeleton ( Confinement ) 2

3 Anyagáramlás a IC és az EC folyadéktér között transzmembrán transzport folyamatok Szabad diffúzió Ioncsatornán és pórusokon keresztül történő transzport Facilitált diffúzió (karrier/transzporter mediált passzív transzport) Karrier mediált aktív transzport (pumpák) Exo- és endocytózis (vezikuláris transzport) Transzport molekulák Ioncsatornák és pórusok (porinok, perforin, komplement MAC) Karrier molekulák, pumpák Hajtóerő lehet passzív: koncentráció grádiens Ionok: elektrokémiai grádiens (Nernst potenciál) aktív trp.: metabolikus energia (ATP hidrolízis) Általános tulajdonságok: Specifikus: szelektív permeabilitás, szubsztrátspecifikus kötés Szaturáció: A transzport sebessége függ az aktív karrierek/csatornák mennyiségétől (T max ): maximális transzport ráta Hőmérséklet függőség Aktiválható/szabályozható: Gating (csatorna alegységek konformáció váltása Kovalens/nem-kovalens modifikációk gén expresszió változás, transzlokáció Szelektív gátolhatóság szelektív farmakonokkal gátolható (aktiválható) (pl. kompetitív kötés, csatorna gátlás) Csatornák: Vezetőképesség: ion/s (Siemens (S): ps = S) Ionszelektivitás: szelektív és nem szelektív ioncsatornák (pl. NMDA receptor) Rektifikáció: a csatorna vezetőképessége függhet az áram irányától is A csatornák aktivitása (nyitás/zárás) általában szabályozott: kapuzás (Gating) feszültségfüggő csat. (transzmembrán potenciál) ligandfüggő csat. (transzmitter, mediátor) feszülés érzékeny csat. (mechano- és ozmoreceptorok) hőmérséklet érzékeny csat. (termoreceptorok) intracelluláris szignálra érzékeny csat. (g-fehérje, foszforiláció, stb.) Szivárgó (leaky) csatornák tartósan nyitott csatornák membrán potenciál beállítása background current 3

4 Az ioncsatorna működés funkcionális modellje kölcsönhatás a transzportált ion és a csatorna között A pórus domain konzervetív konszenzus szekvenciája IC EC Ion potenciális energiája MacKinnon, Nobel ea Schmidt/Thews: Physiologie des Menschen 27. Auflage 1997 Az ionáramok feszültségfüggése a rektifikáció jelensége I m Kifelé (outward) rektifikálás Az ioncsatorna kapuzás molekuláris háttere Ohmikus áram (nincs rektifikáció) E m Befelé (inward) rektifikáció Voltage-current relationship of Kir 2 channels MacKinnon, Nobel ea

5 Hot on the trail of TRP channel structure. Moiseenkova-Bell VY, Wensel TG. J Gen Physiol Mar;133(3): Comparison of reported structures from electron microscopy of TRP channels and other membrane proteins. Negative stain structures, resolution: Prestin, 20 Å (Mio et al., 2008a); CFTR, 20 Å (Mio et al., 2008b); TRPM2, 37 Å (Maruyama et al., 2007); TRPC3, (Mio et al., 2005). Cryo electron microscopy structures: Na channel, 19 Å (Sato et al., 2004); InsP3 receptor, 20 Å (Sato et al., 2004); TRPC3, 15.3 Å (Mio et al., 2007); TRPV1, 19 Å (Moiseenkova-Bell et al., 2008). Fourier shell correlation >0.5 is used as the resolution criterion for electron microscopy structures. X-ray structure: Kv , 2.4 Å (Long et al., 2007). J Gen Physiol March; 133(3): doi: /jgp Példa I.: ligandfüggő ioncsatorna - nikotinerg acetylcholin (Ach) receptor ionotróp receptor: a receptor fehérje egyben ioncsatorna is (motoros véglemez, vegetatív ganglion) Példa II.: feszültségfüggő ioncsatorna TTX (tetrodotoxin) érzékeny Na+-csatorna (axolemma, izomrostok) 5

6 Példa III: g-fehérje (receptor) kapcsolt ioncsatorna: muszkarinerg Ach receptor (szív, zsigeri simaizomsejtek, szekretoros hámsejtek) Metabotróp receptor: a ligand kötés másodlagos hírvivőket aktivál Példa IV.: Hőmérséklet függő ioncsatornák A hőmérséklet hatására aktiválódó ioncsatornák Fájdalmas meleg (>43 C) receptor ( capsaicin is aktiválja paprika hatóanyaga) hideg (<25 C) receptor (menthol is aktiválja borsmenta) elsődleges érző neuronok, fájdalom és hőérzékelés Schmidt/Thews: Physiologie des Menschen 27. Auflage 1997 Nagy und Rang J.Neusci Az ioncsatornák (ionáramok) jellemzése A kation csatornák kombinatórikus evolúciója Farmakológiai módszerek agonisták (aktivátor anyagok) vagy antagonisták (gátlószerek: nyitás gátlása, refrakteritás stabilizálása) Tetrodotoxin (TTX) (fugu vernicularis) Feszültségfüggő Na + csatorna gátlása Skorpió toxin: számos K + csatorna gátlószere 6

7 A feszültségfüggő Ca 2+ csatornák családfája (új nómenklatúra) Molekuláris biológiai módszerek: Heterológ expresszió sejtkultúrákban (Xenopus oocyta, inmortalizált sejtvonalak) Knock-out egér modellek, antiszenz RNS, RNS-interferencia: a vizsgált csatornák expressziójának célzott gátlása Karrier-mediált transzport : Enzim analógia: S (IC) S+karrier S (EC) Transzport sebessége: <10 4 (pumpák 10 2 ) ion(molekula)/s Passzív trp. (facilitált diffúzió): csak az elektrokémai grádiensnek megfelelő irányba lehetséges Aktív trp. (primer, szekunder, tercier): az elektrokémai grádienssel szemben is folyhat metabolikus energia (ATP) felhasználásával Primer aktív trp.: pumpák, ATPáz aktivitással Szekunder/tercier aktív trp.: passzív transzporterek és ionpumpák kapcsolt transzport rendszert képeznek Uniporter: 1 molekula transzportja (pl. GLUT1-5: glukóz transzporter család) Szimporter: több ion/molekula egyirányú transzportja Antiporter: több ion/molekula ellentétes irányú transzportja Példa : primer aktív transzport Na+/K+ ATPáz (pumpa) elektrogén antiport ECF ICF A transzportált anyagok sztöchiometrikus aránya ionok transzportja esetén: Elektrogén transzport: nettó töltésáramlás egy irányba (pl. Na/K ATPáz: 3 Na + vs. 2 K + ) Elektroneutrális transzport: nincs nettó töltésáramlás (pl.: H + /K + pumpa: 1:1 arány) Szelektív gátlóanyag: szívglikozidok (Digoxin, Ouabain) Digitalis lanata gyapjas gyűszűvirág ATP hiány hatása a sejtek Na+ transzportjára (DNP: dinitro-fenol) Schmidt/Thews: Physiologie des Menschen 27. Auflage

8 A vezikuláris monoamin transzporter (VMAT) szekunder (H+ kapcsolt) aktív transzport Cytoplasm SERT: szeroteonin transzporter (reuptake): Na + ; Cl - kapcsolt transzport Extracellular fluid Transzmembrán potenciál (E m ) Nyugalmi potenciál (E 0 ): (Bernstein 1900 évek sértési pot.; Young: óriás axon) Elektromos szempontból nyugalomban lévő sejt membránján mért potenciál különbség (a membránpotenciált befolyásoló külső és belső ingerek hiánya) Mértéke sejttípustól függ: mv Az ionkoncentrációk és az iontranszport determinálják Mérése: mikroelektróda + erősítő + voltméter direkt elektromos kontaktus szükséges Élettani szerepe: Ingerület képzés és ingerület továbbítás Transzportfolyamatok hajtóereje A sejttérfogat szabályozásának faktora A sejtek többsége stabil, negatív membrán potenciállal rendelkezik a stabilitást folyamatos ATP felhasználás biztosítja (akár az ATP 70%-át is felemészti) Bizonyos sejtek nem rendelkeznek stabil E 0 -lal: pacemaker (ritmusgenerátor) sejtek Ionok diffúziós egyensúlya - töltésszétválasztás - a Nernst potenciál Az extracelluláris és az intracelluláris folyadéktér aszimmetrikus ioneloszlása ECF (mmol/l) (intersticiális folyadék) ICF (mmol/l) (sejtplazma) A kémiai (koncentráció grádiens) és az elektromos (elektrosztatikus erőtér) hajtóerők egyensúlya következtében a nettó ionáramlás megszűnik diffúziós egyensúly Nernst potenciál megadja a vizsgált ion diffúziós egyensúlyi állapotában mért feszültséget (Nernst v. reversal potential) Kiindulási állapot diffúziós egyensúly (ph=7.4) Plazmamembrán Szelektív K + permeábilis membrán Negatív Pozitív 8

9 A Nernst egyenlet: megadja az adott ion egyensúlyi potenciálját az adott ECF és ICF koncentráció értékek mellett: Z = ionok töltése R = gáz konstans F = Faraday konstans T = hőmérséklet T=37 ºC Az egyes ionokra számított egyensúlyi potenciál értékek (ld. korábbi adatok): Problémák: A különböző ionoknak eltérő egyensúlyi potenciáljuk van Ezek az értékek eltérnek a tapasztalati E 0 értékétől is Egyensúlyon alapuló tartós membránpotenciál feltétele, hogy a figyelembe vett ionok (K+, Na+, Cl) nettó diffúziója (ionáram) nulla legyen. Ohm törvénye: R = U / I I = U / R és I = U x g (g=vezetőképesség) Mekkora az egyes ionokra ható elektrokémiai hajtóerő (E i ) =?? - Az aktuális membránpotenciál (Em) és az ion egyensúlyi potenciáljának (E Nernst ) a különbsége: E i = E Nernst E m Pl. A kálium áram (I K+ ) nagysága: I K+ =Ei K+ x gk + =(E K+ - E m ) x gk + ΣI net = 0 = I K+ + I Na+ + I Cl- = g K+ x Ei K+ + g Na+ x Ei Na+ + g Cl- x Ei Cl- Goldmann-Hodgkin-Katz (GHK) egyenlet: Megadja az egyensúlyi membránpotenciál értéket az adott ionkoncentráció és ion permeabilitás (konduktancia) értékek esetén: A sejtmembrán nyugalmi permeabilitás (konduktancia) értékeinek aránya: P K : P Na : P Cl = 1 : 0,04 : 0,45 Magas K+ permeabilitás - a nyugalmi potenciál közel van a K + egyensúlyi potenciáljához. A fenti paraméterekben bekövetkező változások az E m (E 0 ) változását okozzák! E m negatív irányba tér el: hiperpolarizáció E m pozitív irányba tér el: depolarizáció Az ionkoncentrációk megváltozása: [K + ] az ECF-ban megnő (hyperkalémia): depolarizáció (transzmitter release kísérletek) [K + ] az ECF-ben lecsökken (hypokalémia): hiperpolarizáció (arrhythmiák, idegi zavarok A konduktancia változik meg (pl. ioncsatornák aktiválódása/zárása): fázikus (gyors) változások: akciós potenciál feszültség függő csatornák öngerjesztő ak tónusos (lassú) változások: posztszinaptikus potenciál, szenzoros (generátor) potenciál Újabb probléma: az ionok folyamatos egyirányú áramlása (A. ábra) hamar megszüntetné a koncentráció grádienst végül az E m 0 mv körül stabilizálódna! Az élő sejtekben egy elektrogén transzport a passzívan diffundáló Na + és K + ionokat visszajuttatja az ECF-be illetve ICF-ba, és stabilizálja a membrán potenciált (B. ábra) Na + -K + ATPáz A sztöhiometrikus arány: 3 Na + kifelé 2 K + befelé (nettó 1+ kifelé/ciklus) Az ATPáz elektrogén hatása eltolja a GHK egyenletből számított egyensúlyi potenciál értékét még kb. 5 mv-tal a negatív irányba - hiperpolarizáló pumpa potenciál Következmények: A Na-K ATPáz gátlása (pl.: ouabain, hypoxia) depolarizálja a membránt. Az E m csökkenése Cl - (és Na + ) beáramlást okoz, ami sejtduzzadáshoz vezet (pl.: az agyban ödéma alakul ki) Na + -K + ATPáz részt vesz a sejttérfogat szabályozásában! A) passzív diffúzió B) Em=-70mV passzív diffúzió Em=-65mV Na + Na + K + IC EC K + IC Na + K + aktív transzport EC 9

10 A membrán kapacitás jelentősége A plazmamembrán kondenzátorként is viselkedik (a lipid kettősréteg a szigetelő réteg, a szomszédos folyadék réteg a vezető). Nyugalmi állapotban a membrán kapacitása határozza meg az E m feszültségű elektromos erőteret fenntartó ionok mennyiségét C=Q/U Q=C m x U m (U m =E m ) C m nagyságát a membrán felszíne, vastagsága és a dielektromos állandó határozzák meg Példa: Gömb alakú, 50 µm átmérőjű sejtnél E m =- 60 mv, a membrán kapacitása Cm= 1 µf/cm 2 A számítás szerint 30 x 10 6 töltés (ion) tartja fenn a membránpotenciált. Azonban ez csak 1/ része a teljes intracelluláris ionmennyiségnek! A membránpotenciál passzív változásai: elektrotónus A sejt (membrán) ingerlése intracelluláris elektródával A potenciál változás lefutása: membrán kapacitás gyors kisülése (kezdeti gyors depolarizáció) kationok kompenzáló kiáramlása fokozódik (késői lassú depolarizáció és steady state) Befelé irányuló áram (+ töltések) depolarizáció Kifelé irányuló áram (+ töltések) hyperpolarizáció Az elektromos ingerléssel kiváltott passzív potenciál változást elektrotónusos potenciál változásnak vagy elektrotónusnak nevezzük. E m (E max ) arányos a stimuláló áram intenzításával és a membrán ellenállásával. E 0 Stimuláló áram electrotónusos potenciál sejt A membrán kapacitás hatása a passzív membránpotenciál változás időfüggésére A passzív membrán tulajdonságok szerepe az ingerület szummációban - temporális szummáció (repetitív ingerlés depolarizáció hatása összeadódik) Ohmikus komp. Kapacitív komponens τ = time constant (63% Vm) 10

11 Az elektrotónusos potenciál terjedése elongált struktúrákban (rostokban) Az áramsűrűség térbeli alakulása az ingerlés környezetében Az EP amplitúdója a távolsággal exponenciálisan csökken - dekrementum Ok: a depolarizáló áram a stimulus helyétől folyamatosan csökken (inhomogén árameloszlás) lokális áramkörök modell (kábelteória) R m membránellenállás R a axon (hossz) ellenállás Hossz konstans (37% E max ): - R m : egyenesen arányos - R a : fordítottan arányos 37% E max R a = axon (hossz) ellenállás az axon vastagsága befolyásolja R m = transzmembrán ellenállás ioncsatornák konduktivitása bef. (közel) egyidejű de eltérő lokalizációjú ingerlés hatásai összeadódnak: Térbeli (spatialis) szummáció A membránpotenciál változás passzív terjedése elektromosan kapcsolt sejtek között (gap junctions) 11

12 Extracelluláris ingerlés: Katód membrán depolarizáció (katelektrotónus) Anód membrán hiperpolarizációja (anelektrotónus) katód ECF membrán ICF anód Felhasználás a gyógyászatban: Kamrai tachycardia (életveszély!!) elektrokardioverzió és defibrilláció Pacemaker therápia (szív, rekeszizom, KIR) Elektrokonvulzív therápia (Psychotikus állapot) Endocochlearis implantáció ( mesterséges belső fül) TENS: Transdermal Electric Nerve Stimulation (fájdalomkezelés) Nem külső ingerléssel kiváltott elektrotónusos potenciálok: Posztszinaptikus potenciál (ligandfüggő ioncsatornák, transzmitter receptor szignalizáci Receptor- (generator) potenciál: érzőneuron és érzékhámsejtek Az akciós potenciál terjedése Pacemaker potenciálok (a pacemaker sejtek spontán depolarizációja) 12

Sántha Péter Sejtek: a szervezet morfológiai és funkcionális alapegységei

Sántha Péter Sejtek: a szervezet morfológiai és funkcionális alapegységei Sejtélettan - membránfiziológia A sejtmembrán felépítése és funkciói. Transzportfolyamatok. Sántha Péter 2016.09.09. Sejtek: a szervezet morfológiai és funkcionális alapegységei Plazmamembrán (sejtmembrán):

Részletesebben

Nyugalmi potenciál, akciós potenciál és elektrotónusos potenciálok. - Ionális mechanizmusok -

Nyugalmi potenciál, akciós potenciál és elektrotónusos potenciálok. - Ionális mechanizmusok - Nyugalmi potenciál, akciós potenciál és elektrotónusos potenciálok - Ionális mechanizmusok - Támpontok:4-6 Sántha Péter 2017.09.11. Transzmembrán potenciál (E m ) Nyugalmi potenciál (E 0 ): Elektromos

Részletesebben

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg: Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció

Részletesebben

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza

Részletesebben

Nyugalmi potenciál, akciós potenciál és elektrotónusos potenciálok. - Ionális mechanizmusok -

Nyugalmi potenciál, akciós potenciál és elektrotónusos potenciálok. - Ionális mechanizmusok - Nyugalmi potenciál, akciós potenciál és elektrotónusos potenciálok - Ionális mechanizmusok - Sántha Péter 2016.09.15. Transzmembrán potenciál (E m ) Nyugalmi potenciál (E 0 ): Elektromos szempontból nyugalomban

Részletesebben

Membránpotenciál, akciós potenciál

Membránpotenciál, akciós potenciál A nyugalmi membránpotenciál Membránpotenciál, akciós potenciál Fizika-Biofizika 2015.november 3. Nyugalomban valamennyi sejt belseje negatív a külső felszínhez képest: negatív nyugalmi potenciál (Em: -30

Részletesebben

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet

Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Debreceni Egyetem Orvos- és Egészségtudományi Centrum Biofizikai és Sejtbiológiai Intézet Az ioncsatorna fehérjék szerkezete, működése és szabályozása Panyi György www.biophys.dote.hu Mesterséges membránok

Részletesebben

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika

Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Az ioncsatorna fehérjék szerkezete, működése és szabályozása. A patch-clamp technika Panyi György 2014. November 12. Mesterséges membránok ionok számára átjárhatatlanok Iontranszport a membránon keresztül:

Részletesebben

Membránszerkezet Nyugalmi membránpotenciál

Membránszerkezet Nyugalmi membránpotenciál Membránszerkezet Nyugalmi membránpotenciál 2011.11.15. A biológiai membránok fő komponense. Foszfolipidek foszfolipid = diglicerid + foszfát csoport + szerves molekula (pl. kolin). Poláros fej (hidrofil)

Részletesebben

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál

Membránpotenciál. Nyugalmi membránpotenciál. Akciós potenciál Membránpotenciál Vig Andrea 2014.10.29. Nyugalmi membránpotenciál http://quizlet.com/8062024/ap-11-nervous-system-part-5-electrical-flash-cards/ Akciós potenciál http://cognitiveconsonance.info/2013/03/21/neuroscience-the-action-potential/

Részletesebben

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Biológiai membránok passzív elektromos tulajdonságai. A sejtmembrán kondenzátorként viselkedik

Részletesebben

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018 Szívelektrofiziológiai alapjelenségek 1. Dr. Tóth András 2018 Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál 1 Transzmembrán transzport A membrántranszport-folyamatok típusai J:

Részletesebben

Sejtek membránpotenciálja

Sejtek membránpotenciálja Sejtek membránpotenciálja Termodinamikai egyensúlyi potenciál (Nernst, Donnan) Diffúziós potenciál, (Goldman-Hodgkin-Katz egyenlet) A nyugalmi membránpotenciál: TK. 284-285. A nyugalmi membránpotenciál

Részletesebben

Transzportfolyamatok a biológiai rendszerekben

Transzportfolyamatok a biológiai rendszerekben A nyugalmi potenciál jelentősége Transzportfolyamatok a biológiai rendszerekben Transzportfolyamatok a sejt nyugalmi állapotában a sejt homeosztázisának (sejttérfogat, ph) fenntartása ingerlékenység érzékelés

Részletesebben

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András Elektrofiziológiai alapjelenségek 1. Dr. Tóth András Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál Ioncsatornák alaptulajdonságai Nehézségi fok Belépı szint (6 év alatt is) Hallgató

Részletesebben

Gyógyszerészeti neurobiológia. Idegélettan

Gyógyszerészeti neurobiológia. Idegélettan Az idegrendszert felépítő sejtek szerepe Gyógyszerészeti neurobiológia. Idegélettan Neuronok, gliasejtek és a kémiai szinapszisok működési sajátságai Neuronok Információkezelés Felvétel Továbbítás Feldolgozás

Részletesebben

Biológiai membránok és membrántranszport

Biológiai membránok és membrántranszport Biológiai membránok és membrántranszport Biológiai membránok A citoplazma membrán funkciói: térrészek elválasztása (egész sejt, organellumok) transzport jelátvitel Milyen a membrán szerkezete? lipidek

Részletesebben

Érzékszervi receptorok

Érzékszervi receptorok Érzékszervi receptorok működése Akciós potenciál Érzékszervi receptorok Az akciós potenciál fázisai Az egyes fázisokat kísérő ionáram változások 214.11.12. Érzékszervi receptorok Speciális sejtek a környezetből

Részletesebben

Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció

Az idegsejtek kommunikációja. a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus PERIFÉRIÁS IDEGRENDSZER Receptor

Részletesebben

Membránszerkezet, Membránpotenciál, Akciós potenciál. Biofizika szeminárium

Membránszerkezet, Membránpotenciál, Akciós potenciál. Biofizika szeminárium Membránszerkezet, Membránpotenciál, Akciós potenciál Biofizika szeminárium 2013. 09. 09. Membránszerkezet Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens

Részletesebben

Az ingerületi folyamat sejtélettani alapjai

Az ingerületi folyamat sejtélettani alapjai Az ingerületi folyamat sejtélettani alapjai Dr. Oláh Attila DEOEC Élettani Intézet 2011.09.15. Alapvetések I. Mi az a membránpotenciál? Az intakt sejtmembrán elektromosan szigetel -> a rajta keresztül

Részletesebben

Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia

Membrántranszport. Gyógyszerész előadás Dr. Barkó Szilvia Membrántranszport Gyógyszerész előadás 2017.04.10 Dr. Barkó Szilvia Sejt membránok A sejtmembrán funkciói Védelem Kommunikáció Molekulák importja és exportja Sejtmozgás Általános szerkezet Lipid kettősréteg

Részletesebben

BIOFIZIKA. Membránpotenciál és transzport. Liliom Károly. MTA TTK Enzimológiai Intézet

BIOFIZIKA. Membránpotenciál és transzport. Liliom Károly. MTA TTK Enzimológiai Intézet BIOFIZIKA 2012 10 15 Membránpotenciál és transzport Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria

Részletesebben

A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál

A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál 2012.09.25. A biológiai membránok fő komponense. Foszfolipidek foszfolipid = diglicerid + foszfát csoport + szerves molekula (pl. kolin). Poláros fej

Részletesebben

a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel.

a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel. Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. eceptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus eceptor végződések Érző neuron

Részletesebben

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert

Az akciós potenciál (AP) 2.rész. Szentandrássy Norbert Az akciós potenciál (AP) 2.rész Szentandrássy Norbert Ismétlés Az akciós potenciált küszöböt meghaladó nagyságú depolarizáció váltja ki Mert a feszültségvezérelt Na + -csatornákat a depolarizáció aktiválja,

Részletesebben

térrészek elválasztása transzport jelátvitel Milyen a membrán szerkezete? Milyen a membrán szerkezete? lipid kettısréteg, hidrofil/hidrofób részek

térrészek elválasztása transzport jelátvitel Milyen a membrán szerkezete? Milyen a membrán szerkezete? lipid kettısréteg, hidrofil/hidrofób részek Biológiai membránok A citoplazma membrán funkciói: Biológiai membránok és membrántranszport térrészek elválasztása (egész sejt, organellumok) transzport jelátvitel Milyen a membrán szerkezete? lipidek

Részletesebben

Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet A membránpotenciál eredete. A diffúziós potenciál, Donnan-potenciál, Goldmann-potenciál, a Nernst-Planckegyenlet. A nyugalmi és akciós potenciál (általános jellemzői, ionáramok). Bari Ferenc egyetemi tanár

Részletesebben

Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György

Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György Nyugalmi potenciál, akciós potenciál és elektromos ingerelhetőség. A membránpotenciál mérése. Panyi György Nyugalmi membránpotenciál: TK. 284-285. Akciós potenciál: TK. 294-301. Elektromos ingerelhetőség:

Részletesebben

MEMBRÁNSZERKEZET, MEMBRÁNPOTENCIÁL, AKCIÓS POTENCIÁL. Biofizika szeminárium

MEMBRÁNSZERKEZET, MEMBRÁNPOTENCIÁL, AKCIÓS POTENCIÁL. Biofizika szeminárium MEMBRÁNSZERKEZET, MEMBRÁNPOTENCIÁL, AKCIÓS POTENCIÁL Biofizika szeminárium 2012. 09. 24. MEMBRÁNSZERKEZET Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens

Részletesebben

Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István

Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István MODELLMEMBRÁNOK (LIPOSZÓMÁK) ORVOSI, GYÓGYSZERÉSZI ALKALMAZÁSA 2012/2013 II. félév II. 7. Szerkezet és funkció kapcsolata a membránműködésben Dr. Voszka István II. 21. Liposzómák előállítási módjai Dr.

Részletesebben

Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István

Szerkezet és funkció kapcsolata a membránműködésben. Folyadékkristályok típusai (1) Dr. Voszka István MODELLMEMBRÁNOK (LIPOSZÓMÁK) ORVOSI, GYÓGYSZERÉSZI ALKALMAZÁSA 2015/2016 II. félév Időpont: szerda 17 30-19 00 Helyszín Elméleti Orvostudományi Központ Szent-Györgyi Albert előadóterme II. 3. Szerkezet

Részletesebben

Membránszerkezet. Membránszerkezet, Membránpotenciál, Akciós potenciál. Folyékony mozaik modell. Membrán-modellek. Biofizika szeminárium

Membránszerkezet. Membránszerkezet, Membránpotenciál, Akciós potenciál. Folyékony mozaik modell. Membrán-modellek. Biofizika szeminárium Membránszerkezet, Membránpotenciál, Akciós potenciál Membránszerkezet Biológiai membránok (citoplazma, sejten belüli membránféleségek) közös jellemzője: Nem kovalens kötésekkel összetartott lipidekből

Részletesebben

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel

IONCSATORNÁK. I. Szelektivitás és kapuzás. III. Szabályozás enzimek és alegységek által. IV. Akciós potenciál és szinaptikus átvitel IONCSATORNÁK I. Szelektivitás és kapuzás II. Struktúra és funkció III. Szabályozás enzimek és alegységek által IV. Akciós potenciál és szinaptikus átvitel V. Ioncsatornák és betegségek VI. Ioncsatornák

Részletesebben

A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál

A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál A Sejtmembrán Szerkezete Nyugalmi Membránpotenciál A sejtmembrán szerkezete Nyugalmi membránpotenciál A Nernst egyenlet Donnan potenciál A Goldman-Hodgkin-Katz egyenlet 2014.11.11. A biológiai membránok

Részletesebben

Folyadékkristályok; biológiai és mesterséges membránok

Folyadékkristályok; biológiai és mesterséges membránok Folyadékkristályok; biológiai és mesterséges membránok Dr. Voszka István Folyadékkristályok: Átmenet a folyadékok és a kristályos szilárdtestek között (anizotróp folyadékok) Fonal, pálcika, korong alakú

Részletesebben

Transzportfolyamatok a biológiai rendszerekben

Transzportfolyamatok a biológiai rendszerekben A sejtben az anyagtranszport száára az oldattól eltérő körülények találhatók. Transzportfolyaatok a biológiai rendszerekben Transzportfolyaatok a sejt nyugali állapotában - A citoplazán belül is helyről

Részletesebben

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?

Részletesebben

Az idegsejt elektrokémiai és

Az idegsejt elektrokémiai és Mottó: Mert az angyal a részletekben lakik. Petri György: Mosoly Az idegsejt elektrokémiai és fiziológiai működésének alapjai. ELTE, 2006. október 6. Tartalom Az idegsejt felépítése Az idegi elektromosság

Részletesebben

A transzportfolyamatok és a sejtek közötti kommunikáció

A transzportfolyamatok és a sejtek közötti kommunikáció A transzportfolyamatok és a sejtek közötti kommunikáció A sejtmembrán I.véd II.szelektál (átmenő anyagtranszport szigorúan szabályozott) III.elválaszt (barrier) extracelluláris (sejten kívüli) intracelluláris

Részletesebben

Az idegi működés strukturális és sejtes alapjai

Az idegi működés strukturális és sejtes alapjai Az idegi működés strukturális és sejtes alapjai Élettani és Neurobiológiai Tanszék MTA-ELTE NAP B Idegi Sejtbiológiai Kutatócsoport Schlett Katalin a kurzus anyaga elérhető: http://physiology.elte.hu/agykutatas.html

Részletesebben

A transzportfolyamatok és a sejtek közötti kommunikáció

A transzportfolyamatok és a sejtek közötti kommunikáció A transzportfolyamatok és a sejtek közötti kommunikáció A sejtmembrán protektív és szelektív barrier kompartmentalizáció: sejtfelszín és sejtorganellumok borítása 1926 szénhidrát 1943 zsírsav 1972 poláros

Részletesebben

Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt

Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt Szignáltranszdukció Mediátorok (elsődleges hírvivők) az információ kémiailag kódolt apoláros szerkezet (szabad membrán átjárhatóság) szteroid hormonok, PM hormonok, retinoidok hatásmech.: sejten belül

Részletesebben

Biofizika I. DIFFÚZIÓ OZMÓZIS

Biofizika I. DIFFÚZIÓ OZMÓZIS 1. KÍSÉRLET 1. kísérlet: cseppentsünk tintát egy üveg vízbe Biofizika I. OZMÓZIS 2012. szeptember 5. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet 1. megfigyelés: a folt lassan szétterjed és megfesti az egész

Részletesebben

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3-

IONCSATORNÁK. Osztályozás töltéshordozók szerint: pozitív töltésű ion: Na+, K+, Ca2+ negatív töltésű ion: Cl-, HCO3- Ionáromok IONCSATORNÁK 1. Osztályozás töltéshordozók szerint: 1. pozitív töltésű ion: Na+, K+, Ca2+ 2. negatív töltésű ion: Cl-, HCO3-3. Non-specifikus kationcsatornák: h áram 4. Non-specifikus anioncsatornák

Részletesebben

A membránpotenciál. A membránpotenciál mérése

A membránpotenciál. A membránpotenciál mérése A membránpotenciál Elektromos potenciál különbség a membrán két oldala közt, E m Cink Galvani (1791) Réz ideg izom A membránpotenciál mérése Mérési elv: feszültségmérő áramkör Erősítő (feszültségmérő műszer)

Részletesebben

A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János

A sejtek közöti kommunikáció formái. BsC II. Sejtélettani alapok Dr. Fodor János A sejtek közöti kommunikáció formái BsC II. Sejtélettani alapok Dr. Fodor János 2010. 03.19. I. Kommunikáció, avagy a sejtek informálják egymást Kémiai jelátvitel formái Az üzenetek kémiai úton történő

Részletesebben

Elektrofiziológiai alapjelenségek. Dr. Tóth András

Elektrofiziológiai alapjelenségek. Dr. Tóth András Elektrofiziológiai alapjelenségek Dr. Tóth András Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál Ioncsatornák alaptulajdonságai Lokális és akciós potenciálok Az ingerület terjedése

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: Az orvosi biotechnológiai mesterképzés

Részletesebben

Receptorok, szignáltranszdukció jelátviteli mechanizmusok

Receptorok, szignáltranszdukció jelátviteli mechanizmusok Receptorok, szignáltranszdukció jelátviteli mechanizmusok Sántha Péter 2016.09.16. A sejtfunkciók szabályozása - bevezetés A sejtek közötti kommunikáció fő típusai: Endokrin Parakrin - Autokrin Szinaptikus

Részletesebben

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A NÖVÉNYGENETIKA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYI TÁPANYAG TRANSZPORTEREK az előadás áttekintése A tápionok útja a növényben Növényi tápionok passzív és

Részletesebben

Egy idegsejt működése

Egy idegsejt működése 2a. Nyugalmi potenciál Egy idegsejt működése A nyugalmi potenciál (feszültség) egy nem stimulált ingerelhető sejt (neuron, izom, vagy szívizom sejt) membrán potenciálját jelenti. A membránpotenciál a plazmamembrán

Részletesebben

Potenciálok. Elektrokémiai egyensúly

Potenciálok. Elektrokémiai egyensúly Potenciálok Elektrokémiai egyensúly 2/14 edény szemipermeábilis hártyával elválasztva KCl oldat, negatív ion nem tud átlépni kvantitatív jellemzés: elektrokémiai potenciál = + RTlnc + zfe ha ez egyenlő

Részletesebben

1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói

1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói 1. előadás Membránok felépítése, mebrán raftok, caveolák jellemzője, funkciói Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis

Részletesebben

A plazmamembrán felépítése

A plazmamembrán felépítése A plazmamembrán felépítése Folyékony mozaik membrán Singer-Nicholson (1972) Lipid kettősréteg Elektronmikroszkópia Membrán kettősréteg Intracelluláris Extracelluláris 1 Lipid kettősréteg foszfolipidek

Részletesebben

A szívizomsejt ioncsatornái és azok működése

A szívizomsejt ioncsatornái és azok működése A szívizomsejt ioncsatornái és azok működése Dr. Bárándi László Viktor Passzív transzport Egyszerű diffúzió: H 2 O, O 2, CO 2, lipid oldékony anyagok, ionok Csatornán át történő diffúzió: Permeabilitás:

Részletesebben

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András

Elektrofiziológiai alapjelenségek 1. Dr. Tóth András Elektrofiziológiai alapjelenségek 1. Dr. Tóth András Témák Membrántranszport folyamatok Donnan egyensúly Ioncsatornák 1 Transzmembrán transzport 1 A membrántranszport-folyamatok típusai 2 J: diffúziós

Részletesebben

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Inger Modalitás Receptortípus. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Inger Modalitás Receptortípus. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG? külső, belső környezet ei Érzékelési folyamat szereplői Az érzékelés biofizikájának alapjai specifikus transzducer központi idegrendszer Az jellemzői MILYEN? HOL? MENNYI? MEDDIG? Magasabb szintű kódolás

Részletesebben

A sejtek közötti kommunikáció módjai és mechanizmusa. kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok

A sejtek közötti kommunikáció módjai és mechanizmusa. kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok A sejtek közötti kommunikáció módjai és mechanizmusa kommunikáció a szomszédos vagy a távoli sejtek között intracellulári jelátviteli folyamatok A kommunikáció módjai szomszédos sejtek esetén autokrin

Részletesebben

BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS

BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I OZMÓZIS - 2010. 10. 26. Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I - DIFFÚZIÓ DIFFÚZIÓ - ÁTTEKINTÉS TRANSZPORTFOLYAMATOK ÁLTALÁNOS LEÍRÁSA ONSAGER EGYENLET lineáris, irreverzibilis

Részletesebben

Biológiai membránok és membrántranszport

Biológiai membránok és membrántranszport Biológiai membránok és membrántranszport Szántó G. Tibor 2015.XI.2. TK. 88. 94. oldal TK. 276. 284. oldal A citoplazma membrán fő funkciói IC és EC térrész elválasztása elektromos szigetelés (ellenállás

Részletesebben

OZMÓZIS. BIOFIZIKA I Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet

OZMÓZIS. BIOFIZIKA I Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet BIOFIZIKA I 2011. Október 25. Bugyi Beáta PTE ÁOK Biofizikai Intézet Áttekintés 1. Diffúzió rövid ismétlés 2. Az ozmózis jelensége és leírása 4. A diffúzió és ozmózis orvos biológiai jelentősége Diffúzió

Részletesebben

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Receptor felépítése. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Receptor felépítése. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG? külső, belső környezet ei Érzékelési folyamat szereplői Az érzékelés biofizikájának alapjai specifikus transzducer központi idegrendszer Az jellemzői Receptor felépítése MILYEN? HOL? MENNYI? MEDDIG? Magasabb

Részletesebben

A kémiai szinapszis (alapok)

A kémiai szinapszis (alapok) A preszinapszis A kémiai szinapszis (alapok) preszinaptikus neuron 1 akciós potenciál 2 Ca 2+ axon végbunkó (preszinapszis) Ca 2+ szinaptikus vezikula feszültség-függő Ca 2+ csatorna citoplazma szinaptikus

Részletesebben

Transzporterek vizsgálata lipidmembránokban Sarkadi Balázs MTA-SE Molekuláris Biofizikai Kutatócsoport, MTA-TTK Budapest

Transzporterek vizsgálata lipidmembránokban Sarkadi Balázs MTA-SE Molekuláris Biofizikai Kutatócsoport, MTA-TTK Budapest Transzporterek vizsgálata lipidmembránokban 2016. Sarkadi Balázs MTA-SE Molekuláris Biofizikai Kutatócsoport, MTA-TTK Budapest Membrántranszport fehérjék típusok, lipid-kapcsolatok A membránok szerkezete

Részletesebben

1. Előadás Membránok felépítése, mebrán raftok

1. Előadás Membránok felépítése, mebrán raftok 1. Előadás Membránok felépítése, mebrán raftok Plazmamembrán Membrán funkciói: sejt integritásának fenntartása állandó hő, energia, és információcsere biztosítása homeosztázis biztosítása Klasszikus folyadékmozaik

Részletesebben

A somatomotoros rendszer

A somatomotoros rendszer A somatomotoros rendszer Motoneuron 1 Neuromuscularis junctio (NMJ) Vázizom A somatomotoros rendszer 1 Neurotranszmitter: Acetil-kolin Mire hat: Nikotinos kolinerg-receptor (nachr) Izom altípus A parasympathicus

Részletesebben

A szívizom akciós potenciálja, és az azt meghatározó ioncsatornák

A szívizom akciós potenciálja, és az azt meghatározó ioncsatornák A szívizom akciós potenciálja, és az azt meghatározó ioncsatornák Dr. Jost Norbert SZTE, ÁOK Farmakológiai és Farmakoterápiai Intézet Az ingerület vezetése a szívben Conduction velocity in m/s Time to

Részletesebben

Sáry Gyula SZTE ÁOK Élettani Intézet

Sáry Gyula SZTE ÁOK Élettani Intézet A szenzoros transzdukció celluláris alapjai: a szenzoros inger neurális aktivitás összefüggés általános törvényszerűségei, a szenzoros (generátor) potenciál keletkezése különböző szenzoros modalitásokban,

Részletesebben

CzB 2010. Élettan: a sejt

CzB 2010. Élettan: a sejt CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal

Részletesebben

1. Mi jellemző a connexin fehérjékre?

1. Mi jellemző a connexin fehérjékre? Sejtbiológia ea (zh2) / (Áttekintés) (1. csoport) : Start 2019-02-25 20:35:53 : Felhasznált idő 00:01:02 Név: Minta Diák Eredmény: 0/121 azaz 0% Kijelentkezés 1. Mi jellemző a connexin fehérjékre? (1.1)

Részletesebben

A szervezet vízterei

A szervezet vízterei A homeosztázis Bernard (XIX. sz.): belsı környezet fogalma - az élı szervezet egy folyékony belsı közegben (=extracelluláris folyadék) létezik - stabilitását biztosítani kell Canon (1926): homeosztázis

Részletesebben

Szívelektrofiziológiai alapjelenségek 2. Dr. Tóth András 2018

Szívelektrofiziológiai alapjelenségek 2. Dr. Tóth András 2018 Szívelektrofiziológiai alapjelenségek 2. Dr. Tóth András 2018 Témák Ioncsatornák Helyi és akciós potenciálok A stimulus intra- és extracelluláris terjedése 4 Ioncsatornák 4.1 Alaptulajdonságok Ioncsatorna

Részletesebben

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A BIOLÓGIAI MEMBRÁNOK 1. kulcsszó cím: MEMBRÁNOK

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A BIOLÓGIAI MEMBRÁNOK 1. kulcsszó cím: MEMBRÁNOK Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA A BIOLÓGIAI MEMBRÁNOK 1. kulcsszó cím: MEMBRÁNOK A membránok minden sejtnek lényeges alkotórészei. Egyrészt magát a sejtet határolják - ez a sejtmembrán vagy

Részletesebben

OZMÓZIS, MEMBRÁNTRANSZPORT

OZMÓZIS, MEMBRÁNTRANSZPORT OZMÓZIS, MEMBRÁNTRANSZPORT Vig Andrea PTE ÁOK Biofizikai Intézet 2014.10.28. ÁTTEKINTÉS DIFFÚZIÓ BROWN-MOZGÁS a részecskék rendezetlen hőmozgása DIFFÚZIÓ a részecskék egyenletlen (inhomogén) eloszlásának

Részletesebben

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája 1. Receptor fehérje Jel molekula (ligand; elsődleges

Részletesebben

Tubularis működések. A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) (Tanulási támpontok: 54-57)

Tubularis működések. A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) (Tanulási támpontok: 54-57) A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) Dr. Attila Nagy 2018 Tubularis működések (Tanulási támpontok: 54-57) 1 A transzport irányai Tubuláris transzportok

Részletesebben

Membrán, transzport. Tankönyv 3.1 és 3.2 fejezetei. Szabó Gábor, 2016

Membrán, transzport. Tankönyv 3.1 és 3.2 fejezetei. Szabó Gábor, 2016 Membrán, transzport Tankönyv 3.1 és 3.2 fejezetei Szabó Gábor, 2016 Kulcsszavak elektrokémiai gradiens lipid-víz megoszlási hányados fogalma és jelentősége Henderson-Hasselbach egyenlet (jelentése és jelentősége

Részletesebben

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban

A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban A sejtmembrán szabályozó szerepe fiziológiás körülmények között és kóros állapotokban 17. Központi idegrendszeri neuronok ingerületi folyamatai és szinaptikus összeköttetései 18. A kalciumháztartás zavaraira

Részletesebben

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2)

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) Dr. Nagy Attila 2017 Transzepitheliális transzport (Polarizált sejt) 1 Transzepitheliális transzport A transzepitheliális

Részletesebben

In vitro elektrofiziológiai technikák Mike Árpád

In vitro elektrofiziológiai technikák Mike Árpád In vitro elektrofiziológiai technikák Mike Árpád 2011-05-20 1. A sejt szintű elektrofiziológia alapjai: Története Technikák Ionáramok szelektivitása, iránya, nagysága, hatása a membránpotenciálra 2. FAQ

Részletesebben

4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3)

4. Egy szarkomer sematikus rajza látható az alanti ábrán. Aktív kontrakció esetén mely távolságok csökkenése lesz észlelhető? (3) Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, 2009. jan. 6. Villamosmérnöki és Informatikai Kar Semmelweis Egyetem Budapest Egészségügyi Mérnök Mesterképzés Felvételi kérdések orvosi élettanból

Részletesebben

Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus

Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus Ca 2+ Transients in Astrocyte Fine Processes Occur Via Ca 2+ Influx in the Adult Mouse Hippocampus Ravi L. Rungta, Louis-Philippe Bernier, Lasse Dissing-Olesen, Christopher J. Groten,Jeffrey M. LeDue,

Részletesebben

CELLULÁRIS SZÍV- ELEKTROFIZIOLÓGIAI MÉRÉSI TECHNIKÁK. Dr. Virág László

CELLULÁRIS SZÍV- ELEKTROFIZIOLÓGIAI MÉRÉSI TECHNIKÁK. Dr. Virág László CELLULÁRIS SZÍV- ELEKTROFIZIOLÓGIAI MÉRÉSI TECHNIKÁK Dr. Virág László Intracelluláris mikroelektród technika Voltage clamp technika Patch clamp technika Membrane potentials and excitation of impaled single

Részletesebben

KÉSZÍTETTE: BALOGH VERONIKA ELTE IDEGTUDOMÁNY ÉS HUMÁNBIOLÓGIA SZAKIRÁNY MSC 2015/16 II. FÉLÉV

KÉSZÍTETTE: BALOGH VERONIKA ELTE IDEGTUDOMÁNY ÉS HUMÁNBIOLÓGIA SZAKIRÁNY MSC 2015/16 II. FÉLÉV KÉSZÍTETTE: BALOGH VERONIKA ELTE IDEGTUDOMÁNY ÉS HUMÁNBIOLÓGIA SZAKIRÁNY MSC 2015/16 II. FÉLÉV TÉNYEK, CÉLOK, KÉRDÉSEK Kísérlet központja Neuronok és réskapcsolatokkal összekötött asztrocita hálózatok

Részletesebben

7. előadás: A plazma mebrán szerkezete és funkciója. Anyagtranszport a plazma membránon keresztül.

7. előadás: A plazma mebrán szerkezete és funkciója. Anyagtranszport a plazma membránon keresztül. 7. előadás: A plazma mebrán szerkezete és funkciója. Anyagtranszport a plazma membránon keresztül. A plazma membrán határolja el az élő sejteket a környezetüktől Szelektív permeabilitást mutat, így lehetővé

Részletesebben

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2)

A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) A veseműködés élettana, a kiválasztás funkciója, az emberi test víztereinek élettana (2) Dr. Nagy Attila 2015 Transzepitheliális transzport (Polarizált sejt) 1 Transzepitheliális transzport A transzepitheliális

Részletesebben

Szignalizáció - jelátvitel

Szignalizáció - jelátvitel Jelátvitel autokrin Szignalizáció - jelátvitel Összegezve: - a sejt a,,külvilággal"- távolabbi szövetekkel ill. önmagával állandó anyag-, információ-, energia áramlásban áll, mely autokrin, parakrin,

Részletesebben

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Inger Modalitás Receptortípus. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Érzékelési folyamat szereplői. Az érzékelés biofizikájának alapjai. Inger Modalitás Receptortípus. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG? külső, belső környezet ei Érzékelési folyamat szereplői Az érzékelés biofizikájának alapjai specifikus transzducer központi idegrendszer Az jellemzői MILYEN? HOL? MENNYI? MEDDIG? Magasabb szintű kódolás

Részletesebben

Az érzékelés biofizikájának alapjai. Érzékelési folyamat szereplői. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG?

Az érzékelés biofizikájának alapjai. Érzékelési folyamat szereplői. Az inger jellemzői MILYEN? HOL? MENNYI? MEDDIG? Az érzékelés biofizikájának alapjai Hol érzi a fájdalmat kérdezte fogorvosa A. J. P. filozófustól Micsoda kérdés! felelte Ő Természetesen agyamban! külső, belső környezet ei specifikus transzducer Érzékelési

Részletesebben

Ioncsatorna szerkezetek

Ioncsatorna szerkezetek Jellegzetes Ioncsatorna szerkezetek Ördög Balázs Farmakológiai és Farmakoterápiai Intézet Kapuzás Feszültség szabályozott Voltage-gated Fesz. szab. Na +, +, Ca 2+ 2+,, K + + csatornák channels Transiens

Részletesebben

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette ORVOSI BIOFIZIKA Szerkesztette Damjanovich Sándor Mátyus László QT34 078 Medicina Könyvkiadó Rt. Budapest, 2000 Készült az Oktatási Minisztérium támogatásával írta Damjanovich Sándor Gáspár Rezső Krasznai

Részletesebben

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei

-Két fő korlát: - asztrogliák rendkívüli morfológiája -Ca szignálok értelmezési nehézségei Nature reviewes 2015 - ellentmondás: az asztrociták relatív lassú és térben elkent Ca 2+ hullámokkal kommunikálnak a gyors és pontos neuronális körökkel - minőségi ugrás kell a kísérleti és analitikai

Részletesebben

A sejtek membránpotenciálja (MP)

A sejtek membránpotenciálja (MP) A sejtek membránpotenciálja (MP) XVIII. sz. Galvani, Aldani: "állati elektromosság" az izom és az idegszövet elektromosan ingerlékeny az izom és az idegszövet elektromosan vezetıképes 1939, Hodgkin és

Részletesebben

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Jelutak 2. A jelutak komponensei 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék Egy tipikus jelösvény sémája Receptor fehérje Jel molekula (ligand; elsődleges

Részletesebben

Transzportfolyamatok a biológiai rendszerekben

Transzportfolyamatok a biológiai rendszerekben A sejtben az anyagtranszport száára az oldattól eltérő körülények találhatók. Transzportfolyaatok a biológiai rendszerekben Transzportfolyaatok a sejt nyugali állapotában - A itoplazán belül is helyről

Részletesebben

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1.

Orvosi élettan. Bevezetés és szabályozáselmélet Tanulási támpontok: 1. Orvosi élettan Bevezetés és szabályozáselmélet Tanulási támpontok: 1. Prof. Sáry Gyula 1 anyagcsere hőcsere Az élőlény és környezete nyitott rendszer inger hő kémiai mechanikai válasz mozgás alakváltoztatás

Részletesebben

OZMÓZIS, MEMBRÁNTRANSZPORT. Vig Andrea PTE ÁOK Biofizikai Intézet

OZMÓZIS, MEMBRÁNTRANSZPORT. Vig Andrea PTE ÁOK Biofizikai Intézet OZMÓZIS, MEMBRÁNTRANSZPORT Vig Andrea PTE ÁOK Biofizikai Intézet 2013.10.29. ÁTTEKINTÉS DIFFÚZIÓ BROWN-MOZGÁS a részecskék rendezetlen hőmozgása DIFFÚZIÓ a részecskék egyenletlen (inhomogén) eloszlásának

Részletesebben

S-2. Jelátviteli mechanizmusok

S-2. Jelátviteli mechanizmusok S-2. Jelátviteli mechanizmusok A sejtmembrán elválaszt és összeköt. Ez az információ-áramlásra különösen igaz! 2.1. A szignál-transzdukció elemi lépései Hírvivô (transzmitter, hormon felismerése = kötôdés

Részletesebben

Novák Béla: Sejtbiológia Membrántranszport

Novák Béla: Sejtbiológia Membrántranszport Membrántranszport folyamatok A lipid kettos réteg gátat jelent a poláros molekulák számára. Ez a gát alapveto fontosságú a citoszól és az extracelluláris "milieu" közti koncentráció különbségek biztosításában.

Részletesebben