A szimmetrikus titkosítás s első generáci

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A szimmetrikus titkosítás s első generáci"

Átírás

1 A szimmetrikus titkosítás s első generáci ciója és s az alkalmazott transzformáci ciók k alaptípusai pusai Tóth Mihály előadása habilitációja tudományos kollokviumán 2005 június 1-én.

2 Hová sorolható ez az előad adás és amiről l szó lesz. Az ME Informatikai képzését és kurzusait áttekintve A mesterséges intelligencia alkalmazásaihoz lehet leginkább besorolni. Szót ejtek az ún. első generáció kommunikációs, rejtési és titkosítási vonatkozásairól, miért nem volt különösebben érdekes a titkosítás és miért a rejtés, hogyan kötődött mindez az akkori kommunikációs technikákhoz és példákat is mutatok ezekre, Végül szó lesz az első generációra jellemző kétféle alap-transzformációról. 2/36

3 A didaktikai módszerrm dszerről Alapvetően induktív Példaként néhány ténylegesen alkalmazott módszert mutatok be, amelyekből következtetéseket kellene levonnia a hallgatóságnak. A módszerek bemutatása után kérdéseket teszek fel és Szeretném, ha ezekre a hallgtóság adná meg a válaszokat. 3/36

4 Források A téziseimben felsorolt szakirodalmi forrásokon és elsősorban oktatási célra készült írásaimon valamint a bemutatóimon kívül az ebben az anyagban bemutatott, képek és táblázatok forrása részben néhány webkikötő, a scannelt anyagoké pedig: Fred B. Wrixon: Codes Ciphers c. könyve. Kiadta: Black Dog & Leventhal Publisers Inc. NY ISBN: /36

5 Rejtés és/vagy titkosítás évvel ezelőttől: rejtés (szteganográfia) Pl. betűk észrevétlen megjelölése ártatlannak látszó (fedő) szövegben. (tűjelek, láthatatlan tinták ) A mai alkalmazásai: kereskedelmi, copy right információk elrejtése (képben, mozgó képben, hangfájlokban. Elektronikus vízjelv zjel. Igen fejlett technikák vannak rá, amelyek kibírják a fedő kép, hang szöveg szerkesztését, másolását is. A szteganográfia azonban más, mint a kriptográfia (jóllehet együtt is alkalmazhatók) 5/36

6 Egy példa p a mai rejtési technikára A jobboldali képben Arany János: Toldi (első ének) 6/36

7 Mi határozza meg a kriptogeneráci ciókat? Két dolog együttesen Transzformáci ciós módszerek Kommunikáci ciós módszerek Az első generáci ció betűt t betűbe képez le (konvertál) Kriptogram ábécé (szimbólumkészlet) 7/36

8 Kódolás s vagy titkosítás (leképez pezés, transzformáci ció,, konverzió) A leképezés célja lehet Illesztés a kommunikációhoz (s ekkor nem cél a titkosítás, sőt ) Ez a kódolás Titkosítás, vagyis a beavatatlan számára érthetetlen üzenet előállítása. 8/36

9 Néhány példa p a kódolk dolásra (1) Sir Home Popham admirális vezette be az angol flottánál és a szárazföldön is a kétkarú szemafor jelzéseket, amilyeneket Napóleon is használt hírközlésre. (1808) Vegyük észre, hogy szimbólumokkal helyettesíti ti a nyílt ábécé betűit! 9/36

10 A Nemzetközi, zi, tengerészeti zászló-ábécé B C D E F G H I J K L M N O P Q R S T U V W X Y Z 10/36

11 Egyezményes jelek helyettesítése se Itt az ábécé é mindössze hét t jelből áll. (és s egyáltal ltalán nem titkos) Pl. rendőri ri közlekedés irány nyítási jelek. 11/36

12 Kérdések (1) Algebrai szempontból mik az ábécék? Elemeik száma? P és C viszonya? A ϕ leképezés milyen tulajdonságokkal rendelkezik? Diszkrét t elemek (szimbólumok) halmazai. Véges, megszámlálható Azonos rangú halmazok Kölcsönösen egyértelmű leképezés, amely táblázatokkal adható meg. Használhatjuk vajon a ezt a leképez pezést titkos írásokhoz is? 12/36

13 Sherlock Holmes pálcika p figurái (Adventure of the dancing men) am here abe slaney come elsie Jelzi a szóközöket ket és s ez igen nagy segíts tség g a megfejtéshez. A gyakran ismétl tlődő betűknek megfelelő jelek is könnyen k azonosíthat thatók. Betűgyakoris gyakoriság-elemzés. Az arabok már m r Kr.u. 800-ban rájöttekr 13/36

14 Stuart Mária M titkos írása Ezt is betűgyakoriság-analízissel fejtették meg és ez Stuart Mária fejébe került. 14/36

15 A Rózsakeresztesek R titkosírása sa (XVII. sz.) Van, aki ezt a fajta szimbolizmust geometriai titkosításnak nevezi, de azért ez is csak betűt betűvel helyettesít. 15/36

16 Polybius sakktábl blája Igaz, hogy ez a titkosítás egy-egy nyíltszövegbetűt egy-egy kriptogram számpárba képez le, de ha a számpárokat egyetlen szimbólumnak tekintjük, akkor ez is csak monoalfabetikus leképezés. A megfejtőnek már az is gyanús lehet, hogy 5-nél nagyobb számjegyek nem fordulnak elő. (Börtön-távíró.) P: görög történetíró Kr.e II. sz. Aeneas Tacticos Kr.e /36

17 A Toldi egyes betűinek gyakoriságai gai A leggyakoribb 15 karakter Karaktergyakoriság % 40,00 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0, Karakterek csökkenő gyakoriság-sorrendben szk, (15,4%); e, a, t, n, l, s, (32%); k, r,o, i, g, á, (17,2%); a maradék: 32,5% 17/36

18 Statisztikai próba a titkosítási si módszer m megtalálására Ha a betűgyakoriság betűnként ugyanolyan, mint a nyílt szövegé, akkor uniliterális lis a titkosítás (permutációs). Ha a gyakoriság-eloszlás ugyanolyan, mint a nyílt ábécéé, de más betűknél (vagy szimbólumoknál) jelentkezik, akkor unilaterális lis (egyszerű helyettesítés). Ha a betűgyakoriság eloszlás kiegyenesedik, akkor valami más, pl. az egyik polialfabetikus módszert alkalmazták. Az ilyen statisztikai eloszlás-vizsgálatra Friedman dolgozott ki módszert. (ϕ próba) 18/36

19 Egy egyszerű eszköz z a helyettesítések sek (és s a visszafejtések) sek) elvégz gzésére: a Cézár r kerék Ehhez már matematikai modell is rendelhető, nevezetesen a mod n összeadás ill. kivonás, ahol n az ábécé elemeinek a száma. A leképezést általános esetben táblázattal adjuk meg. S boksz. A nyílt szó Betű sorsz. A kulcs (H) Az összeg A mod 32 összeg A kriptogram A H B Í A H C J U B S A 19/36

20 Kérdések: Mi az egyszerű, monoalfabetikus helyettesítés, mint titkosítás gyengéje? Vajon miért? Betűgyakoriság elemzéssel könnyen megfejthető. Túl egyszerű a kulcs és kicsi a (kriptogram) ábécé elemszáma. Hogyan lehetne ezen segíteni? Bonyolultabb helyettesítő módszer kellene több ábécével és bonyolultabb kulccsal. 20/36

21 Egy egyszerű 4 ábécés s rendszer Az ún. Shadow rendszer, (az 1930-as évekből származó képregény) 21/36

22 Elvi megoldás a megfejtés megnehezítésére: Az n elemű V n halmaz Injektív leképezés Az m elemű W m halmaz 22/36

23 Következtetések a monoalfabetikus helyettesítő leképez pezésekre (1) A betűírások nyílt ábécéi mindössze 2-3-szor 10 betűből állnak. Ha a kriptogram ábécé betűi is csak ugyanennyien vannak, akkor akár próbálgatással is könnyen visszafejthető a kriptogram. A megfejtést segíti, hogy az egyszerű helyettesítés ugyanazt a nyíltszöveg betűt mindig ugyanúgy helyettesíti, megőrzi a nyílt szöveg betűinek a szomszédosságát 23/36

24 Következtetések a monoalfabetikus helyettesítő leképez pezésekre (2) A megfejtés megnehezítésére irányuló törekvések: Olyan leképezés, amely nem őrzi meg a szomszédosságot. (Ez is monoalfabetikus, de más transzformáció-típust alkalmazó rendszer.) A kriptogram ábécék számának növelése, ami egészen máig végigvonul a kriptorend-szerek fejlődése/fejlesztése mentén. Ezek polialfabetikus rendszerek. Monoalfabetikus, de extrém sok elemű ábécével dolgozó kriptorendszerek. (Pl. a nyíltkulcsú KrR.) 24/36

25 Létezik monoalfabetikus,, de a szomszédoss dosságot nem megőrz rző transzformáci ció már r a kezdetektől: mégpedig a keverés (permutáció). Ehhez a nyílt szöveget fix hosszúságú ún. blokkokra tagoljuk, és minden blokkban azonos szabályok szerint összekeverjük a betűket. (P boksz) A B C D E F D C E A F B Rövid blokkhossz (anagramma) esetén nem nehéz a megfejtés. 25/36

26 Példa Egy 64 bites blokk permutáci ciós táblázata. (Ez itt éppen a DES ún. kezdeti permutáci ciója.) 26/36

27 Következtetések a monoalfabetikus permutáci ciós s leképez pezésekre (1) A permutáció nem változtatja v meg a nyílt szöveg betűit. A ϕ leképez pezés monoalfabetikus és a kriptogram ábécé ϕ természetéből következően azonos a nyílt ábécével. Az ábécét nem kell előre kikötni. A leképezés uniliterális lis. A permutáció alapvetően más természetű leképezés, mint a helyettesítés. 27/36

28 A keverésnek is vannak egyszerű módszerei, úm: Sorfolytonosan egy mátrixba írni a betűket és valamilyen más rendszerben kiolvasni. (Pl. oszlop folytonosan, átlósan ) Titkosító rács alkalmazása nxn-es betűmátrixokra. (Demó.) Vegyük észre, hogy a keverés mindig blokkosított. (Padding.) A mai rendszerekben az S éa a P bokszokat egy rendszeren belül alkalmazzák. (Pl. az ún. iterációs rendszerekben, mint a DES, IDEA, AES, Twofish, Serpent, ) 28/36

29 A 36 karakteres nyílt szövegblokk A teljes keverési transzformáció A titkosított 36 karakteres szövegblokk, amely ugyanazokat a betüket tartalmazza, mint a nyílt szövegblokk A négyzetrn gyzetrács- forgatásos keverési transzformáci ció eredő permutáci ciós táblázata 29/36

30 Kérdések az egyszerű helyettesítő leképez pezésekkel kapcsolatban: Megmarad-e a nyílt szöveg betűinek a szomszédossága a leképezés után is a ϕ képtartományában? A szomszédosság megőrzése miatt nevezzük a monoalfabetikus helyettesítést unilaterális leképezésnek. Egyik (nem túl jelentős) hátránya az, hogy a nyílt szöveg ábécéje kötött. Van-e olyan leképezés, amely a szomszédosságot nem őrzi meg és az ábécéje sem kötött? 30/36

31 Továbbfejleszt bbfejlesztés s a polialfabetikus rendszerek felé: : de Vigenere kódja A XVI.-XVII. század fordulóján jelent meg a látnok kódja és 300 évig nem tudták megfejteni. (Babbage, XIX. sz.) Nagyon egyszerűen bemutatható, hogy tulajdonképpen a Cézár kerék továbbfejlesztéséről van szó. (Demó.) De Vigenere maga alkalmazta ehhez a modulo n összeadást és kivonást Ami azóta is visszakisért a modern (aszimmetrikus) kriptorendszerekben. 31/36

32 Összefoglalás s (1) A titkosítás az ún. nyílt szöveget egy kriptogramba képezi le. Fontos fogalom mind a nyílt szöveg, mind a kriptogram ún. ábécéje (vagy ábécéi). Egy titkosítási módszert aszerint nevezünk egy, vagy több ábécésnek, hogy a kriptogramot hány ábécé segítségével hozzuk létre. Eszerint vannak monoalfabetikus és polialfabetikus kriptorendszerek. 32/36

33 Összefoglalás s (2) A kriptorendszerek első generáci ciójára az jellemző, hogy az ide tartozó kriptorendszerek monoalfabetikus rendszerek. Az első generáció alapvető leképezési módszerei: a helyettesítés (szubsztitució, S) és a keverés (permutáció, P) Az első unilaterális lis, a második uniliterális lis rendszer. 33/36

34 Az első generáci ciós kriptorendszerek őstípusainak összevetésese A B C D E F D C E A F B Caesar-féle helyettesítési módszer (Unilateralis, Egyábécés rendszer) Transzpozició (permutáció) blokk-titkosítás (Uniliteralis, egyábécés rendszer) 34/36

35 Következtetések Az első kriptogeneráció egyik fő jellemzője, hogy az ide tartozó titkosítások monoalfabetikus rendszerek. A megfejtést nagyon megkönnyítette a kriptogram ábécé betűinek kis száma. (Ezt a hátrányt aztán igyekeztek is megszüntetni.) Alapvető transzformációs módszerek voltak: a helyettesítés és a permutáció Ezeket aztán (továbbfejlesztve) megtalálhatjuk a legmodernebb kriptorendszerekben is. 35/36

36 Köszönöm m a figyelmüket és interaktív v közremk zreműködésüketket és várom az esetleges kérdéseiket

A kiptográfia alapjai. Történet és alapfogalmak

A kiptográfia alapjai. Történet és alapfogalmak A kiptográfia alapjai Dr. Tóth Mihály http://arek.uni-obuda.hu/~tothm/ Kutatók-Éjszakaja-2012 Történet és alapfogalmak Mióta írások léteznek, azóta vannak titkos írások is. Kezdetben, amíg kevesen tudtak

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Kriptográfia Harmadik előadás Klasszikus titkosítások II

Kriptográfia Harmadik előadás Klasszikus titkosítások II Kriptográfia Harmadik előadás Klasszikus titkosítások II Dr. NémethN L. Zoltán SZTE, Számítástudom studomány Alapjai Tanszék 2008 ősz Vigenère autokulcsos titkosító (Vigenère autokey Cipher) Akkor ideális

Részletesebben

Modern titkosírások és a matematika

Modern titkosírások és a matematika Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

dolás, felbontható kód Prefix kód Blokk kódk Kódfa

dolás, felbontható kód Prefix kód Blokk kódk Kódfa Kódelméletlet dolás dolás o Kódolás o Betőnk nkénti nti kódolk dolás, felbontható kód Prefix kód Blokk kódk Kódfa o A kódok k hosszának alsó korlátja McMillan-egyenlıtlens tlenség Kraft-tételetele o Optimális

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7.

Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7. Wettl Ferenc Biztos, hogy biztos? - 1 - Szerkesztette: Kiss Eszter Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7. Szabó Tanár Úr két héttel ezelőtti

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

az Excel for Windows programban

az Excel for Windows programban az Excel for Windows táblázatkezelőblázatkezel programban Mit nevezünk nk képletnek? A táblt blázatkezelő programok nagy előnye, hogy meggyorsítj tják és könnyebbé teszik a felhasználó számára a számítási

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Informatikai alapismeretek Földtudományi BSC számára

Informatikai alapismeretek Földtudományi BSC számára Informatikai alapismeretek Földtudományi BSC számára 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@ludens.elte.hu Titkosítás,hitelesítés Szimmetrikus DES 56 bites kulcs (kb. 1000 év) felcserél, helyettesít

Részletesebben

A szteganográfia és annak relevanciája a privátszféra védelmében

A szteganográfia és annak relevanciája a privátszféra védelmében A szteganográfia és annak relevanciája a privátszféra védelmében Földes Ádám Máté foldesa@pet-portal.eu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Bevezető Alapfogalmak, rövid történeti

Részletesebben

Információs technológiák 8. Ea: Lakat alatt. Az informatikai biztonságról

Információs technológiák 8. Ea: Lakat alatt. Az informatikai biztonságról Információs technológiák 8. Ea: Lakat alatt Az informatikai biztonságról 126/1 B ITv: MAN 2015.09.08 Az informatikai biztonságról 126/2 Témakörök Általános alapfogalmak Adatvédelem Adatbiztonság Ellenőrző

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát.

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Kódolás A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Mi az információ? Az információ egy értelmes közlés, amely új ismeretet, új tudást ad. (Úgy is fogalmazhatunk, hogy

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

ERLANG PROGRAMOK TRANSZFORMÁCI CIÓJA ERLANG

ERLANG PROGRAMOK TRANSZFORMÁCI CIÓJA ERLANG KLIENS-SZERVER SZERVER ALAPÚ ERLANG PROGRAMOK TRANSZFORMÁCI CIÓJA ERLANG OTP SÉMÁRAS Király Roland kiralyroland@inf.elte.hu Támogatók: - GVOP-3.2.2 3.2.2-2004-07-0005/3.00005/3.0 ELTE IKKK - Ericsson Hungary

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

4. Előadás Titkosítás, RSA algoritmus

4. Előadás Titkosítás, RSA algoritmus 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)

Részletesebben

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK XII. Bolyai Konferencia Bodnár József Eötvös Collegium II. matematikus, ELTE TTK A legegyszerűbb titkosírás: a betűcsere A B C D E... C A B E D... AD --> CE Állandó helyettesítési séma Váltogatott kulcs:

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI Takács Viola Iskolakultúra könyvek 20. Sorozatszerkesztõ: Géczi János Szerkesztõ: Sz. Molnár Szilvia BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI TAKÁCS VIOLA iskolakultúra

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Eszterházy Károly Főiskola Matematikai és Informatikai Intézet. Kriptográfia. Liptai Kálmán. Eger, 2011.

Eszterházy Károly Főiskola Matematikai és Informatikai Intézet. Kriptográfia. Liptai Kálmán. Eger, 2011. Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Kriptográfia Liptai Kálmán Eger, 2011. Tartalomjegyzék 1. Köszönetnyilvánítás 4 2. Történeti áttekintés 5 2.1. Bevezetés.............................

Részletesebben

INFORMATIKA TANMENET SZAKKÖZÉPISKOLA 9.NY OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

INFORMATIKA TANMENET SZAKKÖZÉPISKOLA 9.NY OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség kezdete: 2013. 09. 01. Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 INFORMATIKA

Részletesebben

Bírálat. Farkas András

Bírálat. Farkas András Bírálat Farkas András Közlekedési rendszerek fejlesztése és értékelése többtényezős döntési eljárások felhasználásával (Appraisal and Development of Transportation Systems Using Multiple Criteria Decision

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

OKM 2012 ISKOLAI JELENTÉS A 4. ÉVFOLYAMOS ORSZÁGOS KÉSZSÉG ÉS KÉPESSÉGMÉRÉS EREDMÉNYEIRÕL. Százhalombattai Kõrösi Csoma Sándor Általános Iskola

OKM 2012 ISKOLAI JELENTÉS A 4. ÉVFOLYAMOS ORSZÁGOS KÉSZSÉG ÉS KÉPESSÉGMÉRÉS EREDMÉNYEIRÕL. Százhalombattai Kõrösi Csoma Sándor Általános Iskola OKM 2012 ISKOLAI JELENTÉS A 4. ÉVFOLYAMOS ORSZÁGOS KÉSZSÉG ÉS KÉPESSÉGMÉRÉS EREDMÉNYEIRÕL Százhalombattai Kõrösi Csoma Sándor Általános Iskola (azonosító: 037770) ÁLTALÁNOS TÁJÉKOZTATÓ A személyiség mûködése,

Részletesebben

Aszimmetrikus kriptorendszerek

Aszimmetrikus kriptorendszerek Budapesti Mszaki Fiskola Kandó Kálmán Villamosmérnöki Fiskolai Kara Számítógéptechnikai Intézet - Székesfehérvár Aszimmetrikus kriptorendszerek Segédlet az Információtechnika c. tárgy Kriptográfia fejezetéhez

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Best of Criptography Slides

Best of Criptography Slides Best of Criptography Slides Adatbiztonság és Kriptográfia PPKE-ITK 2008. Top szlájdok egy helyen 1 Szimmetrikus kulcsú rejtjelezés Általában a rejtjelező kulcs és a dekódoló kulcs megegyezik, de nem feltétlenül.

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái IBAN: INTERNATIONAL BANK ACCOUNT NUMBER A EUROPEAN COMMITTEE FOR BANKING STANDARDS (ECBS) által 2001. februárban kiadott, EBS204 V3 jelű szabvány rögzíti a nemzetközi számlaszám formáját, valamint eljárást

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

RENDÉSZETI ALAPISMERETEK

RENDÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. RENDÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 I. Időtartam: 90 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Rendészeti

Részletesebben

INFORMATIKAI BIZTONSÁG ALAPJAI

INFORMATIKAI BIZTONSÁG ALAPJAI INFORMATIKAI BIZTONSÁG ALAPJAI 2. konzultáció Göcs László mérnöktanár Kecskeméti Főiskola GAMF Kar Informatika Tanszék 2014-15. 1. félév Vállalati biztonság Előkészítés Az információbiztonsági osztály

Részletesebben

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002 Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

ROZBROY VIKTOR Kalandos nyelveset

ROZBROY VIKTOR Kalandos nyelveset ROZBROY VIKTOR Kalandos nyelveset A széphalmi A Magyar Nyelv Múzeuma Nyelvlesen című kiállításának múzeumpedagógiai megvalósítása Egy kiállítás célja lehet például tárgyak, személyek, események, dolgok

Részletesebben

Szteganográfia elemeinek implementálási lehetőségei a védelmi szektorban. Doktori (Ph.D.) értekezés. Unicsovics György

Szteganográfia elemeinek implementálási lehetőségei a védelmi szektorban. Doktori (Ph.D.) értekezés. Unicsovics György Doktori (Ph.D.) értekezés Unicsovics György Szteganográfia elemeinek implementálási lehetőségei a védelmi szektorban Témavezető: Dr. Váncsa Julianna A Zrínyi Miklós Nemzetvédelmi Egyetem docense Budapest,

Részletesebben

hatására hátra lép x egységgel a toll

hatására hátra lép x egységgel a toll Ciklusszervező utasítások minden programozási nyelvben léteznek, így például a LOGO-ban is. LOGO nyelven, (vagy legalábbis LOGO-szerű nyelven) írt programok gyakran szerepelnek az iskola számítástechnikai

Részletesebben

Web kliens-szerver struktúra és adatvédelem

Web kliens-szerver struktúra és adatvédelem Web kliens-szerver struktúra és adatvédelem Előadásvázlat dr. Kovács László Web struktúra ra elemei kliens Web böng ngész sző HTTP Listener-WS BI modul BI CGI szerver Web szerver ODBC-JDBC szerver adatbázis

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Szoftver alapfogalmak

Szoftver alapfogalmak Szoftver alapfogalmak Azon a programok algoritmusok, eljárások, és hozzájuk tartozó dokumentációk összessége, melyek a számítógép működéséhez szükségesek. (nem kézzel fogható, szellemi termékek) Algoritmus

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Tervezte és készítette Géczy László 1999-2002

Tervezte és készítette Géczy László 1999-2002 Tervezte és készítette Géczy László 1999-2002 ADATHORDOZÓ Különböző ADATHORDOZÓK LEMEZ hajlékonylemez MO lemez merevlemez CDROM, DVDROM lemez CDRAM, DVDRAM lemez ADATHORDOZÓ SZALAG Különböző ADATHORDOZÓK

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

REJTJELZŐ MÓDSZEREK VIZSGÁLATA

REJTJELZŐ MÓDSZEREK VIZSGÁLATA Póserné Oláh Valéria PÓSERNÉ Oláh Valéria REJTJELZŐ MÓDSZEREK VIZSGÁLATA (EXAMINATION OF THE METHODS OF CRYPTOGRAPHY) Mindennapjaink szerves részévé vált az információ elektronikus tárolása, továbbítása,

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben

néhány cikk a titkosításról és annak gyakorlati alkalmazásairól

néhány cikk a titkosításról és annak gyakorlati alkalmazásairól Könnyû álmok (13. rész) A titkosítás titokzatos titkai bben a hónapban egy kis kitérõt teszünk. Utolsó két cikkünk az Interneten leggyakrabban használt hálózati protokollok sajátosságait tárta fel. Ebbe

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Távközlési informatika Kriptográfia. Dr. Beinschróth József

Távközlési informatika Kriptográfia. Dr. Beinschróth József Távközlési informatika Kriptográfia Dr. Beinschróth József Fogalmak, alapelvek A biztonság összetevőinek egy része kriptográfián alapul de a kriptográfia önmagában nem oldja meg a biztonság problémáját

Részletesebben

Intelligens kommunális villamos fogyasztásmérés lehetőségének vizsgálata kutatás fejlesztés s keretében az E.ON Tiszántúli Áramszolgáltató Zrt-nél Dr. Dán András 1, Dr. Vajta László 2, Kálmán Viktor 2,

Részletesebben

Szakmai zárójelentés

Szakmai zárójelentés Szakmai zárójelentés A csoporttechnológia (Group Technology = GT) elvi és módszertani alapjaihoz, valamint a kapcsolódó módszerek informatikai alkalmazásaihoz kötődő kutatómunkával a Miskolci Egyetem Alkalmazott

Részletesebben

A kriptográfiai előadások vázlata

A kriptográfiai előadások vázlata A kriptográfiai előadások vázlata Informatikai biztonság alapjai c. tárgy (Műszaki Info. BSc szak, tárgyfelelős: Dr. Bertók Botond) Dr.Vassányi István Információs Rendszerek Tsz. vassanyi@irt.vein.hu 2008

Részletesebben

Az elektronikus aláírás és gyakorlati alkalmazása

Az elektronikus aláírás és gyakorlati alkalmazása Az elektronikus aláírás és gyakorlati alkalmazása Dr. Berta István Zsolt Microsec Kft. http://www.microsec.hu Elektronikus aláírás (e-szignó) Az elektronikus aláírás a kódolás

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Kitöltési útmutató. Az orvos által kötelezően kitöltendő adatok gyógyszer, gyógyászati segédeszköz, gyógyfürdő rendeléséhez

Kitöltési útmutató. Az orvos által kötelezően kitöltendő adatok gyógyszer, gyógyászati segédeszköz, gyógyfürdő rendeléséhez Kitöltési útmutató Az orvos által kötelezően kitöltendő adatok gyógyszer, gyógyászati segédeszköz, gyógyfürdő rendeléséhez Sorsz. Megnevezés Gyógyszer Gyógyászati segédeszköz 1. A beteg neve, lakcíme Gyógyfürdő

Részletesebben

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai.

Halmazok. Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. Halmazok Halmazelméleti lapfogalmak, hatványhalmaz, halmazm veletek, halmazm veletek azonosságai. 1. lapfogalmak halmaz és az eleme fogalmakat alapfogalmaknak tekintjük, nem deniáljuk ket. Jelölés: x H,

Részletesebben

1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket!

1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! ELTE IK, Programozás, Gyakorló feladatok a 3. zárthelyihez. Mátrix elemeinek felsorolása: 1. Számoljuk meg egy számokat tartalmazó mátrixban a nulla elemeket! 2. Igaz-e, hogy sorfolytonosan végigolvasva

Részletesebben

és s mobil kommunikáci Learning Konferencia

és s mobil kommunikáci Learning Konferencia Dr.Molnár György: IKT, hálózati h és s mobil kommunikáci ciós megoldások az atipikus tanulási formák k tükrt krében 5. Magyar Nemzeti és s Nemzetközi zi Lifelong Learning Konferencia Sopron, 2009.április

Részletesebben