A szimmetrikus titkosítás s első generáci

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A szimmetrikus titkosítás s első generáci"

Átírás

1 A szimmetrikus titkosítás s első generáci ciója és s az alkalmazott transzformáci ciók k alaptípusai pusai Tóth Mihály előadása habilitációja tudományos kollokviumán 2005 június 1-én.

2 Hová sorolható ez az előad adás és amiről l szó lesz. Az ME Informatikai képzését és kurzusait áttekintve A mesterséges intelligencia alkalmazásaihoz lehet leginkább besorolni. Szót ejtek az ún. első generáció kommunikációs, rejtési és titkosítási vonatkozásairól, miért nem volt különösebben érdekes a titkosítás és miért a rejtés, hogyan kötődött mindez az akkori kommunikációs technikákhoz és példákat is mutatok ezekre, Végül szó lesz az első generációra jellemző kétféle alap-transzformációról. 2/36

3 A didaktikai módszerrm dszerről Alapvetően induktív Példaként néhány ténylegesen alkalmazott módszert mutatok be, amelyekből következtetéseket kellene levonnia a hallgatóságnak. A módszerek bemutatása után kérdéseket teszek fel és Szeretném, ha ezekre a hallgtóság adná meg a válaszokat. 3/36

4 Források A téziseimben felsorolt szakirodalmi forrásokon és elsősorban oktatási célra készült írásaimon valamint a bemutatóimon kívül az ebben az anyagban bemutatott, képek és táblázatok forrása részben néhány webkikötő, a scannelt anyagoké pedig: Fred B. Wrixon: Codes Ciphers c. könyve. Kiadta: Black Dog & Leventhal Publisers Inc. NY ISBN: /36

5 Rejtés és/vagy titkosítás évvel ezelőttől: rejtés (szteganográfia) Pl. betűk észrevétlen megjelölése ártatlannak látszó (fedő) szövegben. (tűjelek, láthatatlan tinták ) A mai alkalmazásai: kereskedelmi, copy right információk elrejtése (képben, mozgó képben, hangfájlokban. Elektronikus vízjelv zjel. Igen fejlett technikák vannak rá, amelyek kibírják a fedő kép, hang szöveg szerkesztését, másolását is. A szteganográfia azonban más, mint a kriptográfia (jóllehet együtt is alkalmazhatók) 5/36

6 Egy példa p a mai rejtési technikára A jobboldali képben Arany János: Toldi (első ének) 6/36

7 Mi határozza meg a kriptogeneráci ciókat? Két dolog együttesen Transzformáci ciós módszerek Kommunikáci ciós módszerek Az első generáci ció betűt t betűbe képez le (konvertál) Kriptogram ábécé (szimbólumkészlet) 7/36

8 Kódolás s vagy titkosítás (leképez pezés, transzformáci ció,, konverzió) A leképezés célja lehet Illesztés a kommunikációhoz (s ekkor nem cél a titkosítás, sőt ) Ez a kódolás Titkosítás, vagyis a beavatatlan számára érthetetlen üzenet előállítása. 8/36

9 Néhány példa p a kódolk dolásra (1) Sir Home Popham admirális vezette be az angol flottánál és a szárazföldön is a kétkarú szemafor jelzéseket, amilyeneket Napóleon is használt hírközlésre. (1808) Vegyük észre, hogy szimbólumokkal helyettesíti ti a nyílt ábécé betűit! 9/36

10 A Nemzetközi, zi, tengerészeti zászló-ábécé B C D E F G H I J K L M N O P Q R S T U V W X Y Z 10/36

11 Egyezményes jelek helyettesítése se Itt az ábécé é mindössze hét t jelből áll. (és s egyáltal ltalán nem titkos) Pl. rendőri ri közlekedés irány nyítási jelek. 11/36

12 Kérdések (1) Algebrai szempontból mik az ábécék? Elemeik száma? P és C viszonya? A ϕ leképezés milyen tulajdonságokkal rendelkezik? Diszkrét t elemek (szimbólumok) halmazai. Véges, megszámlálható Azonos rangú halmazok Kölcsönösen egyértelmű leképezés, amely táblázatokkal adható meg. Használhatjuk vajon a ezt a leképez pezést titkos írásokhoz is? 12/36

13 Sherlock Holmes pálcika p figurái (Adventure of the dancing men) am here abe slaney come elsie Jelzi a szóközöket ket és s ez igen nagy segíts tség g a megfejtéshez. A gyakran ismétl tlődő betűknek megfelelő jelek is könnyen k azonosíthat thatók. Betűgyakoris gyakoriság-elemzés. Az arabok már m r Kr.u. 800-ban rájöttekr 13/36

14 Stuart Mária M titkos írása Ezt is betűgyakoriság-analízissel fejtették meg és ez Stuart Mária fejébe került. 14/36

15 A Rózsakeresztesek R titkosírása sa (XVII. sz.) Van, aki ezt a fajta szimbolizmust geometriai titkosításnak nevezi, de azért ez is csak betűt betűvel helyettesít. 15/36

16 Polybius sakktábl blája Igaz, hogy ez a titkosítás egy-egy nyíltszövegbetűt egy-egy kriptogram számpárba képez le, de ha a számpárokat egyetlen szimbólumnak tekintjük, akkor ez is csak monoalfabetikus leképezés. A megfejtőnek már az is gyanús lehet, hogy 5-nél nagyobb számjegyek nem fordulnak elő. (Börtön-távíró.) P: görög történetíró Kr.e II. sz. Aeneas Tacticos Kr.e /36

17 A Toldi egyes betűinek gyakoriságai gai A leggyakoribb 15 karakter Karaktergyakoriság % 40,00 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0, Karakterek csökkenő gyakoriság-sorrendben szk, (15,4%); e, a, t, n, l, s, (32%); k, r,o, i, g, á, (17,2%); a maradék: 32,5% 17/36

18 Statisztikai próba a titkosítási si módszer m megtalálására Ha a betűgyakoriság betűnként ugyanolyan, mint a nyílt szövegé, akkor uniliterális lis a titkosítás (permutációs). Ha a gyakoriság-eloszlás ugyanolyan, mint a nyílt ábécéé, de más betűknél (vagy szimbólumoknál) jelentkezik, akkor unilaterális lis (egyszerű helyettesítés). Ha a betűgyakoriság eloszlás kiegyenesedik, akkor valami más, pl. az egyik polialfabetikus módszert alkalmazták. Az ilyen statisztikai eloszlás-vizsgálatra Friedman dolgozott ki módszert. (ϕ próba) 18/36

19 Egy egyszerű eszköz z a helyettesítések sek (és s a visszafejtések) sek) elvégz gzésére: a Cézár r kerék Ehhez már matematikai modell is rendelhető, nevezetesen a mod n összeadás ill. kivonás, ahol n az ábécé elemeinek a száma. A leképezést általános esetben táblázattal adjuk meg. S boksz. A nyílt szó Betű sorsz. A kulcs (H) Az összeg A mod 32 összeg A kriptogram A H B Í A H C J U B S A 19/36

20 Kérdések: Mi az egyszerű, monoalfabetikus helyettesítés, mint titkosítás gyengéje? Vajon miért? Betűgyakoriság elemzéssel könnyen megfejthető. Túl egyszerű a kulcs és kicsi a (kriptogram) ábécé elemszáma. Hogyan lehetne ezen segíteni? Bonyolultabb helyettesítő módszer kellene több ábécével és bonyolultabb kulccsal. 20/36

21 Egy egyszerű 4 ábécés s rendszer Az ún. Shadow rendszer, (az 1930-as évekből származó képregény) 21/36

22 Elvi megoldás a megfejtés megnehezítésére: Az n elemű V n halmaz Injektív leképezés Az m elemű W m halmaz 22/36

23 Következtetések a monoalfabetikus helyettesítő leképez pezésekre (1) A betűírások nyílt ábécéi mindössze 2-3-szor 10 betűből állnak. Ha a kriptogram ábécé betűi is csak ugyanennyien vannak, akkor akár próbálgatással is könnyen visszafejthető a kriptogram. A megfejtést segíti, hogy az egyszerű helyettesítés ugyanazt a nyíltszöveg betűt mindig ugyanúgy helyettesíti, megőrzi a nyílt szöveg betűinek a szomszédosságát 23/36

24 Következtetések a monoalfabetikus helyettesítő leképez pezésekre (2) A megfejtés megnehezítésére irányuló törekvések: Olyan leképezés, amely nem őrzi meg a szomszédosságot. (Ez is monoalfabetikus, de más transzformáció-típust alkalmazó rendszer.) A kriptogram ábécék számának növelése, ami egészen máig végigvonul a kriptorend-szerek fejlődése/fejlesztése mentén. Ezek polialfabetikus rendszerek. Monoalfabetikus, de extrém sok elemű ábécével dolgozó kriptorendszerek. (Pl. a nyíltkulcsú KrR.) 24/36

25 Létezik monoalfabetikus,, de a szomszédoss dosságot nem megőrz rző transzformáci ció már r a kezdetektől: mégpedig a keverés (permutáció). Ehhez a nyílt szöveget fix hosszúságú ún. blokkokra tagoljuk, és minden blokkban azonos szabályok szerint összekeverjük a betűket. (P boksz) A B C D E F D C E A F B Rövid blokkhossz (anagramma) esetén nem nehéz a megfejtés. 25/36

26 Példa Egy 64 bites blokk permutáci ciós táblázata. (Ez itt éppen a DES ún. kezdeti permutáci ciója.) 26/36

27 Következtetések a monoalfabetikus permutáci ciós s leképez pezésekre (1) A permutáció nem változtatja v meg a nyílt szöveg betűit. A ϕ leképez pezés monoalfabetikus és a kriptogram ábécé ϕ természetéből következően azonos a nyílt ábécével. Az ábécét nem kell előre kikötni. A leképezés uniliterális lis. A permutáció alapvetően más természetű leképezés, mint a helyettesítés. 27/36

28 A keverésnek is vannak egyszerű módszerei, úm: Sorfolytonosan egy mátrixba írni a betűket és valamilyen más rendszerben kiolvasni. (Pl. oszlop folytonosan, átlósan ) Titkosító rács alkalmazása nxn-es betűmátrixokra. (Demó.) Vegyük észre, hogy a keverés mindig blokkosított. (Padding.) A mai rendszerekben az S éa a P bokszokat egy rendszeren belül alkalmazzák. (Pl. az ún. iterációs rendszerekben, mint a DES, IDEA, AES, Twofish, Serpent, ) 28/36

29 A 36 karakteres nyílt szövegblokk A teljes keverési transzformáció A titkosított 36 karakteres szövegblokk, amely ugyanazokat a betüket tartalmazza, mint a nyílt szövegblokk A négyzetrn gyzetrács- forgatásos keverési transzformáci ció eredő permutáci ciós táblázata 29/36

30 Kérdések az egyszerű helyettesítő leképez pezésekkel kapcsolatban: Megmarad-e a nyílt szöveg betűinek a szomszédossága a leképezés után is a ϕ képtartományában? A szomszédosság megőrzése miatt nevezzük a monoalfabetikus helyettesítést unilaterális leképezésnek. Egyik (nem túl jelentős) hátránya az, hogy a nyílt szöveg ábécéje kötött. Van-e olyan leképezés, amely a szomszédosságot nem őrzi meg és az ábécéje sem kötött? 30/36

31 Továbbfejleszt bbfejlesztés s a polialfabetikus rendszerek felé: : de Vigenere kódja A XVI.-XVII. század fordulóján jelent meg a látnok kódja és 300 évig nem tudták megfejteni. (Babbage, XIX. sz.) Nagyon egyszerűen bemutatható, hogy tulajdonképpen a Cézár kerék továbbfejlesztéséről van szó. (Demó.) De Vigenere maga alkalmazta ehhez a modulo n összeadást és kivonást Ami azóta is visszakisért a modern (aszimmetrikus) kriptorendszerekben. 31/36

32 Összefoglalás s (1) A titkosítás az ún. nyílt szöveget egy kriptogramba képezi le. Fontos fogalom mind a nyílt szöveg, mind a kriptogram ún. ábécéje (vagy ábécéi). Egy titkosítási módszert aszerint nevezünk egy, vagy több ábécésnek, hogy a kriptogramot hány ábécé segítségével hozzuk létre. Eszerint vannak monoalfabetikus és polialfabetikus kriptorendszerek. 32/36

33 Összefoglalás s (2) A kriptorendszerek első generáci ciójára az jellemző, hogy az ide tartozó kriptorendszerek monoalfabetikus rendszerek. Az első generáció alapvető leképezési módszerei: a helyettesítés (szubsztitució, S) és a keverés (permutáció, P) Az első unilaterális lis, a második uniliterális lis rendszer. 33/36

34 Az első generáci ciós kriptorendszerek őstípusainak összevetésese A B C D E F D C E A F B Caesar-féle helyettesítési módszer (Unilateralis, Egyábécés rendszer) Transzpozició (permutáció) blokk-titkosítás (Uniliteralis, egyábécés rendszer) 34/36

35 Következtetések Az első kriptogeneráció egyik fő jellemzője, hogy az ide tartozó titkosítások monoalfabetikus rendszerek. A megfejtést nagyon megkönnyítette a kriptogram ábécé betűinek kis száma. (Ezt a hátrányt aztán igyekeztek is megszüntetni.) Alapvető transzformációs módszerek voltak: a helyettesítés és a permutáció Ezeket aztán (továbbfejlesztve) megtalálhatjuk a legmodernebb kriptorendszerekben is. 35/36

36 Köszönöm m a figyelmüket és interaktív v közremk zreműködésüketket és várom az esetleges kérdéseiket

A kiptográfia alapjai. Történet és alapfogalmak

A kiptográfia alapjai. Történet és alapfogalmak A kiptográfia alapjai Dr. Tóth Mihály http://arek.uni-obuda.hu/~tothm/ Kutatók-Éjszakaja-2012 Történet és alapfogalmak Mióta írások léteznek, azóta vannak titkos írások is. Kezdetben, amíg kevesen tudtak

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

2016/11/27 08:42 1/11 Kriptográfia. Titkosítás rejtjelezés és adatrejtés. Rejtjelezés, sifrírozás angolosan: cipher, crypt.

2016/11/27 08:42 1/11 Kriptográfia. Titkosítás rejtjelezés és adatrejtés. Rejtjelezés, sifrírozás angolosan: cipher, crypt. 2016/11/27 08:42 1/11 Kriptográfia < Kriptológia Kriptográfia Szerző: Sallai András Copyright Sallai András, 2011, 2014, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Bevezetés Titkosítás

Részletesebben

Kriptográfia Harmadik előadás Klasszikus titkosítások II

Kriptográfia Harmadik előadás Klasszikus titkosítások II Kriptográfia Harmadik előadás Klasszikus titkosítások II Dr. NémethN L. Zoltán SZTE, Számítástudom studomány Alapjai Tanszék 2008 ősz Vigenère autokulcsos titkosító (Vigenère autokey Cipher) Akkor ideális

Részletesebben

Modern titkosírások és a matematika

Modern titkosírások és a matematika Modern titkosírások és a matematika Az Enigma feltörése Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék Kutatók Éjszakája 2015. szeptember 25. 1 / 20 Tagolás 1 A titkosírások

Részletesebben

Fábián Zoltán Hálózatok elmélet

Fábián Zoltán Hálózatok elmélet Fábián Zoltán Hálózatok elmélet Információ fajtái Analóg az információ folytonos és felvesz minden értéket a minimális és maximális érték között Digitális az információ az idő adott pontjaiban létezik.

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék.

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. Kriptográfia és Információbiztonság 2 előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@mssapientiaro 2016 Miről volt szó az elmúlt előadáson? Félévi áttekintő

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

dolás, felbontható kód Prefix kód Blokk kódk Kódfa

dolás, felbontható kód Prefix kód Blokk kódk Kódfa Kódelméletlet dolás dolás o Kódolás o Betőnk nkénti nti kódolk dolás, felbontható kód Prefix kód Blokk kódk Kódfa o A kódok k hosszának alsó korlátja McMillan-egyenlıtlens tlenség Kraft-tételetele o Optimális

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

Kriptográfiai alapfogalmak

Kriptográfiai alapfogalmak Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7.

Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7. Wettl Ferenc Biztos, hogy biztos? - 1 - Szerkesztette: Kiss Eszter Titkosírás Biztos, hogy titkos? Biztonság növelése véletlennel Wettl Ferenc előadása 2010 december 7. Szabó Tanár Úr két héttel ezelőtti

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Bevezetés a kriptográfiába I. A kriptorendszerek első generációja Segédlet az Információtechnika c. tárgy Kriptográfia fejezetéhez

Bevezetés a kriptográfiába I. A kriptorendszerek első generációja Segédlet az Információtechnika c. tárgy Kriptográfia fejezetéhez Budapesti Műszaki Főiskola Kandó Kálmán Villamosmérnöki Főiskolai Kar Számítógéptechnikai Intézet - Székesfehérvár Bevezetés a kriptográfiába I. A kriptorendszerek első generációja Segédlet az Információtechnika

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

KOMPUTERALGEBRA RENDSZEREK BEADANDÓK I. Czirbusz Sándor november 6.

KOMPUTERALGEBRA RENDSZEREK BEADANDÓK I. Czirbusz Sándor november 6. KOMPUTERALGEBRA RENDSZEREK BEADANDÓK 2010-2011.I Czirbusz Sándor 2010. november 6. I. rész Feltételek Kétfajta feladat van, mindenkinek mindkét típusból legalább egy-egy feladatot kell megoldani. Vagy

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

Kiterjesztések sek szemantikája

Kiterjesztések sek szemantikája Kiterjesztések sek szemantikája Példa D Integer = {..., -1,0,1,... }; D Boolean = { true, false } D T1... T n T = D T 1... D Tn D T Az összes függvf ggvény halmaza, amelyek a D T1,..., D Tn halmazokból

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

az Excel for Windows programban

az Excel for Windows programban az Excel for Windows táblázatkezelőblázatkezel programban Mit nevezünk nk képletnek? A táblt blázatkezelő programok nagy előnye, hogy meggyorsítj tják és könnyebbé teszik a felhasználó számára a számítási

Részletesebben

Hírek kriptográfiai algoritmusok biztonságáról

Hírek kriptográfiai algoritmusok biztonságáról Hírek kriptográfiai algoritmusok biztonságáról Dr. Berta István Zsolt K+F igazgató Microsec Kft. http://www.microsec.hu Mirıl fogok beszélni? Bevezetés Szimmetrikus kulcsú algoritmusok

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html

Részletesebben

PRÍMSZÁMOK ÉS A TITKOSÍRÁS

PRÍMSZÁMOK ÉS A TITKOSÍRÁS PRÍMSZÁMOK ÉS A TITKOSÍRÁS Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Úgy tapasztaltam,

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Nemzeti Közszolgálati Egyetem. Vezető-és Továbbképzési Intézet. Bérczes Attila Pethő Attila. Kriptográfia

Nemzeti Közszolgálati Egyetem. Vezető-és Továbbképzési Intézet. Bérczes Attila Pethő Attila. Kriptográfia Nemzeti Közszolgálati Egyetem Vezető-és Továbbképzési Intézet Bérczes Attila Pethő Attila Kriptográfia Budapest, 2014 A tananyag az ÁROP 2.2.21 Tudásalapú közszolgálati előmenetel című projekt keretében

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma, redundanciája Minimális redundanciájú kódok http://mobil.nik.bmf.hu/tantárgyak/iea.html Felhasználónév: iea Jelszó: IEA07

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

Információs technológiák 8. Ea: Lakat alatt. Az informatikai biztonságról

Információs technológiák 8. Ea: Lakat alatt. Az informatikai biztonságról Információs technológiák 8. Ea: Lakat alatt Az informatikai biztonságról 126/1 B ITv: MAN 2015.09.08 Az informatikai biztonságról 126/2 Témakörök Általános alapfogalmak Adatvédelem Adatbiztonság Ellenőrző

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát.

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Kódolás A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Mi az információ? Az információ egy értelmes közlés, amely új ismeretet, új tudást ad. (Úgy is fogalmazhatunk, hogy

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Informatikai alapismeretek Földtudományi BSC számára

Informatikai alapismeretek Földtudományi BSC számára Informatikai alapismeretek Földtudományi BSC számára 2010-2011 Őszi félév Heizlerné Bakonyi Viktória HBV@ludens.elte.hu Titkosítás,hitelesítés Szimmetrikus DES 56 bites kulcs (kb. 1000 év) felcserél, helyettesít

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

A szteganográfia és annak relevanciája a privátszféra védelmében

A szteganográfia és annak relevanciája a privátszféra védelmében A szteganográfia és annak relevanciája a privátszféra védelmében Földes Ádám Máté foldesa@pet-portal.eu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Bevezető Alapfogalmak, rövid történeti

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

4. Előadás Titkosítás, RSA algoritmus

4. Előadás Titkosítás, RSA algoritmus 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)

Részletesebben

OKM 2012 ISKOLAI JELENTÉS A 4. ÉVFOLYAMOS ORSZÁGOS KÉSZSÉG ÉS KÉPESSÉGMÉRÉS EREDMÉNYEIRÕL. Százhalombattai Kõrösi Csoma Sándor Általános Iskola

OKM 2012 ISKOLAI JELENTÉS A 4. ÉVFOLYAMOS ORSZÁGOS KÉSZSÉG ÉS KÉPESSÉGMÉRÉS EREDMÉNYEIRÕL. Százhalombattai Kõrösi Csoma Sándor Általános Iskola OKM 2012 ISKOLAI JELENTÉS A 4. ÉVFOLYAMOS ORSZÁGOS KÉSZSÉG ÉS KÉPESSÉGMÉRÉS EREDMÉNYEIRÕL Százhalombattai Kõrösi Csoma Sándor Általános Iskola (azonosító: 037770) ÁLTALÁNOS TÁJÉKOZTATÓ A személyiség mûködése,

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Infóka verseny. 1. Feladat. Számok 25 pont

Infóka verseny. 1. Feladat. Számok 25 pont Infóka verseny megoldása 1. Feladat. Számok 25 pont Pistike és Gyurika egy olyan játékot játszik, amelyben prímszámokat kell mondjanak. Az nyer, aki leghamarabb ér el 1000 fölé. Mindkét gyerek törekedik

Részletesebben

Éves továbbképzés az elektronikus információs rendszer biztonságáért felelős személy számára

Éves továbbképzés az elektronikus információs rendszer biztonságáért felelős személy számára Nemzeti Közszolgálati Egyetem Vezető- és Továbbképzési Intézet BALOGH ZSOLT GYÖRGY BESZÉDES ÁRPÁD BÉRCZES ATTILA GERGELY TAMÁS LEITOLD FERENC PETHŐ ATTILA SZŐKE GERGELY LÁSZLÓ Éves továbbképzés az elektronikus

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

INFORMATIKAI BIZTONSÁG ALAPJAI

INFORMATIKAI BIZTONSÁG ALAPJAI INFORMATIKAI BIZTONSÁG ALAPJAI 5. előadás Göcs László mérnöktanár Pallasz Athéné Egyetem GAMF Műszaki és Informatikai Kar Informatika Tanszék 2016-17. 1. félév Titkosítás, hitelesítés Titkosítás A titkosítás

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

ERLANG PROGRAMOK TRANSZFORMÁCI CIÓJA ERLANG

ERLANG PROGRAMOK TRANSZFORMÁCI CIÓJA ERLANG KLIENS-SZERVER SZERVER ALAPÚ ERLANG PROGRAMOK TRANSZFORMÁCI CIÓJA ERLANG OTP SÉMÁRAS Király Roland kiralyroland@inf.elte.hu Támogatók: - GVOP-3.2.2 3.2.2-2004-07-0005/3.00005/3.0 ELTE IKKK - Ericsson Hungary

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott

Részletesebben

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK XII. Bolyai Konferencia Bodnár József Eötvös Collegium II. matematikus, ELTE TTK A legegyszerűbb titkosírás: a betűcsere A B C D E... C A B E D... AD --> CE Állandó helyettesítési séma Váltogatott kulcs:

Részletesebben

A relációelmélet alapjai

A relációelmélet alapjai A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Kriptográfia. Smidla József Pannon Egyetem, Műszaki Informatikai Kar. Veszprém, augusztus 21.

Kriptográfia. Smidla József Pannon Egyetem, Műszaki Informatikai Kar. Veszprém, augusztus 21. Smidla József Pannon Egyetem, Műszaki Informatikai Kar Veszprém, 2012. augusztus 21. Szteganográfia Ógörög eredetű: leplezni Az információt nem titkosítják, hanem elrejtik Hérodotosz: Demeratus figyelmeztette

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Szakmai zárójelentés

Szakmai zárójelentés Szakmai zárójelentés A csoporttechnológia (Group Technology = GT) elvi és módszertani alapjaihoz, valamint a kapcsolódó módszerek informatikai alkalmazásaihoz kötődő kutatómunkával a Miskolci Egyetem Alkalmazott

Részletesebben

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI Takács Viola Iskolakultúra könyvek 20. Sorozatszerkesztõ: Géczi János Szerkesztõ: Sz. Molnár Szilvia BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI TAKÁCS VIOLA iskolakultúra

Részletesebben

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

Bírálat. Farkas András

Bírálat. Farkas András Bírálat Farkas András Közlekedési rendszerek fejlesztése és értékelése többtényezős döntési eljárások felhasználásával (Appraisal and Development of Transportation Systems Using Multiple Criteria Decision

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: isszalépéses keresés TÁMOP-4.2.3.-12/1/KON A visszalépéses keresés (backtrack) a problémamegoldás igen széles területén alkalmazható

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Latin négyzetek alkalmazásai a titkosításban

Latin négyzetek alkalmazásai a titkosításban Latin négyzetek alkalmazásai a titkosításban DÉNES TAMÁS tdenest@freemail.hu Kulcsszavak: korai módszerek, latin négyzetek tulajdonságai, kódfejtés A rejtjelzô rács figyelemreméltó divattá vált évszázadokon

Részletesebben

hatására hátra lép x egységgel a toll

hatására hátra lép x egységgel a toll Ciklusszervező utasítások minden programozási nyelvben léteznek, így például a LOGO-ban is. LOGO nyelven, (vagy legalábbis LOGO-szerű nyelven) írt programok gyakran szerepelnek az iskola számítástechnikai

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Adatbázis rendszerek 2. előadás. Relációs algebra

Adatbázis rendszerek 2. előadás. Relációs algebra Adatbázis rendszerek. előadás Relációs algebra Molnár Bence Szerkesztette: Koppányi Zoltán Bevezetés Relációs algebra általában A relációs algebra néhány tulajdonsága: Matematikailag jól definiált Halmazelméletből

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Szöveges fájl kezelése (a Caesar-kód feltörése) A kód feltörésének statisztikai háttere

Szöveges fájl kezelése (a Caesar-kód feltörése) A kód feltörésének statisztikai háttere Szöveges fájl kezelése (a Caesar-kód feltörése) A kód feltörésének statisztikai háttere Hosszabb szöveg esetén a Caesar-kód feltörése a statisztika módszereivel könnyen megoldható. Az egyes betűk előfordulásának

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Ajánlott elemi feladatok az AAO tárgyhoz 41 feladat

Ajánlott elemi feladatok az AAO tárgyhoz 41 feladat Ajánlott elemi feladatok az AAO tárgyhoz 41 feladat Ha a feladat értelmezésével kapcsolatban probléma merül fel a vizsgán, meg kell kérdezni a vizsgáztató tanárt a megoldás megkezdés eltt. A feladatokat

Részletesebben

Aszimmetrikus kriptorendszerek

Aszimmetrikus kriptorendszerek Budapesti Mszaki Fiskola Kandó Kálmán Villamosmérnöki Fiskolai Kara Számítógéptechnikai Intézet - Székesfehérvár Aszimmetrikus kriptorendszerek Segédlet az Információtechnika c. tárgy Kriptográfia fejezetéhez

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Eszterházy Károly Főiskola Matematikai és Informatikai Intézet. Kriptográfia. Liptai Kálmán. Eger, 2011.

Eszterházy Károly Főiskola Matematikai és Informatikai Intézet. Kriptográfia. Liptai Kálmán. Eger, 2011. Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Kriptográfia Liptai Kálmán Eger, 2011. Tartalomjegyzék 1. Köszönetnyilvánítás 4 2. Történeti áttekintés 5 2.1. Bevezetés.............................

Részletesebben