MÛSZAKI INFORMÁCIÓK. Érzékelési távolság

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MÛSZAKI INFORMÁCIÓK. Érzékelési távolság"

Átírás

1 Adó-vevõs fotokapcsolók A mûködés aelve: 1. Az adó-vevõs érzékelõ két részbõl áll, egy adóból (fénykibocsátó), és egy vevõbõl (fényelnyelõ). Egy fénysugár kapcsolja össze a két eszközt egymással. vevõ : 6. Az adó-vevõs fotokapcsolók érzékelési a az a maximális ami az adó és a vevõ között lehetséges stabil mûködés mellett. Ez a jellemzõ az érzékelõ típuscsaládjától függ, mely néhány mm-tõl 50 m-ig terjedhet. 10. Az egyik pár megcserélésével a két adó illetve a két vevõ lesz egymással szemben, így az egyes adók csak a saját vevõjüket tudják aktív álotba hozni. adó 1 vevõ 1 adó vevõ 2 adó 2 2. A céltárgy behaladása az érzékelt zónába megszakítja az adó és a vevõ között a kapcsolatot: ha ez bekövetkezik, akkor a tárgyat érzékeli a fotokapcsoló. adó vevõ 3. Ezt az érzékelési módszert nem befolyásolja a céltárgy felületének színe, mintája, esetleges csillogása. A tárgy méretét ettõl függetlenül figyelembe kell venni. (Az adó-vevõs fotokapcsolókkal érzékelhetõ minimum tárgymérettel kapcsolatban vegye fel a kapcsolatot a helyi képviselet munkatársaival). Néhány adó-vevõ fotokapcsoló érzékenységállítási lehetõséggel van felszerelve a különbözõ méretû tárgyak érzékelhetõségének érdekében. Egy vonalba állítás: 7. Az adó-vevõs fotokapcsolók akkor mûködnek precízen, ha az adó és a vevõ egy vonalban vannak, mivel a lencse által fókuszált fénysugár oldal irányú szóródása kicsi, így jól használható pozícionálásra. Kölcsönös interferencia: 8. Ha két pár adó-vevõs fotokapcsolót használunk egymás közvetlen közelében, akkor a fénysugár oldalszóródása mindkét vevõ egységet aktiválni tudja. (Ezt mutatja az ábra felnagyítva, a gyakorlatban, a fény oldalszóródása jelentõsen kisebb.) 11. Így is figyelemmel kell lenni, ha fényes felületû tárgyat szeretnénk érzékelni. Ha a két érzékelõ túl közel van az érzékelt tárgyhoz, akkor az adó által kibocsátott fény az érzékelendõ tárgy felületérõl visszatükrözõdhet a másik érzékelõ pár vevõjére, így aktiválva annak kimenetét. vevõ 1 adó 2 adó 1 vevõ 2 Az érzékelõ felszerelése: 12. Ha az érzékelõ közelében fényes, csillogó felület van, akkor elõfordulhat, hogy az érzékelendõ tárgy nem tudja megszakítani a fénysugarat, ugyanis a csillogó felületrõl tükrözõdve a fénysugár el tud jutni a az adóból a vevõbe. Mûködési módok: 4. Fényre be üzemmód: Az érzékelõ kimenete aktív álotba kerül, ha a fénysugár nincs megszakítva. vevõ 9. Ha a céltárgy megszakítja az adó 2 és a vevõ 2 közötti fénysugarat, akkor az adó 1 fénysugara még mindig aktív álotban tudja tartani a vevõ 2-t. Így nem lehet a tárgyat eredményesen érzékelni. csillogó felület 13. Ha ez elõfordul, akkor az érzékelõk helyzetét úgy kell módosítani, hogy azok messzebb kerüljenek a csillogó felülettõl. Ha pedig ez nem lehetséges akkor a csillogó felületet kell bevonni valamilyen matt anyaggal. adó 5. Fényre ki üzemmód: Az érzékelõ kimenete aktív álotba kerül, ha a fénysugarat megszakítják. vevõ adó 1 adó 2 vevõ 1 vevõ 2 csillogó felület adó i

2 Prizmás fotokapcsolók A mûködés aelve: 1. Az adó-vevõs fotokapcsolóktól eltérõen, a prizmás kivitelnél az adó és a vevõ egy házban helyezkednek el. Az adó által kibocsátott fénysugár a prizma segítségével visszatükrözve jut el a vevõ egységbe. : 6. Az érzékelési az a maximális, amely az érzékelõ és a prizma között lehetséges, stabil mûködés mellett. Prizma méret és pozíció: 12. A prizma mérete is befolyással van az érzékelési pozícióra és az érzékelési ra. Kisebb prizma használata esetén a fénysugár is szûkül. Továbbá kis prizma használata esetén a holt tér megnõ a szög szûkülése következtében. A prizma felületének csökkentésével együtt jár még az érzékelési csökkenése, mivel a kisebb felület kevesebb fényt tud visszaverni. 2. Az adó-vevõs érzékelõkhöz hasonlóan a prizmás érzékelõk is úgy érzékelik a tárgyat, ha az megszakítja a fény útját. Ezen érzékelési mód nagy elõnye az adó-vevõssel szemben, hogy csak egy helyre kell a vezetékeket bekötni. Egy vonalba állítás: 7. Mivel a prizma veri vissza a fényt, az érzékelõ és a prizma egyvonalba állítása egyszerû. (A fénysugár oldalszóródása a képen látható felnagyítva.) Holtsáv Holtsáv Fénysugár átmérõ Fénysugár átmérõ 3. Az érzékelendõ tárgy megszakítja a fény útját, így az érzékelést nem befolyásolja a tárgy formája, felületi színe, minõsége. 8. Az érzékelési valamelyest kisebb, mint a teljes, ugyanis ezen érzékelési mód rendelkezik egy úgynevezett holt sávval, mely az érzékelõ elõjánál kezdõdik. Ez a jelenség az adó és vevõ egység közötti ból illetve a prizmáról visszaverõdõ fény beesési szögébõl adódik. Prizmás fotokapcsoló használata esetén az érzékelendõ tárgy pozíciója hatással van az érzékelõ mûködésére. Holtsáv Fénysugár átmérõ Polarizált fény érzékelõk. 13. Ha azonban egy csillogó tárgy halad el az érzékelõ elõtt, akkor az is vissza tudja verni a fényt a vevõ egységbe. Amennyiben az érzékelendõ tárgy nem töri meg a fénysugarat (mivel visszaveri) az érzékelõ nem tudja hatékonyan észlelni a tárgyat. Erre a problémára a fény polarizálás elve nyújt megoldást. Mûködési módok: 4. Fényre be üzemmód: Az érzékelõ kimenete aktív, ha a fénysugár visszajut az érzékelõ vevõ egységébe, azaz nincs tárgy az érzékelõ és a prizma között. 5. Fényre ki üzemmód: Az érzékelõ kimenete aktív, ha a fénysugár nem jut vissza az érzékelõ vevõ egységébe, azaz egy tárgy van az érzékelõ és a prizma között. Holtsáv 9. Ebben a pozícióban, közel az érzékelõhöz, a tárgy eltakarja az összes visszavert fénysugarat. Prizma 10. Ilyen helyzetben, közel a prizmához, az érzékelõ vevõ egységébe a kibocsátott fény kb. 75%-a jut vissza. Prizma 11. Ha a tárgy félúton van az érzékelõ és a prizma között, akkor a tárgy a kibocsátott fény kb. 50%-át takarja le. 14. Leegyszerûsítve a fénysugár két komponensbõl áll: egy vízszintes és egy függõleges fényhullámból. (Ez az egyszerûsített forma látható a képen.) A két fényhullám 90 -os szögben áll egymáshoz képest. Vízszintes Függõleges Fénysugár 15. Polárszûrõ használatával megoldható, hogy a két fényhullámból csak az egyik jusson ki a fotokapcsolóból. Jelen esetben ez a vízszintes fénysugár. Prizma A prizmás fotokapcsolók legnagyobb része rendelkezik egy érzékenység beállítási lehetõséggel, mellyel a kapcsolási pont komparálási szintjét lehet beállítani. Kijutó fénysugár ii

3 16. A fényforrás fénye a megszokott módon visszaverõdik a prizma felületérõl a vevõ egységbe. Amint az ábrán látható a viszszaverõdött fénysugár más, mint a kibocsátott, ugyanis most már nem vízszintes, hanem függõleges. A vevõ egység elõtt elhelyezkedõ függõleges szûrõn keresztül csak ilyen irányú fényhullám képes bejutni a fotokapcsoló vevõjébe. Ha a megfelelõ irányú fényhullám érkezik viszsza a vevõ egységbe, akkor a fotokapcsoló tudja, hogy a fény útja megfelelõ. 17. A fényhullámon a prizma felülete 90 -ot fordít. Egy prizma felülete, rengeteg miniatûr prizmából áll. Minden miniatûr prizma felülete három tükörbõl tevõdik össze, amelyek visszaverik a rájuk esett fénysugarat. A visszavert fényhullámot 3-szor (tripla prizma) forgatja el 90 -kal. mint a kibocsátott, így az nem tud bejutni a fotokapcsoló vevõ egységébe. Így a fényes felületû tárgy is megszakítja a fény útját az adó és a vevõ egység között, ennél fogva tudja a fotokapcsoló a tárgy jelenlétét észlelni. 18. Tehát polárszûrõ használata esetén egy fényes felületû az érzékelõ és a prizma közé behelyezett tárgy felületérõl visszaverõdött fényhullám ugyanolyan irányú, Tárgyreflexiós fotokapcsolók A mûködés aelve: 1. A tárgyreflexiós fotokapcsolók esetében az adó és a vevõ egy házban van elhelyezve, ugyanúgy, mint a prizmás kivitelnél. érzékelõtõl, akkor egyre kevesebb fény verõdik vissza az érzékelõ vevõ egységébe, míg elérjük azt a ot, ahonnan nem verõdik elég fény vissza, és a tárgyat nem lehet érzékelni. Fekete 2. Ennél az érzékelési módnál nincs szükség prizmára, a fénysugár az érzékelendõ tárgy felületérõl verõdik vissza a vevõ részbe. Nagy elõnye a másik két érzékelõfajtával szemben, hogy csak egy egység felszerelésére, vezetékezésére van szükség, ami miatt nagyon kedvelt a felhasználók körében. Mûködési módok: 3. Fényre be üzemmód: Az érzékelõ kimenete aktív, ha az érzékelendõ tárgy felületérõl visszaverõdik a fénysugár a vevõ egységbe. 4. Fényre ki üzemmód: Az érzékelõ kimenete aktív, ha a kibocsátott fénysugár nem verõdik vissza a vevõ egységbe. : 5. Tárgyreflexiós fotokapcsolóknál az érzékelési az a maximális, amely ról a fotokapcsoló egy szabványos fehér ot (szabványos Kodak fehér ) stabilan érzékel. Ennél közelebb elhelyezkedõ tárgyról több fény verõdik vissza. Ha távolítjuk a tárgyat az 6. A valóságban azonban az érzékelendõ tárgy nem mindig fehér, hanem valamilyen színû, így ezt figyelembe kell venni tárgyreflexiós fotokapcsoló használata esetén. Ha a maximális érzékelési ban elhelyezkedõ szabványos fehér ot feketével helyettesítjük, akkor a normál tárgyreflexiós fotokapcsoló nem lesz képes annak érzékelésére, mivel a fekete szín elnyeli a fényt. Fény érzékelõ elem Fény kibocsátó elem (LED) tartomány 7. Fekete tárgy érzékelése esetén le kell csökkenteni a ot az érzékelõ és az érzékelendõ tárgy között. A tárgyreflexiós fotokapcsoló mûködését befolyásolja az érzékelendõ tárgy színe, ezért a készülékekben található egy érzékenység állító potenciométer. Ezzel lehet a fotokapcsoló érzékelését hozzáigazítani az érzékelendõ tárgy színéhez illetve ához. Fekete 8. Ha az érzékenységet állítjuk, akkor azt a maximális pontot változtatjuk, ahonnan az érzékelõ mûködik. Ha a potenciométert teljesen eltekerjük az óra járásával megegyezõ irányba, akkor a maximális érzéke-lési a lehetõ legnagyobb, ha az óra járásával ellentétes irányba tekerjük, akkor az érzékelõnek több fényre van szüksége a kapcsoláshoz. Ha a tárgyat közelebb visszük az érzékelõhöz akkor arról több fény verõdik vissza a vevõ egységbe, így az érzékelõ el tudja érni a kapcsolási pontot. Potenciométer a szenzoron Potenciométer a szenzoron 9. Az érzékelendõ tárgy színén kívül a tárgyreflexiós fotokapcsolókat befolyásolja az érzékelendõ tárgy anyaga, mérete és formája is. Ugyanis ezek befolyásolják az érzékelõ vevõ egységébe visszavert fény intenzitását. Kisebb tárgynak kisebb a fényvisszaverõ felülete is. Ha a felület egyenetlen, akkor a fény nagy része nem az érzékelõ irányába verõdik vissza. Ez a jelenség elõfordulhat szögletes tárgy esetében is. iii

4 Háttérelnyomás: 10. Néhány tárgyreflexiós érzékelési alkalmazás esetén az érzékelendõ tárgy mögött elhelyezkedõ háttérfelület, a róla visszaverõdõ fény segítségével mûködtetni tudja a fotokapcsolót. 11. Ha az érzékelendõ tárgy és a háttér közötti megfelelõ, akkor a hibás mûködés az érzékenységállító potenciométerrel kiküszöbölhetõ. Potenciométer a szenzoron beállítás LED 14. Ha fény a háttérrõl verõdik vissza vagy a tárgyat visszük távolabb az érzékelõtõl, például az A pontba, akkor a vevõ egység más részére fog beesni a fénysugár. Ilyenkor az F érzékeli a fényt az N pedig nem, amibõl az érzékelõ meg tudja álítani, hogy a tárgy nincs a megfelelõ pozícióban, azaz nincs jelenlévõ tárgy. Ily módon küszöböli ki az érzékelõ a háttérfelület érzékelést befolyásoló hatását. Ezt a mûködési módot hívják háttérelnyomásos érzékelési módnak. beállítás LED Háttér- és elõtérelnyomásos érzékelõk: 17. Ezek az érzékelõk (E3S-CL1 / E3S-CL2) némiképp más módon érzékelik az érzékelendõ tárgyat. Ezen érzékelõk képesek a háttér befolyásoló hatásának kiküszöbölése mellett érzékelni a tárgyat, úgy, hogy figyelmen kívül hagyják az érzékelõhöz túl közel elhelyezkedõ tárgyat is. Az érzékelõ mecha-nikus beállítási lehetõséggel rendelkezik, melyet az ábra szemléltet. beállíás Vevõ Adó tartomány 18. Az adó és vevõ egység együttes mozgatása esetén a fénysugarak más mellett fognak találkozni. A mechanikai beállítási lehetõség és az érzékenység-beállítási funkció kombinálásával lehet beállítani pontosan azt a pontot, ahol a fotokapcsoló érzékelni fogja a tárgyat. 12. Néha azonban a a tárgy és a háttér között túl kicsi, ami miatt a normál tárgyreflexiós fotokapcsolók megfelelõ beállítása nem lehetséges. A probléma megoldása érdekében ilyenkor egy tökéletesebb tárgyreflexiós fotokapcsolót használunk. A háttérelnyomásos érzékelõk kombinálják a mechanikai és az elektromos mûködésmódot, így küszöbölve ki a háttérfelületrõl visszaverõdõ fénysugarakat. 15. Amikor az érzékelendõ tárgyat az érzékelõhöz közelítjük, például a B pontba, akkor a tárgyról visszaverõdõ fény az N elemre fog beesni, és nem éri az F elemet. Ebben az esetben az érzékelõ érzékeli a tárgy jelenlétét, a kimenet aktív álotban marad, mivel a tárgy a beállított érzékelési tartományon belül helyezkedik el. beállítás LED Érzékenység beállítás beállítás Túl közel Tárgy a megfelelõ ban Beálított Túl távol 16. Ezen mûködésmód lényege, hogy nem viszszavert fény intenzitást mér, hanem a viszszaverõdõ fény pozícióját érzékeli. Ennek köszönhetõen ezt az érzékelési módot nem befolyásolják az érzékelendõ tárgy színe, alakja, felületi minõsége tulajdonságok. Beálított 13. Az ebben az érzékelõben elhelyezkedõ vevõ egységet mechanikailag mozgatni lehet. Az érzékelés itt a háromszögtani iránykeresés elvén aul. Ha az érzékelendõ tárgy a beállított érzékelési ban helyezkedik el az érzékelõtõl, akkor a visszaverõdõ fénysugár azonos mértékben éri az N és F elemeket. Mérésnél az érzékelõ az N és F elemekre beesõ fényt hasonlítja össze. Száloptikás fotokapcsolók A mûködés aelve: 1. A száloptikás fotokapcsolók két fõ részbõl állnak: az erõsítõbõl illetve az érzékelõ fej-bõl. Az erõsítõ tartalmazza az adó (fényforrás) és a vevõ egységet, a járulékos elektronikával együtt, míg az optikai szál továbbítja a fényt az érzékelõ fejbe. 2. A fényforrás (egy LED) által kibocsátott fénysugarak továbbítódnak az optikai szálban, újra meg újra tükrözõdve a kábelér és a kábelköpeny között. Amikor eléri a fénysugár a kábel végét, ott szétszóródva kilép belõle. Köpeny 3. A kilépõ fény oldalszóródása és formája nagyon hasonlít egy normál érzékelõbõl kilépõ fényére, csak kisebb méretû. A kisebb fényforrás és lencse kisebb érzékelési területet illetve ot eredményez. Szál iv

5 Száloptikák fajtái: 4. Az optikai szálakat két fõ csoportra oszthatjuk: adó-vevõs illetve tárgyreflexiós (azonban létezik néhány prizmás kivitel is). Mûködésük megegyezik a már említett fotokapcsolók mûködésével. 5. Különbözõ szerkezetû optikai szálak léteznek: Normál optikai szál: Az optikai szálak leginkább használt kivitele (egyetlen optikai szál védõburkolattal). A szál rendszerint mûanyagból készül, 0,5 1 mm vastag, és mûanyagból készül a védõburkolat is. Optikai szál Gyufaszál Védõburkolat Koaxiális optikai szál: Ez egy nagyobb pontosságú kivitele az optikai szálaknak. A középsõ kábelér az adó, a körülötte elhelyezkedõ szálak pedig a vevõk. Nagyobb ismétlési pontosságot ad, bármely irányból is érkezik az érzékelendõ tárgy. Többeres optikai szál: Sok kis méretû szálból álló optikai szál. Eredményül jobb hajlékonyságot kapunk (E32-R típusok). A szó szoros értelmében csomó köthetõ rájuk. Optikai szálak A száloptikás érzékelõk használata: 6. A száloptikás fotokapcsolók fõ elõnye a kis méret. Ennek köszönhetõen olyan helyeken is elhelyezhetõk, ahova a megszokott érzékelõk nem férnek be. Néhány optikai szál 0,8 mm-es átmérõjû érzékelõ fejjel rendelkezik. Azonban a kis méret következményeként a mechanikai tûrõképessége lecsökken a korábban tárgyalt érzékelõkkel szemben. 0,8 mm Köpeny 7. Az érzékelõfejek rendkívüli kompaktságának köszönhetõen ideálisak kis méretû tárgyak stabil érzékelésére. 8. A száloptikás fotokapcsolók érzékelõ fejei elhelyezhetõk olyan veszélyes környezetben is, ahova a megszokott érzékelõk fel-szerelése kockázatos vagy lehetetlen len-ne. Ez annak köszönhetõ, hogy az optikai szálban illetve az érzékelõ fejben elektromos áram egyáltalán nem folyik, így teljesen érzéketlenek a külsõ elektromos za-jokra is (megfelelõ pozícióban felszerelt erõsítõ esetén). Tömítés Céltárgy VESZÉLYES TERÜLET BIZTONSÁGOS TERÜLET Magasabb hõmérsékletû terület esetén (max. 300 C-ig) a mûanyag optikai szálak helyett üvegszálakat kell használni. 9. Rendkívül kis tárgyak érzékelése esetén a szálakhoz lencsét kell csatlakoztatni (külön rendelendõ tartozék). E lencsék segítségével akár 0,5 mm-es tárgy érzékelése is lehetséges. Száloptika (E32-D32) Lencse (E39-F3A) Burkolat Csatlakozás Vevõk Adó Színes jelölés és RGB színérzékelõk A mûködés aelve: 1. A jelölésérzékelõk a tárgyreflexiós érzékelõk egy olyan fajtája, melyet jelölések érzékelésére terveztek a jelölés, illetve a háttér kontraszt-különbségének aján. Háttér Jelölés 2. Az érzékelõ lencséjének elrendezése kissé különbözik az általános tárgyreflexiós fotokapcsolók lencséinek elrendezésétõl. Ez a különbség a fókuszálásban nyilvánul meg. Az erõsítõ egység is különbözik a megszokottól az érzékenységben, a színek miatt. Fényforrás Vevõ tartomány 3. A jelölésérzékelõk érzékenységét is befolyásolja a használt fényforrás. A piros fényforrás (amelyet a legtöbb tárgyreflexiós fotokapcsoló használ) elfogadható érzékelési ot biztosít, de csak meghatározott színkombinációk esetén használható. Zöld fényforrás használata esetén az érzékelési lerövidül, viszont megnõ az érzékenység az ugyanolyan ban elhelyezkedõ színekre, kedvezõbb a hasonló színek érzékelésére (kisebb kontraszt a jelölés és a háttér között) mm 10 mm v

6 4. A táblázat mutatja, hogy milyen színû fényforrás a legmegfelelõbb az adott színpár érzékeléséhez. Ha a háttér színe hasonlít a jelölés színéhez, akkor a jelölés érzékelése (érzékenység-beállítással) meglehetõsen nehézkes, hacsak nem lehetetlen, mivel a színek szürkeségi árnyalatának különbsége jelentéktelen. Ebben az esetben az érzékelõk egy másik fajtáját kell használnunk: az RGB színérzékelõt. Piros vagy zöld LED Zöld LED Piros LED Nem megfelelõ kombináció Jelölés Háttér Sárga Világos narancs Sárgászöld Narancssárga Piros Ciánkék Magenta Kék Lila Zöld Fekete Sárga Világos narancs Sárgászöld Narancssárga Piros Ciánkék Magenta Kék Lila Zöld Fekete 5. Az eddig említett tárgyreflexiós fotokapcsolók a visszavert fény mennyiségével dolgoztak, és nem a tényleges fényösszetevõkkel. A fény valójában rengeteg összetevõbõl áll, a látható fény csak egy kis része ezeknek. Röntgen Ultraibolya (UV) Látható fény Infravörös közeli Zöld Sárga Piros LED Infravörös LED 6. Egy prizma segítségével lehet bemutatni, hogy a fehér fény a valóságban sok különbözõ szín összessége. Napsütésnél a fény egy prizmán keresztülvezetve 7 öszszetevõre bomlik: piros, narancs, sárga, zöld, kék, indigókék, ibolya. fénysugár Prizma 7. Amikor egy színt nézünk, akkor valójában egy szín által okozott tükrözõdést látunk. Ha nézünk egy tárgyat, amit kéknek érzékelünk, akkor valójában az történik, hogy a tárgy felületérõl a fénynek a kék összetevõje visszaverõdik, a többi öszszetevõ pedig elnyelésre kerül. Ugyanez történik a többi szín esetében is. A valóságban ez persze nem ilyen egyszerû, ugyanis különbözõ mértékben verõdnek vissza illetve kerülnek elnyelésre a fény különbözõ összetevõi, ennek köszönhetõen lát az emberi szem több millió különbözõ színt. fénysugár Kék fénysugár a 7 összetevõ Piros 8. Valójában minden szín összerakható 3 összetevõbõl: Piros (R-red), Zöld (Ggreen), Kék (B-blue). Amennyiben ezt a 3 összetevõt összegezzük, akkor a fehér szín látszik. Ezt könnyen lehet szimulálni egy gyorsan pörgõ lemezzel, melyre a 3 szín van ráfestve. 9. Pontos színérzékeléshez a visszatükrözõdött fény összetevõit kell kiértékelni. Elõször is azonban szükségünk van egy pontos, természetes fényt kibocsátó eszközre. Az E3MC érzékelõk 3 fényforrással rendelkeznek (piros, zöld, kék LED). A kibocsátott fény a lencsék után az érzékelendõ felületrõl verõdik vissza. Az érzékelendõ tárgy felületétõl függ, hogy a kibocsátott fény mely összetevõinek mekkora része kerül elnyelésre, illetve visszaverõdésre. Fotodióda Idõosztásos fénysugár C üzemmód: 10. A visszaverõdött fényt érzékeli a fotódióda, és kiértékeli az R, G, B tartalmát. Az érzékelõ mûködése a kezelõ által kiválasztott mûködési üzemmódtól függ. C üzemmódban az összetevõk egymáshoz képesti arányát vizsgálja az érzékelõ. Ez a mód kevésbé érzékeny az érzékelési ra, ugyanis az összetevõk arányát nem befolyásolja a, csak az intenzitását. Ily módon ad ez az üzemmód stabil érzékelést kissé változó ú tárgyak esetében is. I üzemmód: 11. I üzemmódban a színek apró különbségének érzékelése is lehetséges. Eben az üzemmódban az érzékelõ a visszaverõdött RGB összetevõk intenzitását figyeli. Ezen üzemmód használata esetén tehát kisebb színkülönbségeket is jól lehet érzékelni, viszont a C üzemmóddal ellentétben nagyon érzékeny az érzékelendõ tárgy mechanikai pozíciójára. Beállított érték Küszöbérték Mindhárom szín küszöbértéke beállítható 12. Bármelyik módszert is alkalmazzuk, az érzékelõ használata nem könnyû. A TEACH funkció használata szükséges az érzékelendõ szín betanításához. A zöld kijelzõ LED-soron látható az azonosság a pillanatnyilag visszaverõdött fény illetve a betanított fény között, a piros LED-soron pedig a komparálási szint, melyet ADJ módban tudunk beállítani a select nyomógombokkal. A kimenet aktív álotba kerül, ha a pillanatnyilag visszaverõdött fényt visszajelzõ zöld LED-sor a beállított komparálási szint fölé megy. vi

7 Mérés mérõk 1. Az elmozdulásérzékelõk leggyakrabban LED helyett lézert használnak fényforráskén. Ez nagyon precíz fényforrást biztosít. A fényforrást egy lencse segítségével fókuszálják és vetítik ki az érzékelendõ tárgyra. A fény visszatükrözõdik a tárgyról egy pozícióérzékelõ felületre. Amikor az érzékelendõ tárgyat meszszebb vagy közelebb visszük az érzékelõhöz, a visszaverõdõ fénysugár szöge megváltozik, ezáltal a máshova esik be a pozícióérzékelõ felületre. Nagyon precíz lézer fényforrás használata esetén a visszaverõdõ fénysugár pozíciója nagyon pontosan meghatározható, ebbõl adódóan nagyon kis elmozdulás is jól érzékelhetõ vele. A mérési eredményt egy analóg kimeneten továbbítja a feldolgozó egységnek. Elmozdulás Lézer Céltárgy 2. Tükrös vagy fényes felületû tárgyak elmozdulásának mérését a legtöbb lézeres érzékelõ nem tudja stabilan elvégezni. Ilyen felületek elmozdulásának méréséhez egy másik a Z4M-N30V típusú érzékelõt kell használni. Ez az eszköz tökéletesen tudja érzékelni a tükrözõdõ felületekrõl visszaverõdõ fénysugarat. Fényes felület Pozícióérzékelõ felület (PSD) 3. A lézeres érzékelõk egy másik típusával tárgyak méretét lehet érzékelni, a fénysugárból kitakart %-os értékben. Az adó egy lézer fénysugarat hoz létre az adó és a vevõ között. A vevõ rendelkezik egy 10 mm magas réssel. A rés mögött a vevõben egy CCD kamera van elhelyezve, ami méri a beérkezõ fénysugár magasságát. Amennyiben az adó és a vevõ között nincs érzékelendõ tárgy, akkor a kimenet a beállított értékre áll be. Ha egy tárgy kerül az érzékelõpár közé, akkor a kimenet értéke megváltozik. Az érzékelõ kimenete egy lineáris analóg kimenet, mely 0 100%-ig ad ki analóg jelet a fénysugár kitakarásának függvényében. Alkalmazások: 4. A lézeres érzékelõkkel kis elmozdulásokat is lehet mérni, ezáltal sok olyan területen használhatók, ahol a termék vizsgálata szükséges. Két szenzor segítségével mérhetõ a gyártott munkadarab vastagsága. A két érzékelõ méri és öszszegzi a két ot. A pontosan pozícionált érzékelõk egymástól függetlenül mérik meg a ot, így a két mért érték ismeretében könnyen kiszámolható a munkadarab vastagsága. 5. Lemezvastagság is mérhetõ egy érzékelõ használatával. A szenzort meghatározott ban kell rögzíteni. Az érzékelõ analóg kimenete a lemez vastagságának függvényében változik. Beépítés: 6. A lézeres érzékelõ mérésre való használata esetén a mérési pontosságra nagy befolyással van az érzékelõ felhelyezése. A lézeres érzékelõk felbontása és a mérés eredménye általában mikronos nagyságrendû, de mi az a mikron? A mikron egy méternek a milliomod része, azaz 0,001 mm. A lézeres mérõk általában 15 mm-es felbontással tudnak dolgozni. Ha ilyen nagy pontosságra van szükség, akkor nagyon fontos ügyelni a rögzítés minõségére, és a mérést mindenképpen fix referenciaponthoz kell elvégezni. Vegyük azt a példát, amikor egy lemez vastagságát szeretnénk mérni, amely egy szállítószalagon érkezik. Feltételezzük, hogy 1/10 mm-es felbontással szeretnénk dolgozni. Amennyiben az érzékelõ közel helyezkedik el a szállítószalaghoz, amelynek görgõi kissé excentrikusak, akkor a mérendõ lemez fel le fog ingadozni. Sõt, ha a mozgás csak 1 mm, akkor is ez még 1 nagyságrenddel nagyobb, mint amilyen felbontással mérni szeretnénk. Így a mérés ebben az alkalmazásban értelmetlen lehet. Ugyancsak értelmetlen lehet a mérés abban az esetben, ha az érzékelõ felrögzítése nem megfelelõ, azaz a mérés közben a rögzítõ képes vibrálni vagy mozogni. Ebben az esetben a mért minden pillanatban változna, még akkor is, ha a mérendõ munkadarab állandó (fix) ban helyezkedik el az érzékelõtõl. Felbontás és linearitás: 7. Álló munkadarab mérése esetén az analóg kimeneti feszültség kissé ingadozhat a belsõ zaj következtében. Az ingadozás nagyságát hívjuk felbontásnak. Minél kisebb az ingadozás, annál nagyobb a mérési felbontás. Feszültség 8. Az érzékelõ analóg kimenete arányosan növekszik a mért függvényében. Ideális esetben ez egy egyenes vonallal ábrázolható. A valós mérés esetében az aktuális mérés nagyon kis mértékben tér el az egyenes vonaltól. A linearitási tényezõ utal a tolerancia határaira az ideális egyeneshez képest. Ez százalékosan van meghatározva a teljes mérési tartományra vonatkoztatva. Feszültség aktuális mérés értéke Linearitás ideális egyenes Felbontás Szállítószalag görgõk vii

8 Induktív közelítéskapcsolók A mûködés aelve 1. Az induktív közelítéskapcsoló egy az érzékelõ fejben elhelyezett ferritmag köré csévélt tekercsbõl áll. A magas frekvencia alkalmazása egy oszcilláló mágneses mezõt hoz létre az érzékelõ fej körül. A mágneses mezõt egy belsõ áramkör figyeli. Amikor egy fémtárgy érkezik a mágneses mezõbe, akkor a mágneses mezõ elektromos áramot indukál a céltárgyban. Ahogy közeledik az érzékelendõ tárgy az érzékelõ homlokfelületéhez, úgy nõ az indukált áram értéke. Ez az áram transzformátor effektust eredményez. Ennek eredményeként a tekercsben egyaránt csökken az energia és az oszcilláció is. Ahogy a tárgy közeledik, az oszcilláció végül abbamarad. A belsõ áramkör figyeli az oszcilláció abbamaradását, és ekkor bekapcsolja a kimenetet. Mivel a mûködés elektromágneses mezõn aul, a környezeti hatások kevésbé befolyásolják a közelítéskapcsoló mûködését a fotokapcsolókhoz képest. A víz, az olaj és egyéb szennyezõdések általában nincs befolyással a közelítéskapcsoló mûködésére, ezáltal hosszabb ideig képes szolgálni a gép zavartalan mûködését. Tekercs Belsõ áramkör Síkbaépíthetõ érzékelõk: 2. A síkbaépíthetõ érzékelõk a ferritmag köré helyezett árnyékoló lemezzel készülnek. Ez azt eredményezi, hogy csökken az elektromágnes mezõ az érzékelõ fej elõtt. Az érzékelõ a fém felülettel egy szintben rögzíthetõ. Ez mechanikus védelmet biztosít az érzékelõ számára. Ez korlátozza az érzékelési ot, de az érzékelõ úgy rögzíthetõ, hogy a mellette lévõ fém tárgyak nem befolyásolják az érzékelést. Nem síkbaépíthetõ érzékelõk: 3. A síkbaépíthetõ érzékelõkkel ellentétben itt nincs árnyékoló lemez a ferritmag körül. A két érzékelõtípus közötti különbség könnyen felfedezhetõ. A nem síkbaépíthetõ érzékelõ nagyobb érzékelési ot biztosít, mint az ugyanakkora átmérõjû síkbaépíthetõ érzékelõ. Ugyanolyan átmérõ mellett a nem síkba építhetõ érzékelési a általában a duplája. A mezõ növekedésével az érzékelõ oldalirányú befolyásolhatósága is nõ. Ezért nem lehet az érzékelõ fém felülettel egy szintben rögzíteni. Az érzékelési problémák elkerüléséhez az alábbi egyenlõségeket kell figyelembe venni: Minimum méret (d): (d) 3 ( ) a közelítéskapcsoló átmérõje például egy M30 nem síkbaépíthetõ érzékelõ esetén: (d) 3 30 mm = 90 mm Több közelítéskapcsoló használata: 4. Egymáshoz közel felszerelt közelítéskapcsolók zavarhatják egymás mûködését. Ezt a hatást nevezik kölcsönös interferenciának. Ez akkor fordulhat elõ, ha az érzékelõk egymással szemben vagy egymás mellett helyezkednek el. 5. Ez a probléma megakadályozható, a következõ táblázat által mutatott minimum ok betartásáva (mm): Méretek M8 M12 M18 M30 Síkbaépíthetõ A B Nem A síkbaépíthetõ B : 6. A közelítéskapcsolóra vonatkozó specifikációban szereplõ érzékelési, egy szabványos fém tárgyra vonatkozik. Ez a szabványos tárgy egy ferromágneses lágyacélból készült, 1 mm vastag, hasáb alakú lemez. 7. Amikor a cél eléri azt a pontot, ahol az érzékelõ kimenete bekapcsol, ezt nevezzük érzékelési nak. Szabványos tárgy A céltárgy távolítása az érzékelõtõl 8. Az érzékelõ kimenetének kikapcsolása egy kicsit távolabb következik be, mint a bekapcsolása. Az érzékelési ot befolyásolja az érzékelendõ tárgy mérete és anyaga. 9. Az érzékelõ specifikációja a szabványos lágyacél tárgyra vonatkozik. Ha ettõl eltérõ fém tárgyat akarunk érzékelni, akkor az érzékelési tartomány csökkeni fog. A következõ diagram mutatja megközelítõleg a különbözõ fémekre vonatkozó érzékelési okat. 100% 100% 70% 50% 40% Kimenet kikapcsolási pozíció 30% 25% Lágyacél 10. Az érzékelési ot az is befolyásolja, ha az érzékelendõ tárgy kisebb, mint a szabványos tárgy. Ennek következtében az érzékelési tartomány csökken. (a vastagság növekedése nem befolyásolja az érzékelési tartományt.) A galvanizálás befolyása: 11. A különbözõ anyaggal és vastagsággal galvanizált fém tárgyak befolyásolják az induktív érzékelõk érzékelési át. A befolyásolás mértéke függ a galvanizáló anyag minõségétõl és vastagságától. Vas Roz sdamentes acél Ólom Sárgaréz Alumínium Vörösréz Szabványos tárgy Szabványosnál kisebb tárgy Kisebb viii

9 Kapacitív közelítéskapcsolók A mûködés aelve 1. A kapacitív közelítéskapcsolók mûködési aelve kis mértékben tér csak el az induktív közelítéskapcsolók mûködésétõl. A fõ eltérés az, hogy tekercs helyett lemez alakú elektródát használ. Mûködéskor egy kapacitív mezõt hoz létre az elektróda és a föld között. Így a kapacitás keletkezik az érzékelõ és a föld között. (Gyakorlatilag az egyik tápvonal a föld). 2. Amikor nincs érzékelendõ tárgy a szenzor környezetében, akkor a kialakult mezõ stabilizálódik. Szabványos tárgy Stabil mezõ 3. Amikor az érzékelendõ tárgy a kapacitív érzékelõ közelében van, akkor a tárgy negatív és pozitív töltése elkülönül. Az elektróda pozitív töltései vonzzák az érzékelendõ tárgy negatív töltéseit, és az érzékelendõ tárgy pozitív töltései vonzódnak a földhöz. Mivel ilyenkor a negatív töltések közelebb vannak az elektródához, így az elektróda elektrosztatikus kapacitása nõ. Ily módon érzékeli az érzékelõ a céltárgyat. Elektróda föld Belsõ áramkör Kapacitív mezõ föld Konduktív szintszabályozók A mûködés aelve 1. A konduktív szintszabályozók kihasználják néhány folyadék azon tulajdonságát, hogy vezetik az áramot. A szondákat fizikailag a folyadékba kell helyezni. A szondák szabadon méretre vághatóak, és ez által határozhatók meg a szabályozási pontok. Felsõ szonda Alsó szonda Földelõ szonda 2. Az egyik szondának mindig érintkeznie kell a folyadékkal (ez a leghosszabb szonda), de ez a szonda lehet a tartály is, amennyiben a tartály vezeti az áramot. Mûanyag tartály Folyadék Vezérlõ Vezérlõ Fém tartály 3. A szintet figyelõ és a leghosszabb szonda (tartály) között alacsony feszültség van. Így a folyadék szabad utat biztosít az áramnak a szondák között. A folyadék szintjétõl függõen az áram útja megszakad, ezt figyeli a szabályozó, és ennek megfelelõen változtatja a kimenet álotát. Nyilvánvaló biztonsági okokból a tápfeszültség és az érzékelésre használt feszültség galvanikusan el van választva egymástól. Egypontos szintszabályozó: 4. Az egypontos szabályozó két pontot használ. Az egyik a földelt szonda, a másik pedig az, amelyik a beállított magasságot figyeli. Ehhez a mûködéshez az érzékelõ szondát a szabályozó "HIGH" sorkapcsához kell csatlakoztatni. Amikor a víz eléri a szintfigyelõ szondát, akkor tud áram folyni a két érzékelõ között, és ilyenkor húz meg a kimeneti relé. Amikor a víz a szonda alá esik, az áramkör megszakad, és a kimeneti relé elejt. (Kivéve ellentétes mûködéskor, amikor a kimeneti relé ellentétesen mûködik.) Ennek a mûködésnek megvannak a hátrányai: szintszabályozásra használva az áramkör akkor szakad meg, amikor a víz szintje az érzékelõ szonda alá süllyed; töltési folyamat esetében a szivattyú túl gyorsan kapcsolhat ki és be. Jobb szabályozás eléréséhez két szonda szettre van szükség. Ez alkalmasabb a szint ellenõrzésére. Felsõ és alsó szint szabályozás: 5. Ebben az esetben két szabályozószondát és egy földszondát használunk. A szondák úgy vannak méretre vágva, hogy megadják a felsõ és az alsó szabályozási pontot. Vegyünk egy példát, amikor egy víztartályt vízellátásra használunk. A tartályt töltésére egy szivattyút vezérlünk, és a tartály egy kifolyón keresztül ürül. Biztosak akarunk lenni abban, hogy a tartályban marad elég víz, és nem szárad ki. 6. Elsõ használatkor a tartály üres, a szivattyút elindítjuk a tartály feltöltése érdekében. 7. Ha a víz eléri a felsõ szondát, akkor az áramkör záródik a felsõ és a földszonda között, ekkor a kimeneti relé (SPCO - egyáramkörös váltóérintkezõ) meghúz. Ez a jel megállítja a szivattyút, hogy az ne töltse tovább a tartályt. 8. A víz a kívánt szintig süllyedhet a tartályban. 9. Ha a víz az alsó szonda alá süllyed, akkor a kimeneti relé elejt. Ez adja a jelet a szivattyú számára, hogy az ismét bekapcsoljon, és feltöltse a tartályt. 10. Ha a vízszint megegyezik a felsõ szonda által meghatározott szinttel, akkor a relé ismét meghúz, ezzel kikapcsolja a szivattyút. Ekkor a ciklus újra elkezdõdik, ix

10 ürítés és töltés kívánság szerint. Két szonda használata esetén széles eltérés lehet a szivattyú ki- és bekapcsolása között, így elkerülhetõ a szivattyút megterhelõ mûködésmód. Szonda telepítés: 11. A konduktív szintszabályozók egyszerû és üzembiztos mûködést biztosítanak, abban az esetben, ha a szondák megfelelõen vannak felszerelve. 12. A szondatartót nem szabad elárasztani. A szondatartóban maradt víz hibás mûködést eredményezhet. ROSSZ 13. Áramló víz szintjének hosszú szondákkal való szabályozása esetén elektródatávtartókat kell alkalmazni. Ez megakadályozza a szondák összeérését, ami hibás jelet eredményezne. 14. Mivel a szintszabályozók a víz áramvezetését kihasználva mûködnek, ezért korlátozások vannak több szintszabályozó használata esetén. Két szabályozót lehet használni, melyek közül az egyik megadja az alsó és felsõ szintet, a másik szabályozó egyik szondája pedig egy plusz vészjelzést biztosít. Két szabályozónál több használata esetén ezek befolyásolják egymás mûködését. JÓ ROSSZ Elektródatávtartó Alarm Keverõ A szondákat függõlegesen kell rögzíteni. Kapacitív szintszabályozók A mûködés aelve 1. A szonda két részbõl áll, egy érzékelõ és egy nem érzékelõ elektródából. A nem érzékelõ elektróda beépítéskor föld potenciálra kerül. Ez az elektróda el van választva a másik elektródától egy távtartó segítségével. Nem érzékelõ elektróda Távtartó Érzékelõ elektróda Elektródabeépítés: 3. Az elektróda két módon függõlegesen vagy vízszintesen rögzíthetõ. Vízszintes felrögzítés esetén az elektródák párhuzamosan helyezkednek el az érzékelendõ szint felszínéhez képest. Ez a felrögzítési mód kisebb szintbeli változások esetén nagyobb mérési pontosságot eredményez. Függõleges felrögzítés esetén a kapacitásváltozást az érzékelõ legkisebb része érzékeli. Ez kisebb érzékelési pontosságot eredményez. Függõleges 5. Az érzékelõ tartályba építését úgy kell elvégezni, hogy a tartályba beömlõ anyag ne tudjon közvetlenül az érzékelõre esni, mert ez hibás mûködést eredményez. Feltöltõ nyílás 2. Az érzékelõ elektróda egy kapacitást hoz létre a földhöz képest, és ez az elektróda az érzékelõ azon része, ami figyeli az anyag szintjét, oly módon, hogy az anyag szintje változtatja a kapacitás mértékét. A kapacitás értéke az érzékelendõ anyag fizikai tulajdonságainak függvényében változik. A szintszabályozó az érzékenység beállító segítségével igazítható az érzékelendõ anyag fizikai tulajdonságaihoz. Ez állítja be a mûködési érzékenységet, és ez eredményezi, hogy a kimenet álota megváltozik akkor, amikor a kapacitás értéke eléri vagy túllépi a beállított értéket. Vízszintes 4. Nagy figyelmet kell fordítani a felrögzítés módjára, abban az esetben, ha az érzékelendõ anyag hozzá tud tapadni az elektródához. Ez csökkenti az érzékelõ hatékonyságát. Kölcsönös interferencia: 6. Egy tartályban két érzékelõ felhelyezése esetén a két érzékelõ között legalább 5 m ot kell tartani. Amennyiben a két érzékelõ túl közel van egymáshoz felszerelve, akkor ezek egymás mûködését befolyásolhatják. Érzékelendõ anyag Minimális 5 m a két érzékelõ között az interferencia megelõzése érdekében x

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság

MÛSZAKI INFORMÁCIÓK. Érzékelési távolság OMR Adó-vevõs fotokapcsolók A mûködés aelve: 1. Az adó-vevõs érzékelõ két részbõl áll, egy adóból (fénykibocsátó), és egy vevõbõl (fényelnyelõ). Egy fénysugár kapcsolja össze a két eszközt egymással. vevõ

Részletesebben

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor MeviMR 3XC Magnetorezisztív járműérzékelő szenzor MeviMR3XC járműérzékelő szenzor - 3 dimenzióban érzékeli a közelében megjelenő vastömeget. - Könnyű telepíthetőség. Nincs szükség az aszfalt felvágására,

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3Z

OMRON FOTOELEKTROMOS KAPCSOLÓK E3Z OMRON FOTOELEKTROMOS KAPCSOLÓK E3Z E3Z Egyszerûen használható, költségkímélõ fotokapcsoló Lézeres kivitelek Jól látható állapotjelzõvel Víz- és rezgésálló kivitel Tápfeszültség: 12... 24 VDC 2 m-es beöntött

Részletesebben

E3S-CT11 E3S-CT61 E3S-CR11 E3S-CR61 E3S-CD11 E3S-CD61 E3S-CD12 E3S-CD62

E3S-CT11 E3S-CT61 E3S-CR11 E3S-CR61 E3S-CD11 E3S-CD61 E3S-CD12 E3S-CD62 OMRON FOTOELEKTROMOS KAPCSOLÓK E3S-C E3S-C Olaj- és vízálló fotokapcsoló fémtokozásban, nagy érzékelési távolsággal Megfelel a következõ szabványoknak: IP67, NEMA 6P, IP67G (olajálló) PNP vagy NPN kimenet

Részletesebben

46B sorozat Optoelektronikus érzékelők TERMÉKINFORMÁCIÓ

46B sorozat Optoelektronikus érzékelők TERMÉKINFORMÁCIÓ 46B sorozat Optoelektronikus érzékelők TERMÉKINFORMÁCIÓ Az új érzékelőgeneráció 46B sorozat. Megbízható, nagy teljesítményű, költséghatékony A 46B sorozat új mértéket állít az optoérzékelőknek. Nagy téljesítménytartalékukkal

Részletesebben

Hajlítási rádiusz M4 E3X-NA 700 1,4 mm átm. (0,03 mm átm.) E32-T11L 25 mm E3X-NA + E39-F1 2000. Felhasználható erõsítõ típusa

Hajlítási rádiusz M4 E3X-NA 700 1,4 mm átm. (0,03 mm átm.) E32-T11L 25 mm E3X-NA + E39-F1 2000. Felhasználható erõsítõ típusa OMRON FOTOELEKTROMOS KAPCSOLÓK Száloptikák az EX- típusú fotokapcsolókhoz Számos kivitel kis méretû, és egyéb módszerekkel nehezen érzékelhetõ tárgyak érzékelésére Méretre vágható típusok Nagy hõállóságú

Részletesebben

3B sorozat Optoelektronikus érzékelők

3B sorozat Optoelektronikus érzékelők 3B sorozat Optoelektronikus érzékelők TERMÉKINFORMÁCIÓ Az új érzékelőgeneráció 3B sorozat. Kompakt, sokoldalú, felhasználóbarát, erős A Leuze electronic új érzékelőgenerációja egy sor egyedülálló tulajdonságot

Részletesebben

AN900 D választható frekvenciájú négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei

AN900 D választható frekvenciájú négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei AN900 D választható frekvenciájú négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei 2. Telepítési szempontok Az érzékelő telepítési helyének kiválasztásakor kerülje az alábbi területeket:

Részletesebben

OMRON KÜLÖNLEGES SZENZOROK. ZX Nagy pontosságú pozíciómérõ eszközök. Típusválaszték

OMRON KÜLÖNLEGES SZENZOROK. ZX Nagy pontosságú pozíciómérõ eszközök. Típusválaszték ZX KÜLÖNLEGES SZENZOROK OMRON ZX Nagy pontosságú pozíciómérõ eszközök Kétsoros kijelzõvel ellátott erõsítõ 2 µm-es ismétlési pontosság (lézeres) 1 µm-es ismétlési pontosság (induktív) 500 mm-es maximális

Részletesebben

AN900 C négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei

AN900 C négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei AN900 C négysugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei 2. Telepítési szempontok Az érzékelő telepítési helyének kiválasztásakor kerülje az alábbi területeket: Ahol különböző tereptárgyak

Részletesebben

E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON

E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON E3X-DA-N FOTOELEKTROMOS KAPCSOLÓ OMRON Nagyteljesítményű Hengeres kialakítású, digitális fémtokozású fotokapcsoló közelítéskapcsoló száloptikához Digitális kijelzőn látható a pillanatnyi érzékelési állapot

Részletesebben

Bekötési diagramok. Csatlakozó típusok. 2: A.C. típus. 2 vezetékes (Emitter) 1 = L1 3 = N

Bekötési diagramok. Csatlakozó típusok. 2: A.C. típus. 2 vezetékes (Emitter) 1 = L1 3 = N Bekötési diagramok FT18EL FT13 D.C. FT18 A.C FT18SPFT18SMFTQ D.C. FTQ (relés) 1: NPN/PNP típus 2 vezetékes (Emitter) 1 = Barna / + 3 = Kék / 4 vezetékes 1 = Barna / + 3 = Kék / 4 = Fekete / NPNPNP kimenet/no

Részletesebben

AN900 B háromsugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei

AN900 B háromsugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei AN900 B háromsugaras infrasorompó Telepítési útmutató 1. A készülék főbb részei A TÁPFESZÜLTSÉG (POWER) ZÖLD színű jelzőfénye akkor kapcsol be, amikor az adóegység működésbe lép. SZINT jelzőfény (piros)

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E32

OMRON FOTOELEKTROMOS KAPCSOLÓK E32 OMRON FOTOELEKTROMOS KAPCSOLÓK E2 E2 Száloptikák az EX- típusú fotokapcsolókhoz Számos kivitel kis méretû, és egyéb módszerekkel nehezen érzékelhetõ tárgyak érzékelésére Méretre vágható típusok Nagy hõállóságú

Részletesebben

2.3 Mérési hibaforrások

2.3 Mérési hibaforrások A fólia reflexiós tényezője magas és az összegyűrt struktúrája miatt a sugárzás majdnem ideálisan diffúz módon verődik vissza (ld. 2.3. ábra, az alumínium fólia jobb oldala, 32. oldal). A reflektált hőmérséklet

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-N

OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-N OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-N E3X-DA-N Nagyteljesítményû digitális fotokapcsoló száloptikához n látható a pillanatnyi érzékelési állapot abszolút értékben, illetve százalékban Nagytávolságú,

Részletesebben

KÜLÖNLEGES SZENZOROK. Típus F10-C20/C30/C50 F10-C25/C35/C55. NPN nyitott kollektoros kimenetek (2 db) max. 50 ma terhelhetõség

KÜLÖNLEGES SZENZOROK. Típus F10-C20/C30/C50 F10-C25/C35/C55. NPN nyitott kollektoros kimenetek (2 db) max. 50 ma terhelhetõség F10 KÜLÖNLEGES SZENZOROK OMRON F10 Kép (minta) azonosító rendszer ipari felhasználásra Kamerával egybeépített megvilágítás Automata beállítási és programozási lehetõség Automata szinkronizáció Több hagyományos

Részletesebben

Felhasználói kézikönyv

Felhasználói kézikönyv Felhasználói kézikönyv 3060 Lézeres távolságmérő TARTALOMJEGYZÉK ELEM CSERÉJE... 3 A KÉSZÜLÉK FELÉPÍTÉSE... 3 A KIJELZŐ FELÉPÍTÉSE... 3 MŰSZAKI JELLEMZŐK... 4 LÉZERES CÉLZÓ BEKAPCSOLÁSA... 4 MÉRÉSI TÁVOLSÁG...

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Jellemzők Funkciók Rendelési kód

Jellemzők Funkciók Rendelési kód E3X-DA-S Nagy pontosságú, dupla kijelzős digitális száloptika erősítő Erősítőegységek kábellel Kiváló digitális száloptika erősítő könnyű beállítási lehetőséggel és teljesítményhangolási funkcióval.* A

Részletesebben

TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó

TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó TxBlock-USB Érzékelőfejbe építhető hőmérséklet távadó Bevezetés A TxBlock-USB érzékelőfejbe építhető, kétvezetékes hőmérséklet távadó, 4-20mA kimenettel. Konfigurálása egyszerűen végezhető el, speciális

Részletesebben

Adó-vevős Beöntött kábeles típusok (2 m) *1 30 m (Infravörös fény) Csatlakozós típus E3Z-T67 E3Z-T87

Adó-vevős Beöntött kábeles típusok (2 m) *1 30 m (Infravörös fény) Csatlakozós típus E3Z-T67 E3Z-T87 E3Z Általános célú érzékelők kisméretű műanyag tokozásban Kisméretű tokozás és nagy teljesítményű LED a kiváló teljesítmény/ár arány érdekében, és a legjobb érték/teljesítmény arány általános alkalmazások

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

Bekötési diagramok. Csatlakozó típusok

Bekötési diagramok. Csatlakozó típusok Namur típus Bekötési diagramok C típus (3-4 vezetékes) Áram [ma] Az érzékelő 5 30Vdc tápfeszültséggel működtethető Kapcsolási távolság Sn [mm] B típus (2 vezetékes - D.C) A típus (2 vezetékes - A.C) Csatlakozó

Részletesebben

Méréstechnika. Szintérzékelés, szintszabályozás

Méréstechnika. Szintérzékelés, szintszabályozás Méréstechnika Szintérzékelés, szintszabályozás Irodalom VEGA Grieshaber KG katalógusa Puskás Tivadar Műszer és Gépipari Szövetkezet Szintmérő műszerek katalógusai Mérési elvek Úszógolyós szintérzékelők

Részletesebben

Összeadó színkeverés

Összeadó színkeverés Többféle fényforrás Beépített meghajtás mindegyik fényforrásban Néhány fényforrásban beépített színvezérlő és dimmer Működtetés egyszerűen 12V-ról Színkeverés kézi vezérlővel Komplex vezérlés a DkLightBus

Részletesebben

1. BEVEZETŐ 2. FŐ TULAJDONSÁGOK

1. BEVEZETŐ 2. FŐ TULAJDONSÁGOK 1. BEVEZETŐ Az IB aktív infravörös mozgásérzékelő szenzorok különböző magasságban és szélességben védik az átjárókat, beltéri és kültéri ablakokat. Az eszközök két darabos, adó és vevő kiszerelésben készülnek,

Részletesebben

FL-11R kézikönyv Viczai design 2010. FL-11R kézikönyv. (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához)

FL-11R kézikönyv Viczai design 2010. FL-11R kézikönyv. (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához) FL-11R kézikönyv (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához) 1. Figyelmeztetések Az eszköz a Philips LXK2 PD12 Q00, LXK2 PD12 R00, LXK2 PD12 S00 típusjelzésű LED-jeihez

Részletesebben

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató

INFRA HŐMÉRŐ (PIROMÉTER) AX-6520. Használati útmutató INFRA HŐMÉRŐ (PIROMÉTER) AX-6520 Használati útmutató TARTALOMJEGYZÉK 1. Biztonsági szabályok... 3 2. Megjegyzések... 3 3. A mérőműszer leírása... 3 4. LCD kijelző leírása... 4 5. Mérési mód...4 6. A pirométer

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Kimenetek száma Kimenet Szoftveres beállítás Bank funkció Típus. Nincs Nincs H8PS-8BP 16 H8PS-16BP 32 H8PS-32BP. Felbontás Kábelhossz Típus

Kimenetek száma Kimenet Szoftveres beállítás Bank funkció Típus. Nincs Nincs H8PS-8BP 16 H8PS-16BP 32 H8PS-32BP. Felbontás Kábelhossz Típus H8PS Digitális pozícionáló Kiváltja a mechanikus pozícionálókat Kompatibilis az abszolút kódadókkal Maximális fordulat: 1600 1/min Nagyméretû LCD-kijelzõ 8 / 16 / 32 db tranzisztoros kimenet 96 x 96 mm-es

Részletesebben

SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család

SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család DDC rendszerelemek, DIALOG-III család KIVITEL ALKALMAZÁS A az energiaellátás minőségi jellemzőinek mérésére szolgáló szabadon programozható készülék. Épületfelügyeleti rendszerben (BMS), valamint önállóan

Részletesebben

DL drainback napkollektor rendszer vezérlése

DL drainback napkollektor rendszer vezérlése DL drainback napkollektor rendszer vezérlése Tartalom Rendszer jellemzői Rendszer elemei Vezérlés kezelőfelülete Működési elv/ Állapotok Menüfunkciók Hibaelhárítás Technikai paraméterek DL drainback rendszer

Részletesebben

1214 Budapest, Puli sétány 2-4. www.grimas.hu 1 420 5883 1 276 0557 info@grimas.hu. Rétegvastagságmérő. MEGA-CHECK -Master-

1214 Budapest, Puli sétány 2-4. www.grimas.hu 1 420 5883 1 276 0557 info@grimas.hu. Rétegvastagságmérő. MEGA-CHECK -Master- Rétegvastagságmérő MEGA-CHECK -Master- A "MEGA-CHECK -Master-" rétegvastagságmérő műszer alkalmas minden fémen a rétegvastagság mérésére. Az új generációs MEGA-CHECK rétegvastagságmérő eszközökben használtak

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV

FELHASZNÁLÓI KÉZIKÖNYV FELHASZNÁLÓI KÉZIKÖNYV IL-REF20H mozgásérzékelős LED reflektorhoz www.inlightled.hu Bevezetés A passzív, infravörös érzékelővel ellátott LED reflektor érzékeli a mozgást, valamint a testhőmérsékletet.

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék

Részletesebben

Függöny fel, fények bekapcsolva, az új fényfüggöny megérkezett.

Függöny fel, fények bekapcsolva, az új fényfüggöny megérkezett. Termékújdonságok Függöny fel, fények bekapcsolva, az új fényfüggöny megérkezett. Biztonsági fényfüggönyök igen vékony kivitelben nagy érzékelési távolsággal. Biztonsági fényfüggönyök -es és -es típus IEC

Részletesebben

INFRASOROMPÓ NR40TX/NR80TX

INFRASOROMPÓ NR40TX/NR80TX INFRASOROMPÓ NR40TX/NR80TX Kérjük telepítés előtt olvassa el a következő fontos információkat! 1. A biztonságos telepítéshez Ez a telepítési útmutató fontos információkat tartalmaz az eszköz biztonságos

Részletesebben

Használati útmutató. Livingadget Termosztát T8

Használati útmutató. Livingadget Termosztát T8 Használati útmutató Livingadget Termosztát T8 Használati Útmutató Livingadget T8 Termosztáthoz 1. Energiagazdálkodás Az energiagazdálkodás egyik lényeges eleme a fűtés hatékonyságának növelése, amelynek

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

9. Gyakorlat - Optoelektronikai áramköri elemek

9. Gyakorlat - Optoelektronikai áramköri elemek 9. Gyakorlat - Optoelektronikai áramköri elemek (Componente optoelectronice) (Optoelectronic devices) 1. Fénydiódák (LED-ek) Elnevezésük az angol Light Emitting Diode rövidítéséből származik. Áramköri

Részletesebben

ON FOTOELEKTROMOS KAPCSOLÓK E3C

ON FOTOELEKTROMOS KAPCSOLÓK E3C E3C Lézeres érzékelõ Nagy távolságú érzékelés: max. 1000 mm Mechanikusan változtatható fókuszpont és optikai tengely Az érzékelés minõségének optimalizálása A digitális száloptika erõsítõ méretével megegyezõ

Részletesebben

A színérzetünk három összetevőre bontható:

A színérzetünk három összetevőre bontható: Színelméleti alapok Fény A fény nem más, mint egy elektromágneses sugárzás. Ennek a sugárzásnak egy meghatározott spektrumát képes a szemünk érzékelni, ezt nevezzük látható fénynek. Ez az intervallum személyenként

Részletesebben

A telepítés megkezdése előtt a készülék hatékony és biztonságos üzemeltetése céljából - tekintse át az alábbi előírásokat. Vigyázat!

A telepítés megkezdése előtt a készülék hatékony és biztonságos üzemeltetése céljából - tekintse át az alábbi előírásokat. Vigyázat! A telepítés megkezdése előtt olvassa el az Útmutatót Az Optex bemutatja legújabb termékét, a kerületi védelmi rendszert, mely képes az illetéktelen behatoló érzékelésére, mielőtt

Részletesebben

CS10.5. Vezérlõegység

CS10.5. Vezérlõegység CS10.5 HU Vezérlõegység 0409006 TARTALOMJEGYZÉK 1. CS10.5 VEZÉRLÕEGYSÉG...3 1.1. Általános tudnivalók...3 1.. Mûszaki adatok...3. VEZÉRLÕEGYSÉG: FELHASZNÁLÓI KÉZIKÖNYV...4.1. Az elõre beállítható idõpontok

Részletesebben

HARVIA AUTOMATA ADAGOLÓ. HU beépítési és használati útmutató

HARVIA AUTOMATA ADAGOLÓ. HU beépítési és használati útmutató HARVIA AUTOMATA ADAGOLÓ HU beépítési és használati útmutató HU Tartalom 1. ÁLTALÁNOS INFORMÁCIÓK... 3 1.1 Műszaki adatok... 3 2. HASZNÁLATI ÚTMUTATÓ... 4 2.1 Az automatikus adagoló használata... 4 2.2

Részletesebben

FIGYELMEZTETÉS! : Az eszközben lévő optikai modul segítségével lehetőség van a sugarak +/- 90 vízszintes és a +/- 5 függőleges irányú állítására!

FIGYELMEZTETÉS! : Az eszközben lévő optikai modul segítségével lehetőség van a sugarak +/- 90 vízszintes és a +/- 5 függőleges irányú állítására! INFRASOROMPÓ NR40TX/NR80TX 1. A biztonságos telepítéshez Ez a telepítési útmutató információkkal ellátott és alapvető telepítési veszélyeket tartalmaz ennek az eszköznek a biztonsági módjában és a karbantartásakor

Részletesebben

AQUA LUNA aqua_luna_int 08/11

AQUA LUNA aqua_luna_int 08/11 AQUA LUNA aqua_luna_int 08/11 DIGITÁLIS PASSZÍV INFRAÉRZÉKELŐ BEÉPÍTETT VILÁGÍTÁSSAL 1. Tulajdonságok Duál-elemes pyroszenzor. Teljesen digitális mozgásérzékelési algoritmus. Kettős jelelemzés, érték és

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Multifunkciós digitális termosztát TER-6

Multifunkciós digitális termosztát TER-6 78-0-00 Rev.: Multifunkciós digitális termosztát Köszönjük, hogy termékünket választotta. mennyiben segítségre van szüksége hívja telefonszámunkat munkaidõben. Tartalom oldal. Mielõtt elkezdené.... z eszköz

Részletesebben

Vaillant aurostep szolárrendszer

Vaillant aurostep szolárrendszer Az aurostep szolárrendszer áttekintése Termék Szolárrendszer 150 literes, monovalens tárolóval, 2,2 m 2 -es kollektormezővel Szolárrendszer 150 literes, monovalens tárolóval, 2,2 m 2 -es kollektormezővel

Részletesebben

Radio/ZigBee technológia: rugalmas megoldás a kényelmes otthonért

Radio/ZigBee technológia: rugalmas megoldás a kényelmes otthonért CÉLIANE TM Radio/ZigBee technológia: rugalmas megoldás a kényelmes otthonért A Radio/ZigBee világítási- vagy redőnyvezérlő szerelvényeivel bontás és plusz vezetékezés nélkül teheti intelligenssé otthonát.

Részletesebben

NIVOCONT KONDUKTÍV SZINTKAPCSOLÓK SZINTKAPCSOLÓK

NIVOCONT KONDUKTÍV SZINTKAPCSOLÓK SZINTKAPCSOLÓK NIVOCONT KONDUKTÍV M I N D I G A F E L S Ô S Z I N T E N ÁLTALÁNOS ISMERTETÔ A konduktív elven mûködô szintkapcsoló mûszerek vezetôképes folyadékoknál alkalmazhatók. A mérés feltétele, hogy a folyadék

Részletesebben

Mé diakommunika cio MintaZh 2011

Mé diakommunika cio MintaZh 2011 Mé diakommunika cio MintaZh 2011 Mekkorára kell választani R és B értékét, ha G=0,2 és azt akarjuk, hogy a szín telítettségtv=50% és színezettv=45 fok legyen! (gammával ne számoljon) 1. Mi a különbség

Részletesebben

02 széria: DN40 és DN50 01 széria.: DN65...DN150

02 széria: DN40 és DN50 01 széria.: DN65...DN150 4 241 02 széria: 40 és 50 01 széria.: 65...150 3-járatú keverőcsapok PN6 VBF21... 3-járatú keverőcsapok, PN6, karimás Szürke vas öntvény GG-25 40... 40 mm k vs 25... 820 m 3 /h Elfordulás mértéke 90 Karimás

Részletesebben

NIVOMAG MÁGNESES SZINTKAPCSOLÓK SZINTKAPCSOLÓK

NIVOMAG MÁGNESES SZINTKAPCSOLÓK SZINTKAPCSOLÓK NIVOMAG MÁGNESES SZINTKAPCSOLÓK M I N D I G A F E L S Ô S Z I N T E N SZINTKAPCSOLÓK M I N D I G A F E NIVOMAG MÁGNESES SZINTKAPCSOLÓK JELLEMZŐK Mágneses csatolás az úszó és kapcsolóelem között Segédenergia

Részletesebben

TELEPÍTÉSI ÚTMUTATÓ. [Itt felvehet egy kivonatot vagy más fontos kimutatást. A kivonat általában a dokumentum tartalmának rövid összegzése.

TELEPÍTÉSI ÚTMUTATÓ. [Itt felvehet egy kivonatot vagy más fontos kimutatást. A kivonat általában a dokumentum tartalmának rövid összegzése. Guard Control Kft 1112 Budapest Repülőtéri u. 2. Telefon+3612037557 Fax+3612033742 http://szemelykivalaszto.hu TELEPÍTÉSI ÚTMUTATÓ [Itt felvehet egy kivonatot vagy más fontos kimutatást. A kivonat általában

Részletesebben

Hármas tápegység Matrix MPS-3005L-3

Hármas tápegység Matrix MPS-3005L-3 Hármas tápegység Matrix MPS-3005L-3 Általános leírás Az MPS-3005L-3 tápegység egy fix 5V-os, 3A-rel terhelhető és két 0V-30V-között változtatható,legfeljebb 5A-rel terhelhető kimenettel rendelkezik. A

Részletesebben

INTIEL Elektronika az Ön oldalán Programozható differenciál termosztát TD-3.1 Beüzemelési útmutató

INTIEL Elektronika az Ön oldalán Programozható differenciál termosztát TD-3.1 Beüzemelési útmutató INTIEL Elektronika az Ön oldalán Programozható differenciál termosztát TD-3.1 Beüzemelési útmutató Forgalmazó: NatEnCo Bt. 9200 Mosonmagyaróvár, Móra Ferenc ltp. 3. Tel.: 20 373 8131 1 I. Alkalmazási terület

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

ÜZEM ALATTI RÉSZLEGES KISÜLÉS MÉRÉS. AZ AKTIVITÁS VÁLTOZÁSAINAK MEGFIGYELÉSE Tuza János (Diagnostics Kft.)

ÜZEM ALATTI RÉSZLEGES KISÜLÉS MÉRÉS. AZ AKTIVITÁS VÁLTOZÁSAINAK MEGFIGYELÉSE Tuza János (Diagnostics Kft.) ÜZEM ALATTI RÉSZLEGES KISÜLÉS MÉRÉS AZ AKTIVITÁS VÁLTOZÁSAINAK MEGFIGYELÉSE Tuza János (Diagnostics Kft.) Cél: Könnyen kezelhető, nagyszámú berendezésen, gyors, előszűrő jellegű mérések végzése a berendezés

Részletesebben

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is. 1. Mi az érzékelő? Definiálja a típusait (belső/külső). Mit jelent a hiszterézis? Miért nem tudunk közvetlenül mérni, miért származtatunk? Hogyan kapcsolódik össze az érzékelés és a becslés a mérések során?

Részletesebben

Tartalomjegyzék LED hátterek 3 LED gyűrűvilágítók LED sötét látóterű (árnyék) megvilágítók 5 LED mátrix reflektor megvilágítók

Tartalomjegyzék LED hátterek 3 LED gyűrűvilágítók LED sötét látóterű (árnyék) megvilágítók 5 LED mátrix reflektor megvilágítók 1 Tartalomjegyzék LED hátterek 3 LED gyűrűvilágítók 4 LED sötét látóterű (árnyék) megvilágítók 5 LED mátrix reflektor megvilágítók 6 HEAD LUXEON LED vezérelhető reflektorok 7 LUXEON LED 1W-os, 3W-os, 5W-os

Részletesebben

RPS-Basic uszodai vegyszeradagoló műszer

RPS-Basic uszodai vegyszeradagoló műszer RPS-Basic uszodai vegyszeradagoló műszer Felhasználói kézikönyv Ring Elektronika Kft. www.ringel.hu Tulajdonságok Az RPS-Basic uszodai vegyszeradagoló műszer medencék vizének ph és klór szintjének optimalizálására

Részletesebben

601H-R és 601H-F típusú HŐÉRZÉKELŐK

601H-R és 601H-F típusú HŐÉRZÉKELŐK 601H-R és 601H-F típusú HŐÉRZÉKELŐK 1. BEVEZETÉS A 601H-R és 601H-F hőérzékelők a mennyezetre szerelhető, aljzatra illeszthető 600-as sorozatú érzékelők közé tartoznak. Kétvezetékes hálózatba szerelhető,

Részletesebben

OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-S

OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-S OMRON FOTOELEKTROMOS KAPCSOLÓK E3X-DA-S E3X-DA-S Nagyteljesítményû digitális fotokapcsoló száloptikákhoz, speciális feladatokra Teljesítmény hangolás 2 x 4 digites, 7-szegmenses LED kijelzõ Az E3X-DA-N

Részletesebben

RAIL BULL KÖTÖTT PÁLYÁS HEGESZTŐTRAKTOR OSZCILLÁTORRAL

RAIL BULL KÖTÖTT PÁLYÁS HEGESZTŐTRAKTOR OSZCILLÁTORRAL RAIL BULL KÖTÖTT PÁLYÁS HEGESZTŐTRAKTOR OSZCILLÁTORRAL A Rail Bull olyan kötött pályás hegesztőtraktor, amelyet tompavarratok és sarokvarratok oszcillációval vagy anélkül való hegesztésére terveztek. A

Részletesebben

RECON-PRO, AML1000 BEVETÉS - NORMÁL MŰKÖDÉS (SOP) Thursday, November 10, 11

RECON-PRO, AML1000 BEVETÉS - NORMÁL MŰKÖDÉS (SOP) Thursday, November 10, 11 RECON-PRO, AML1000 BEVETÉS - NORMÁL MŰKÖDÉS (SOP) BEVETÉS ELŐTTI BEÁLÍLTÁS 1. Telepek behelyezve, kapacitás ellenőrzés A: KI / Be kapcsoló 4 sípolás=teljes töltés 3 sípolás=75% 2 sípolás=50% 1 sípolás=cseréljen

Részletesebben

Jegyzetelési segédlet 7.

Jegyzetelési segédlet 7. Jegyzetelési segédlet 7. Informatikai rendszerelemek tárgyhoz 2009 Szerkesztett változat Géczy László Projektor az igazi multimédiás (periféria) eszköz Projektor és kapcsolatai Monitor Számítógép HIFI

Részletesebben

RHTemp 2000. TepRetriver-RH. Hőmérséklet- és páratartalom adatgyűjtő, LCD kijelzővel. Hőmérséklet- és páratartalom adatgyűjtő

RHTemp 2000. TepRetriver-RH. Hőmérséklet- és páratartalom adatgyűjtő, LCD kijelzővel. Hőmérséklet- és páratartalom adatgyűjtő TepRetriver-RH Hőmérséklet- és páratartalom adatgyűjtő - méréstartomány: -40 o C - +80 o C - pontosság: ±0,5 o C ( 0 o C - 50 o C) Páratartalom: - méréstartomány: 0%RH 95%RH - felbontás: 0,1 %RH - pontosság:

Részletesebben

TULAJDONSÁGOK LEÍRÁS. Működési módok. Maszkoláselleni tulajdonság

TULAJDONSÁGOK LEÍRÁS. Működési módok. Maszkoláselleni tulajdonság COBALT COBALT Plus COBALT Pro DIGITÁLIS DUÁLTECHNOLÓGIÁS MOZGÁSÉRZÉKELŐ cobalt_hu 07/15 A COBALT / COBALT Plus / COBALT Pro a védett területen történő mozgás érzékelését teszi lehetővé. Ez a kézikönyv

Részletesebben

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II.

Programozható vezérlő rendszerek. Elektromágneses kompatibilitás II. Elektromágneses kompatibilitás II. EMC érintkező védelem - az érintkezők nyitása és zárása során ún. átívelések jönnek létre - ezek csökkentik az érintkezők élettartamát - és nagyfrekvenciás EM sugárzások

Részletesebben

1214 Budapest, Puli sétány 2-4. www.grimas.hu 1 420 5883 1 276 0557 info@grimas.hu. Rétegvastagságmérő. MEGA-CHECK Pocket

1214 Budapest, Puli sétány 2-4. www.grimas.hu 1 420 5883 1 276 0557 info@grimas.hu. Rétegvastagságmérő. MEGA-CHECK Pocket Rétegvastagságmérő MEGA-CHECK Pocket A "MEGA-CHECK Pocket" rétegvastagságmérő műszer alkalmas minden fémen a rétegvastagság mérésére. Az új "MEGA-CHECK Pocket" rétegvastagság mérő digitális mérő szondákkal

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

A KVDST410 típusú infravörös hőmérő kezelési útmutatója

A KVDST410 típusú infravörös hőmérő kezelési útmutatója A KVDST410 típusú infravörös hőmérő kezelési útmutatója Műszaki adatok Mérési tartomány: (-33...+500) C Pontosság: max. a mért érték ±2 %-a, ill. ±2 C (amelyik nagyobb) Felbontás: 0,1 C (200 C felett 1

Részletesebben

ASTER motorok. Felszerelési és használati utasítás

ASTER motorok. Felszerelési és használati utasítás 1. oldal ASTER motorok Felszerelési és használati utasítás A leírás fontossági és bonyolultsági sorrendben tartalmazza a készülékre vonatkozó elméleti és gyakorlati ismereteket. A gyakorlati lépések képpel

Részletesebben

Harkány, Bercsényi u. 18. dimatkft@gmail.com +36 (70) 601 0209 www.dimat.hu

Harkány, Bercsényi u. 18. dimatkft@gmail.com +36 (70) 601 0209 www.dimat.hu Harkány, Bercsényi u. 18. dimatkft@gmail.com +36 (70) 601 0209 www.dimat.hu SAS816FHL-0 szoba termosztát egy nem programozható elektromos fűtéshez kifejlesztett, digitális hőmérséklet kijelzővel. Padlóérzékelő

Részletesebben

AQUASTAT. Kazán-termosztátok Kapcsoló- és határoló üzemű csőtermosztátok

AQUASTAT. Kazán-termosztátok Kapcsoló- és határoló üzemű csőtermosztátok AQUASTAT Kazán-termosztátok Kapcsoló- és határoló üzemű csőtermosztátok ADATLAP Az L41../L61.. sorozatú aquastat-ok víz hőhordozó közegű fűtési rendszerek és forróvíz ellátó rendszerek kapcsoló-, illetve

Részletesebben

2-VEZETÉKES KAPUTELEFON RENDSZER. Kültéri egység VDT 595A. VDT-595A Leírás v1.4.pdf

2-VEZETÉKES KAPUTELEFON RENDSZER. Kültéri egység VDT 595A. VDT-595A Leírás v1.4.pdf 2-VEZETÉKES KAPUTELEFON RENDSZER Kültéri egység VDT 595A VDT-595A Leírás v1.4.pdf Tartalom 1 Kaputábla és Funkciói... 3 2 Kaputábla leírása... 3 3 Zárnyitás műszaki adatai... 4 4 Felszerelés... 4 5 Rendszer

Részletesebben

tem S H e g e s z t õ 3 8 6 siegmund

tem S H e g e s z t õ 3 8 6 siegmund 386 Lap Lap Basic 1200x800x50 388 Basic 1000x1000x50 390 Basic 1200x1200x50 392 Basic 1500x1000x50 394 Professional 1000x500x100 396 Professional 1000x1000x100 398 Professional 1200x800x100 400 Professional

Részletesebben

72-74. Képernyő. monitor

72-74. Képernyő. monitor 72-74 Képernyő monitor Monitorok. A monitorok szöveg és grafika megjelenítésére alkalmas kimeneti (output) eszközök. A képet képpontok (pixel) alkotják. Általános jellemzők (LCD) Képátló Képarány Felbontás

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

EMDR-10 Hőmérséklet és nedvesség érzékelő elektronika. Tudnivalók a szereléshez, üzembe helyezéshez és az üzemeltetéshez

EMDR-10 Hőmérséklet és nedvesség érzékelő elektronika. Tudnivalók a szereléshez, üzembe helyezéshez és az üzemeltetéshez Raychem EMDR-10 Hőmérséklet és nedvesség érzékelő elektronika Tudnivalók a szereléshez, üzembe helyezéshez és az üzemeltetéshez Általános rész Kérjük az üzembe helyezés előtt elolvasni. A zavartalan üzem

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE 2.9.1 Tabletták és kapszulák szétesése Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:20901 2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE A szétesésvizsgálattal azt határozzuk meg, hogy az alábbiakban leírt kísérleti körülmények

Részletesebben

Rozsdamentes forgóvillás beléptetőkapu kézfertőtlenítővel BK09224. Revizió: B 2008-05-30

Rozsdamentes forgóvillás beléptetőkapu kézfertőtlenítővel BK09224. Revizió: B 2008-05-30 Rozsdamentes forgóvillás beléptetőkapu kézfertőtlenítővel BK09224 Gépkönyv Revizió: B 2008-05-30 A berendezés főbb részei: 1. ábra 1) Lábazat 1 db 2) Forgóvillaház 1 db 3) Fedél 1 db 4) Forgóvilla 1 db

Részletesebben

PERRY ELECTRIC. Heti digitális kapcsolóóra, automatikus téli-nyári átállással, 1 modul

PERRY ELECTRIC. Heti digitális kapcsolóóra, automatikus téli-nyári átállással, 1 modul Digitális kapcsolóórák Heti digitális kapcsolóóra, automatikus téli-nyári átállással, 1 modul 9 148 Ft Minimális kapcsolási időtartam 15perc; maximális kapcsolási szám: 672; IP40 védettség, tápfeszültség:

Részletesebben

Süllyesztett (EA-280, EA-281) EA-280

Süllyesztett (EA-280, EA-281) EA-280 Süllyesztett (EA-280, EA-281) EA-280 Esztétikus megoldás az ajtólapban lévő elektromos zár kábelezéséhez Maximum kábelvastagság 7,5 mm Ajtónyitás max. 120⁰ Hosszúság: 323 mm Szélesség: 23,8 mm Mélység:

Részletesebben

Céliane TM Radio/ZigBee kiválasztási táblázat

Céliane TM Radio/ZigBee kiválasztási táblázat Céliane Radio/ZigBee kiválasztási táblázat mechanizmusok és burkolatok MECHANIZMUSOK BILLENTYŰK ÉS BURKOLATOK Fehér Titán RADIO/ZIGBEE RENDSZER BUS/SCS - Radio/ZigBee interfész 0672 0 068 46 0684 46 VILÁGÍTÁS

Részletesebben

M2037IAQ-CO - Adatlap

M2037IAQ-CO - Adatlap M2037IAQ-CO - Adatlap Szénmonoxid + Hőmérséklet + Páratartalom (opció) Két szénmonoxid riasztási szint Valós idejű környezeti szénmonoxid érzékelő és szabályzó Hőmérséklet- és relatív páratartalom-mérés

Részletesebben

1 NO (záróérintkező) 1 NO (záróérintkező) 1 NO (záróérintkező) Tartós határáram / max. bekapcs. áram

1 NO (záróérintkező) 1 NO (záróérintkező) 1 NO (záróérintkező) Tartós határáram / max. bekapcs. áram 18- - Kombinált kapcsolók (fénykapcsoló + mozgásérzékelő) 10 A 18- Mozgás- és jelenlétérzékelők Érzékelési teru let max. 120 m 2 A 18.51-es típusnál két érzékelési teru let: - Belső (4 x 4) m-es teru let:

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

HASZNÁLATI ÚTMUTATÓ. Gyártó: Steelmate Co., Ltd.

HASZNÁLATI ÚTMUTATÓ. Gyártó: Steelmate Co., Ltd. HASZNÁLATI ÚTMUTATÓ Gyártó: Steelmate Co., Ltd. Fontos figyelmeztetés A parkolást segítő rendszer arra készült, hogy segítséget nyújtson a tolatásban. Nem helyettesíti a vezetőnek a tolatáskor általában

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV HOLDPEAK 8030 DIGITÁLIS FÁZISSORREND TESZTELŐ

FELHASZNÁLÓI KÉZIKÖNYV HOLDPEAK 8030 DIGITÁLIS FÁZISSORREND TESZTELŐ FELHASZNÁLÓI KÉZIKÖNYV HOLDPEAK 8030 DIGITÁLIS FÁZISSORREND TESZTELŐ Tartalomjegyzék Oldalszám 1. Biztonsági figyelmeztetés...2 2. Termékjellemzők...3 3. Műszaki jellemzők...3 4. A készülék felépítése...4

Részletesebben

IMPAC pirométerek hordozható

IMPAC pirométerek hordozható IPAC pirométerek hordozható telepített száloptikás IFRA HÕKAPCSOLÓK Infra hômérõk érintésmentes hõmérsékletmérésre a 50 ºC +4000 ºC tartományban www.impacinfrared.com Z S SZ SZ SZ Z S Infravörös hõmérsékletmérés

Részletesebben