A klasszikus mechanika elvei

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A klasszikus mechanika elvei"

Átírás

1 1. fejezet A lasszus mechana elve Vrtuáls muna elve, D'Alembert-elv, Hamlton-elv. Legsebb hatás elve. Lagrangeféle els fajú és másodfajú mozgásegyenlete. Hamlton függvény, anonus egyenlete. Kanonus transzformácó. Szmmetrá és megmaradás tétele A mechana elve A lasszus mechana alapvet törvényene megfogalmazását Newton megtette. Azonban ugyaneze az elve megfogalmazhatóa számos, a Newton- axómáal evvalens, azonban matematalag más alaban, am soszor szemléletesebb, lletve egyszer bb tud lenn. Eze a mechana elve, amelye nem bzonyítható axómá, eze helyességét a tapasztalato adjá A vrtuáls muna elve Vegyün egy N anyag pontból álló mechana rendszert, amelyne oordnátá x, y, z, a ható er t pedg F jelöl. Legyen δr az -ed anyag pontna a ényszere által megengedett nntezmáls és vrtuáls elmozdulása. Itt a vrtuáls alatt azt értjü, hogy nem tartoz ezen elmozulásohoz d tartam. A tárgyalt rendszer aor lesz egyensúlyban, ha a ható er vrtuáls munája zérus: F δr = 0 1.1) Szabad mozgás esetén mnden δr tetsz leges, tehát az er vetorona ell zérusna lennü. Ha van N pontun, aor azohoz 3N darab oordnáta tartoz, és ennél evesebb ényszerfeltétel lehet adott, ülönben nncs mozgás. Itt most feltesszü, hogy a ényszeren egy felületre orlátozzá a rendszert, és ezért alaju így írható: ϕ r 1, r 2...r N ) = 0 1.2) A ényszerfeltétele a vrtuáls elmozduláso alatt s ell, hogy teljesüljene, ebb l valamnt egy n- ntezmáls elmozduláshoz tartozó Taylor-sorfejtésb l belátható, hogy a ényszerfeltétele a övetez általános alaba írhatóa: ϕ δr = 0 = 1, 2,..., s < 3N 1.3) Ezeet a Lagrange-multplátoro módszerével vehetjü gyelembe: egy smeretlen λ szorzóval hozzáadju et a vrtuáls muna egyenlethez: F + ) λ ϕ δr = 0 1.4) Most a szabad esettel szemben csa 3N-s) darab együttható lesz zérus, de a többnél a Lagrangemultplátoroat választju úgy, hogy a maradé együttható s elt njene. Eor úgy tenthetjü,

2 1.1. A mechana elve 2 mntha a vrtuáls elmozduláso függetlene lennéne, ezért az egyenl ség teljesüléséhez az er összegéne ell zérusna lenne, ezért: F + λ ϕ = 0 1.5) A másod tagot elnevezhetjü ényszerer ne, és eor a az egyensúly feltétele, hogy a szabad és ényszerer összege zérus legyen. A λ ϕ -s denícóból az s látható, hogy felületen mozgásnál a ényszerer mer leges a felületre mvel ϕ a felület normáls rányába mutat) d'alembert elv és a Lagrange-féle els fajú egyenlete d'alembert a vrtuáls muna elvéhez hasonló fejezést vezetett be, de az nem csa az egyensúlyt írja le, hanem egyben mozgástörvény s: F ṗ ) δr = 0 1.6) A mechana rendszer az elv értelmében úgy mozog, hogy a fent fejezés mnden d pllanatban teljesül. Szabad rendszerre ez a Newton mozgásegyenletet adja, hszen tetsz leges δr -re el ell t nne a zárójelne, azaz F = ṗ. Ha ényszere s jelen vanna, aor smét a Lagrange-multplátoros átalaítást végezzü el: F + ) λ ϕ p δr = 0 1.7) A vrtuáls muna elvéhez hasonlóan tt s formálsan függetlenént ezelhet a megváltozáso, így ṗ = F + λ ϕ 1.8) Ha feltesszü hogy a tömeg állandó, azaz: ṗ = m d 2 r 1.9) Aor megaphatju a Lagrange-féle els fajú egyenlete. d 2 r m = F + λ ϕ 1.10) Mvel eze vetor egyenlete, így tulajdonéppen 3N darab egyenletün van, és ezenívül az s darab ényszeregyenlet Gauss-féle legsebb ényszer elve Bevezette a ényszer mértéét: Z := 3N 1 m =1 m d 2 x X ) ) ahol X a szabad er a záró jelben az -d pont tömegpontna a szabad mozgástól való eltérése szerepel). Gauss elve a övetez t mondja: a ényszere által megengedett gyorsulásváltozáso özül a legsebb valósul meg. A gyorsulást varálva, a övetez alara hozható: 2 3N =1 m d 2 x X ) δ d 2 ) x = )

3 fejezet 1. A lasszus mechana elve 3 Ehhez hozzáadva a szoásos módon Lagrange multplátorral a ényszereet: 3N =1 m d 2 x X m d 2 x λ ϕ ) δ = X + d 2 ) x = 0 λ ϕ 1.13) Eze a már orábban megsmert Lagrange-féle els fajú egyenlete. Ezzel tulajdonéppen megmutattu, hogy a Gauss-féle legsebb ényszer elve a helyes mozgásegyenletere vezet, tehát egyenérté a Newton-féle megfogalmazással, vagy a D'Alambert-elvvel Általános oordnátá Az eddg tárgyalásoban a ényszere, mnt független egyenlete volta gyelembe véve. Ha azonban olyan oordnátára térün át, amelye lleszedne a ényszerehez, aor ezeben eze a feltétele elt nne, így egyszer bb alaot apun a mozgásegyenletere. Az állítás az, hogy lyen transzformácó létezne, az lyen áttéréssel apott új oordnátáat általános oordnátána nevezzü, és q -val jelöljü, az általános sebességeet pedg q -val. Itt ell megjegyezn, hogy eze nem feltétlen hosszúság lletve sebesség dmenzójú változó. Lagrange-féle másodfajú mozgástörvény Határozzu meg a mozgásegyenleteet az általánosított oordnátá mellett, ehhez nduljun a D'Alembert elvb l: d 2 ) x m dt 2 X δx = ) Térjün át általános oordnátára: ẋ = x q + x q 1.15) δx = x q δq 1.16) A 1.16) fejezés nem tartalmazza a δt varácót, mvel a vrtuáls elmozdulás csa q oordnátától függ. Így az általános oordnátáal a övetez alara hozható a D'Alembert elvet leíró összefüggés: d K K ) Q δq = ) dt q q ahol K = 1 2 m ẋ 2 netus energa és Q = X x q az úgynevezett általánosított er omponens általában nem er dmenzójú, de a W = Q δq mndenépp muna dmenzójú). Ha a ható er onzervatíva, tehát: X = V 1.18) Aor a 1.17) egyenlet a övetez alara hozható: d dt d K K V dt q q q = 0 d K K V ) dt q q = 0 K V ) K V ) q q = )

4 1.1. A mechana elve 4 Az utolsó lépés azért megtehet, mert V csa a helyoordnátától függ, és független a q általános sebesség omponenst l. A rendszer mozgás energájána és a potencálsna a ülönbségét Lagrange függvényne nevezzü így: d = ) dt q q A 1.20) egyenletet nevezzü Lagrange-féle másodfajú mozgásegyenletene. Hamlton-féle varácós elv és az Euler-Lagrange egyenlete A Hamlton által mondott varácós elv, az eddgeen azért mutat túl, mert nem csupán a mechana problémá általános megfogalmazásában használható, hanem az opta és a vantummechana törvényet s egyszer en meg lehet általa fogalmazn. Konzervatív rendszerre az állítás a övetez : S = t2 A varácószámításból adódna a mozgásegyenlete: t 1 Ldt = ext. 1.21) d = ) dt q q Eze az Euler-Lagrange egyenlete Lagrange-féle másodfajú mozgásegyenlete). Példa: Rugó mozgása. Legyen ét tömegpontun am egy-egy rugóval a falhoz van rögzítve és egy rugóval pedg a ét test van össze ötve. Legyen mnden rugó egyforma D = D). Eor a Lagrange függvény: L = K V = 1 ) ẋ 2 m ẋ Dx2 1 1 ) 2 D x 2 x Dx ) amb l a mozgás egyenlete: m d2 x 1 = Dx 2 2Dx ) m d2 x 2 = Dx ) Ha a megoldás x = a e ωt alaba eressü, aor egy sajátérté problémára vezet az egész feladat. Kanonus egyenlete, Hamlton-függvény Az eddg használt Lagrange leírásban másodrend derencálegyenletet aptun. Az úgynevezett anonus egyenlete azzel szemben els rend derencálegyenleteet szolgáltatna, amelye a másodrend eel egyenérté e, azonban étszer anny van bel lü. Bevezetjü a anonusan onjugált mpulzust és a Hamlton-függvényt: p = q H = p q L 1.26) Az Euler-Lagrange egyenlete gyelembevételével, és a Hamlton-függvény teljes derencájána felhasználásával dhp, q, t) = H H H dq + dp + dt 1.27) q p ) = d p q L = pd q + qdp dq d q dt 1.28) q q

5 fejezet 1. A lasszus mechana elve 5 Tehát ebb l leolvashatju a anonus egyenleteet: = pd q + qdp ṗdq pd q dt 1.29) = qdp ṗdq dt 1.30) 1.31) q = H p 1.32) ṗ = H q 1.33) H = 1.34) Ha a rendszer onzervatív, és az általánosított oordnátára való áttérés d független, aor a Hamlton-függvény a mechana energát adja. Enne a formalzmusna emeled szerepe van a vantummechana és a vantumtérelemélete tárgyalásánál. Clus oordnátá, anonus transzformácó Ha a Hamlton-függvény nem függ valamely oordnátától, aor az ahhoz a oordnátához tartozó onjugált mpulzus állandó a anonus egyenlete matt, és azonnal megoldást szolgáltat a mozgásegyenletre q = q t + c = H p t + c 1.35) Az lyen tulajdonságú oordnátát clus oordnátána nevezzü. Értelemszer en mnél több clus oordnátá van, annál egyszer bb megoldan az adott problémát. Ezért érdemes foglalozn azoal a transzformácóal, amelye változatlanul hagyjá a anonus egyenleteet, de clus oordnátára térhetün át segítségüel. Eze a transzformácó tehát olyan oordnátá özött vszne át, amelye teljesít a anonus egyenleteet továbbá a varácós elvne s eleget teszne a anonus egyenlete s abból származtathatóa). Eze alapján belátható, hogy a varált funconálban van egy szabadságun egy tetsz leges függvény d szernt derváltjána erejég. Ezt a függvény nevezzü alotó függvényne, mert segítségével fejezhet e a transzformácós szabályo. Az alapján, hogy az alotó függvényt mely ét változóval fejezzü a négy rég és új oordnáta, rég és új mpulzus) özül, ülönböz összefüggéseet apun a oordnátá és az alotó függvény özött, valamnt megapju a Hamltonfüggvény transzformácóját s. Maupertus-elv A Maupertus-elv energamegmaradó rendszerere vonatoz, vagys a Lagrange-függvény nem függ explcte az d t l. Az elv mondja, hogy a rendszer által megtett út olyan, hogy a rövdített hatás S = dq = mn. 1.36) p ahol az ntegrált a pályára vett vonalntegrálént ell érten. Louvlle-tétel A Hamlton- mechana rendszerere mondható a Louvlle-tétel, am azt fogalmazza meg, hogy nem-dsszpatív rendszerre a fázstérfogat állandó marad. Ha ϱ a fázstérbel eloszlás függvény, és a rendszer d dmenzós: dϱ dt = ϱ + d =1 ϱ q + ϱ ) ṗ q p 1.37)

6 1.2. Szmmetrá és megmaradás tétele 6 mvel a fázstérben a ponto sebessége: v = dr dt = q + ṗ ) = H H ) p p 1.38) a sebesség dvergencája: v = 2 H p q H q p ) = ) Ez azért fontos egyenlet, mert nem csa egyensúly sztuácóban használható, hanem sorészecsés bonyolult dnama problémára s, ezért alapvet fontosságú a statsztus jelensége tárgyalásában Szmmetrá és megmaradás tétele Noether-tétel Azt mondja, hogy mnden folytonos szmmetrához tartoz egy megmaradó mennység. Tehát ha a rendszer Lagrange függvényéne a szmmetrája: aor a övetez mennység megmaradó: q : q = q + εf q, q) 1.40) q : q = q + εf q, q) 1.41) q f = áll. 1.42) mvel L q + εf, q + εf ) L q, q ) = 0) = εf + ) εf q q = ε d ) εf dt q 1.43) A tér homogentása és az mpulzus megmaradás Ha a rendszer eltolás szmmetrus aor egy tetsz leges rányba δr-rel való eltolásra L változatlan, és eltolás során a övetez éppen transzformálódna a vetoro: Így a Noether-tétel 1.42) alapján: r = r + δr 1.44) q = p = p = áll. 1.45) A tér zotrópája és az mpulzusmomentum megmaradás A szmmetra transzformácó eredménye a vetorora: r = r + δr δr = δφ e r 1.46) p = p + δp δp = δφ e p 1.47) A Noether-tétel 1.42) alapján: q r = p r = N = N = áll. 1.48)

7 fejezet 1. A lasszus mechana elve 7 Az d homogentása és az energa megmaradás Ha a szmmetra m veletün az d bel eltolás, azaz aor Noether-tétel 1.42) alapján: t = t + t ) = áll. 1.50) A Lagrange függvény általában nem függ explcte az d t l, így ez az állandó a nulla, így láthatju, hogy a rendszer energája megmarad.

Öt előadás a fizika történetéből, 2

Öt előadás a fizika történetéből, 2 Öt előadás a fza történetéből, 2 A mechana elve Az első előadásban a program megfogalmazása mellett a mechana newton tárgyalásával és a mozgásegyenleteből övetező megmaradás tételeel foglaloztam. Ismétlésént

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6

Tartalomjegyzék. A mechanika elvei. A virtuális munka elve. A TételWiki wikiből 1 / 6 1 / 6 A TételWiki wikiből Tartalomjegyzék 1 A mechanika elvei 2 A virtuális munka elve 3 d'alembert elv és a Lagrange-féle elsőfajú egyenletek 4 A Gauss-féle legkisebb kényszer 5 Általános koordináták

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

Lagrange és Hamilton mechanika

Lagrange és Hamilton mechanika Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Molekulák szemiklasszikus vizsgálata

Molekulák szemiklasszikus vizsgálata Szadolgozat Moleulá szemlasszus vzsgálata írta: Szdarovszy Tamás Témavezető: Dr. Kaufmann Zoltán egyetem docens, ELTE Fza Intézet Eötvös Loránd Tudományegyetem Természettudomány Kar Fza BSc. Sza Budapest,

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

Fuzzy Rendszerek és Genetikus Algoritmusok

Fuzzy Rendszerek és Genetikus Algoritmusok Fuzzy endszere és Genetus lgortmuso Előadás vázlat előadás Felhasznált Irodalom: Összeállította: armat István Ph.D., egyetem adjuntus ózsa Pál: neárs algebra és alalmazása. Budapest, 99. [] Sajátérté-eladat

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként. A szta formula és alalmazása. Gyaran találozun az alább érdéssel, soszor egy összetett feladat részfeladataént. Tentsün bzonyos A 1,...,A n eseményeet, és számítsu anna a valószínűségét, hogy legalább

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

2 Wigner Fizikai Kutatóintézet augusztus / 17

2 Wigner Fizikai Kutatóintézet augusztus / 17 Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA

A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület

Részletesebben

ORTOGONÁLIS GÖRBEVONALÚ KOORDINÁTAHÁLÓZAT LÉTREHOZÁSA TETSZŐLEGES PEREMPONTOKKAL ADOTT MERIDIÁNCSATORNÁK ESETÉN. Könözsy László Ph.D.

ORTOGONÁLIS GÖRBEVONALÚ KOORDINÁTAHÁLÓZAT LÉTREHOZÁSA TETSZŐLEGES PEREMPONTOKKAL ADOTT MERIDIÁNCSATORNÁK ESETÉN. Könözsy László Ph.D. ORTOGONÁLIS GÖRBEVONALÚ KOORDINÁTAHÁLÓZAT LÉTREHOZÁSA TETSZŐLEGES PEREMPONTOKKAL ADOTT MERIDIÁNCSATORNÁK ESETÉN. BEVEZTÉS Könözsy László Ph.D. hallgató Msolc Egyetem, Áramlás- És Hőtechna Gépe Tanszée

Részletesebben

Ahol mindig Ön az első! www.eon.hu/ugyintezes. Segítünk online ügyféllé válni Kisokos

Ahol mindig Ön az első! www.eon.hu/ugyintezes. Segítünk online ügyféllé válni Kisokos Ahol mndg Ön az első! www.eon.hu/ugyntezes Segítünk onlne ügyféllé váln Ksokos Kedves Ügyfelünk! Szeretnénk, ha Ön s megsmerkedne Onlne ügyfélszolgálatunkkal (www.eon.hu/ugyntezes), amelyen keresztül egyszerűen,

Részletesebben

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet

Hálózat gazdaságtan. Kiss Károly Miklós, Badics Judit, Nagy Dávid Krisztián. Pannon Egyetem Közgazdaságtan Tanszék 2011. jegyzet Hálózat gazdaságtan jegyzet Kss Károly Mlós, adcs Judt, Nagy Dávd Krsztán Pannon Egyetem Közgazdaságtan Tanszé 0. EVEZETÉS... 3 I. HÁLÓZTOS JVK KERESLETOLDLI JELLEMZŐI HÁLÓZTI EXTERNÁLIÁK ÉS KÖVETKEZMÉNYEIK...

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Robotmechanizmusok. I. rész. Budapest, 2014

Robotmechanizmusok. I. rész. Budapest, 2014 Equaton Chapter Secton Robotmechanzmuso I. rész Buda Csaba Budapest, 4 Tartalomjegyzé Tartalomjegyzé... Bevezetés... 3 A roboto fontosabb részegysége és feladata... 3 A robotrányítás mechana alapja...

Részletesebben

A fenti funkcionál variációjakor a jobboldali két állandó eltűnik, tehát

A fenti funkcionál variációjakor a jobboldali két állandó eltűnik, tehát Vannak olyan esetek, amkor az F alapfüggvény alakjában eszközölt változtatások egyáltalán nem módosítják az Euler-Lagrange egyenletet. 1. Mvel az egyenlet lneárs F -ben, tetszőleges F = c F többszöröse

Részletesebben

1. Az előző előadás anyaga

1. Az előző előadás anyaga . Az előző előadás anyaga Egy fiú áll az A pontban és azt látja, hogy a barátnője fuldoklik a B pontban egy tóban. Milyen plyán kell a fiúnak mozognia, hogy a leggyorsabban a barátnőjéhez érjen, ha a parton

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések 58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket

Részletesebben

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás: beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X

Részletesebben

A CSOPORT 4 PONTOS: 1. A

A CSOPORT 4 PONTOS: 1. A A CSOPORT 4 PONTOS:. A szám: pí= 3,459265, becslése: 3,4626 abszolút hiba: A szám és a becslés özti ülönbség abszolút értée Pl.: 0.000033 Relatív hiba: Az abszolút hiba osztva a szám abszolút értéével

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió

ELTE II. Fizikus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzibilis termodinamika Diffúzió λ x ELTE II. Fzkus, 2005/2006 I. félév KISÉRLETI FIZIKA Hıtan 15. (XII.14) Irreverzbls termodnamka Dffúzó Az átlagos szabad úthossz (λ) és az átlagos ütközés dı (τ): λ = < v> τ A N = n (A x); A σ σ π (2r)

Részletesebben

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal

Részletesebben

Elemi szelekciós elmélet

Elemi szelekciós elmélet Elem szelekcós elmélet Meszéna Géza 018. május 8. 1. Exponencáls növekedés, szelekcó és regulácó Állandó körülmények között egy populácó létszáma exponencálsan változk, hsz úgy a születések, mnt a halálozások

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Tanítóval történ ellenrzött tanulás (Supervised Learning)

Tanítóval történ ellenrzött tanulás (Supervised Learning) anítóval történ ellenrzött tanulás (Supervsed Learnng Bevezetés Az ellenrzött tanulás esetén mndg van nformácón a rendszer ívánt válaszáról A tanítóval történ tanításnál összetartozó be- és menet mntapáro

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

Rozner Bence Péter. Diszkrét matematikai modellek és néhány alkalmazásuk a természettudományokban. Eötvös Loránd Tudományegyetem

Rozner Bence Péter. Diszkrét matematikai modellek és néhány alkalmazásuk a természettudományokban. Eötvös Loránd Tudományegyetem Eötvös Loránd Tudományegyetem Természettudomány Kar Rozner Bence Péter Dszkrét matematka modellek és néhány alkalmazásuk a természettudományokban BSc Szakdolgozat Témavezet : Zemplén András egyetem docens

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

IDA ELŐADÁS I. Bolgár Bence október 17.

IDA ELŐADÁS I. Bolgár Bence október 17. IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Az elméleti mechanika newtoni alapjai Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 1. El szó 7 2. Newton törvényei

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK

ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK LKTOKÉMIA GALVÁNCLLÁK LKTÓDOK GALVÁNCLLÁK - olyan rendszere, amelyeben éma folyamat (vagy oncentrácó egyenlítdés) eletromos áramot termelhet vagy áramforrásból rajtu áramot átbocsátva éma folyamat játszódhat

Részletesebben

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F 10. Transzportfolyamatok folytonos közegben Erőtörvény dff-egyenlet: Mérleg mechanka Newton jóslás: F a v x(t) magyarázat: x(t) v a F pl. rugó: mat. nga: F = m & x m & x = D x x m & x mg l energa-, mpulzus

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

9. évfolyam feladatai

9. évfolyam feladatai Hómezővásárhely, 015. április 10-11. A versenyolgozato megírására 3 óra áll a iáo renelezésére, minen tárgyi segéeszöz használható. Minen évfolyamon 5 felaatot ell megolani. Egy-egy felaat hibátlan megolása

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

JELEK ÉS RENDSZEREK PÉLDATÁR

JELEK ÉS RENDSZEREK PÉLDATÁR Írta: PLETL SZILVESZTER MAGYAR ATTILA JELEK ÉS RENDSZEREK PÉLDATÁR Egyetem tananyag COPYRIGHT: 6, Dr. Pletl Szlveszter, Szeged Tudományegyetem Természettudomány és Informata Kar Műsza Informata Tanszé;

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Virtuális elmozdulások tétele

Virtuális elmozdulások tétele 6. Előadás A virtuális elmozdulás-rendszer fogalma A virtuális munka fogalma A virtuális elmozdulások tétele Alkalmazás statikailag határozott tartók vizsgálatára 1./ A virtuális elmozdulásrendszer fogalma

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Elektrokémia 02. Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erő. Láng Győző

Elektrokémia 02. Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erő. Láng Győző Eletroéma 02. Eletroéma cella, Kapocsfeszültség, Eletródpotencál, Eletromotoros erő Láng Győző Kéma Intézet, Fza Kéma Tanszé Eötvös Loránd Tudományegyetem Budapest Termodnama paramétere TERMODINAMIKAI

Részletesebben

6. A Lagrange-formalizmus

6. A Lagrange-formalizmus Drótos G.: Fejezetek az elméleti mechanikából 6. rész 1 6. A Lagrange-formalizmus A Lagrange-formalizmus alkalmazásával bizonyos fizikai rendszerek mozgásegyenleteit írhatjuk fel egyszerű módon. Az alapvető

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Merev test mozgása Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 011 TARTALOMJEGYZÉK 0.1. Alapfogalmak,jelölések............................

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

2. személyes konzultáció. Széchenyi István Egyetem

2. személyes konzultáció. Széchenyi István Egyetem Makroökonóma 2. személyes konzultácó Szécheny István Egyetem Gazdálkodás szak e-learnng képzés Összeállította: Farkas Péter 1 A tananyag felépítése (térkép) Ön tt áll : MAKROEGENSÚL Inflácó, munkanélkülség,

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Atomok elektronszerkezete

Atomok elektronszerkezete Atomok elektronszerkezete Az atomok elektronállapotát leíró zka mennységek Nemrelatvsztkus eset Hamlton operátor Tekntsünk egy Z töltés½u M tömeg½u atommagot és N elektront tartalmazó atomot. A Hamlton

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben