Sztochasztikus folyamatok a gazdaságban (előadás vázlat)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sztochasztikus folyamatok a gazdaságban (előadás vázlat)"

Átírás

1 Sztochasztikus folyamatok a gazdaságban (előadás vázlat) Sinkovicz Péter PhD hallgató S t t

2 Sinkovicz Peter

3 BEVEZETÉS Statisztikai alapfogalmak Események valószínűségének értelmezése Adattípusok Kísérlettervezés, buktatók Sztochasztikus folyamatok áttekintése Sztochasztikus folyamatok Stacionárius folyamatok Markov folyamatok Chapman-Kolmogorov-egyenlet Homogén Markov folyamatok Az állapotok osztályozása 5 Definíciók Bolyongás során felmerülő alapkérdések 6 DISZKRÉT IDEJŰ MARKOV FOLYAMATOK Diszkrét idejű Markov folyamatok dinamikája 7 Dinamika megadása Chapman-Kolmogorov egyenlet ezen a nyelven P (n) mátrix analitikus meghatározása Egyensúlyi eloszlás 0 Egyensúlyi eloszlás meghatározása Átlagos visszatérési idő Google PageRank Elérési valószínűség, átlagos elérési idő Bevezető példa Definíció Elérési valószínűség meghatározásának módja Átlagos elérési idő meghatározásának módja RÉSZVÉNYPIAC EGYSZERŰ MODELLJE Alapfogalmak 5 Értékpapír jellemzése Portfólió választás a Markowitz-féle modellben 6 A Markowitz-féle modell feltevései Portfólió választás i

4 3 Egy adott portfólió szimmetrikus mozgása a tőzsdén 8 Első lépés analízis Bolyongás várható ideje Egy adott portfólió aszimmetrikus mozgása a tőzsdén 0 Bolyongás várható ideje Konklúzió 3 DIFFÚZIÓS FOLYAMATOK Diffúziós folyamatok leírása 5 Fokker-Planck egyenlet Speciális diffúziós folyamatok 7 Wiener folyamat Ornstein-Uhlenbeck folyamat Langevin egyenlet 3 Langevin egyenlet és a Fokker-Planck egyenlet Langevin egyenlet általánosítása több változós esetre Diffúziós folyamat konstrukciója adott stacionárius eloszláshoz 33 Egyváltozós eset Többváltozós eset DISZKRÉT IDEJŰ MASTER EGYENLET EGÉSZ VÁLTOZÓKRA Master egyenlet származtatása 35 Infinitezimális idő alatti átmeneti valószínűség Master egyenlet származtatása Részletes egyensúly 36 3 Bolyongás végtelen láncon 37 A bolyongás diffúzitása p i meghatározása Végtelen határeset Kontinuum limesz APPENDIX A. Appendix: Indikátorfüggvény formalizmus 4 Tulajdonságai ii

5 Sinkovicz Péter

6 Sinkovicz

7 Előszó Az előadás alap valószínűségi fogalmakra épül melyekről egy jó áttekintés ad a [] könyv. Témáját négy nagyobb szerkezeti egység képzi; Az első részben a diszkrét idejű Markov folyamatok átmeneti mátrixos és első lépés analízises formalizmusaival ismerkedünk meg, melyek pontosabb elméleti háttere a [-6] irodalombakban részletesebben kibontakozik. A második gondolati egységben betekintést kaphatunk a tőzsdepiac elemi folyamataiba, ehhez a témakörhöz jó áttekintést adnak a [7-9] könyvek. A harmadik részben néhány speciális diffúz folyamatot tekint át, melyek megtalálhatóak a [0] könyvben. Majd az előadás utolsó témája a Master egyenlet konstrukciója egy adott gazdasági folyamathoz. A jegyzet a Markov Monte Carlo módszerek rövid ismertetésével válna teljessé, azonban az idő rövidsége miatt ez a téma kimaradt, viszont egy jó áttekintést ad ebben a témakörben a következő két hivatkozás [-]. Továbbá szeretném kiemelni Szám Anita hallgatómat, aki lelkesen és megbízhatóan segített a jegyzet bedigitalizálásában. Irodalomjegyzék [] Prékopa András: Valószínűségelmélet [] J. R. Norris: Markov Chains [3] J. R. Norris: Markov Chains lecture note [4] Aldous, D. and J. Fill: Markov Chains lecture note [5] B. Rozovskii, M. Yor: Stochastic Modelling and Applied Probability [6] Fazekas István: Markov-láncok és alkalmazásaik [7] R. E. Shreve: Stochastic Calculus for Finance I-II [8] M. J. Steele: Stochastic Calculus and Financial Applications [9] P. Jorion: Financial Risk Manager Handbook [0] W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences [] Charles J. Geyer: Introduction to Markov Chain Monte Carlo [] W. R. Gilks, S. Richardson: Markov Chain Monte Carlo in Practice iii

8 Sinkovicz Péter

9 Bevezetés Statisztikai alapfogalmak Események valószínűségének értelmezése Véletlen folyamatok esetén a (megismételhető) kísérletek kimeneteinek a valószínűségeit azonosíthatjuk a mérések során tapasztalt relatív gyakoriságaikkal: kedvező elemi események száma lehetséges elemi esetek száma p(a Ω) := k A n = Az így definiált valószínűség kielégíti a valószínűségi axiómákat: 0 p(a Ω) p(ω) = (egymást páronként kizáró események valószínűsége összeadódik) Adattípusok Az adatok nem mások, mint a kísérletek lehetséges kimenetei. Csoportosíthatjuk lehetséges kimenetei: Kvalitatív adatok (lehetséges értékei számok) a) Diszkrét adatok (megszámlálhatóan végtelen számosságú) b) Folytonos adatok (megszámlálhatatlanul végtelen számosságú /intervallum adatok/) Kvantatív adatok (melyek értékei nem számok) és szintjük szerint is:. Normális szintű: Az ilyen típusú adatokat nem lehet sorba rendezni (pl.: igen/nem/talán). Ordinális szintű: Sorba lehet rendezni, de a különbségnek nincs értelme (pl.: egyetemek sorrendje) 3. Intervallum szintű: Van értelme a különbségnek, de nincs nulla pont, ami valaminek a hiányára utal 4. Arányszintű: Van nulla pont is (pl.: vízállás) Kísérlettervezés, buktatók Ügyelnünk kell arra, hogy a kísérletezés során ne torzuljanak az adatok, azaz valóban a mért populációt jellemezzék. A típushibák elkerülése érdekében a következőket kell szem előtt tartanunk: Statisztikai hamisítás: Tilos rossz, hamis adatot a többi közé keverni, hogy igazoljuk a feltevésünket Túl kis elemszámú minta nem ad reális képet a teljes populációról Az ábrák torzíthatnak, a számokat nézzük Elemi eseményekből építkezzünk Ismernünk kell a teljes eseményteret

10 Sztochasztikus folyamatok áttekintése Sztochasztikus folyamatok Legyen x(t) egy valószínűségi változó (Ω halmazon értelmezett tetszőleges függvény), melyet időnként megmérünk. A mérés során az x(t n ),..., x(t ) adatsort kapjuk, ahol t n < t n <... < t. Több kísérlet elvégzése után, vagy elméleti jóslatból definiálhatunk egy valószínűségi sűrűséget: p n (x, t ;...; x n, t n ) mely megadja, hogy mekkora annak a valószínűsége, hogy t i -ben (x i, x i +dx i ) intervallumon belül lesz a mérési eredmény, azaz P(x (x, x + dx ),..., x n (x n, x n + dx n )) p n (x, t ;...; x n, t n )dx,..., dx n Ezen valószínűségi leírásban x(t)-t sztochasztikus valószínűségi változónak tekintjük, ha rendelkezik a következő két tulajdonsággal: Normáltság pn (x, t ;...; x n, t n )dx ;...; dx n Komplementaritás pn (x, t ;...; x i, t i ;...; x n, t n )dx i = p n (x, t ;...; x i, t i ;...; x n, t n ) Az x(t) valószínűségi változóink jellemzésére bevezethetjük a következő mennyiségeket: momentumok várhatóérték: < x(t) > E[x(t)] := dx xp (x, t) n. momentum: < x n (t) > E[x n (t)] := dx x n p (x, t) korrelációs függvények n. korrelációs függvény: E[x (t )...x n (t n )] = dx... dx n x ;...; x n p n (x, t ;...; x n, t n ) Stacionárius folyamatok A stacionárius folyamatok invariánsak az időeltolásra, azaz nem fejlődnek az időben, így egyensúlyi állapotként értelmezhetőek: p stac (x, t) p stac (x, t ) t, t p stac = p (x) Markov folyamatok Definiáljuk a p stac (x, t; x, t ) p stac (x t + t; x, t + t) t p stac (x, t; x, t ) = p stac (x, x, t t ) P(x, t x, t ;...; x n, t n ) = p n(x t ;...;x n t n ) p n (x t ;...;x n t n ) feltételes valószínűséget, mely megadja, hogy mekkora valószínűséggel mérünk x -et t -ben, ha előtte t, x ;...; t n, x n n db esemény bekövetkezett. Ezen feltételes valószínűség segítségével definiálhatjuk a Markov folyamatokat. Egy sztochasztikus folyamatot Markovinak tekintünk, ha P(x, t x, t ;...; x n, t n ) P(x t x t ) összefüggés fennáll, azaz a rendszernek nincs hosszútávú memóriája, csak a közvetlenül őt megelőző eseménytől függ.

11 Chapman-Kolmogrov-egyenlet A p n valószínűség felépíthető a feltételes valószínűségek segítségével: p n (x, t ;...; x n, t n ) = P(x t x t ;...; x n t n )p n (x t ;...; x n t n ) = P(x t x t )p n (x, t ;...; x n t n ) = = P(x t x t )P(x t x 3, t 3 ;...; x n, t n )p n (x 3 t 3 ; x n, t n ) =... = = P(x t x t )P(x t x 3 t 3 )... P(x n t n x n t n )p (x n, t n ) mely n=3 esetén a Chapman-Kolmogorov egyenletre vezet: p 3 (x t ; x t ; x 3 t 3 ) = P(x t x t )P(x t x 3 t 3 )p (x 3 t 3 ) p (x, t ; x 3 t 3 ) = dx P(x t x t )P(x t x 3 t 3 )p (x 3 t 3 ) P(x t x 3 t 3 )p (x 3 t 3 ) = p (x 3 t 3 ) dx P(x t x t )P(x t x 3 t 3 ) P(x t x 3 t 3 ) = dx P(x t x t )P(x t x 3 t 3 ) azaz az x 3 t 3 pont úgy függ az x t ponttól, hogy valószínűségi értelemben kiátlagolunk az összes benső x t pontra: x x x3 t t3 t t x 3 t 3 x t átmenet valószínűségét úgy kapjuk meg, hogy statisztikusan kiátlagolunk az összes útra. Homogén Markov folyamatok Egy Markov folyamat homogén, ha: P(x t x t ) = P(x t t x ) (időeltolásra invariáns), ebből még nem következik, hogy ez egy stacionárius folyamat, hiszen akkor stacionárius, ha p (x, t) = p stac (x), azaz nincs időfüggés. Ergodikus Markov folyamatnak nevezzük az olyan Markov-folyamatokat, ahol lim P(x, t t x ) = p stac (x) 3

12 melyből és a Chapman-Kolmogrov egyenlet alapján: lim p (x, t) = lim t t = p stac (x) dx P(xt x )p (x,0) = azaz tetszőleges eloszlás a stacionárius állapotba tart, ha t -be. A diffúz folyamatok olyan homogén Markov folyamatok, ahol ( ) dx lim P(xt x ) p (x,0) = p stac (x) t v(x )t + ϑ(t) n = (x x ) n P(x, t x )dx = σ(x )t + ϑ(t) n = Ø n > mely integrál-egyenletrendszer megoldását azonnal leolvashatjuk dx p (x,0) = P(x, t x ) e (x x +v(x )t) σ (x )t Gauss-eloszlást követ A megoldásokat v(x ) és σ(x ) szerint tovább csoportosíthatóak (lsd. később). 4

13 3 Az állapotok osztályozása Ettől a ponttól kezdve diszkrét idejű bolyongásokkal foglalkozunk úgy, hogy a mérést stroboszkópikusan és egyenközűen végezzük. Definíciók A kísérlet lehetséges kimenetelét rendezzük gráfba. Például: kockadobás Minden él /6 valószínűséggel következik be annak a valószínűsége, hogy i dobása után j-t dobjak = /6 i, j {,...,6} A j állapotot az i állapotból elérhetőnek nevezzük (i j), ha valamely n > 0 időlépésre: P( j, n t i) 0 továbbá az i és j állapotok kölcsönösen elérhetőek (i j), ha i j és j i. Egy i állapotot lényegesnek nevezünk, ha az i-ből elérhető állapotokból vissza lehet térni i-be, ellenkező esetben i lényegtelen állapot. Az állapotok egy A halmazát zártnak nevezzük, ha i A állapot esetén: P i ( j, t i) = egy időlépés után A-ban maradunk. j A Egy zárt halmazt lényegesnek nevezünk, ha nincs valódi zárt részhalmaza. Egy Markov lánc irreducibilis, ha a teljes állapottér minimális zárt halmaz. Továbbá egy Markov-lánc akkor és csakis akkor irreducibilis, ha az egész állapottere egyetlen lényeges osztályt alkot (azaz minden állapot minden állapotból elérhető i j i, j) Láttuk, hogy az ergodikus Markov-folyamatok a p stac (i)-be tartanak, azonban ez a határérték nem biztos, hogy létezik. pl.: P(i t j) = δ i, j i, j {,} azaz az () és a () állapot közt oszcillál a rendszer. Ergodikus Markov-lánc, ha aperiodikus (létezik p stac (i)), irreducibilis és véges valószínűséggel visszatalál a kiindulási pontba. 5

14 4 Bolyongás során felmerülő alapkérdések Első átlagos visszatérési idő Például: A sakktáblán véletlenszerűen bolyong egy huszár. Átlagosan hány lépés után tér vissza a kezdőpontba? Átlagos fedési idő Például: Kisgyerek zsírkrétázik az aszfalton. Átlagosan hány órát kell kint hagyni, hogy az egész utcát lefedje? Relaxációs idő Például: Átlagosan mennyit kell keverni a paklit, hogy elveszítse a memóriáját? Monte-Carlos módszerek 6

15 Diszkrét idejű Markov folyamatok Diszkrét idejű Markov folyamatok dinamikája Dinamika megadása Egy időlépés valószínűségét jelöljük a következőképpen: P i (x t+ t ) P(x t+ t x t = i) ahol x t+ t a t + t időben a "részecske" helyzete a G(V, E) gráfon (azaz a rendszer állapota), ha ez a j-edik rácspont akkor tömören: a p ji átmeneti mátrix tulajdonságai: p ji 0 i, j V p ji = (sztochasztikus mátrix) j V p ji = P i (x t+ t = j) i, j V λ = (λ i : i V ) valószínűségi eloszlás, ha λ i = és λ i 0, i V -re i Ezen elemek segítségével a következőképpen definiálhatjuk a dinamikát egy λ 0 kezdeti eloszlásból: P λ (x t= t = j) P λ (x = j) = i V λ i p ji... P λ (x n = j) = λ i p (n) ji i V Például: időjóslás: Megfigyelések alapján ha ma esett akkor holnap p = 0.7 valószínűséggel nem esik és q 0 = 0.3 valószínűséggel esik. Hasonlóan, ha ma nem esett, akkor p = 0.6 valószínűséggel nem esik és q = 0.4 valószínűséggel esik. p p,, p, p, ahol nem esik és esik, így a rendszer átmeneti mátrixa [ ] [ ] p, p, P = = p, p, és a kezdeti valószínűségi eloszlásunk (mai nap időjárása) a következő: ( λ ) ( ) λ 0 = 0 esik λ = 0 0 nem esik Melyen a két nap múlvai állapot meghatározásához az átmeneti mártixot kétszer kell hatatnunk: [ ][ ]( ) [ ]( ) ( ) P λ 0 = = = tehát 0.37 valószínűséggel esni fog két nap múlva. 7

16 Chapman-Kolmogorov egyenlet ezen a nyelven Az előző példa rámutatott arra, hogy az n lépéses folyamat átmeneti mátrixa: P (n) = p (n) ji hatványa. Így a Chapman-Kolmogorov egyenlet: p (n+m) = P (n) ji ki p(m) jk k V ami igazából a mátrix szorzás kiírása. P (n) mátrix analitikus meghatározása Például: Két pontú markov lánc a P mátrix n-edik p p,, p, p, mely átmeneti mátrixát parametrizálhatjuk a következő képpen: határozzuk meg P sajátértékeit: [ ] α λ β det α β λ [ ] [ ] p, p, α β P = = p, p, α β = ( α λ)( β λ) αβ = α λ β + αβ + λβ + λ λ + λα αβ = = λ λ + (α + β)λ + ( α β) = 0 melynek megoldásai: λ = és λ = α β. Így az átmeneti mátrix a következő alakra hozható (bázistranszformációval): ( ) ( ) λ 0 P = U U UU = 0 ===== P u = U 0 λ 0 ( α β) n U melyből (P (n) ) = U U +U ( α β) n U legyen A = U U és B = U U. Mivel P0 =,így p (0) A + B másrészt P = P, így p () = α = A + B( α β) melyből A és B meghatározható: A = hasonlóképpen a többi mátrixelem is meghatározható β P n α+β + α β ( α β)n α+β = α α ( α β)n α α+β α+β β α+β és B = α α+β α+β β α+β α+β + β α+β ( α β)n ( α β)n n β α+β α α+β β α+β α α+β = 8

17 Például: Három pontú Markov lánc: p 3, 3 3 p, 3 p, p, p 3, mely a következő átmeneti mátrixot definiálja: melynek sajátértékei: λ i =,± i, a 0 0 P = 0 ( ) i n ( ) n ± = e ±in π = ( 0 azonossággal átalakítható az átmeneti mátrix elemei, például: felhasználva, hogy p (0) =, p() Recept: N pontú markov lánc ( i = A + B ( = A + p (n) ) ε...ε N sajátértékek meghatározása (ε = lesz) ) Ha a sajátértékek különböznek: ) n [ cos( n π ) ( ± i sin n π )] ) n + C ( i ) n = ) n [ B cos( n π ) ( + C sin n π )] = 0 és p() = 0 A,B,C meghatározható: p (n) = 5 + ( ) n [ 4 5 cos( n π ) 5 sin( n π )] n 5 p (n) i j = a + a ε n a nε n N ha az l-edik sajátérték k-szor ismétlődik, akkor azokat a tagokat helyettesíthetjük a következővel: (b 0 + b n b k n k )ε n l 3) A komplex sajátértékek párban jönnek (így kevesebb konstanst kell illesztenünk). 9

18 Egyensúlyi eloszlás Π = (Π i : i V ) valószínűségi eloszlás egyensúlyi eloszlás, ha: PΠ = Π hiszen ekkor a dinamikában nem fejlődik Például: két rácspontú példa p, p, p, p, mely átmeneti mátrixa: [ ] α β P = α β amit hatványozva határértékben eljutunk az egyensúlyi eloszlásokhoz P n lim n β α+β α α+β β α+β α α+β [ ] Π Π = Π Π tehát például α = β határesetben: Π = ( Π Π ) Π = p = α + β ( ) p = p ( ) β α ( ) Egyensúlyi eloszlás meghatározása Például: három rácspontú példa p 3, 3 3 p, 3 p, p, p 3, Mely átmeneti mátrixa 0 0 P = 0 0 ( ) 5 lim n ( ) 5 ( ) 5 0

19 Ezek azonban a következőképpen is meghatározhatók: Π = Π 3 Π = Π + Π megoldása Π 3 = Π + Π 3 Átlagos visszatérési idő Π = /5 Π = /5 Π 3 = /5 (Π + Π + Π 3 = ) Az m i átlagos visszatérési idő megadja, hogy átlagosan hány időlépés után érünk vissza a kiindulási i pontba. Az egyensúlyi eloszlásból meghatározható az egyes rácspontok visszatérési értékét: m i = π i ahol m i = E i (T i ) és E i ( ) olyan várhatóérték amihez a t = 0-ból i-be indított bolyongáshoz tartozik Például: két rácspontú gráf: Legyen α = β = p, ekkor E (az az idő ami alatt visszatér) = np(n időpontban tért vissza) = ( p) + p ( p) n n Google PageRank n=0 = = p + n= (m + ) p ( p) m = p + p (n + ) ( p) n = m= = p + p ( p) n + p n( p) n = p + p ( p) n = n= = p + p ( p) m m=0 } {{ } mértani sor Három szempont szerint kell optimalizálni a kereső motort: kereső megtalálja ami szeretne megfelelő reklámok legyenek reklámból származó bevétel maximalizálása n= } {{ } p "mértani sor" = p + p p = Toy modell erre az esetre: Legyen a web egy G = (V, E) gráf, ahol V a vertexek (itt: a weboldalak) és E a linkek halmaza (kapcsolatok). Az átmeneti valószínűség meghatározható egy lapról a kapcsolódóakra: p i j = { L(i) N az L(i) hivatkozásai közül egyenletesen választ egyet n= ha L(i)=0, akkor random választ egy lapot az összes közül Tovább finomíthatjuk ezt a modellt, hiszen lehet hogy nem a honlapról ágazik el, hanem bezárja, és nyit egy másikat: p i j = α p i j + ( α) N így valószínűséggel lép tovább. Az egyensúlyi eloszlása a rendszernek (Π) arányos azzal, hogy mennyi időt töltenek ott az emberek, azaz ha π i > π j akkor i weboldal "fontosabb" mint a j. PΠ = Π meghatározása nehéz lim n P n = (Π,Π...) ami gyorsan konvergál (gyorsabb mint a s.é. egyenlet megoldása). n=

20 3 Elérési valószínűség, átlagos elérési idő Bevezető példa Kétpontú gráf: p, p, p, mely átmeneti mátrixa: P = ( ) p 0 p Az egyes rácspontból indulva a kettesben való elnyelődés valószínűsége: P (-be jutás) = P ( elérése az n-edik lépésben) = ( p) n p = p ( p) n = n= = p [( p) ] ( p) = p p = Az egyes rácspontból a kettesen való elnyelődés várható ideje: E (-esbe jutás ideje) = np( elérése az n. lépésben) = n= n= n= n( p) n p = p d d p Mely első lépés analízissel meghatározható: legyen f = P (-be jutás) ekkor n= ( p) n = p( ) = p p f = ( p)p (-be jutás x = = először az -ben marad) + pp (-be jutás x = átment) = ( p)f + p n=0 amiből f = adódik és g = E (-esbe jutás ideje) = + ( p)g + p 0 amiből g = p Definíció Elérési ideje egy A V halmaznak: H A = inf{n 0 : x n A} Elérési valószínűség: f A i = P i (H A < ) Átlagos elérési idő: q A i = E i (H A ) = n< np i (H A = n) + " P(H A = )" Elérési valószínűség meghatározásának módja A f A = (f A i : i V ) elérési valószínűség az a; nem negatív, minimális megoldása a f A f A i = ha i A i = p ji f A ha i A j j egyenletrendszernek. A minimális megoldás azt jelenti, hogy ha x és f megoldások akkor x i f i x -re

21 Bizonyítás: a) f A i megoldja az említett egyenletet Ha x 0 = i A, akkor H A = 0 (nulla lépés alatt ott van) f A i = Ha x 0 A, akkor H A f A = P i i (H A < ) = P i (H A <, x = j) P i (H A < x = j) P j V j V } {{ } i (x = j) f A j } {{ } j-t érintve i-ből A-ba megy b) minimális megoldás Legyen x egy tetszőleges megoldás, ahol f A = x i i = i A-ra, így = } {{ } p ji p ji f A j j x i = p ji x j = p ji x j + p ji x j = p ji + p ji x j = p ji + ( p ji p k j x k + ) p k j x k = j j A j A j A j A j A j A k A k A = P i (x A) + P i (x A, x A) + p ji p k j x k =... = P i (x A) +P } {{ } i (x A, x A) + j,k A elsőre odament P i (x A,..., x n A, x n A) + p } {{ } j i p j j... p jn j n x jn { j} n.-re ment oda x i P i (H A n) x i lim n P i (H A n) = P i (H A < ) = f i Átlagos elérési idő meghatározásának módja A g A = (g A i : i V ) átlagos elérési idő az a; nem negatív, minimális megoldása a g A i = 0 i A g A i = + j p ji g A j i A egyenletrendszernek. (Bizonyítása hasonló, mint az elérési valószínűségnél látott). 3

22 Sinkovicz Peter

23 Részvénypiac egyszerű modellje Alapfogalmak Értékpapír: vételár ellenében szabadon átruházható Értékpiac: értékpapírok adásvételének színtere Árfolyam: az az ár, amennyiért az értékpapír egy egységét megvásárolhatjuk Időhorizont: Ha a piac diszkrét, egyenközű t időlépésekre osztható, akkor t a befektetések időhorizontja. Értékpapír jellemzése Az értékpapírok jövőbeli értékét, árfolyamát véletlenszerűnek tekinthetjük. Jelölje S(t) sztochasztikus változó egy adott értékpapír t időpontban vett árfolyama, melyhez a p n (s t ;...; s n t n ) valószínűségi sűrűség tartozik, így az egységnyi időlépés alatt szerzett egységnyi nyereség: X(t, t) = S(t + t) S(t) mely relatív megváltozása a hozam vagy lineáris hozam: r(t, t) = S(t+ t) S(t) S(t) exponenciális trend pl. kamatos kamat r(t, t) log = log S(t+ t) S(t) log r ahol r(t, t) log az úgynevezett logaritmikus hozam. 5

24 Portfólió választás a Markowitz-féle modellben A Markowitz-féle modell feltevései A Markowitz-féle modell az üzleti világra a következő egyszerűsítő feltevéseket teszi: A befektetők árelfogadóak: A piac szereplői nem befolyásolják a piacot az üzleteikkel (a forgalomban lévő részvényekhez képest kis tételben való kereskedés esetén jó közelítés, azonban a portfólió nyereségének realizációja tömeges eladáshoz vezet) Értékpapírok tetszőlegesen oszthatóak: nagy portfólióra jó közelítés Nincsenek tranzakciós költségek: sem időben sem pénzben Az árfolyamok stacionárius és normális eloszlásúak: azaz elegendő az átlagukat és szórásukat megadnunk, a centrális határeloszlás tétele miatt kb. jó közelítés A befektetések kockázatát a hozamuk szórásával mérjük: azaz a kockázat a befektetési periódus végén realizált hozam bizonytalansága. Azonban a kockázatát definiálása közel sem egyértelmű, ezt példázóan néhány fontos szempont amit figyelembe kell vennünk a kockázat definiálása során: Diverzifikációs elv: olyan kockázati mérték kell, mely több részvényre való szétosztott befektetésre kisebb Robosztusság: Kis zavarral szembeni ellenállás Összehasonlíthatósag: Valahogy össze kell tudnunk hasonlítani a különböző formájú befektetéseket Szokás megkülönböztetni a kockázatokat forrásaik szerint: (a) piaci kockázat (árfolyam ingadozás) (b) hitelkockázat (fizetésképtelenné válás) (c) működési kockázat (emberi hiba, csalás) A befektetők racionálisak: a vizsgált időtávon belül a legkisebb kockázat mellett a legnagyobb hozamot szeretnek (azonban hosszú távú befektetés során nem zavaró, ha az elején rosszul teljesít a befektetés) Portfólió választás Legyen N darab különböző fajta értékpapír a piacon, melyek árfolyamai S i (t) : i {,..., N}. Ekkor portfóliónak nevezzük a befektető egyes értékpapírjaiból meglévő w i (adott részvény-kombináció) mennyiségek összességét. Tehát a portfólió értéke: Y (t) = N w i S i (t) W S(t) melyből a portfólió megváltozásának értéke (nem váltunk csomagot), azaz a nyereségünk: i= X(t) = Y (t + t) Y (t) = N w i X i (t) ahol X i (t) = S i (t + t) S i (t). A Markowitz-modell feltevése miatt elegendő pusztán a portfólió átlagával és szórásával foglalkoznunk: i= µp := σ p := N w i µ i i= N σ i j w i w j i, j= ahol µ i = E[x i ] részvény várhatóértéke és σ i j = E[x i x j ] E[x i ]E[x j ] kovariancia mátrix. 6

25 A befektetőnk racionális, ha: azonos (µ p = µ p ) várható hozamok közül azt részesíti előnyben, melynek kisebb a szórása azaz a p, p portfóliók közül p -et válassza, ha σ p < σ p azonos szórás esetén a nagyobb várhatóértékűt választja Tehát a kedvező portfólió megtalálásához a következő optimalizációs feladatot kell megoldanunk:. min w R N. 3. N i j= σ i j w i w j N w i µ i = µ rögzített hozam mellett keressük a minimális portfóliót i= N w i = nem fektetünk be vagy vonunk ki részvényt a játék során i= mely Lagrange multiplikátoros formalizmussal megoldható: ahol a ( ) megoldásra utal és w i (µ) = N j= λ (µ) = C B µ AC B σ i j [λ (µ) + η (µ)µ i ] η (µ) = A µ B AC B A = N i j= σ i j a µ hozam melletti portfólió kockázata pedig: σ (µ) := Optimalizációs feladat vizualizációja: Μ N i, j= B = N i j= σ i j µ j σ i j w i (µ)w j (µ) C = N i j= σ i j µ iµ j A AC B (µ B A ) + A B A A Σ besatírozott terület: lehetséges portfóliók (a. és 3. egyenletet kielégítik, de nincsen minimalizálva a kockázat) határportfóliók: optimalizációs feladat szélsőértékei (kékkel és lilával jelölt portfóliók) hatékony portfóliók: optimalizációs feladat megoldásai (kékkel jelölt portfóliók) 7

26 3 Egy adott portfólió szimmetrikus mozgása a tőzsdén Vegyük a következő gazdasági modellt: legyen x = {x i : i < } véletlen változók halmaza, mely a következő eloszlást mutatja: P(x i = ) = P(x i = ) = / (pl. pénzérme dobás) jelölje S 0 a játékos kezdeti tőkéje, mely az n. lépésben S n = S 0 + x + x x n, tehát M n = S n S 0 a játékos nyeresége (egyetlen portfólióval foglalkozunk,hiszen kiválasztottuk a legjobbat) Feltehetjük azt a kérdést, hogy mekkora annak a valószínűsége, hogy nyer A egységet, mielőtt B-t vesztene? A kérdés megválaszolásához vezessük be a τ := min{n 0 : M n = A vagy M n = B} időt, lépésszámot mely egészen addig fut, míg vagy S n = A nyereség vagy M n = B bukás bekövetkezik, így arra hajtunk tehát, hogy meghatározzuk a következőt P(S τ = A S 0 = 0) ahol az S 0 = 0 kezdeti feltétel arra utal, hogy a kezdő árfolyamhoz képest viszonyítjuk a mozgást. Első lépés analízis Elemi körökből, időlépésekből építjük fel a játékos pénzmozgását, úgy, hogy egy lépést ismételünk a játék végéig, addig amíg B < S n < A feltétel még nem teljesül. Legyen f (k) := P(S τ = A S 0 = k) B k A annak a feltételes valószínűsége, hogy ha k tőkénk van, akkor τ-ban nyerünk A-t. A már tanultak alapján f (k) kifejezhető a gráf szomszédos elemein vett értékével: f (k) = f (k ) + f (k + ) B k A mely egyenletetrendszert kell megoldanunk az f (A) = és f ( B) = 0 kezdeti feltételekkel. Ehhez a kapott egyenletet vezessük vissza rekurzió segítségével, majd oldjuk meg: legyen f ( B + ) α ekkor ) α = f ( B + ) = f ( B + ) + } {{ } f ( B + + ) α = f ( b + ) ) α = f ( B + ) = f ( B + ) + } {{ } f ( B + + ) α 3α = f ( B + 3)... j) jα = f ( B + j) ahol az α értékét az f (A) = kezdeti feltételből illeszthetjük: = f (A) = (A + B)α Tehát a keresett feltételes valószínűség: α = A + B f (0) = P(τ idő alatt elérüjük A-t, de még mielőtt elérnénk B-t S 0 = 0) f ( B + B) = B A + B 8

27 Bolyongás várható ideje A várható idő pontosabb meghatározása előtt meg kell bizonyosodnunk arról hogy a folyamatunk valóban véges ideig tart. Ezt indikátor függvény (A. Appendix) segítségével beláthatjuk. Induljunk ki a következő triviális algebrai állításból τ d ((k )(A + B) < τ k(a + B)) k d (A + B) d ((k )(A + B) < τ) mivel ez az összefüggés minden k-ra teljesül, így a -ra is teljesül: k τ d ((k )(A + B) < τ k(a + B)) k= } {{ } ((k )(A + B) < τ k(a + B)) τ d k= } {{ } a szumma olyan k-ra megy ahol (k )N<τ kn, és N=A+B azaz k < τ N k így k csak egy értéket vehet fel (többre nem teljesül az egyenlőtlenség), tehát ez k d (A + B) d ((k )(A + B) < τ) k= τ d k d (A + B) d ((k )(A + B) < τ) k= mindkét oldal várhatóértékét véve: τ d k d (A + B) d P((k )(A + B) < τ) k= } {{ } annak a valószínűsége, hogy (k-)(a+b) lépésből egyszer sem nyert, azaz ezt úgy becsülhetjük, hogy (A+B) lépésből egyszer sem nyertünk (k-)-szer:-p ahol p= (A+B) annak a valószínűsége, hogy pont A-t nyerünk egyféleképpen mivel a jobb oldal korlátos, így a bal oldal is. Első lépés analízis Jelölje g(k) = τ S 0 = k annak a bolyongásnak a várható idejét amit az S 0 = k-ból indítunk. Ez is kifejezhető a szomszédos gráfpontokbeli értékeivel g(k) = g(k ) + g(k + ) + ez esetben a két kezdeti feltétel g( B) = 0 = g(a) (mindkét esetben nulla a bolyongási idő, hisz vagy a nyerés vagy a vesztés miatt kiszálltunk). Vegyük észre, hogy az előző egyenlet átírható egy Laplace egyenletté: ahol melynek megoldása: így g(k ) = B < k < A g(k ) = g(k) g(k ) g(k ) = g(k + ) g(k) + g(k ) g(k) = (k A)(k + B) τ S 0 = g(k = 0) = A B 9

28 4 Egy adott portfólió aszimmetrikus mozgása a tőzsdén Legyen P(x i = ) = p és P(x i = ) = p = q ahol (p + q = ). Ekkor egy lépés után: melyet a következő differenciálegyenletbe írhatunk át: melyből: ) f (k + ) = ( q p ) f (k) ) f (k + ) = ( q p ) f (k + ) = ( q p ) f (k)... j) f (k + j) = ( q p ) j f (k) f (k) = p f (k + ) + q f (k ) 0 = p{f (k + ) f (k)} q{f (k) f (k )} f (k) = ( q ) f (k ) p ezt az előző egyenlettel analóg módon rekurzívan megoldatjuk, legyen megint és használjuk fel az α = f ( B) = f ( B + ) f ( B) = f ( B + ) } {{ } f (k) = k+b f ( j B) = j=0 f (k) kioltják egymást azonosságot így: f (k) = k+b j=0 f ( j B) = k+b melyben szereplő α-t az f (A) = kezdeti feltétel rögzíti f (k = 0) adja megint a kereset valószínűséget: j=0 f (0) = P(S n = A S 0 = 0) = ( ) q j k+b p f ( B) = α = α ( ) q A+B p q p j=0 q p ( q ( q p )A+B p )B q p = ( q p ) j = α ( q p ) k+b ( q p )B ( q p )A+B q p 0

29 Bolyongás várható ideje Megint be kéne látnunk, hogy τ véges, de ezt most nem tesszük meg, hanem rögtön megoldjuk az első lépés analízis egyenleteit g(k) = pg(k + ) + qg(k ) + mely a következő inhomogén lineáris differenciálegyenletre vezet ( ) q g(k) = g(k ) p p a probléma g( B) = 0 = g(a) kezdeti feltételekkel rendelkezik. homogén rész megoldása g(k) = ( q p ) g(k ) = ( q )[g(k) g(k )] p a megoldás alakja: ( q g(k) = α + β p melyet vissza írva azt kapjuk: ( ) [ q k+ ( ) ] [ q k ( ) q k+ ( ) ] q k g(k + ) g(k) = α + β α + β = β = p p p p ( ) [ ( ) q q k ( ) ] q k = β p p p inhomogén egyenlet megoldása, az állandók variálása helyett c k alakban keressük a megoldást: c (k + ) c k = q p (ck c(k )) p c = q p a kettő összegéből (lineáris kombinációjából) előáll a megoldás: g(k) = a kezdeti feltételek rögzítik az α, β konstansok értékét: ) k k q p + α + β( q p )k g(k = B) = B q p + α + β( q p ) B = 0 α = B q p β( q p ) B g(k = A) = A q p + α + β( q p )A = 0 α = A q p β( q p ) A+B q p = β(( q p ) B ( q p )A ) ebből a bolyongás várhatóértéke: g(k = 0) = + α + β = B q p A+B q p ( ( q p ) B ( q )(( q p )A p ) B ) = B q p A+B q p ( q p )B ( q p )A+B

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

A pénzügyi kockázat mérése és kezelése

A pénzügyi kockázat mérése és kezelése A pénzügyi kockázat mérése és kezelése Varga-Haszonits István Gazdasági Fizika Téli Iskola, 2009. január 31. Áttekintés 1 Bevezetés 2 A portfólióválasztási probléma 3 Kockázati mértékek 4 A hatékony portfóliók

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Pénzügyi matematika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2011. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Pénzügyi matematika 2011. szi félév 1 / 79 Értékpapírpiacok Bevezetés

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Sztochasztikus folyamatok

Sztochasztikus folyamatok Sztochasztikus folyamatok Pap Gyula, Sz cs Gábor Szegedi Tudományegyetem Bolyai Intézet, Sztochasztika Tanszék Utolsó frissítés: 2014. február 8. Tartalomjegyzék Tartalomjegyzék 2 1. Sztochasztikus folyamatok

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

TŐZSDEJÁTÉK FELHASZNÁLÓI KÉZIKÖNYV

TŐZSDEJÁTÉK FELHASZNÁLÓI KÉZIKÖNYV TŐZSDEJÁTÉK FELHASZNÁLÓI KÉZIKÖNYV BEVEZETŐ A Tőzsdejáték az Magyar Nemzeti Bank (MNB) és a Budapesti Értéktőzsde (BÉT) által közösen működtetett a tőzsdei kereskedést egyszerűsített körülmények közt bemutató,

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Sztochasztikus mátrixok és Markov-láncok

Sztochasztikus mátrixok és Markov-láncok Eötvös Loránd Tudományegyetem Természettudományi Kar Sztochasztikus mátrixok és Markov-láncok BSc Szakdolgozat Készítette: Böjthy Barbara Adrienn Matematika BSc, Matematikai elemző szakirány Témavezető:

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

A futómûvek üzemeltetési megbízhatóságának és rendelkezésre állásának elemzése az üzemeltetési folyamat Markovés szemi-markov modelljének segítségével

A futómûvek üzemeltetési megbízhatóságának és rendelkezésre állásának elemzése az üzemeltetési folyamat Markovés szemi-markov modelljének segítségével A futómûvek üzemeltetési megbízhatóságának és rendelkezésre állásának elemzése az üzemeltetési folyamat Markovés szemi-markov modelljének segítségével Dr. Csiba József A futómûvek, mint komplex mûszaki

Részletesebben