Sztochasztikus folyamatok a gazdaságban (előadás vázlat)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sztochasztikus folyamatok a gazdaságban (előadás vázlat)"

Átírás

1 Sztochasztikus folyamatok a gazdaságban (előadás vázlat) Sinkovicz Péter PhD hallgató S t t

2 Sinkovicz Peter

3 BEVEZETÉS Statisztikai alapfogalmak Események valószínűségének értelmezése Adattípusok Kísérlettervezés, buktatók Sztochasztikus folyamatok áttekintése Sztochasztikus folyamatok Stacionárius folyamatok Markov folyamatok Chapman-Kolmogorov-egyenlet Homogén Markov folyamatok Az állapotok osztályozása 5 Definíciók Bolyongás során felmerülő alapkérdések 6 DISZKRÉT IDEJŰ MARKOV FOLYAMATOK Diszkrét idejű Markov folyamatok dinamikája 7 Dinamika megadása Chapman-Kolmogorov egyenlet ezen a nyelven P (n) mátrix analitikus meghatározása Egyensúlyi eloszlás 0 Egyensúlyi eloszlás meghatározása Átlagos visszatérési idő Google PageRank Elérési valószínűség, átlagos elérési idő Bevezető példa Definíció Elérési valószínűség meghatározásának módja Átlagos elérési idő meghatározásának módja RÉSZVÉNYPIAC EGYSZERŰ MODELLJE Alapfogalmak 5 Értékpapír jellemzése Portfólió választás a Markowitz-féle modellben 6 A Markowitz-féle modell feltevései Portfólió választás i

4 3 Egy adott portfólió szimmetrikus mozgása a tőzsdén 8 Első lépés analízis Bolyongás várható ideje Egy adott portfólió aszimmetrikus mozgása a tőzsdén 0 Bolyongás várható ideje Konklúzió 3 DIFFÚZIÓS FOLYAMATOK Diffúziós folyamatok leírása 5 Fokker-Planck egyenlet Speciális diffúziós folyamatok 7 Wiener folyamat Ornstein-Uhlenbeck folyamat Langevin egyenlet 3 Langevin egyenlet és a Fokker-Planck egyenlet Langevin egyenlet általánosítása több változós esetre Diffúziós folyamat konstrukciója adott stacionárius eloszláshoz 33 Egyváltozós eset Többváltozós eset DISZKRÉT IDEJŰ MASTER EGYENLET EGÉSZ VÁLTOZÓKRA Master egyenlet származtatása 35 Infinitezimális idő alatti átmeneti valószínűség Master egyenlet származtatása Részletes egyensúly 36 3 Bolyongás végtelen láncon 37 A bolyongás diffúzitása p i meghatározása Végtelen határeset Kontinuum limesz APPENDIX A. Appendix: Indikátorfüggvény formalizmus 4 Tulajdonságai ii

5 Sinkovicz Péter

6 Sinkovicz

7 Előszó Az előadás alap valószínűségi fogalmakra épül melyekről egy jó áttekintés ad a [] könyv. Témáját négy nagyobb szerkezeti egység képzi; Az első részben a diszkrét idejű Markov folyamatok átmeneti mátrixos és első lépés analízises formalizmusaival ismerkedünk meg, melyek pontosabb elméleti háttere a [-6] irodalombakban részletesebben kibontakozik. A második gondolati egységben betekintést kaphatunk a tőzsdepiac elemi folyamataiba, ehhez a témakörhöz jó áttekintést adnak a [7-9] könyvek. A harmadik részben néhány speciális diffúz folyamatot tekint át, melyek megtalálhatóak a [0] könyvben. Majd az előadás utolsó témája a Master egyenlet konstrukciója egy adott gazdasági folyamathoz. A jegyzet a Markov Monte Carlo módszerek rövid ismertetésével válna teljessé, azonban az idő rövidsége miatt ez a téma kimaradt, viszont egy jó áttekintést ad ebben a témakörben a következő két hivatkozás [-]. Továbbá szeretném kiemelni Szám Anita hallgatómat, aki lelkesen és megbízhatóan segített a jegyzet bedigitalizálásában. Irodalomjegyzék [] Prékopa András: Valószínűségelmélet [] J. R. Norris: Markov Chains [3] J. R. Norris: Markov Chains lecture note [4] Aldous, D. and J. Fill: Markov Chains lecture note [5] B. Rozovskii, M. Yor: Stochastic Modelling and Applied Probability [6] Fazekas István: Markov-láncok és alkalmazásaik [7] R. E. Shreve: Stochastic Calculus for Finance I-II [8] M. J. Steele: Stochastic Calculus and Financial Applications [9] P. Jorion: Financial Risk Manager Handbook [0] W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences [] Charles J. Geyer: Introduction to Markov Chain Monte Carlo [] W. R. Gilks, S. Richardson: Markov Chain Monte Carlo in Practice iii

8 Sinkovicz Péter

9 Bevezetés Statisztikai alapfogalmak Események valószínűségének értelmezése Véletlen folyamatok esetén a (megismételhető) kísérletek kimeneteinek a valószínűségeit azonosíthatjuk a mérések során tapasztalt relatív gyakoriságaikkal: kedvező elemi események száma lehetséges elemi esetek száma p(a Ω) := k A n = Az így definiált valószínűség kielégíti a valószínűségi axiómákat: 0 p(a Ω) p(ω) = (egymást páronként kizáró események valószínűsége összeadódik) Adattípusok Az adatok nem mások, mint a kísérletek lehetséges kimenetei. Csoportosíthatjuk lehetséges kimenetei: Kvalitatív adatok (lehetséges értékei számok) a) Diszkrét adatok (megszámlálhatóan végtelen számosságú) b) Folytonos adatok (megszámlálhatatlanul végtelen számosságú /intervallum adatok/) Kvantatív adatok (melyek értékei nem számok) és szintjük szerint is:. Normális szintű: Az ilyen típusú adatokat nem lehet sorba rendezni (pl.: igen/nem/talán). Ordinális szintű: Sorba lehet rendezni, de a különbségnek nincs értelme (pl.: egyetemek sorrendje) 3. Intervallum szintű: Van értelme a különbségnek, de nincs nulla pont, ami valaminek a hiányára utal 4. Arányszintű: Van nulla pont is (pl.: vízállás) Kísérlettervezés, buktatók Ügyelnünk kell arra, hogy a kísérletezés során ne torzuljanak az adatok, azaz valóban a mért populációt jellemezzék. A típushibák elkerülése érdekében a következőket kell szem előtt tartanunk: Statisztikai hamisítás: Tilos rossz, hamis adatot a többi közé keverni, hogy igazoljuk a feltevésünket Túl kis elemszámú minta nem ad reális képet a teljes populációról Az ábrák torzíthatnak, a számokat nézzük Elemi eseményekből építkezzünk Ismernünk kell a teljes eseményteret

10 Sztochasztikus folyamatok áttekintése Sztochasztikus folyamatok Legyen x(t) egy valószínűségi változó (Ω halmazon értelmezett tetszőleges függvény), melyet időnként megmérünk. A mérés során az x(t n ),..., x(t ) adatsort kapjuk, ahol t n < t n <... < t. Több kísérlet elvégzése után, vagy elméleti jóslatból definiálhatunk egy valószínűségi sűrűséget: p n (x, t ;...; x n, t n ) mely megadja, hogy mekkora annak a valószínűsége, hogy t i -ben (x i, x i +dx i ) intervallumon belül lesz a mérési eredmény, azaz P(x (x, x + dx ),..., x n (x n, x n + dx n )) p n (x, t ;...; x n, t n )dx,..., dx n Ezen valószínűségi leírásban x(t)-t sztochasztikus valószínűségi változónak tekintjük, ha rendelkezik a következő két tulajdonsággal: Normáltság pn (x, t ;...; x n, t n )dx ;...; dx n Komplementaritás pn (x, t ;...; x i, t i ;...; x n, t n )dx i = p n (x, t ;...; x i, t i ;...; x n, t n ) Az x(t) valószínűségi változóink jellemzésére bevezethetjük a következő mennyiségeket: momentumok várhatóérték: < x(t) > E[x(t)] := dx xp (x, t) n. momentum: < x n (t) > E[x n (t)] := dx x n p (x, t) korrelációs függvények n. korrelációs függvény: E[x (t )...x n (t n )] = dx... dx n x ;...; x n p n (x, t ;...; x n, t n ) Stacionárius folyamatok A stacionárius folyamatok invariánsak az időeltolásra, azaz nem fejlődnek az időben, így egyensúlyi állapotként értelmezhetőek: p stac (x, t) p stac (x, t ) t, t p stac = p (x) Markov folyamatok Definiáljuk a p stac (x, t; x, t ) p stac (x t + t; x, t + t) t p stac (x, t; x, t ) = p stac (x, x, t t ) P(x, t x, t ;...; x n, t n ) = p n(x t ;...;x n t n ) p n (x t ;...;x n t n ) feltételes valószínűséget, mely megadja, hogy mekkora valószínűséggel mérünk x -et t -ben, ha előtte t, x ;...; t n, x n n db esemény bekövetkezett. Ezen feltételes valószínűség segítségével definiálhatjuk a Markov folyamatokat. Egy sztochasztikus folyamatot Markovinak tekintünk, ha P(x, t x, t ;...; x n, t n ) P(x t x t ) összefüggés fennáll, azaz a rendszernek nincs hosszútávú memóriája, csak a közvetlenül őt megelőző eseménytől függ.

11 Chapman-Kolmogrov-egyenlet A p n valószínűség felépíthető a feltételes valószínűségek segítségével: p n (x, t ;...; x n, t n ) = P(x t x t ;...; x n t n )p n (x t ;...; x n t n ) = P(x t x t )p n (x, t ;...; x n t n ) = = P(x t x t )P(x t x 3, t 3 ;...; x n, t n )p n (x 3 t 3 ; x n, t n ) =... = = P(x t x t )P(x t x 3 t 3 )... P(x n t n x n t n )p (x n, t n ) mely n=3 esetén a Chapman-Kolmogorov egyenletre vezet: p 3 (x t ; x t ; x 3 t 3 ) = P(x t x t )P(x t x 3 t 3 )p (x 3 t 3 ) p (x, t ; x 3 t 3 ) = dx P(x t x t )P(x t x 3 t 3 )p (x 3 t 3 ) P(x t x 3 t 3 )p (x 3 t 3 ) = p (x 3 t 3 ) dx P(x t x t )P(x t x 3 t 3 ) P(x t x 3 t 3 ) = dx P(x t x t )P(x t x 3 t 3 ) azaz az x 3 t 3 pont úgy függ az x t ponttól, hogy valószínűségi értelemben kiátlagolunk az összes benső x t pontra: x x x3 t t3 t t x 3 t 3 x t átmenet valószínűségét úgy kapjuk meg, hogy statisztikusan kiátlagolunk az összes útra. Homogén Markov folyamatok Egy Markov folyamat homogén, ha: P(x t x t ) = P(x t t x ) (időeltolásra invariáns), ebből még nem következik, hogy ez egy stacionárius folyamat, hiszen akkor stacionárius, ha p (x, t) = p stac (x), azaz nincs időfüggés. Ergodikus Markov folyamatnak nevezzük az olyan Markov-folyamatokat, ahol lim P(x, t t x ) = p stac (x) 3

12 melyből és a Chapman-Kolmogrov egyenlet alapján: lim p (x, t) = lim t t = p stac (x) dx P(xt x )p (x,0) = azaz tetszőleges eloszlás a stacionárius állapotba tart, ha t -be. A diffúz folyamatok olyan homogén Markov folyamatok, ahol ( ) dx lim P(xt x ) p (x,0) = p stac (x) t v(x )t + ϑ(t) n = (x x ) n P(x, t x )dx = σ(x )t + ϑ(t) n = Ø n > mely integrál-egyenletrendszer megoldását azonnal leolvashatjuk dx p (x,0) = P(x, t x ) e (x x +v(x )t) σ (x )t Gauss-eloszlást követ A megoldásokat v(x ) és σ(x ) szerint tovább csoportosíthatóak (lsd. később). 4

13 3 Az állapotok osztályozása Ettől a ponttól kezdve diszkrét idejű bolyongásokkal foglalkozunk úgy, hogy a mérést stroboszkópikusan és egyenközűen végezzük. Definíciók A kísérlet lehetséges kimenetelét rendezzük gráfba. Például: kockadobás Minden él /6 valószínűséggel következik be annak a valószínűsége, hogy i dobása után j-t dobjak = /6 i, j {,...,6} A j állapotot az i állapotból elérhetőnek nevezzük (i j), ha valamely n > 0 időlépésre: P( j, n t i) 0 továbbá az i és j állapotok kölcsönösen elérhetőek (i j), ha i j és j i. Egy i állapotot lényegesnek nevezünk, ha az i-ből elérhető állapotokból vissza lehet térni i-be, ellenkező esetben i lényegtelen állapot. Az állapotok egy A halmazát zártnak nevezzük, ha i A állapot esetén: P i ( j, t i) = egy időlépés után A-ban maradunk. j A Egy zárt halmazt lényegesnek nevezünk, ha nincs valódi zárt részhalmaza. Egy Markov lánc irreducibilis, ha a teljes állapottér minimális zárt halmaz. Továbbá egy Markov-lánc akkor és csakis akkor irreducibilis, ha az egész állapottere egyetlen lényeges osztályt alkot (azaz minden állapot minden állapotból elérhető i j i, j) Láttuk, hogy az ergodikus Markov-folyamatok a p stac (i)-be tartanak, azonban ez a határérték nem biztos, hogy létezik. pl.: P(i t j) = δ i, j i, j {,} azaz az () és a () állapot közt oszcillál a rendszer. Ergodikus Markov-lánc, ha aperiodikus (létezik p stac (i)), irreducibilis és véges valószínűséggel visszatalál a kiindulási pontba. 5

14 4 Bolyongás során felmerülő alapkérdések Első átlagos visszatérési idő Például: A sakktáblán véletlenszerűen bolyong egy huszár. Átlagosan hány lépés után tér vissza a kezdőpontba? Átlagos fedési idő Például: Kisgyerek zsírkrétázik az aszfalton. Átlagosan hány órát kell kint hagyni, hogy az egész utcát lefedje? Relaxációs idő Például: Átlagosan mennyit kell keverni a paklit, hogy elveszítse a memóriáját? Monte-Carlos módszerek 6

15 Diszkrét idejű Markov folyamatok Diszkrét idejű Markov folyamatok dinamikája Dinamika megadása Egy időlépés valószínűségét jelöljük a következőképpen: P i (x t+ t ) P(x t+ t x t = i) ahol x t+ t a t + t időben a "részecske" helyzete a G(V, E) gráfon (azaz a rendszer állapota), ha ez a j-edik rácspont akkor tömören: a p ji átmeneti mátrix tulajdonságai: p ji 0 i, j V p ji = (sztochasztikus mátrix) j V p ji = P i (x t+ t = j) i, j V λ = (λ i : i V ) valószínűségi eloszlás, ha λ i = és λ i 0, i V -re i Ezen elemek segítségével a következőképpen definiálhatjuk a dinamikát egy λ 0 kezdeti eloszlásból: P λ (x t= t = j) P λ (x = j) = i V λ i p ji... P λ (x n = j) = λ i p (n) ji i V Például: időjóslás: Megfigyelések alapján ha ma esett akkor holnap p = 0.7 valószínűséggel nem esik és q 0 = 0.3 valószínűséggel esik. Hasonlóan, ha ma nem esett, akkor p = 0.6 valószínűséggel nem esik és q = 0.4 valószínűséggel esik. p p,, p, p, ahol nem esik és esik, így a rendszer átmeneti mátrixa [ ] [ ] p, p, P = = p, p, és a kezdeti valószínűségi eloszlásunk (mai nap időjárása) a következő: ( λ ) ( ) λ 0 = 0 esik λ = 0 0 nem esik Melyen a két nap múlvai állapot meghatározásához az átmeneti mártixot kétszer kell hatatnunk: [ ][ ]( ) [ ]( ) ( ) P λ 0 = = = tehát 0.37 valószínűséggel esni fog két nap múlva. 7

16 Chapman-Kolmogorov egyenlet ezen a nyelven Az előző példa rámutatott arra, hogy az n lépéses folyamat átmeneti mátrixa: P (n) = p (n) ji hatványa. Így a Chapman-Kolmogorov egyenlet: p (n+m) = P (n) ji ki p(m) jk k V ami igazából a mátrix szorzás kiírása. P (n) mátrix analitikus meghatározása Például: Két pontú markov lánc a P mátrix n-edik p p,, p, p, mely átmeneti mátrixát parametrizálhatjuk a következő képpen: határozzuk meg P sajátértékeit: [ ] α λ β det α β λ [ ] [ ] p, p, α β P = = p, p, α β = ( α λ)( β λ) αβ = α λ β + αβ + λβ + λ λ + λα αβ = = λ λ + (α + β)λ + ( α β) = 0 melynek megoldásai: λ = és λ = α β. Így az átmeneti mátrix a következő alakra hozható (bázistranszformációval): ( ) ( ) λ 0 P = U U UU = 0 ===== P u = U 0 λ 0 ( α β) n U melyből (P (n) ) = U U +U ( α β) n U legyen A = U U és B = U U. Mivel P0 =,így p (0) A + B másrészt P = P, így p () = α = A + B( α β) melyből A és B meghatározható: A = hasonlóképpen a többi mátrixelem is meghatározható β P n α+β + α β ( α β)n α+β = α α ( α β)n α α+β α+β β α+β és B = α α+β α+β β α+β α+β + β α+β ( α β)n ( α β)n n β α+β α α+β β α+β α α+β = 8

17 Például: Három pontú Markov lánc: p 3, 3 3 p, 3 p, p, p 3, mely a következő átmeneti mátrixot definiálja: melynek sajátértékei: λ i =,± i, a 0 0 P = 0 ( ) i n ( ) n ± = e ±in π = ( 0 azonossággal átalakítható az átmeneti mátrix elemei, például: felhasználva, hogy p (0) =, p() Recept: N pontú markov lánc ( i = A + B ( = A + p (n) ) ε...ε N sajátértékek meghatározása (ε = lesz) ) Ha a sajátértékek különböznek: ) n [ cos( n π ) ( ± i sin n π )] ) n + C ( i ) n = ) n [ B cos( n π ) ( + C sin n π )] = 0 és p() = 0 A,B,C meghatározható: p (n) = 5 + ( ) n [ 4 5 cos( n π ) 5 sin( n π )] n 5 p (n) i j = a + a ε n a nε n N ha az l-edik sajátérték k-szor ismétlődik, akkor azokat a tagokat helyettesíthetjük a következővel: (b 0 + b n b k n k )ε n l 3) A komplex sajátértékek párban jönnek (így kevesebb konstanst kell illesztenünk). 9

18 Egyensúlyi eloszlás Π = (Π i : i V ) valószínűségi eloszlás egyensúlyi eloszlás, ha: PΠ = Π hiszen ekkor a dinamikában nem fejlődik Például: két rácspontú példa p, p, p, p, mely átmeneti mátrixa: [ ] α β P = α β amit hatványozva határértékben eljutunk az egyensúlyi eloszlásokhoz P n lim n β α+β α α+β β α+β α α+β [ ] Π Π = Π Π tehát például α = β határesetben: Π = ( Π Π ) Π = p = α + β ( ) p = p ( ) β α ( ) Egyensúlyi eloszlás meghatározása Például: három rácspontú példa p 3, 3 3 p, 3 p, p, p 3, Mely átmeneti mátrixa 0 0 P = 0 0 ( ) 5 lim n ( ) 5 ( ) 5 0

19 Ezek azonban a következőképpen is meghatározhatók: Π = Π 3 Π = Π + Π megoldása Π 3 = Π + Π 3 Átlagos visszatérési idő Π = /5 Π = /5 Π 3 = /5 (Π + Π + Π 3 = ) Az m i átlagos visszatérési idő megadja, hogy átlagosan hány időlépés után érünk vissza a kiindulási i pontba. Az egyensúlyi eloszlásból meghatározható az egyes rácspontok visszatérési értékét: m i = π i ahol m i = E i (T i ) és E i ( ) olyan várhatóérték amihez a t = 0-ból i-be indított bolyongáshoz tartozik Például: két rácspontú gráf: Legyen α = β = p, ekkor E (az az idő ami alatt visszatér) = np(n időpontban tért vissza) = ( p) + p ( p) n n Google PageRank n=0 = = p + n= (m + ) p ( p) m = p + p (n + ) ( p) n = m= = p + p ( p) n + p n( p) n = p + p ( p) n = n= = p + p ( p) m m=0 } {{ } mértani sor Három szempont szerint kell optimalizálni a kereső motort: kereső megtalálja ami szeretne megfelelő reklámok legyenek reklámból származó bevétel maximalizálása n= } {{ } p "mértani sor" = p + p p = Toy modell erre az esetre: Legyen a web egy G = (V, E) gráf, ahol V a vertexek (itt: a weboldalak) és E a linkek halmaza (kapcsolatok). Az átmeneti valószínűség meghatározható egy lapról a kapcsolódóakra: p i j = { L(i) N az L(i) hivatkozásai közül egyenletesen választ egyet n= ha L(i)=0, akkor random választ egy lapot az összes közül Tovább finomíthatjuk ezt a modellt, hiszen lehet hogy nem a honlapról ágazik el, hanem bezárja, és nyit egy másikat: p i j = α p i j + ( α) N így valószínűséggel lép tovább. Az egyensúlyi eloszlása a rendszernek (Π) arányos azzal, hogy mennyi időt töltenek ott az emberek, azaz ha π i > π j akkor i weboldal "fontosabb" mint a j. PΠ = Π meghatározása nehéz lim n P n = (Π,Π...) ami gyorsan konvergál (gyorsabb mint a s.é. egyenlet megoldása). n=

20 3 Elérési valószínűség, átlagos elérési idő Bevezető példa Kétpontú gráf: p, p, p, mely átmeneti mátrixa: P = ( ) p 0 p Az egyes rácspontból indulva a kettesben való elnyelődés valószínűsége: P (-be jutás) = P ( elérése az n-edik lépésben) = ( p) n p = p ( p) n = n= = p [( p) ] ( p) = p p = Az egyes rácspontból a kettesen való elnyelődés várható ideje: E (-esbe jutás ideje) = np( elérése az n. lépésben) = n= n= n= n( p) n p = p d d p Mely első lépés analízissel meghatározható: legyen f = P (-be jutás) ekkor n= ( p) n = p( ) = p p f = ( p)p (-be jutás x = = először az -ben marad) + pp (-be jutás x = átment) = ( p)f + p n=0 amiből f = adódik és g = E (-esbe jutás ideje) = + ( p)g + p 0 amiből g = p Definíció Elérési ideje egy A V halmaznak: H A = inf{n 0 : x n A} Elérési valószínűség: f A i = P i (H A < ) Átlagos elérési idő: q A i = E i (H A ) = n< np i (H A = n) + " P(H A = )" Elérési valószínűség meghatározásának módja A f A = (f A i : i V ) elérési valószínűség az a; nem negatív, minimális megoldása a f A f A i = ha i A i = p ji f A ha i A j j egyenletrendszernek. A minimális megoldás azt jelenti, hogy ha x és f megoldások akkor x i f i x -re

21 Bizonyítás: a) f A i megoldja az említett egyenletet Ha x 0 = i A, akkor H A = 0 (nulla lépés alatt ott van) f A i = Ha x 0 A, akkor H A f A = P i i (H A < ) = P i (H A <, x = j) P i (H A < x = j) P j V j V } {{ } i (x = j) f A j } {{ } j-t érintve i-ből A-ba megy b) minimális megoldás Legyen x egy tetszőleges megoldás, ahol f A = x i i = i A-ra, így = } {{ } p ji p ji f A j j x i = p ji x j = p ji x j + p ji x j = p ji + p ji x j = p ji + ( p ji p k j x k + ) p k j x k = j j A j A j A j A j A j A k A k A = P i (x A) + P i (x A, x A) + p ji p k j x k =... = P i (x A) +P } {{ } i (x A, x A) + j,k A elsőre odament P i (x A,..., x n A, x n A) + p } {{ } j i p j j... p jn j n x jn { j} n.-re ment oda x i P i (H A n) x i lim n P i (H A n) = P i (H A < ) = f i Átlagos elérési idő meghatározásának módja A g A = (g A i : i V ) átlagos elérési idő az a; nem negatív, minimális megoldása a g A i = 0 i A g A i = + j p ji g A j i A egyenletrendszernek. (Bizonyítása hasonló, mint az elérési valószínűségnél látott). 3

22 Sinkovicz Peter

23 Részvénypiac egyszerű modellje Alapfogalmak Értékpapír: vételár ellenében szabadon átruházható Értékpiac: értékpapírok adásvételének színtere Árfolyam: az az ár, amennyiért az értékpapír egy egységét megvásárolhatjuk Időhorizont: Ha a piac diszkrét, egyenközű t időlépésekre osztható, akkor t a befektetések időhorizontja. Értékpapír jellemzése Az értékpapírok jövőbeli értékét, árfolyamát véletlenszerűnek tekinthetjük. Jelölje S(t) sztochasztikus változó egy adott értékpapír t időpontban vett árfolyama, melyhez a p n (s t ;...; s n t n ) valószínűségi sűrűség tartozik, így az egységnyi időlépés alatt szerzett egységnyi nyereség: X(t, t) = S(t + t) S(t) mely relatív megváltozása a hozam vagy lineáris hozam: r(t, t) = S(t+ t) S(t) S(t) exponenciális trend pl. kamatos kamat r(t, t) log = log S(t+ t) S(t) log r ahol r(t, t) log az úgynevezett logaritmikus hozam. 5

24 Portfólió választás a Markowitz-féle modellben A Markowitz-féle modell feltevései A Markowitz-féle modell az üzleti világra a következő egyszerűsítő feltevéseket teszi: A befektetők árelfogadóak: A piac szereplői nem befolyásolják a piacot az üzleteikkel (a forgalomban lévő részvényekhez képest kis tételben való kereskedés esetén jó közelítés, azonban a portfólió nyereségének realizációja tömeges eladáshoz vezet) Értékpapírok tetszőlegesen oszthatóak: nagy portfólióra jó közelítés Nincsenek tranzakciós költségek: sem időben sem pénzben Az árfolyamok stacionárius és normális eloszlásúak: azaz elegendő az átlagukat és szórásukat megadnunk, a centrális határeloszlás tétele miatt kb. jó közelítés A befektetések kockázatát a hozamuk szórásával mérjük: azaz a kockázat a befektetési periódus végén realizált hozam bizonytalansága. Azonban a kockázatát definiálása közel sem egyértelmű, ezt példázóan néhány fontos szempont amit figyelembe kell vennünk a kockázat definiálása során: Diverzifikációs elv: olyan kockázati mérték kell, mely több részvényre való szétosztott befektetésre kisebb Robosztusság: Kis zavarral szembeni ellenállás Összehasonlíthatósag: Valahogy össze kell tudnunk hasonlítani a különböző formájú befektetéseket Szokás megkülönböztetni a kockázatokat forrásaik szerint: (a) piaci kockázat (árfolyam ingadozás) (b) hitelkockázat (fizetésképtelenné válás) (c) működési kockázat (emberi hiba, csalás) A befektetők racionálisak: a vizsgált időtávon belül a legkisebb kockázat mellett a legnagyobb hozamot szeretnek (azonban hosszú távú befektetés során nem zavaró, ha az elején rosszul teljesít a befektetés) Portfólió választás Legyen N darab különböző fajta értékpapír a piacon, melyek árfolyamai S i (t) : i {,..., N}. Ekkor portfóliónak nevezzük a befektető egyes értékpapírjaiból meglévő w i (adott részvény-kombináció) mennyiségek összességét. Tehát a portfólió értéke: Y (t) = N w i S i (t) W S(t) melyből a portfólió megváltozásának értéke (nem váltunk csomagot), azaz a nyereségünk: i= X(t) = Y (t + t) Y (t) = N w i X i (t) ahol X i (t) = S i (t + t) S i (t). A Markowitz-modell feltevése miatt elegendő pusztán a portfólió átlagával és szórásával foglalkoznunk: i= µp := σ p := N w i µ i i= N σ i j w i w j i, j= ahol µ i = E[x i ] részvény várhatóértéke és σ i j = E[x i x j ] E[x i ]E[x j ] kovariancia mátrix. 6

25 A befektetőnk racionális, ha: azonos (µ p = µ p ) várható hozamok közül azt részesíti előnyben, melynek kisebb a szórása azaz a p, p portfóliók közül p -et válassza, ha σ p < σ p azonos szórás esetén a nagyobb várhatóértékűt választja Tehát a kedvező portfólió megtalálásához a következő optimalizációs feladatot kell megoldanunk:. min w R N. 3. N i j= σ i j w i w j N w i µ i = µ rögzített hozam mellett keressük a minimális portfóliót i= N w i = nem fektetünk be vagy vonunk ki részvényt a játék során i= mely Lagrange multiplikátoros formalizmussal megoldható: ahol a ( ) megoldásra utal és w i (µ) = N j= λ (µ) = C B µ AC B σ i j [λ (µ) + η (µ)µ i ] η (µ) = A µ B AC B A = N i j= σ i j a µ hozam melletti portfólió kockázata pedig: σ (µ) := Optimalizációs feladat vizualizációja: Μ N i, j= B = N i j= σ i j µ j σ i j w i (µ)w j (µ) C = N i j= σ i j µ iµ j A AC B (µ B A ) + A B A A Σ besatírozott terület: lehetséges portfóliók (a. és 3. egyenletet kielégítik, de nincsen minimalizálva a kockázat) határportfóliók: optimalizációs feladat szélsőértékei (kékkel és lilával jelölt portfóliók) hatékony portfóliók: optimalizációs feladat megoldásai (kékkel jelölt portfóliók) 7

26 3 Egy adott portfólió szimmetrikus mozgása a tőzsdén Vegyük a következő gazdasági modellt: legyen x = {x i : i < } véletlen változók halmaza, mely a következő eloszlást mutatja: P(x i = ) = P(x i = ) = / (pl. pénzérme dobás) jelölje S 0 a játékos kezdeti tőkéje, mely az n. lépésben S n = S 0 + x + x x n, tehát M n = S n S 0 a játékos nyeresége (egyetlen portfólióval foglalkozunk,hiszen kiválasztottuk a legjobbat) Feltehetjük azt a kérdést, hogy mekkora annak a valószínűsége, hogy nyer A egységet, mielőtt B-t vesztene? A kérdés megválaszolásához vezessük be a τ := min{n 0 : M n = A vagy M n = B} időt, lépésszámot mely egészen addig fut, míg vagy S n = A nyereség vagy M n = B bukás bekövetkezik, így arra hajtunk tehát, hogy meghatározzuk a következőt P(S τ = A S 0 = 0) ahol az S 0 = 0 kezdeti feltétel arra utal, hogy a kezdő árfolyamhoz képest viszonyítjuk a mozgást. Első lépés analízis Elemi körökből, időlépésekből építjük fel a játékos pénzmozgását, úgy, hogy egy lépést ismételünk a játék végéig, addig amíg B < S n < A feltétel még nem teljesül. Legyen f (k) := P(S τ = A S 0 = k) B k A annak a feltételes valószínűsége, hogy ha k tőkénk van, akkor τ-ban nyerünk A-t. A már tanultak alapján f (k) kifejezhető a gráf szomszédos elemein vett értékével: f (k) = f (k ) + f (k + ) B k A mely egyenletetrendszert kell megoldanunk az f (A) = és f ( B) = 0 kezdeti feltételekkel. Ehhez a kapott egyenletet vezessük vissza rekurzió segítségével, majd oldjuk meg: legyen f ( B + ) α ekkor ) α = f ( B + ) = f ( B + ) + } {{ } f ( B + + ) α = f ( b + ) ) α = f ( B + ) = f ( B + ) + } {{ } f ( B + + ) α 3α = f ( B + 3)... j) jα = f ( B + j) ahol az α értékét az f (A) = kezdeti feltételből illeszthetjük: = f (A) = (A + B)α Tehát a keresett feltételes valószínűség: α = A + B f (0) = P(τ idő alatt elérüjük A-t, de még mielőtt elérnénk B-t S 0 = 0) f ( B + B) = B A + B 8

27 Bolyongás várható ideje A várható idő pontosabb meghatározása előtt meg kell bizonyosodnunk arról hogy a folyamatunk valóban véges ideig tart. Ezt indikátor függvény (A. Appendix) segítségével beláthatjuk. Induljunk ki a következő triviális algebrai állításból τ d ((k )(A + B) < τ k(a + B)) k d (A + B) d ((k )(A + B) < τ) mivel ez az összefüggés minden k-ra teljesül, így a -ra is teljesül: k τ d ((k )(A + B) < τ k(a + B)) k= } {{ } ((k )(A + B) < τ k(a + B)) τ d k= } {{ } a szumma olyan k-ra megy ahol (k )N<τ kn, és N=A+B azaz k < τ N k így k csak egy értéket vehet fel (többre nem teljesül az egyenlőtlenség), tehát ez k d (A + B) d ((k )(A + B) < τ) k= τ d k d (A + B) d ((k )(A + B) < τ) k= mindkét oldal várhatóértékét véve: τ d k d (A + B) d P((k )(A + B) < τ) k= } {{ } annak a valószínűsége, hogy (k-)(a+b) lépésből egyszer sem nyert, azaz ezt úgy becsülhetjük, hogy (A+B) lépésből egyszer sem nyertünk (k-)-szer:-p ahol p= (A+B) annak a valószínűsége, hogy pont A-t nyerünk egyféleképpen mivel a jobb oldal korlátos, így a bal oldal is. Első lépés analízis Jelölje g(k) = τ S 0 = k annak a bolyongásnak a várható idejét amit az S 0 = k-ból indítunk. Ez is kifejezhető a szomszédos gráfpontokbeli értékeivel g(k) = g(k ) + g(k + ) + ez esetben a két kezdeti feltétel g( B) = 0 = g(a) (mindkét esetben nulla a bolyongási idő, hisz vagy a nyerés vagy a vesztés miatt kiszálltunk). Vegyük észre, hogy az előző egyenlet átírható egy Laplace egyenletté: ahol melynek megoldása: így g(k ) = B < k < A g(k ) = g(k) g(k ) g(k ) = g(k + ) g(k) + g(k ) g(k) = (k A)(k + B) τ S 0 = g(k = 0) = A B 9

28 4 Egy adott portfólió aszimmetrikus mozgása a tőzsdén Legyen P(x i = ) = p és P(x i = ) = p = q ahol (p + q = ). Ekkor egy lépés után: melyet a következő differenciálegyenletbe írhatunk át: melyből: ) f (k + ) = ( q p ) f (k) ) f (k + ) = ( q p ) f (k + ) = ( q p ) f (k)... j) f (k + j) = ( q p ) j f (k) f (k) = p f (k + ) + q f (k ) 0 = p{f (k + ) f (k)} q{f (k) f (k )} f (k) = ( q ) f (k ) p ezt az előző egyenlettel analóg módon rekurzívan megoldatjuk, legyen megint és használjuk fel az α = f ( B) = f ( B + ) f ( B) = f ( B + ) } {{ } f (k) = k+b f ( j B) = j=0 f (k) kioltják egymást azonosságot így: f (k) = k+b j=0 f ( j B) = k+b melyben szereplő α-t az f (A) = kezdeti feltétel rögzíti f (k = 0) adja megint a kereset valószínűséget: j=0 f (0) = P(S n = A S 0 = 0) = ( ) q j k+b p f ( B) = α = α ( ) q A+B p q p j=0 q p ( q ( q p )A+B p )B q p = ( q p ) j = α ( q p ) k+b ( q p )B ( q p )A+B q p 0

29 Bolyongás várható ideje Megint be kéne látnunk, hogy τ véges, de ezt most nem tesszük meg, hanem rögtön megoldjuk az első lépés analízis egyenleteit g(k) = pg(k + ) + qg(k ) + mely a következő inhomogén lineáris differenciálegyenletre vezet ( ) q g(k) = g(k ) p p a probléma g( B) = 0 = g(a) kezdeti feltételekkel rendelkezik. homogén rész megoldása g(k) = ( q p ) g(k ) = ( q )[g(k) g(k )] p a megoldás alakja: ( q g(k) = α + β p melyet vissza írva azt kapjuk: ( ) [ q k+ ( ) ] [ q k ( ) q k+ ( ) ] q k g(k + ) g(k) = α + β α + β = β = p p p p ( ) [ ( ) q q k ( ) ] q k = β p p p inhomogén egyenlet megoldása, az állandók variálása helyett c k alakban keressük a megoldást: c (k + ) c k = q p (ck c(k )) p c = q p a kettő összegéből (lineáris kombinációjából) előáll a megoldás: g(k) = a kezdeti feltételek rögzítik az α, β konstansok értékét: ) k k q p + α + β( q p )k g(k = B) = B q p + α + β( q p ) B = 0 α = B q p β( q p ) B g(k = A) = A q p + α + β( q p )A = 0 α = A q p β( q p ) A+B q p = β(( q p ) B ( q p )A ) ebből a bolyongás várhatóértéke: g(k = 0) = + α + β = B q p A+B q p ( ( q p ) B ( q )(( q p )A p ) B ) = B q p A+B q p ( q p )B ( q p )A+B

Sztochasztikus folyamatok a gazdaságban (előadás vázlat) Sinkovicz Péter PhD hallgató

Sztochasztikus folyamatok a gazdaságban (előadás vázlat) Sinkovicz Péter PhD hallgató Sztochasztikus folyamatok a gazdaságban (előadás vázlat) Sinkovicz Péter PhD hallgató 0 0 50 00 50 00 50 0 0 04 Sinkovicz Peter BEVEZETÉS Statisztikai alapfogalmak Események valószínűségének értelmezése.....................................

Részletesebben

Markov-láncok stacionárius eloszlása

Markov-láncok stacionárius eloszlása Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius

Részletesebben

(Diszkrét idejű Markov-láncok állapotainak

(Diszkrét idejű Markov-láncok állapotainak (Diszkrét idejű Markov-láncok állapotainak osztályozása) March 21, 2019 Markov-láncok A Markov-láncok anaĺızise főként a folyamat lehetséges realizációi valószínűségeinek kiszámolásával foglalkozik. Ezekben

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }. . Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Véletlen szám generálás

Véletlen szám generálás 2. elıadás Véletlen szám generálás LCG: (0 < m, 0

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10. 2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben