Sztochasztikus folyamatok a gazdaságban (előadás vázlat)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sztochasztikus folyamatok a gazdaságban (előadás vázlat)"

Átírás

1 Sztochasztikus folyamatok a gazdaságban (előadás vázlat) Sinkovicz Péter PhD hallgató S t t

2 Sinkovicz Peter

3 BEVEZETÉS Statisztikai alapfogalmak Események valószínűségének értelmezése Adattípusok Kísérlettervezés, buktatók Sztochasztikus folyamatok áttekintése Sztochasztikus folyamatok Stacionárius folyamatok Markov folyamatok Chapman-Kolmogorov-egyenlet Homogén Markov folyamatok Az állapotok osztályozása 5 Definíciók Bolyongás során felmerülő alapkérdések 6 DISZKRÉT IDEJŰ MARKOV FOLYAMATOK Diszkrét idejű Markov folyamatok dinamikája 7 Dinamika megadása Chapman-Kolmogorov egyenlet ezen a nyelven P (n) mátrix analitikus meghatározása Egyensúlyi eloszlás 0 Egyensúlyi eloszlás meghatározása Átlagos visszatérési idő Google PageRank Elérési valószínűség, átlagos elérési idő Bevezető példa Definíció Elérési valószínűség meghatározásának módja Átlagos elérési idő meghatározásának módja RÉSZVÉNYPIAC EGYSZERŰ MODELLJE Alapfogalmak 5 Értékpapír jellemzése Portfólió választás a Markowitz-féle modellben 6 A Markowitz-féle modell feltevései Portfólió választás i

4 3 Egy adott portfólió szimmetrikus mozgása a tőzsdén 8 Első lépés analízis Bolyongás várható ideje Egy adott portfólió aszimmetrikus mozgása a tőzsdén 0 Bolyongás várható ideje Konklúzió 3 DIFFÚZIÓS FOLYAMATOK Diffúziós folyamatok leírása 5 Fokker-Planck egyenlet Speciális diffúziós folyamatok 7 Wiener folyamat Ornstein-Uhlenbeck folyamat Langevin egyenlet 3 Langevin egyenlet és a Fokker-Planck egyenlet Langevin egyenlet általánosítása több változós esetre Diffúziós folyamat konstrukciója adott stacionárius eloszláshoz 33 Egyváltozós eset Többváltozós eset DISZKRÉT IDEJŰ MASTER EGYENLET EGÉSZ VÁLTOZÓKRA Master egyenlet származtatása 35 Infinitezimális idő alatti átmeneti valószínűség Master egyenlet származtatása Részletes egyensúly 36 3 Bolyongás végtelen láncon 37 A bolyongás diffúzitása p i meghatározása Végtelen határeset Kontinuum limesz APPENDIX A. Appendix: Indikátorfüggvény formalizmus 4 Tulajdonságai ii

5 Sinkovicz Péter

6 Sinkovicz

7 Előszó Az előadás alap valószínűségi fogalmakra épül melyekről egy jó áttekintés ad a [] könyv. Témáját négy nagyobb szerkezeti egység képzi; Az első részben a diszkrét idejű Markov folyamatok átmeneti mátrixos és első lépés analízises formalizmusaival ismerkedünk meg, melyek pontosabb elméleti háttere a [-6] irodalombakban részletesebben kibontakozik. A második gondolati egységben betekintést kaphatunk a tőzsdepiac elemi folyamataiba, ehhez a témakörhöz jó áttekintést adnak a [7-9] könyvek. A harmadik részben néhány speciális diffúz folyamatot tekint át, melyek megtalálhatóak a [0] könyvben. Majd az előadás utolsó témája a Master egyenlet konstrukciója egy adott gazdasági folyamathoz. A jegyzet a Markov Monte Carlo módszerek rövid ismertetésével válna teljessé, azonban az idő rövidsége miatt ez a téma kimaradt, viszont egy jó áttekintést ad ebben a témakörben a következő két hivatkozás [-]. Továbbá szeretném kiemelni Szám Anita hallgatómat, aki lelkesen és megbízhatóan segített a jegyzet bedigitalizálásában. Irodalomjegyzék [] Prékopa András: Valószínűségelmélet [] J. R. Norris: Markov Chains [3] J. R. Norris: Markov Chains lecture note [4] Aldous, D. and J. Fill: Markov Chains lecture note [5] B. Rozovskii, M. Yor: Stochastic Modelling and Applied Probability [6] Fazekas István: Markov-láncok és alkalmazásaik [7] R. E. Shreve: Stochastic Calculus for Finance I-II [8] M. J. Steele: Stochastic Calculus and Financial Applications [9] P. Jorion: Financial Risk Manager Handbook [0] W. Gardiner: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences [] Charles J. Geyer: Introduction to Markov Chain Monte Carlo [] W. R. Gilks, S. Richardson: Markov Chain Monte Carlo in Practice iii

8 Sinkovicz Péter

9 Bevezetés Statisztikai alapfogalmak Események valószínűségének értelmezése Véletlen folyamatok esetén a (megismételhető) kísérletek kimeneteinek a valószínűségeit azonosíthatjuk a mérések során tapasztalt relatív gyakoriságaikkal: kedvező elemi események száma lehetséges elemi esetek száma p(a Ω) := k A n = Az így definiált valószínűség kielégíti a valószínűségi axiómákat: 0 p(a Ω) p(ω) = (egymást páronként kizáró események valószínűsége összeadódik) Adattípusok Az adatok nem mások, mint a kísérletek lehetséges kimenetei. Csoportosíthatjuk lehetséges kimenetei: Kvalitatív adatok (lehetséges értékei számok) a) Diszkrét adatok (megszámlálhatóan végtelen számosságú) b) Folytonos adatok (megszámlálhatatlanul végtelen számosságú /intervallum adatok/) Kvantatív adatok (melyek értékei nem számok) és szintjük szerint is:. Normális szintű: Az ilyen típusú adatokat nem lehet sorba rendezni (pl.: igen/nem/talán). Ordinális szintű: Sorba lehet rendezni, de a különbségnek nincs értelme (pl.: egyetemek sorrendje) 3. Intervallum szintű: Van értelme a különbségnek, de nincs nulla pont, ami valaminek a hiányára utal 4. Arányszintű: Van nulla pont is (pl.: vízállás) Kísérlettervezés, buktatók Ügyelnünk kell arra, hogy a kísérletezés során ne torzuljanak az adatok, azaz valóban a mért populációt jellemezzék. A típushibák elkerülése érdekében a következőket kell szem előtt tartanunk: Statisztikai hamisítás: Tilos rossz, hamis adatot a többi közé keverni, hogy igazoljuk a feltevésünket Túl kis elemszámú minta nem ad reális képet a teljes populációról Az ábrák torzíthatnak, a számokat nézzük Elemi eseményekből építkezzünk Ismernünk kell a teljes eseményteret

10 Sztochasztikus folyamatok áttekintése Sztochasztikus folyamatok Legyen x(t) egy valószínűségi változó (Ω halmazon értelmezett tetszőleges függvény), melyet időnként megmérünk. A mérés során az x(t n ),..., x(t ) adatsort kapjuk, ahol t n < t n <... < t. Több kísérlet elvégzése után, vagy elméleti jóslatból definiálhatunk egy valószínűségi sűrűséget: p n (x, t ;...; x n, t n ) mely megadja, hogy mekkora annak a valószínűsége, hogy t i -ben (x i, x i +dx i ) intervallumon belül lesz a mérési eredmény, azaz P(x (x, x + dx ),..., x n (x n, x n + dx n )) p n (x, t ;...; x n, t n )dx,..., dx n Ezen valószínűségi leírásban x(t)-t sztochasztikus valószínűségi változónak tekintjük, ha rendelkezik a következő két tulajdonsággal: Normáltság pn (x, t ;...; x n, t n )dx ;...; dx n Komplementaritás pn (x, t ;...; x i, t i ;...; x n, t n )dx i = p n (x, t ;...; x i, t i ;...; x n, t n ) Az x(t) valószínűségi változóink jellemzésére bevezethetjük a következő mennyiségeket: momentumok várhatóérték: < x(t) > E[x(t)] := dx xp (x, t) n. momentum: < x n (t) > E[x n (t)] := dx x n p (x, t) korrelációs függvények n. korrelációs függvény: E[x (t )...x n (t n )] = dx... dx n x ;...; x n p n (x, t ;...; x n, t n ) Stacionárius folyamatok A stacionárius folyamatok invariánsak az időeltolásra, azaz nem fejlődnek az időben, így egyensúlyi állapotként értelmezhetőek: p stac (x, t) p stac (x, t ) t, t p stac = p (x) Markov folyamatok Definiáljuk a p stac (x, t; x, t ) p stac (x t + t; x, t + t) t p stac (x, t; x, t ) = p stac (x, x, t t ) P(x, t x, t ;...; x n, t n ) = p n(x t ;...;x n t n ) p n (x t ;...;x n t n ) feltételes valószínűséget, mely megadja, hogy mekkora valószínűséggel mérünk x -et t -ben, ha előtte t, x ;...; t n, x n n db esemény bekövetkezett. Ezen feltételes valószínűség segítségével definiálhatjuk a Markov folyamatokat. Egy sztochasztikus folyamatot Markovinak tekintünk, ha P(x, t x, t ;...; x n, t n ) P(x t x t ) összefüggés fennáll, azaz a rendszernek nincs hosszútávú memóriája, csak a közvetlenül őt megelőző eseménytől függ.

11 Chapman-Kolmogrov-egyenlet A p n valószínűség felépíthető a feltételes valószínűségek segítségével: p n (x, t ;...; x n, t n ) = P(x t x t ;...; x n t n )p n (x t ;...; x n t n ) = P(x t x t )p n (x, t ;...; x n t n ) = = P(x t x t )P(x t x 3, t 3 ;...; x n, t n )p n (x 3 t 3 ; x n, t n ) =... = = P(x t x t )P(x t x 3 t 3 )... P(x n t n x n t n )p (x n, t n ) mely n=3 esetén a Chapman-Kolmogorov egyenletre vezet: p 3 (x t ; x t ; x 3 t 3 ) = P(x t x t )P(x t x 3 t 3 )p (x 3 t 3 ) p (x, t ; x 3 t 3 ) = dx P(x t x t )P(x t x 3 t 3 )p (x 3 t 3 ) P(x t x 3 t 3 )p (x 3 t 3 ) = p (x 3 t 3 ) dx P(x t x t )P(x t x 3 t 3 ) P(x t x 3 t 3 ) = dx P(x t x t )P(x t x 3 t 3 ) azaz az x 3 t 3 pont úgy függ az x t ponttól, hogy valószínűségi értelemben kiátlagolunk az összes benső x t pontra: x x x3 t t3 t t x 3 t 3 x t átmenet valószínűségét úgy kapjuk meg, hogy statisztikusan kiátlagolunk az összes útra. Homogén Markov folyamatok Egy Markov folyamat homogén, ha: P(x t x t ) = P(x t t x ) (időeltolásra invariáns), ebből még nem következik, hogy ez egy stacionárius folyamat, hiszen akkor stacionárius, ha p (x, t) = p stac (x), azaz nincs időfüggés. Ergodikus Markov folyamatnak nevezzük az olyan Markov-folyamatokat, ahol lim P(x, t t x ) = p stac (x) 3

12 melyből és a Chapman-Kolmogrov egyenlet alapján: lim p (x, t) = lim t t = p stac (x) dx P(xt x )p (x,0) = azaz tetszőleges eloszlás a stacionárius állapotba tart, ha t -be. A diffúz folyamatok olyan homogén Markov folyamatok, ahol ( ) dx lim P(xt x ) p (x,0) = p stac (x) t v(x )t + ϑ(t) n = (x x ) n P(x, t x )dx = σ(x )t + ϑ(t) n = Ø n > mely integrál-egyenletrendszer megoldását azonnal leolvashatjuk dx p (x,0) = P(x, t x ) e (x x +v(x )t) σ (x )t Gauss-eloszlást követ A megoldásokat v(x ) és σ(x ) szerint tovább csoportosíthatóak (lsd. később). 4

13 3 Az állapotok osztályozása Ettől a ponttól kezdve diszkrét idejű bolyongásokkal foglalkozunk úgy, hogy a mérést stroboszkópikusan és egyenközűen végezzük. Definíciók A kísérlet lehetséges kimenetelét rendezzük gráfba. Például: kockadobás Minden él /6 valószínűséggel következik be annak a valószínűsége, hogy i dobása után j-t dobjak = /6 i, j {,...,6} A j állapotot az i állapotból elérhetőnek nevezzük (i j), ha valamely n > 0 időlépésre: P( j, n t i) 0 továbbá az i és j állapotok kölcsönösen elérhetőek (i j), ha i j és j i. Egy i állapotot lényegesnek nevezünk, ha az i-ből elérhető állapotokból vissza lehet térni i-be, ellenkező esetben i lényegtelen állapot. Az állapotok egy A halmazát zártnak nevezzük, ha i A állapot esetén: P i ( j, t i) = egy időlépés után A-ban maradunk. j A Egy zárt halmazt lényegesnek nevezünk, ha nincs valódi zárt részhalmaza. Egy Markov lánc irreducibilis, ha a teljes állapottér minimális zárt halmaz. Továbbá egy Markov-lánc akkor és csakis akkor irreducibilis, ha az egész állapottere egyetlen lényeges osztályt alkot (azaz minden állapot minden állapotból elérhető i j i, j) Láttuk, hogy az ergodikus Markov-folyamatok a p stac (i)-be tartanak, azonban ez a határérték nem biztos, hogy létezik. pl.: P(i t j) = δ i, j i, j {,} azaz az () és a () állapot közt oszcillál a rendszer. Ergodikus Markov-lánc, ha aperiodikus (létezik p stac (i)), irreducibilis és véges valószínűséggel visszatalál a kiindulási pontba. 5

14 4 Bolyongás során felmerülő alapkérdések Első átlagos visszatérési idő Például: A sakktáblán véletlenszerűen bolyong egy huszár. Átlagosan hány lépés után tér vissza a kezdőpontba? Átlagos fedési idő Például: Kisgyerek zsírkrétázik az aszfalton. Átlagosan hány órát kell kint hagyni, hogy az egész utcát lefedje? Relaxációs idő Például: Átlagosan mennyit kell keverni a paklit, hogy elveszítse a memóriáját? Monte-Carlos módszerek 6

15 Diszkrét idejű Markov folyamatok Diszkrét idejű Markov folyamatok dinamikája Dinamika megadása Egy időlépés valószínűségét jelöljük a következőképpen: P i (x t+ t ) P(x t+ t x t = i) ahol x t+ t a t + t időben a "részecske" helyzete a G(V, E) gráfon (azaz a rendszer állapota), ha ez a j-edik rácspont akkor tömören: a p ji átmeneti mátrix tulajdonságai: p ji 0 i, j V p ji = (sztochasztikus mátrix) j V p ji = P i (x t+ t = j) i, j V λ = (λ i : i V ) valószínűségi eloszlás, ha λ i = és λ i 0, i V -re i Ezen elemek segítségével a következőképpen definiálhatjuk a dinamikát egy λ 0 kezdeti eloszlásból: P λ (x t= t = j) P λ (x = j) = i V λ i p ji... P λ (x n = j) = λ i p (n) ji i V Például: időjóslás: Megfigyelések alapján ha ma esett akkor holnap p = 0.7 valószínűséggel nem esik és q 0 = 0.3 valószínűséggel esik. Hasonlóan, ha ma nem esett, akkor p = 0.6 valószínűséggel nem esik és q = 0.4 valószínűséggel esik. p p,, p, p, ahol nem esik és esik, így a rendszer átmeneti mátrixa [ ] [ ] p, p, P = = p, p, és a kezdeti valószínűségi eloszlásunk (mai nap időjárása) a következő: ( λ ) ( ) λ 0 = 0 esik λ = 0 0 nem esik Melyen a két nap múlvai állapot meghatározásához az átmeneti mártixot kétszer kell hatatnunk: [ ][ ]( ) [ ]( ) ( ) P λ 0 = = = tehát 0.37 valószínűséggel esni fog két nap múlva. 7

16 Chapman-Kolmogorov egyenlet ezen a nyelven Az előző példa rámutatott arra, hogy az n lépéses folyamat átmeneti mátrixa: P (n) = p (n) ji hatványa. Így a Chapman-Kolmogorov egyenlet: p (n+m) = P (n) ji ki p(m) jk k V ami igazából a mátrix szorzás kiírása. P (n) mátrix analitikus meghatározása Például: Két pontú markov lánc a P mátrix n-edik p p,, p, p, mely átmeneti mátrixát parametrizálhatjuk a következő képpen: határozzuk meg P sajátértékeit: [ ] α λ β det α β λ [ ] [ ] p, p, α β P = = p, p, α β = ( α λ)( β λ) αβ = α λ β + αβ + λβ + λ λ + λα αβ = = λ λ + (α + β)λ + ( α β) = 0 melynek megoldásai: λ = és λ = α β. Így az átmeneti mátrix a következő alakra hozható (bázistranszformációval): ( ) ( ) λ 0 P = U U UU = 0 ===== P u = U 0 λ 0 ( α β) n U melyből (P (n) ) = U U +U ( α β) n U legyen A = U U és B = U U. Mivel P0 =,így p (0) A + B másrészt P = P, így p () = α = A + B( α β) melyből A és B meghatározható: A = hasonlóképpen a többi mátrixelem is meghatározható β P n α+β + α β ( α β)n α+β = α α ( α β)n α α+β α+β β α+β és B = α α+β α+β β α+β α+β + β α+β ( α β)n ( α β)n n β α+β α α+β β α+β α α+β = 8

17 Például: Három pontú Markov lánc: p 3, 3 3 p, 3 p, p, p 3, mely a következő átmeneti mátrixot definiálja: melynek sajátértékei: λ i =,± i, a 0 0 P = 0 ( ) i n ( ) n ± = e ±in π = ( 0 azonossággal átalakítható az átmeneti mátrix elemei, például: felhasználva, hogy p (0) =, p() Recept: N pontú markov lánc ( i = A + B ( = A + p (n) ) ε...ε N sajátértékek meghatározása (ε = lesz) ) Ha a sajátértékek különböznek: ) n [ cos( n π ) ( ± i sin n π )] ) n + C ( i ) n = ) n [ B cos( n π ) ( + C sin n π )] = 0 és p() = 0 A,B,C meghatározható: p (n) = 5 + ( ) n [ 4 5 cos( n π ) 5 sin( n π )] n 5 p (n) i j = a + a ε n a nε n N ha az l-edik sajátérték k-szor ismétlődik, akkor azokat a tagokat helyettesíthetjük a következővel: (b 0 + b n b k n k )ε n l 3) A komplex sajátértékek párban jönnek (így kevesebb konstanst kell illesztenünk). 9

18 Egyensúlyi eloszlás Π = (Π i : i V ) valószínűségi eloszlás egyensúlyi eloszlás, ha: PΠ = Π hiszen ekkor a dinamikában nem fejlődik Például: két rácspontú példa p, p, p, p, mely átmeneti mátrixa: [ ] α β P = α β amit hatványozva határértékben eljutunk az egyensúlyi eloszlásokhoz P n lim n β α+β α α+β β α+β α α+β [ ] Π Π = Π Π tehát például α = β határesetben: Π = ( Π Π ) Π = p = α + β ( ) p = p ( ) β α ( ) Egyensúlyi eloszlás meghatározása Például: három rácspontú példa p 3, 3 3 p, 3 p, p, p 3, Mely átmeneti mátrixa 0 0 P = 0 0 ( ) 5 lim n ( ) 5 ( ) 5 0

19 Ezek azonban a következőképpen is meghatározhatók: Π = Π 3 Π = Π + Π megoldása Π 3 = Π + Π 3 Átlagos visszatérési idő Π = /5 Π = /5 Π 3 = /5 (Π + Π + Π 3 = ) Az m i átlagos visszatérési idő megadja, hogy átlagosan hány időlépés után érünk vissza a kiindulási i pontba. Az egyensúlyi eloszlásból meghatározható az egyes rácspontok visszatérési értékét: m i = π i ahol m i = E i (T i ) és E i ( ) olyan várhatóérték amihez a t = 0-ból i-be indított bolyongáshoz tartozik Például: két rácspontú gráf: Legyen α = β = p, ekkor E (az az idő ami alatt visszatér) = np(n időpontban tért vissza) = ( p) + p ( p) n n Google PageRank n=0 = = p + n= (m + ) p ( p) m = p + p (n + ) ( p) n = m= = p + p ( p) n + p n( p) n = p + p ( p) n = n= = p + p ( p) m m=0 } {{ } mértani sor Három szempont szerint kell optimalizálni a kereső motort: kereső megtalálja ami szeretne megfelelő reklámok legyenek reklámból származó bevétel maximalizálása n= } {{ } p "mértani sor" = p + p p = Toy modell erre az esetre: Legyen a web egy G = (V, E) gráf, ahol V a vertexek (itt: a weboldalak) és E a linkek halmaza (kapcsolatok). Az átmeneti valószínűség meghatározható egy lapról a kapcsolódóakra: p i j = { L(i) N az L(i) hivatkozásai közül egyenletesen választ egyet n= ha L(i)=0, akkor random választ egy lapot az összes közül Tovább finomíthatjuk ezt a modellt, hiszen lehet hogy nem a honlapról ágazik el, hanem bezárja, és nyit egy másikat: p i j = α p i j + ( α) N így valószínűséggel lép tovább. Az egyensúlyi eloszlása a rendszernek (Π) arányos azzal, hogy mennyi időt töltenek ott az emberek, azaz ha π i > π j akkor i weboldal "fontosabb" mint a j. PΠ = Π meghatározása nehéz lim n P n = (Π,Π...) ami gyorsan konvergál (gyorsabb mint a s.é. egyenlet megoldása). n=

20 3 Elérési valószínűség, átlagos elérési idő Bevezető példa Kétpontú gráf: p, p, p, mely átmeneti mátrixa: P = ( ) p 0 p Az egyes rácspontból indulva a kettesben való elnyelődés valószínűsége: P (-be jutás) = P ( elérése az n-edik lépésben) = ( p) n p = p ( p) n = n= = p [( p) ] ( p) = p p = Az egyes rácspontból a kettesen való elnyelődés várható ideje: E (-esbe jutás ideje) = np( elérése az n. lépésben) = n= n= n= n( p) n p = p d d p Mely első lépés analízissel meghatározható: legyen f = P (-be jutás) ekkor n= ( p) n = p( ) = p p f = ( p)p (-be jutás x = = először az -ben marad) + pp (-be jutás x = átment) = ( p)f + p n=0 amiből f = adódik és g = E (-esbe jutás ideje) = + ( p)g + p 0 amiből g = p Definíció Elérési ideje egy A V halmaznak: H A = inf{n 0 : x n A} Elérési valószínűség: f A i = P i (H A < ) Átlagos elérési idő: q A i = E i (H A ) = n< np i (H A = n) + " P(H A = )" Elérési valószínűség meghatározásának módja A f A = (f A i : i V ) elérési valószínűség az a; nem negatív, minimális megoldása a f A f A i = ha i A i = p ji f A ha i A j j egyenletrendszernek. A minimális megoldás azt jelenti, hogy ha x és f megoldások akkor x i f i x -re

21 Bizonyítás: a) f A i megoldja az említett egyenletet Ha x 0 = i A, akkor H A = 0 (nulla lépés alatt ott van) f A i = Ha x 0 A, akkor H A f A = P i i (H A < ) = P i (H A <, x = j) P i (H A < x = j) P j V j V } {{ } i (x = j) f A j } {{ } j-t érintve i-ből A-ba megy b) minimális megoldás Legyen x egy tetszőleges megoldás, ahol f A = x i i = i A-ra, így = } {{ } p ji p ji f A j j x i = p ji x j = p ji x j + p ji x j = p ji + p ji x j = p ji + ( p ji p k j x k + ) p k j x k = j j A j A j A j A j A j A k A k A = P i (x A) + P i (x A, x A) + p ji p k j x k =... = P i (x A) +P } {{ } i (x A, x A) + j,k A elsőre odament P i (x A,..., x n A, x n A) + p } {{ } j i p j j... p jn j n x jn { j} n.-re ment oda x i P i (H A n) x i lim n P i (H A n) = P i (H A < ) = f i Átlagos elérési idő meghatározásának módja A g A = (g A i : i V ) átlagos elérési idő az a; nem negatív, minimális megoldása a g A i = 0 i A g A i = + j p ji g A j i A egyenletrendszernek. (Bizonyítása hasonló, mint az elérési valószínűségnél látott). 3

22 Sinkovicz Peter

23 Részvénypiac egyszerű modellje Alapfogalmak Értékpapír: vételár ellenében szabadon átruházható Értékpiac: értékpapírok adásvételének színtere Árfolyam: az az ár, amennyiért az értékpapír egy egységét megvásárolhatjuk Időhorizont: Ha a piac diszkrét, egyenközű t időlépésekre osztható, akkor t a befektetések időhorizontja. Értékpapír jellemzése Az értékpapírok jövőbeli értékét, árfolyamát véletlenszerűnek tekinthetjük. Jelölje S(t) sztochasztikus változó egy adott értékpapír t időpontban vett árfolyama, melyhez a p n (s t ;...; s n t n ) valószínűségi sűrűség tartozik, így az egységnyi időlépés alatt szerzett egységnyi nyereség: X(t, t) = S(t + t) S(t) mely relatív megváltozása a hozam vagy lineáris hozam: r(t, t) = S(t+ t) S(t) S(t) exponenciális trend pl. kamatos kamat r(t, t) log = log S(t+ t) S(t) log r ahol r(t, t) log az úgynevezett logaritmikus hozam. 5

24 Portfólió választás a Markowitz-féle modellben A Markowitz-féle modell feltevései A Markowitz-féle modell az üzleti világra a következő egyszerűsítő feltevéseket teszi: A befektetők árelfogadóak: A piac szereplői nem befolyásolják a piacot az üzleteikkel (a forgalomban lévő részvényekhez képest kis tételben való kereskedés esetén jó közelítés, azonban a portfólió nyereségének realizációja tömeges eladáshoz vezet) Értékpapírok tetszőlegesen oszthatóak: nagy portfólióra jó közelítés Nincsenek tranzakciós költségek: sem időben sem pénzben Az árfolyamok stacionárius és normális eloszlásúak: azaz elegendő az átlagukat és szórásukat megadnunk, a centrális határeloszlás tétele miatt kb. jó közelítés A befektetések kockázatát a hozamuk szórásával mérjük: azaz a kockázat a befektetési periódus végén realizált hozam bizonytalansága. Azonban a kockázatát definiálása közel sem egyértelmű, ezt példázóan néhány fontos szempont amit figyelembe kell vennünk a kockázat definiálása során: Diverzifikációs elv: olyan kockázati mérték kell, mely több részvényre való szétosztott befektetésre kisebb Robosztusság: Kis zavarral szembeni ellenállás Összehasonlíthatósag: Valahogy össze kell tudnunk hasonlítani a különböző formájú befektetéseket Szokás megkülönböztetni a kockázatokat forrásaik szerint: (a) piaci kockázat (árfolyam ingadozás) (b) hitelkockázat (fizetésképtelenné válás) (c) működési kockázat (emberi hiba, csalás) A befektetők racionálisak: a vizsgált időtávon belül a legkisebb kockázat mellett a legnagyobb hozamot szeretnek (azonban hosszú távú befektetés során nem zavaró, ha az elején rosszul teljesít a befektetés) Portfólió választás Legyen N darab különböző fajta értékpapír a piacon, melyek árfolyamai S i (t) : i {,..., N}. Ekkor portfóliónak nevezzük a befektető egyes értékpapírjaiból meglévő w i (adott részvény-kombináció) mennyiségek összességét. Tehát a portfólió értéke: Y (t) = N w i S i (t) W S(t) melyből a portfólió megváltozásának értéke (nem váltunk csomagot), azaz a nyereségünk: i= X(t) = Y (t + t) Y (t) = N w i X i (t) ahol X i (t) = S i (t + t) S i (t). A Markowitz-modell feltevése miatt elegendő pusztán a portfólió átlagával és szórásával foglalkoznunk: i= µp := σ p := N w i µ i i= N σ i j w i w j i, j= ahol µ i = E[x i ] részvény várhatóértéke és σ i j = E[x i x j ] E[x i ]E[x j ] kovariancia mátrix. 6

25 A befektetőnk racionális, ha: azonos (µ p = µ p ) várható hozamok közül azt részesíti előnyben, melynek kisebb a szórása azaz a p, p portfóliók közül p -et válassza, ha σ p < σ p azonos szórás esetén a nagyobb várhatóértékűt választja Tehát a kedvező portfólió megtalálásához a következő optimalizációs feladatot kell megoldanunk:. min w R N. 3. N i j= σ i j w i w j N w i µ i = µ rögzített hozam mellett keressük a minimális portfóliót i= N w i = nem fektetünk be vagy vonunk ki részvényt a játék során i= mely Lagrange multiplikátoros formalizmussal megoldható: ahol a ( ) megoldásra utal és w i (µ) = N j= λ (µ) = C B µ AC B σ i j [λ (µ) + η (µ)µ i ] η (µ) = A µ B AC B A = N i j= σ i j a µ hozam melletti portfólió kockázata pedig: σ (µ) := Optimalizációs feladat vizualizációja: Μ N i, j= B = N i j= σ i j µ j σ i j w i (µ)w j (µ) C = N i j= σ i j µ iµ j A AC B (µ B A ) + A B A A Σ besatírozott terület: lehetséges portfóliók (a. és 3. egyenletet kielégítik, de nincsen minimalizálva a kockázat) határportfóliók: optimalizációs feladat szélsőértékei (kékkel és lilával jelölt portfóliók) hatékony portfóliók: optimalizációs feladat megoldásai (kékkel jelölt portfóliók) 7

26 3 Egy adott portfólió szimmetrikus mozgása a tőzsdén Vegyük a következő gazdasági modellt: legyen x = {x i : i < } véletlen változók halmaza, mely a következő eloszlást mutatja: P(x i = ) = P(x i = ) = / (pl. pénzérme dobás) jelölje S 0 a játékos kezdeti tőkéje, mely az n. lépésben S n = S 0 + x + x x n, tehát M n = S n S 0 a játékos nyeresége (egyetlen portfólióval foglalkozunk,hiszen kiválasztottuk a legjobbat) Feltehetjük azt a kérdést, hogy mekkora annak a valószínűsége, hogy nyer A egységet, mielőtt B-t vesztene? A kérdés megválaszolásához vezessük be a τ := min{n 0 : M n = A vagy M n = B} időt, lépésszámot mely egészen addig fut, míg vagy S n = A nyereség vagy M n = B bukás bekövetkezik, így arra hajtunk tehát, hogy meghatározzuk a következőt P(S τ = A S 0 = 0) ahol az S 0 = 0 kezdeti feltétel arra utal, hogy a kezdő árfolyamhoz képest viszonyítjuk a mozgást. Első lépés analízis Elemi körökből, időlépésekből építjük fel a játékos pénzmozgását, úgy, hogy egy lépést ismételünk a játék végéig, addig amíg B < S n < A feltétel még nem teljesül. Legyen f (k) := P(S τ = A S 0 = k) B k A annak a feltételes valószínűsége, hogy ha k tőkénk van, akkor τ-ban nyerünk A-t. A már tanultak alapján f (k) kifejezhető a gráf szomszédos elemein vett értékével: f (k) = f (k ) + f (k + ) B k A mely egyenletetrendszert kell megoldanunk az f (A) = és f ( B) = 0 kezdeti feltételekkel. Ehhez a kapott egyenletet vezessük vissza rekurzió segítségével, majd oldjuk meg: legyen f ( B + ) α ekkor ) α = f ( B + ) = f ( B + ) + } {{ } f ( B + + ) α = f ( b + ) ) α = f ( B + ) = f ( B + ) + } {{ } f ( B + + ) α 3α = f ( B + 3)... j) jα = f ( B + j) ahol az α értékét az f (A) = kezdeti feltételből illeszthetjük: = f (A) = (A + B)α Tehát a keresett feltételes valószínűség: α = A + B f (0) = P(τ idő alatt elérüjük A-t, de még mielőtt elérnénk B-t S 0 = 0) f ( B + B) = B A + B 8

27 Bolyongás várható ideje A várható idő pontosabb meghatározása előtt meg kell bizonyosodnunk arról hogy a folyamatunk valóban véges ideig tart. Ezt indikátor függvény (A. Appendix) segítségével beláthatjuk. Induljunk ki a következő triviális algebrai állításból τ d ((k )(A + B) < τ k(a + B)) k d (A + B) d ((k )(A + B) < τ) mivel ez az összefüggés minden k-ra teljesül, így a -ra is teljesül: k τ d ((k )(A + B) < τ k(a + B)) k= } {{ } ((k )(A + B) < τ k(a + B)) τ d k= } {{ } a szumma olyan k-ra megy ahol (k )N<τ kn, és N=A+B azaz k < τ N k így k csak egy értéket vehet fel (többre nem teljesül az egyenlőtlenség), tehát ez k d (A + B) d ((k )(A + B) < τ) k= τ d k d (A + B) d ((k )(A + B) < τ) k= mindkét oldal várhatóértékét véve: τ d k d (A + B) d P((k )(A + B) < τ) k= } {{ } annak a valószínűsége, hogy (k-)(a+b) lépésből egyszer sem nyert, azaz ezt úgy becsülhetjük, hogy (A+B) lépésből egyszer sem nyertünk (k-)-szer:-p ahol p= (A+B) annak a valószínűsége, hogy pont A-t nyerünk egyféleképpen mivel a jobb oldal korlátos, így a bal oldal is. Első lépés analízis Jelölje g(k) = τ S 0 = k annak a bolyongásnak a várható idejét amit az S 0 = k-ból indítunk. Ez is kifejezhető a szomszédos gráfpontokbeli értékeivel g(k) = g(k ) + g(k + ) + ez esetben a két kezdeti feltétel g( B) = 0 = g(a) (mindkét esetben nulla a bolyongási idő, hisz vagy a nyerés vagy a vesztés miatt kiszálltunk). Vegyük észre, hogy az előző egyenlet átírható egy Laplace egyenletté: ahol melynek megoldása: így g(k ) = B < k < A g(k ) = g(k) g(k ) g(k ) = g(k + ) g(k) + g(k ) g(k) = (k A)(k + B) τ S 0 = g(k = 0) = A B 9

28 4 Egy adott portfólió aszimmetrikus mozgása a tőzsdén Legyen P(x i = ) = p és P(x i = ) = p = q ahol (p + q = ). Ekkor egy lépés után: melyet a következő differenciálegyenletbe írhatunk át: melyből: ) f (k + ) = ( q p ) f (k) ) f (k + ) = ( q p ) f (k + ) = ( q p ) f (k)... j) f (k + j) = ( q p ) j f (k) f (k) = p f (k + ) + q f (k ) 0 = p{f (k + ) f (k)} q{f (k) f (k )} f (k) = ( q ) f (k ) p ezt az előző egyenlettel analóg módon rekurzívan megoldatjuk, legyen megint és használjuk fel az α = f ( B) = f ( B + ) f ( B) = f ( B + ) } {{ } f (k) = k+b f ( j B) = j=0 f (k) kioltják egymást azonosságot így: f (k) = k+b j=0 f ( j B) = k+b melyben szereplő α-t az f (A) = kezdeti feltétel rögzíti f (k = 0) adja megint a kereset valószínűséget: j=0 f (0) = P(S n = A S 0 = 0) = ( ) q j k+b p f ( B) = α = α ( ) q A+B p q p j=0 q p ( q ( q p )A+B p )B q p = ( q p ) j = α ( q p ) k+b ( q p )B ( q p )A+B q p 0

29 Bolyongás várható ideje Megint be kéne látnunk, hogy τ véges, de ezt most nem tesszük meg, hanem rögtön megoldjuk az első lépés analízis egyenleteit g(k) = pg(k + ) + qg(k ) + mely a következő inhomogén lineáris differenciálegyenletre vezet ( ) q g(k) = g(k ) p p a probléma g( B) = 0 = g(a) kezdeti feltételekkel rendelkezik. homogén rész megoldása g(k) = ( q p ) g(k ) = ( q )[g(k) g(k )] p a megoldás alakja: ( q g(k) = α + β p melyet vissza írva azt kapjuk: ( ) [ q k+ ( ) ] [ q k ( ) q k+ ( ) ] q k g(k + ) g(k) = α + β α + β = β = p p p p ( ) [ ( ) q q k ( ) ] q k = β p p p inhomogén egyenlet megoldása, az állandók variálása helyett c k alakban keressük a megoldást: c (k + ) c k = q p (ck c(k )) p c = q p a kettő összegéből (lineáris kombinációjából) előáll a megoldás: g(k) = a kezdeti feltételek rögzítik az α, β konstansok értékét: ) k k q p + α + β( q p )k g(k = B) = B q p + α + β( q p ) B = 0 α = B q p β( q p ) B g(k = A) = A q p + α + β( q p )A = 0 α = A q p β( q p ) A+B q p = β(( q p ) B ( q p )A ) ebből a bolyongás várhatóértéke: g(k = 0) = + α + β = B q p A+B q p ( ( q p ) B ( q )(( q p )A p ) B ) = B q p A+B q p ( q p )B ( q p )A+B

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.

CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

10. Valószínűségszámítás

10. Valószínűségszámítás . Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika

Részletesebben