Állapottér-reprezentálható problémák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Állapottér-reprezentálható problémák"

Átírás

1 1. fejezet Állapottér-reprezentálható problémák 1.1. Irány a Margitsziget! A feladat Végre itt a tavasz, irány a természet! Amennyiben a fővárosban élünk, s a zöldbe vágyunk, ám mégsem szeretnénk hosszú túrára indulni, célozzuk meg a Margitszigetet! Persze, ha ezt egy napsütötte szombat délután tesszük, nem mi leszünk az egyetlenek. Kótyagosan bóklászó turistákkal, szerelmesen andalgó fiatalokkal, s önfeledten játszó-sportoló családokkal találkozhatunk lépten-nyomon. Rejtvényünkben ezúttal az utóbbiakra fókuszálunk, egészen pontosan öt családot veszünk górcső alá. A megadott információk segítenek eldönteni, hogy az egyes famíliák hány gyermeket számlálnak, honnan érkeztek, s hogy mivel múlatják az időt a Margitszigeten. 1. Az angyalföldi család tagjai egész délután görkorcsolyáztak. Kardosék is gurulva közlekedtek, igaz, ők két keréken, s a Duna másik oldaláról érkeztek. 2. Az ötgyerekes anyuka nagy bánata, hogy egyetlen kislányt sem hozott még világra. Férje azonban nem panaszkodik, fiaival ugyanis remek focimeccset vívhat. 3. A csillaghegyi családban kevesebb a gyerek, mint a tollaslabdázó famíliában. 4. Nem Bognárék azok, akik kocogással töltik ezt a szép délutánt. 5. A belvárosi házaspár egy csemetével, Szűcsék kettővel büszkélkedhetnek. Vadászék egy hatalmas családi házban élnek Újpesten, de náluk sincs öt gyerek. A feladat eredeti szövege megtalálható a [14] folyóiratban Egy lehetséges állapottér-reprezentáció Problémánk lényeges jellemzői a családok, valamint hozzájuk kapcsolódóan az, hogy hány gyerek van a családban, honnan érkeztek, és hogy milyen szabadidős tevékenységet választottak. Ez a fajta megközelítés egyúttal azt is meghatározza, hogy a gyerekszámokat, a lakóhelyeket és a tevékenységeket a családokhoz próbáljuk meg majd hozzárendelni. 1 Hogy a későbbiekben sorrendet tudjunk értelmezni a családok között, rendeljünk hozzájuk sorszámokat a következőképpen: Család neve: Bognárék Kardosék Szűcsék Vadászék Vargáék Sorszám: Hasonlóan a kategóriákhoz is rendeljünk sorszámokat: Kategória neve: gyerekszám lakóhely tevékenység Sorszám: Lehetne másképp is csinálni: megpróbálhatnánk például meghatározni azt, hogy az egyes lakóhelyekről melyik család hány gyerekkel érkezett, s milyen szabadidős tevékenységet választott.

2 8 1. Állapottér-reprezentálható problémák A továbbiakban a családokra is és a kategóriákra is a sorszámaikkal fogunk hivatkozni. Ezek után definiáljuk azoknak a lehetőségeknek a halmazait, amelyek azt írják le, hogy az egyes családokhoz milyen gyerekszámokat rendelhetünk: H i,1 = { 1, 2, 3, 4, 5 } { 0 }, i { 1, 2, 3, 4, 5 } A 0 szimbólum itt azt fogja jelenteni, hogy az i-vel jelölt családhoz még nem rendeltünk hozzá semmilyen gyerekszámot sem. Ezt követően definiáljuk azoknak a lehetőségeknek a halmazait, amelyek azt írják le, hogy az egyes családokhoz milyen lakóhelyeket rendelhetünk: H i,2 = { Angyalföld, Belváros, Csillaghegy, Óbuda, Újpest } { 0 }, i { 1, 2, 3, 4, 5 } A 0 szimbólum itt azt fogja jelenteni, hogy az i-vel jelölt családhoz még nem rendeltük hozzá egyik lakóhelyet sem. Végezetül definiáljuk azoknak a lehetőségeknek a halmazait, amelyek azt írják le, hogy az egyes cslaádokhoz milyen tevékenységeket rendelhetünk: H i,3 = { görkorcsolya, foci, kerékpár, kocogás, tollaslabda } { 0 }, i { 1, 2, 3, 4, 5 } A 0 szimbólum itt azt fogja jelenteni, hogy az i-vel jelölt családhoz még nem rendeltünk hozzá semmilyen tevékenységet sem. Képezzük a fenti halmazok Descartes-szorzatát! H 1,1 H 2,1 H 3,1 H 4,1 H 5,1 H 1,2 H 2,2 H 3,2 H 4,2 H 5,2 H 1,3 H 2,3 H 3,3 H 4,3 H 5,3 = = , , ,..., Csillaghegy 0,..., Csillaghegy 0,..., görkorcsolya Csillaghegy 0 0,..., kerékpár görkorcsolya tollaslabda foci kocogás Óbuda 0 0 Csillaghegy 0,..., tollaslabda 0 görkorcsolya 0 foci Angyalföld Belváros Csillaghegy Óbuda Újpest,..., görkorcsolya foci kerékpár kocogás tollaslabda Óbuda Csillaghegy Angyalföld Újpest Belváros,... foci kerékpár görkorcsolya tollaslabda kocogás Ennek a halmaznak az elemei rendezett számtizenötösök (3 5-ös mátrixok, ha az elemeiket mátrix alakban rendezzük el). Sokan vannak, számuk 6 15 = Ha azonban figyelembe vesszük azt, hogy ugyanazt a gyerekszámot, lakóhelyet, illetve tevékenységet nem rendelhetjük hozzá egyszerre több családhoz, rögtön kevesebb elemtizenötössel lesz dolgunk. Ráadásképpen tehetünk olyan megszorításokat is, melyek szerint a gyerekszámokat, a lakóhelyeket és a tevékenységeket ebben a sorrendben rendeljük hozzá a családokhoz, azaz először azt mondjuk meg, hogy melyik családban hány gyerek van, aztán azt, hogy melyik család hol lakik, végül pedig azt, hogy ki milyen szabadidős tevékenységgel kapcsolódott ki. Még tovább szűkíthetjük az állapotok halmazát, ha a családok között is felállítunk valamilyen

3 1.1 Irány a Margitsziget! 9 sorrendet, például azt a sorrendet követjük, amelyet az alaphalmazok definiálásánál is megadtunk: először Bognárékhoz rendelünk adatot, aztán Kardosékhoz, később Szűcsékhez, ezt követően Vadászékhoz, befejezésképpen pedig Vargáékhoz. Az előzőekben megfogalmazottak alapján egy h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 H 1,1 H 2,1 H 3,1 H 4,1 H 5,1 H 1,2 H 2,2 H 3,2 H 4,2 H 5,2 H 1,3 H 2,3 H 3,3 H 4,3 H 5,3 elemtizenötös a probléma állapota, ha teljesülnek rá a következő kényszerfeltételek: két tetszőleges (de nem azonos) családot kiválasztva, ha mindkettőhöz rendeltünk már gyerekszámot, akkor azok különbözőek: i j (h i,1 0 h j,1 0 h i,1 h j,1 i = j) (1) két tetszőleges (de nem azonos) családot kiválasztva, ha mindkettőhöz rendeltünk már lakóhelyet, akkor azok különbözőek: i j (h i,2 0 h j,2 0 h i,2 h j,2 i = j) (2) két tetszőleges (de nem azonos) családot kiválasztva, ha mindkettőhöz rendeltünk már tevékenységet, akkor azok különbözőek: i j (h i,3 0 h j,3 0 h i,3 h j,3 i = j) (3) a mátrixot felülről lefelé, az egyes sorokon belül pedig balról jobbra töltjük ki (ez azt jelenti, hogy ha a mátrix egy eleme már nem 0 értékű, akkor a tőle balra lévő elemek, valamint a felette lévő sorokban lévő elemek sem 0 értékűek): i j (h i,j 0 k (k < j h i,k 0) s (s < i o(h s,o 0))) (4) ha már tudjuk, hogy mivel töltötte az időt az angyalföldi család, akkor az a tevékenység csak a görkorcsolyázás lehetett: i (h i,2 = Angyalföld h i,3 0 h i,3 = görkorcsolya) (5) az a család, amelyik görkorcsolyázással töltötte az idejét, Angyalföldön lakik: i (h i,3 = görkorcsolya h i,2 = Angyalföld) (6) ha tudjuk, milyen tevékenységet folytattak Kardosék (a 2-es számú család), akkor ezt csak kerékpárral tehették: h 2,3 0 h 2,3 = kerékpár (7) ha tudjuk, hogy hol laknak Kardosék (a 2-es számú család), akkor a lakóhelyük csak Csillaghegy vagy Óbuda lehet: h 2,2 0 h 2,2 = Csillaghegy h 2,2 = Óbuda (8) ha tudjuk, hogy kik laknak Csillaghegyen és Óbudán, akkor közülük az egyiknek Kardoséknak (a 2-es számú családnak) kell lenni: i j (h i,2 = Csillaghegy h j,2 = Óbuda i = 2 j = 2) (9) ha tudjuk, hogy mivel töltötte az idejét az ötgyerekes család, akkor az a tevékenység csak a foci lehetett: i (h i,1 = 5 h i,3 0 h i,3 = foci) (10)

4 10 1. Állapottér-reprezentálható problémák abban a családban, amelyik focival múlatta az időt, öt gyereknek kell lenni: i (h i,3 = foci h i,1 = 5) (11) az a család, amelyik tollaslabdázással töltötte el az időt, nem Csillaghegyen lakik: nem a csillaghegyi családban van a legtöbb (öt) gyerek: i (h i,3 = tollaslabda h i,2 Csillaghegy) (12) nem a tollaslabdázó famíliában van a legkevesebb (egy) gyerek: i (h i,2 = Csillaghegy h i,1 5) (13) i (h i,4 = tollaslabda h i,1 1) (14) ha tudjuk, hogy hány gyerek van abban a családban, amelyik Csillaghegyen lakik, és azt is tudjuk, hogy hány gyerek van abban a családban, akik tollaslabdáztak, akkor az előbbi család gyerekszáma kisebb az utóbbiénál: i j (h i,2 = Csillaghegy h j,3 = tollaslabda h i,1 0 h j,1 0 h i,1 < h j,1 ) (15) Bognárék (az 1-es számú család) nem kocogással töltik ezt a szép délutánt: a belvárosi házaspárnak egy csemetéje van: h 1,3 kocogás (16) i (h i,2 = Belváros h i,1 = 1) (17) ha tudjuk, hogy hol lakik az a család, ahol csak egy gyerek van, akkor ez a lakóhely csak a Belváros lehet: i (h i,1 = 1 h i,1 0 h i,2 = Belváros) (18) ha tudjuk, hogy hány gyerekük van Szűcséknek (a 3-as számú családnak), akkor ez az érték csak a 2 lehet: h 3,1 0 h 3,1 = 2 (19) Szűcsék (a 3-as számú család) nem a Belvárosban laknak: h 3,2 Belváros (20) ha tudjuk, hogy hol laknak Vadászék (a 4-es számú család), akkor ez a lakóhely csak Újpest lehet: Vadászéknál (a 4-es számú családnál) nincs öt gyerek: h 4,2 0 h 4,2 = Újpest (21) h 4,1 5 (22) Ezeknek a kényszerfeltételeknek mindössze 341 értéktizenötös tesz eleget, így problémánk állapotterét ennyi állapot alkotja: A = h h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 kényszerfeltétel(h), ahol kényszerfeltétel(h) = (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

5 1.1 Irány a Margitsziget! 11 (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22). A kezdőállapot az a helyzet, amikor még senkihez nem rendeltünk hozzá semmit: kezdő = (23) A célállapotok halmazának azok az állapotok lesznek az elemei, amelyekben már azt is meghatároztuk, hogy a Varga család milyen szabadidős tevékenységet választott (azaz a mátrix jobb alsó elemének az értéke nem 0): C = h h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 h 5,3 0 A. (24) ahol Az operátorok halmazát a következő, beszédes nevű operátorazonosítókkal definiáljuk: O = {Gyerek(cs, gyerekszám), Lakóhely(cs, lakóhely), Tevékenység(cs, tevékenység)}, cs { 1, 2, 3, 4, 5 } gyerekszám { 1, 2, 3, 4, 5 } lakóhely { Angyalföld, Belváros, Csillaghegy, Óbuda, Újpest } tevékenység { görkorcsolya, foci, kerékpár, kocogás, tollaslabda } A Gyerek(cs, gyerekszám) operátor akkor alkalmazható egy h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 állapotra, ha teljesülnek a következő alkalmazási előfeltételek: a cs sorszámú családhoz még nem rendeltünk hozzá gyerekszámot: h cs,1 = 0 (25) ha nem a Bognár családról van szó (azaz nem az első családhoz próbálunk hozzárendelni gyerekszámot), akkor az eggyel kisebb sorszámú családhoz már rendeltünk gyerekszámot: cs 1 h cs 1,1 0 (26) a gyerekszámot még nem rendeltük hozzá egyetlen olyan családhoz sem, akinek cs-nél kisebb a sorszáma: i (i < cs h i,1 gyerekszám) (27) Szűcsékhez (a 3-as számú családhoz) csak 2 gyereket rendelhetünk: 2 gyereket csak Szűcsékhez (a 3-as számú családhoz) rendelhetünk: cs = 3 gyerekszám = 2 (28) gyerekszám = 2 cs = 3 (29) Vadászékhoz (a 4-es számú családhoz) nem rendelhetünk öt gyereket: cs = 4 gyerekszám 5 (30)

6 12 1. Állapottér-reprezentálható problémák A Gyerek(cs, gyerekszám) operátort egy h = állapotra alkalmazva a következőképpen definiált h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 h 1,2 h 2,2 h 3,2 h 4,2 h 5,2 h 1,3 h 2,3 h 3,3 h 4,3 h 5,3 h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 H 1,1 H 2,1 H 3,1 H 4,1 H 5,1 H 1,2 H 2,2 H 3,2 H 4,2 H 5,2 H 1,3 H 2,3 H 3,3 H 4,3 H 5,3 elemtizenötöst kapjuk: h i,j = { gyerekszám, ha i = cs j = 1, h i,j egyébként. (31) A Lakóhely(cs, lakóhely) operátor akkor alkalmazható egy h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 állapotra, ha teljesülnek a következő alkalmazási előfeltételek: a cs sorszámú családhoz még nem rendeltünk hozzá lakóhelyet: h cs,2 = 0 (32) Bognárékhoz (az 1-es számú családhoz) csak akkor rendelhetünk lakóhelyet, ha Vargáékhoz (az 5-ös számú családhoz) már rendeltünk gyerekszámot: cs = 1 h 5,1 0 (33) ha nem Bognárékhoz (az 1-es számú családhoz) szeretnénk lakóhelyet rendelni, akkor az eggyel kisebb számú családhoz már rendeltünk lakóhelyet: cs 1 h cs 1,2 0 (34) a lakóhelyet még nem rendeltük hozzá egyetlen olyan családhoz sem, akinek cs-nél kisebb a sorszáma: i (i < cs h i,2 lakóhely) (35) a (2-es számú) Kardos család lakóhelye Csillaghegy vagy Óbuda lehet: cs = 2 lakóhely = Csillaghegy lakóhely = Óbuda (36) ha Csillaghegy a lakóhely, akkor azt nem rendelhetjük hozzá olyan családhoz, ahol öt gyerek van: lakóhely = Csillaghegy h cs,1 5 (37) ha a lakóhely a Belváros, akkor a cs családban egyetlen gyereknek szabad csak lennie: lakóhely = Belváros h cs,1 = 1 (38) Szűcsékhez (a 3-as számú családhoz) nem rendelhetjük a Belvárost: cs = 3 lakóhely Belváros (39)

7 1.1 Irány a Margitsziget! 13 Vadászékhoz (a 4-es számú családhoz) csak Újpestet rendelhetjük: Újpestet csak Vadászékhoz (a 4-es számú családhoz) rendelhetjük: A Lakóhely(cs, lakóhely) operátort egy h = állapotra alkalmazva a következőképpen definiált h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 h 1,2 h 2,2 h 3,2 h 4,2 h 5,2 h 1,3 h 2,3 h 3,3 h 4,3 h 5,3 cs = 4 lakóhely = Újpest (40) lakóhely = Újpest cs = 4 (41) h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 H 1,1 H 2,1 H 3,1 H 4,1 H 5,1 H 1,2 H 2,2 H 3,2 H 4,2 H 5,2 H 1,3 H 2,3 H 3,3 H 4,3 H 5,3 elemtizenötöst kapjuk: h i,j = { lakóhely, ha i = cs j = 2, h i,j egyébként. (42) A Tevékenység(cs, tevékenység) operátor akkor alkalmazható egy h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 állapotra, ha teljesülnek a következő alkalmazási előfeltételek: a cs sorszámú családhoz még nem rendeltünk hozzá tevékenységet: h cs,3 = 0 (43) Bognárékhoz (az 1-es számú családhoz) csak akkor rendelhetünk tevékenységet, ha Vargáékhozz (az 5-ös számú családhoz) már rendeltünk lakóhelyet: cs = 1 h 5,2 0 (44) ha nem Bognárékhoz (az 1-es számú családhoz) szeretnénk tevékenységet rendelni, akkor az eggyel kisebb sorszámú családhoz már rendeltünk tevékenységet: cs 1 h cs 1,3 0 (45) a tevékenységet még nem rendeltük hozzá egyetlen olyan családhoz sem, amelynek cs-nél kisebb a sorszáma: i (i < cs h i,3 tevékenység) (46) az Angyalföldön lakó családhoz csak a görkorcsolyázást rendelhetjük: h cs,2 = Angyalföld tevékenység = görkorcsolya (47) a görkorcsolyázást csak az Angyalföldön lakó családhoz rendelhetjük: tevékenység = görkorcsolya h cs,2 = Angyalföld (48)

8 14 1. Állapottér-reprezentálható problémák a kerékpározást csak a (2-es azámú) Kardos családhoz rendelhetjük: tevékenység = kerékpár cs = 2 (49) a (2-es azámú) Kardos családhoz csak a kerékpározást rendelhetjük: a focit csak az ötgyerekes családhoz rendelhetjük: az ötgyerekes családhoz csak a focit rendelhetjük: cs = 2 tevékenység = kerékpár (50) tevékenység = foci h cs,1 = 5 (51) h cs,1 = 5 tevékenység = foci (52) ha a cs sorszámú család Csillaghegyen lakik, akkor nem rendelhetjük hozzájuk a tollaslabdát tevékenységként: h cs,2 = Csillaghegy tevékenység tollaslabda (53) ha a tollaslabdázás a tevékenység, akkor azt nem rendelhetjük hozzá olyan családhoz, ahol mindössze egyetlen gyerek van: tevékenység = tollaslabda h cs,1 1) (54) a tollaslabdázást csak olyan családhoz rendelhetjük hozzá, amelyiknek a gyerekszáma nagyobb, mint a csillaghegyi család gyerekszáma: tevékenység = tollaslabda i (h i,2 = Csillaghegy h i,1 < h cs,1 ) (55) Bognárékhoz (az 1-es számú családhoz) nem rendelhetjük hozzá a kocogást: A Tevékenység(cs, tevékenység) operátort egy h = állapotra alkalmazva a következőképpen definiált h = h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 h 1,2 h 2,2 h 3,2 h 4,2 h 5,2 h 1,3 h 2,3 h 3,3 h 4,3 h 5,3 cs = 1 tevékenység kocogás (56) h 1,1 h 2,1 h 3,1 h 4,1 h 5,1 H 1,1 H 2,1 H 3,1 H 4,1 H 5,1 H 1,2 H 2,2 H 3,2 H 4,2 H 5,2 H 1,3 H 2,3 H 3,3 H 4,3 H 5,3 elemtizenötöst kapjuk: { h i,j = tevékenység, ha i = cs j = 3, h i,j egyébként. Mivel operátorainkat úgy sikerült definiálni, hogy állapotból bizonyíthatóan állapotot állítanak elő, és a kezdőállapotunk állapot, ezért a megoldáskeresés során előállított elemtizenötösökre a kényszerfeltételek ellenőrzése elhagyható. Az állapottérnek, a probléma kezdőállapotának, a célállapotok halmazának, az operátorok alkalmazási előfeltételeinek és hatásának a definiálásával megadtuk az A, kezdő, C, O négyest, a probléma egy lehetséges állapottér-reprezentációját. (57)

Állapottér-reprezentálható problémák

Állapottér-reprezentálható problémák 1. fejezet Állapottér-reprezentálható problémák 1.1. Állati karácsony 1.1.1. A feladat A karácsonyra készülő Nagy családban a gyerekek (Botond, Emese, Karcsi, Orsi és Vanda) alaposan feladták a leckét

Részletesebben

Állapottér-reprezentálható problémák

Állapottér-reprezentálható problémák 1. fejezet Állapottér-reprezentálható problémák 1.1. Állati karácsony 1.1.1. A feladat A karácsonyra készülő Nagy családban a gyerekek (Botond, Emese, Karcsi, Orsi és Vanda) alaposan feladták a leckét

Részletesebben

Állapottér-reprezentálható problémák

Állapottér-reprezentálható problémák 1 fejezet Állapottér-reprezentálható problémák 11 Állati karácsony 111 A feladat A karácsonyra készülő Nagy családban a gyerekek (Botond, Emese, Karcsi, Orsi és Vanda) alaposan feladták a leckét a szülőknek

Részletesebben

A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kedves Versenyző! A megoldások értékelésénél

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 1/18 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai INFORMATIKA II. (programozás) kategória 1. feladat: K-homogén sorozat ( pont) Azt mondjuk, hogy az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete

A szemantikus elemzés elmélete. Szemantikus elemzés (attribútum fordítási grammatikák) A szemantikus elemzés elmélete. A szemantikus elemzés elmélete A szemantikus elemzés elmélete Szemantikus elemzés (attribútum fordítási grammatikák) a nyelvtan szabályait kiegészítjük a szemantikus elemzés tevékenységeivel fordítási grammatikák Fordítóprogramok előadás

Részletesebben

Adatbázisrendszerek 7. előadás: Az ER modell március 20.

Adatbázisrendszerek 7. előadás: Az ER modell március 20. Adatbázisrendszerek Jelölések, az 2018. március 20. Egyedtípusok 2 Definíció Azokat az egyedtípusokat, amelyek nem rendelkeznek saját kulcsattribútumokkal, gyenge egyedtípusoknak nevezzük. Ezzel ellentétben

Részletesebben

Európai Sporthét

Európai Sporthét Európai Sporthét 2017.09.23-30. Az eseménysorozat keretében különböző sportágak kipróbálására és szabadidős versenysorozat lebonyolítása a cél, oly módon, hogy a hét programja lefedje egész Budapest területét.

Részletesebben

SZAKDOLGOZAT ÓBUDAI EGYETEM. Neumann János Informatikai kar Alba Regia Egyetemi Központ

SZAKDOLGOZAT ÓBUDAI EGYETEM. Neumann János Informatikai kar Alba Regia Egyetemi Központ ÓBUDAI EGYETEM Neumann János Informatikai kar Alba Regia Egyetemi Központ SZAKDOLGOZAT OE-NIK Hallgató neve: Berencsi Gergő Zsolt 2010. Törzskönyvi száma: T 000123/FI38878/S-N Tartalomjegyzék Tartalmi

Részletesebben

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus

Sapientia - Erdélyi Magyar TudományEgyetem (EMTE) Csíkszereda IRT- 4. kurzus. 3. Előadás: A mohó algoritmus Csíkszereda IRT-. kurzus 3. Előadás: A mohó algoritmus 1 Csíkszereda IRT. kurzus Bevezetés Az eddig tanult algoritmus tipúsok nem alkalmazhatók: A valós problémák nem tiszta klasszikus problémák A problémák

Részletesebben

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete)

Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) Assignment problem Hozzárendelési feladat (Szállítási feladat speciális esete) C költség mátrix költség Munkákat hozzá kell rendelni gépekhez: egy munka-egy gép c(i,j) mennyi be kerül i-dik munka j-dik

Részletesebben

Informatikai tehetséggondozás:

Informatikai tehetséggondozás: Ég és Föld vonzásában a természet titkai Informatikai tehetséggondozás: Visszalépéses maximumkiválasztás TÁMOP-4.2.3.-12/1/KONV 1. Munkásfelvétel: N állás N jelentkező Egy vállalkozás N különböző állásra

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. II. (programozás) kategória

Oktatási Hivatal. A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. II. (programozás) kategória Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai II. (programozás) kategória Kedves Versenyző! A megoldások értékelése automatikusan, online módon

Részletesebben

Modellezés Gregorics Tibor Mesterséges intelligencia

Modellezés Gregorics Tibor Mesterséges intelligencia Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

38. A gráfalgoritmusok alkalmazása

38. A gráfalgoritmusok alkalmazása 38. A gráfalgoritmusok alkalmazása Állapotok és átmenetek A gráf adattípus nagyon sokféle feladat megoldásánál alkalmazható. Rejtvények, játékok, közlekedési és szállítási problémák, stratégiai feladatok

Részletesebben

Budapesti Tollaslabdázók Szövetsége. TOLLASLABDA DIÁKOLIMPIA 2014/2015. tanév BUDAPESTI DÖNTŐ VERSENYKIÍRÁS

Budapesti Tollaslabdázók Szövetsége. TOLLASLABDA DIÁKOLIMPIA 2014/2015. tanév BUDAPESTI DÖNTŐ VERSENYKIÍRÁS TOLLASLABDA DIÁKOLIMPIA 2014/2015. tanév BUDAPESTI DÖNTŐ VERSENYKIÍRÁS TOLLASLABDA DIÁKOLIMPIA 2014/2015. tanév 1. A verseny célja: BUDAPESTI DÖNTŐ VERSENYKIÍRÁS a tollaslabda sportág iskolai népszerűsítése;

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai

Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai Országos Középiskolai Tanulmányi Verseny 2006/2007-os tanév INFORMATIKA, II. (programozás) kategória második fordulójának feladatai Iskola neve:... Iskola székhelye:... Versenyző neve:... Évfolyama/osztálya:...

Részletesebben

MintaFeladatok 2.ZH Megoldások

MintaFeladatok 2.ZH Megoldások 1. feladat Kérem e-mail-ben jelezze, ha hibát talál: (veanna@inf.elte.hu, vagy veanna@elte.hu ) P={ } S A B C AB SC AC a c BC b CS SS c S a kezdőjel Mivel a piramis tetején lévő kocka a mondatkezdő szimbólumot

Részletesebben

Aromo Szöveges értékelés normál tantárggyal

Aromo Szöveges értékelés normál tantárggyal Aromo Szöveges értékelés normál tantárggyal Aromo Iskolaadminisztrációs Szoftver Felhasználói kézikönyv -- Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges értékelés normál tantárggyal 1 Bevezetés 3

Részletesebben

Áprilisi fotók Tavaszi szépítés: a MagHáz előtti parkolónál......a Trianon-emlékmű környezetében Makranczi Zalán és Perjés János a MagHáz kávézójában Bálint Klára református lelkész köszöntése a könyvtárban

Részletesebben

Csima Judit október 24.

Csima Judit október 24. Adatbáziskezelés Funkcionális függőségek Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. október 24. Csima Judit Adatbáziskezelés Funkcionális függőségek 1 / 1 Relációs sémák

Részletesebben

Lineáris algebra. (közgazdászoknak) T C T = ( 1 ) ; , D T D =

Lineáris algebra. (közgazdászoknak) T C T = ( 1 ) ; , D T D = Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (1.) 2018/2019. tavaszi félév Mátrixok 1.1. Feladat. Legyen A = 1 2 1, B = 1 2 3 1 2 1 1, C = ( 1 2 0 ), D = 1 3 1 1 2 1 ( ) 10/2 0.6 1

Részletesebben

Az optimális megoldást adó algoritmusok

Az optimális megoldást adó algoritmusok Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5 D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal

Részletesebben

8. előadás. Az ER modell. Jelölések, az ER séma leképezése relációs sémára. Adatbázisrendszerek előadás november 14.

8. előadás. Az ER modell. Jelölések, az ER séma leképezése relációs sémára. Adatbázisrendszerek előadás november 14. 8. előadás Jelölések, az Adatbázisrendszerek előadás 2016. november 14., és Debreceni Egyetem Informatikai Kar Az előadások Elmasry & Navathe: Database Systems alapján készültek. 8.1 Egyedtípusok Definíció

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

C programozási nyelv

C programozási nyelv C programozási nyelv Előfeldolgozó utasítások Dr Schuster György 2011 május 3 Dr Schuster György () C programozási nyelv Előfeldolgozó utasítások 2011 május 3 1 / 15 A fordítás menete Dr Schuster György

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Mesterséges intelligencia 1 előadások

Mesterséges intelligencia 1 előadások VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5

Részletesebben

Cselekvési tervek generálása. Máté Annamária

Cselekvési tervek generálása. Máté Annamária Cselekvési tervek generálása Máté Annamária Tartalom Általánosan a cselekvés tervezésről Értelmezés, megközelítés Klasszikus modellek Mint keresés Mint logikai következtetés Alapvető feltevések és fogalmak

Részletesebben

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT 42. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT 42. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 42. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Valamennyi feladat hibátlan megoldása 7 pontot ér, így az elérhető maximális pontszám 5. A továbbküldés

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

OKTV 2005/2006 döntő forduló

OKTV 2005/2006 döntő forduló Informatika I. (alkalmazói) kategória feladatai OKTV 2005/2006 döntő forduló Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

Feladatsor 2012/13 2. félév a Programozási alapismeretek tárgyhoz

Feladatsor 2012/13 2. félév a Programozási alapismeretek tárgyhoz Feladatsor 2012/13 2. félév a Programozási alapismeretek tárgyhoz 1. feladat: b) Van-e K másodpercnél hosszabb szám a listán? c) Melyik a leghosszabb dal? d) Melyik előadónak van a legtöbb száma a listán

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra

Részletesebben

Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny 2-3. korcsoport. Maximális növekedés

Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny 2-3. korcsoport. Maximális növekedés Maximális növekedés N napon keresztül naponta feljegyeztük az eladott mobiltelefonok számát. Készíts programot, amely megadja két olyan nap sorszámát, amelyek közötti napokon az első napon volt a legkevesebb,

Részletesebben

Dobble Denis Blanchot játéka 2-8 játékos számára 7 éves kortól

Dobble Denis Blanchot játéka 2-8 játékos számára 7 éves kortól Dobble Denis Blanchot játéka 2-8 játékos számára 7 éves kortól Mi a Dobble? A Dobble egy 55 lapos kártyapakli, melynek minden lapján 8 szimbólum látható. A lapokon összesen több mint 50 különbüző szimbólum

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

A 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal 2015/2016 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMTIK II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a dolgozatokat

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Adatbázisok elmélete 12. előadás

Adatbázisok elmélete 12. előadás Adatbázisok elmélete 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Mohó stratégia. Feladat: Megoldás:

Mohó stratégia. Feladat: Megoldás: I. Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum hány filmet nézhetünk végig!

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.

PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. Időtartam: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ Matematika

Részletesebben

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 217/218 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai 1. feladat: Csatornák (24 pont) INFORMATIKA II. (programozás) kategória Egy város csomópontjait csatornahálózat

Részletesebben

OEP Gregorics Tibor: Minta dokumentáció a 3. házi feladathoz 1. Feladat. Elemzés 1

OEP Gregorics Tibor: Minta dokumentáció a 3. házi feladathoz 1. Feladat. Elemzés 1 OEP Gregorics Tibor: Minta dokumentáció a 3. házi feladathoz 1. Feladat Különféle élőlények egy túlélési versenyen vesznek részt. A lények egy pályán haladnak végig, ahol váltakozó terep viszonyok vannak.

Részletesebben

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül.

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. WASABI Játékszabály A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. A JÁTÉK ELŐKÉSZÜLETEI A játék kezdetén minden játékos kap 4 kockát,

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:

1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz: 1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

::JÁTÉKLAP:: Társasjáték Portál. Klánok. (Clans)

::JÁTÉKLAP:: Társasjáték Portál. Klánok. (Clans) Klánok (Clans) Tervezte: Leo Colovini Kiadja: Winning Moves Deutschland GmbH Leugallee 99 40545 Düsseldorf info@winningmoves.de http://www.winningmoves.de/ 2-4 játékos részére, 10 éves kortól, játékidő

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos özépiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIA II. (programozás) kategória 1. feladat: Legalább 2 bolygón volt élet

Részletesebben

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?

8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es? 8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

A GYORS REFLEXEK VÍZHATLAN JÁTÉKA JÁTÉKOS SZÁMÁRA - 4 ÉVES KORTÓL

A GYORS REFLEXEK VÍZHATLAN JÁTÉKA JÁTÉKOS SZÁMÁRA - 4 ÉVES KORTÓL A GYORS REFLEXEK VÍZHATLAN JÁTÉKA - 2 5 JÁTÉKOS SZÁMÁRA - 4 ÉVES KORTÓL Játékszabály Mi a Dobble Beach? Akárhová is vezessenek kalandos utazásaitok, ugorjatok fejest a népszerű családi játék új, tartós

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály . feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

3. Venn-diagrammok használata nélkül bizonyítsuk be az alábbi összefüggéseket!

3. Venn-diagrammok használata nélkül bizonyítsuk be az alábbi összefüggéseket! Halmazelmélet Alapfogalmak Unió: A B = {x x A vagy x B}; metszet: A B = {x x A és x B}; különbség: A\B = A B = {x x A és x B}; komplementer: A = {x x A és x U} (itt U egy univerzum halmaz). Egyenlőség:

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A 2012/201 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja INFORMATIKÁBÓL II. (programozás) kategóriában Munkaidő: 300 perc Elérhető pontszám: 150

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

Dinamikus programozás - Szerelőszalag ütemezése

Dinamikus programozás - Szerelőszalag ütemezése Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Klasszikus algebra előadás. Waldhauser Tamás április 14. Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Református Pedagógiai Intézet OM 102246

Református Pedagógiai Intézet OM 102246 Református Pedagógiai Intézet OM 102246 Budapest-Debrecen-Miskolc-Nagykőrös Tárgy: Egyházi ének jelentés Iktatószám:31.21-0075 /2016. Ügyintéző: Dr. Jakab-Szászi Andrea Összefoglaló a hit- és erkölcstan

Részletesebben

A feladatlap valamennyi részének kitöltése után, küldje meg konzulensének!

A feladatlap valamennyi részének kitöltése után, küldje meg konzulensének! Beküldendő A feladatlap valamennyi részének kitöltése után, küldje meg konzulensének! 1. Mini-projektterv Záródolgozat Projekt a gyakorlatban Osztály/csoport: 5. osztály Résztvevők száma: 22 fő 9 lány

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Kényszerkielégítési problémák (Constraint Satisfaction Problem, CSP) http://mialmanach.mit.bme.hu/aima/ch05 Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Budapesti Tollaslabdázók Szövetsége A Nemzetközi Tollaslabda Szövetség megalakulásának 80. évfordulója alkalmából

Budapesti Tollaslabdázók Szövetsége A Nemzetközi Tollaslabda Szövetség megalakulásának 80. évfordulója alkalmából A Nemzetközi Tollaslabda Szövetség megalakulásának 80. évfordulója alkalmából TOLLASLABDA DIÁKOLIMPIA 2013/2014. tanév BUDAPESTI DÖNTŐ VERSENYKIÍRÁS 2014. 01. 12. 1 TOLLASLABDA DIÁKOLIMPIA 2013/2014. tanév

Részletesebben

Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió.

Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió. HLMZOK 9. évfolyam lapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió. 1.1. dott az = {1; 2; 3; 4; 5} és = {3; 4; 5; 6; 7} halmaz. Készíts halmazábrát, majd sorold

Részletesebben

OKOS KERTÉSZ Vidám játékok okos kertészeknek A doboz tartalma Ki melyik játékváltozatot próbálja ki először?

OKOS KERTÉSZ Vidám játékok okos kertészeknek A doboz tartalma Ki melyik játékváltozatot próbálja ki először? TARTALOM Vidám játékok okos kertészeknek... 3 A doboz tartalma... 3 Ki melyik játékváltozatot próbálja ki először?... 3 Előkészületek a játékokhoz... 4 Általános szabályok... 4 Játékváltozatok... 4 Óvodásoknak...4

Részletesebben

Lekérdezések I. Egyszerű választó lekérdezések

Lekérdezések I. Egyszerű választó lekérdezések Lekérdezés létrehozása: A Varázslóval: Lekérdezések I. Egyszerű választó lekérdezések 1. Lekérdezés sáv Lekérdezés varázsló 2. Tábla (vagy lekérdezés) kiválasztása. 3. Szükséges mezők átvitele a kijelölt

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

Matematika B4 II. gyakorlat

Matematika B4 II. gyakorlat Matematika B II. gyakorlat 00. február.. Bevezető kérdések. Feldobunk egy kockát és egy érmét. Ábrázoljuk az eseményteret! Legyenek adottak az alábbi események: -ast dobunk, -est dobunk, fejet dobunk,

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Visszalépéses maximumkiválasztás

Visszalépéses maximumkiválasztás Belépő a tudás közösségébe Informatika szakköri segédanyag Visszalépéses maximumkiválasztás Heizlerné Bakonyi Viktória, Horváth Győző, Menyhárt László, Szlávi Péter, Törley Gábor, Zsakó László Szerkesztő:

Részletesebben

Adatszerkezetek II. 6. előadás

Adatszerkezetek II. 6. előadás Adatszerkezetek II. 6. előadás Feladat: Egy kábelhálózat különböző csatornáin N filmet játszanak. Ismerjük mindegyik film kezdési és végidejét. Egyszerre csak 1 filmet tudunk nézni. Add meg, hogy maximum

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

A gyakorlat során MySQL adatbázis szerver és a böngészőben futó phpmyadmin használata javasolt. A gyakorlat során a következőket fogjuk gyakorolni:

A gyakorlat során MySQL adatbázis szerver és a böngészőben futó phpmyadmin használata javasolt. A gyakorlat során a következőket fogjuk gyakorolni: 1 Adatbázis kezelés 3. gyakorlat A gyakorlat során MySQL adatbázis szerver és a böngészőben futó phpmyadmin használata javasolt. A gyakorlat során a következőket fogjuk gyakorolni: Tábla kapcsolatok létrehozása,

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos özépiskolai Tanulmányi Verseny második fordulójának feladatai INFORMATIA II. (programozás) kategória 1. feladat: Legalább 2 bolygón volt élet (33 pont) Egy

Részletesebben

Időzített átmeneti rendszerek

Időzített átmeneti rendszerek Időzített átmeneti rendszerek Legyen A egy ábécé, A = A { (d) d R 0 }. A feletti (valós idejű) időzített átmeneti rendszer olyan A = (S, T,,, ) címkézett átmeneti rendszert ( : T A ), melyre teljesülnek

Részletesebben

A programozás alapjai 1 Rekurzió

A programozás alapjai 1 Rekurzió A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder

Részletesebben