1. DIGITÁLIS ADATFELDOLGOZÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. DIGITÁLIS ADATFELDOLGOZÁS"

Átírás

1 1. DIGITÁLIS ADATFELDOLGOZÁS A médiumok szite midegyike előállítható már digitális formába. Ez az ú. digitális közös evező lehetővé teszi az ilye adatok egységes kezelését. Miél összetettebb egy médium, aál agyobb tárigéyel jeletkezik a digitalizálás. Eek illusztrálására álljo itt éháy példa. Amíg szöveg médium esetébe egy 8*8 képpotból álló raszter tárigéye 800*600-as felbotást és *8 bites szímélységet alapul véve: 800 * 600 * *8 = bit = 14,6Kbyte, 8*8 addig egy 800*600-as felbotású, 8 bit szímélységű bittérképes képé 800*600*8 = bit = 468,75 Kbyte, míg egy 800*600-as felbotású, 5 kép/s -os képváltási frekveciájú videojelé másodpercekét képpotokét 3 byte (lumiacia, kromiacia) szímélységet feltételezve 800*600*5*3 = byte/s = 34,3 Mbyte/s! Midezek egyértelműe bizoyítják, hogy ezeket a médiumokat célszerű tömörítve tároli. Digitális adatfeldolgozás alatt értjük azt a folyamatot, amikor az aalóg adatokat tömörített digitális adatokká alakítjuk át. A digitális adatfeldolgozás három elég jól elkülöíthető részfolyamatból áll: az aalóg adatok digitális adatokká törtéő átalakítása (digitalizálás), a digitális médiumok szerkesztése, adattömörítés (1. ábra). Ezek a részfolyamatok még további lépésekre bothatók. aalóg adat digitalizálás szerkesztés tömörítés digitális adat 1. ábra 1.1. Digitalizálás A digitalizálás célja, hogy a két- ill. háromdimeziós térbe lévő objektumokról a számítógép által értelmezhető és feldolgozható adatokat állítso elő. A digitalizálás speciális eszközökkel (scaer, hagkártya, digitális féyképezőgép, digitális kamera, stb.) törtéik, az egyes lépések megvalósítása eszköztől függőe külöböző módo lehetséges. A digitalizálás folyamatát és jellegzetességeit a Multimédia hardvereszközei témakörbe fogjuk tárgyali. 1.. Digitális médiumok szerkesztése A digitalizált objektumok, típustól függőe szerkeszthetők, amely műveletek végrehajtására a legkülöbözőbb programok állak redelkezésükre. Eze szerkesztő műveletek célja lehet az aalóg-digitális átalakítás hibáiak kijavítása, az eredetitől külöböző virtuális objektumok létrehozása, stb. Eze témakörről részbe már volt szó [1], ill. még tárgyalásra fog kerüli az egyes időfüggő médiumokál. 5

2 1.3. Tömörítés Az adattömörítés okait a fejezet elejé a agy meyiségű adattömegbe jelöltem meg. A tömörítés reverzibilis folyamatát a. ábra mutatja, azaz kitömörítéskor a folyamat visszafelé ugyailye lépések sorozatakét zajlik le. tömörítetle digitális adat Adatelőkészítés Kitömörítés Adatfeldolgozás Kvatálás Tömörítés Kódolás tömörített digitális adat. ábra Az adatelőkészítés sorá törtéik a médium, tömörítéshez szükséges előkészítése. Ez például állóképek esetébe 8*8 képpotból álló egységekre botást jelet. Ekkor határozzuk meg az egyes képpotokhoz redelt bitek számát, ami aak miőségét is meghatározza. Az adatfeldolgozás a téyleges tömörítés első fázisa. Ez lehet például egy traszformáció (pl. időtartomáyból a frekveciatartomáyba DCT direkt kosziuszos traszformáció), amely elősegíti a tömörítés köyebb végrehajtását. A kvatálás az adatfeldolgozás sorá yer együtthatók megadott szabályok szeriti kezelését, pl. súlyozását teszi lehetővé (JPEG eljárás). A kódolás az előzőekbe előállított diszkrét adatfolyam veszteségmetes tömörítését jeleti. Az adatfeldolgozás és a kvatálás sorá ú. veszteséges, míg a kódolás sorá ú. veszteségmetes tömörítési algoritmusokat alkalmazak. Veszteségmetesek evezzük a tömörítést (etrópiakódolás), ameyibe a tömörítés előtti ú. kódoladó adat megegyezik a kitömörítés utá keletkezett ú. dekódolt adattal. Azt az eljárást pedig, amelyél a tömörítés sorá adatvesztés áll fe, veszteséges tömörítések (forráskódolás) evezzük. Az etrópiakódolás médiumfüggetle, míg a forráskódolás médiumfüggő tömörítési eljárás. A médiafüggőség azt jeleti, hogy a tömörítési algoritmusba kihaszálják az adott médiumba rejlő sajátosságokat, például azt, hogy az álló képekél a D DCT alapú kódolásál az alacsoy frekveciák fotosabbak, mit a magas frekveciák. A multimédia redszerekbe az ú. hibrid kódolást alkalmazzák, amely egy sajátos kombiációja a forrás- és etrópiakódolásak. Mielőtt rátérék az egyes kódolási eljárások bemutatására, vizsgáljuk meg rövide az adattömörítéssel szembe támasztott követelméyeket: 6

3 miél kisebb tömörítési aráytéyező [(tömörített adatmeyiség/tömörítetle adatmeyiség)], amely a tömörítési folyamat hatékoyságát jelöli, a tömörítési algoritmus em jelethet jeletős mértékű adatvesztést, amely már az emberi érzékelés miőségét lerotaá, a tömörítés em tartalmazhat redudás adatot. Azt az adatot evezzük redudásak, amely em a lehető legkisebb meyiségbe tárolja ugyaazt az iformációt. Redudás lehet például az a kétszíű képi adat, amely csak fekete és fehér szít tartalmaz és 1 bit helyett 1 byte-o kódoljuk. 0 fekete és 1 fehér helyett 0 fekete és 55 fehér, közbe az 1-54 közötti tartomáy kihaszálatla. általáos érvéyű algoritmus, amely a legszélesebb körű felhaszálói alkalmazást lehetővé teszi. Így biztosított például, hogy az Iteretes és multimédiás köryezetbe a legelterjedtebb képtömörítési eljárás a GIF, JPEG; mozgókép-tömörítési eljárás az AVI, MPEG; míg audiotömörítési eljárás a MP3. A 3. ábra összefoglalva mutatja a legfotosabb tömörítési eljárásokat. [] Etrópiakódolás Forráskódolás Hibridkódolás Változó hosszúságú kódolás (VLC Variable Legth Codig) Bit-sík kódolás Előrebecsléses (prediktív) kódolás Veszteséges előrebecsléses kódolás Traszformációs kódolás Huffma kódolás Aritmetikai kódolás Veszteségmetes előrebecsléses kódolás DPCM ADPCM FFT (Gyors Fourier traszformáció) DCT (Diszkrét függvéyek kosziuszos Fourier traszformációja) Alulmitavételezéses kódolás Fotosság szeriti kódolás Subbad kódolás JPEG (Joit Photographic Experts Group) MPEG (Movig Picture Expert Group) 3. ábra Veszteségmetes tömörítési eljárások Állóképek tömörítéséél célszerűbb a képpot értékekhez redelt kódolás helyett a képpot tulajdoságokba bekövetkezett változásokat lekódoli. A szomszéd képpotok lumiaciája és kromiaciája agy valószíűséggel megegyezik, vagy kevésbé tér el egymástól. A ritkábba előforduló (agy változások a lumiaciába ill. a kromiaciába) értékekhez hosszabb kódot, a gyakrabba előforduló (kis változások a lumiaciába, kromiaciába) értékekhez rövidebb kódot redelük hozzá. Ezt az eljárást változó hosszúságú kódolásak evezzük. Tovább övelhetjük az eljárás hatékoyságát, ameyibe először meghatározzuk a változás-értékek statisztikus eloszlását, majd a változó hosszúságú kódokat az eloszlás ismeretébe redeljük hozzá a változásokhoz. A változó hosszúságú kódolásak esetét haszálják: Huffma kódolás, aritmetikai kódolás. 7

4 A Huffma (D. A. Huffma, 195) kódolás szerit legye k-féle bemeő, ismert előfordulási valószíűségű adatuk, majd mide egyes adathoz olya bithosszúságú kódot redeljük hozzá, amelyek hossza fordította aráyos aak előfordulási gyakoriságával. Ismerük statikusa és adaptíve felépített Huffma kódtáblát. A statikusa felépülő kódtábla függetle az adott képtől, agyobb meyiségű kép elemzése által született kódtábla. Az adaptív kódtábla az adott kép hisztogramja alapjá készül. Következik ebből, hogy először elemezi kell a képet (a hisztogram előállítása), majd csak az utá következik a tömörítési algoritmus. Hátráya a lassúság, előye a kis tömörítési aráytéyező. Az aritmetikai kódolásál figyelembe vesszük az adatot megelőző adatot, vagy adatokat és a változást kódoljuk. Az így előállított kódolt adatfolyam em diszkrét, elkülöíthető adatok sokasága, haem csak elölről haladva, szekveciálisa fejthető vissza tömörítetle adatokká. Az aritmetikai és Huffma kódolást előszeretettel alkalmazzák a JPEG tömörítésél is. A bit-sík kódolásál a képet képsíkokra botjuk. Ayi képsíkot hozzuk létre aháy bitesek a képpotok szímélységei (1 bit = szí 1 bitsík; 4 bit = 16 szí 4 bitsík; 8 bit = 56 szí 8 bitsík; stb.). Egy kép tehát több (1,, 4, 8, 16, 4) egyekét egybites képsíkokból áll. A magasabb bithelyiértékű képsíkok a lassa változó, míg a kisebb bithelyiértékű képsíkok a gyorsa változó képrészleteket tartalmazzák. A tömörítés a képsíkok meté törtéik. A kép visszaállítása progresszíve törtéik, azaz először állítjuk vissza a magasabb bithelyiértékű síkokat és csak utáa az alacsoyakat. A kép egyre fiomabb felbotású lesz. A veszteségmetes előrebecsléses kódolás (relatív vagy más éve differeciál kódolás) léyege, hogy az egymást követő adatok eltérése gyakra miimális vagy zérus, ezért például egy kép adott részlete alapjá aak köryezete jól becsülhető. Videofolyamál is két egymást követő képtartalom alig, vagy egyáltalá em tér el egymástól, stb. Így tehát elégséges letároli azokat az adatokat, amelyek az előrebecslés tévedéseit kikompezálják. Hagsúlyozám, hogy ez veszteségmetes, tehát az eredeti képet potosa visszakapjuk Veszteséges tömörítési eljárások A veszteséges tömörítési eljárásokak két fő fajtáját külöböztetjük meg: veszteséges előrebecsléses kódolás, traszformációs kódolás. Az előrebecsléses tömörítést az előző fejezetbe már éritettem, csak ott a veszteség em volt megegedve. Veszteséges tömörítésél az előrebecslés hibáját korrigáló ú. differeciaadat akkor kerül kódolásra, ha egy bizoyos küszöbértéket meghalad. Ez a küszöbérték határozza meg a kitömörítéssel yert kép valósághűségét és persze ezzel összefüggésbe a tömörítési aráytéyezőt is. Mit is jelet ez a gyakorlatba? Egy állókép eseté differeciára ad lehetőséget az élek (kotúrok)-felületek átmeet, videofelvételél időbeli differeciálási lehetőség va az egymást követő képkockák álladó és változó részletei között. Az előbb vázolt tulajdosága miatt evezik ezt az eljárást relatív kódolásak is. Fotos lehet a differeciába az is, hogy milye két egymást követő képrészlet közötti külöbségről va szó. Azokat a tömörítési eljárásokat, amelyek lehetővé teszik a tömörítések a midekori tömörítedő adatokhoz való alkalmazkodását, adaptív előrebecslési eljárásak evezzük. Erre példa az audiotechikába alkalmazott DPCM (differeciális impulzus kód moduláció) és ADPCM (adaptív DPCM eljárás) eljárások közötti külöbség. Ezt a későbbiek folyamá még részletese vizsgáli fogom. A traszformációs kódolásál az adatokat egy másik matematikai térbe traszformáljuk, mert ott köyebb őket tömörítei. Követelméy, hogy ez a traszformáció reverzibilis 8

5 legye (iverz traszformáció). Az adattömörítés szempotjából a leghatékoyabb az ú. diszkrét kosziuszos traszformáció (DCT) és a gyors Fourier traszformáció (FFT). A fotosság szeriti kódolásál az adatokak valamilye szabály szerit preferált csoportját kódolják. Például a Subbad féle szelektív frekvecia-traszformációál a jelek csak egy előre meghatározott frekveciasávba eső részét traszformáljuk.. KÉPFELDOLGOZÁS ÉS TÖMÖRÍTÉS Az adatfeldolgozás folyamatáak általáos vizsgálata utá ézzük meg azokat az egyes médiumokál: állóképek; mozgóképek aimáció, videó; audio. A képfeldolgozás képszerkesztési műveleteivel eze muka előző részébe [1] már foglalkoztam, itt csak rövide térek ki rá..1. Képdigitalizálás A valóságos világ objektumai háromdimeziósak, a rájuk eső féyt visszaverik, vagy pedig öállóa bocsátják ki. Ameyibe az így keletkezett féyt valamilye érzékelő eszközzel rögzítjük, úgy kétdimeziós aalóg képi iformációvá állítjuk elő, amely a tárolási módszertől függő képadatot eredméyez. Ahhoz, hogy a kétdimeziós aalóg képi iformációt (adatot) digitális iformációvá (adattá) alakítsuk át aalóg-digitális (A/D) koverzióra va szükség. Ez egy kétlépéses művelet: mitavételezés, kvatálás (4. ábra). 3D-s objektum 3D-D koverzió Mitavételezés Kvatálás Digitalizált raszteres kép Képszerkesztés tárolt D-s aalóg képi adat Szerkesztett digitális kép tárolt raszteres képi adat 4. ábra A mitavételezés szemléltetésére álljo itt az alábbi példa (5. ábra). Az aalóg képre helyezzük egy kisméretű égyzetekből álló hálót, majd mide égyzetbe található folytoos képi iformációt valamilye módszerrel átlagoljuk, ezek utá az egyes égyzetekbe lévő aalóg értékeket ezzel az átlagértékkel helyettesítjük. Fotos megjegyezi, hogy ez az érték egy meghatározott itervallumba bármilye értéket felvehet. Ez óriási adattömeget eredméyeze, ezért ezt az itervallumot kisebb résztartomáyokra osztják fel, és ha az előbb kapott átlagérték egy ilye résztartomáyba esik, akkor a féyiformációt aak biáris kódjával azoosítjuk. Ezt a folyamatot kvatálásak evezzük. Következik az előzőekből, hogy miél agyobb az itervallum és miél kisebb résztartomáyokra osztjuk fel aál jobba fog a digitális kép az eredeti aalóg képhez közelítei, persze a képállomáy mérete is aál agyobb lesz. Az előzőekbe kapott digitális kép feldolgozható a raszter (potmátrix)grafikába (képszerkesztés) vagy már végállapotak tekithető. 9

6 + = 5. ábra.1.1. Leképezés A leképezés sorá a háromdimeziós térbe lévő objektumról ill. objektumból érkező elektromágeses ill. akusztikus hullámokat leíró függvéyeket az emberi látás ill. hallás fiziológiai tulajdoságait figyelembe véve egy kétdimeziós függvéyé traszformáljuk át: f(x,y,z,t,λ,) g(x,y,t), amelybe az objektum egy potját az x,y,z koordiáták, időbei függőségét a t jelöli. Időfüggetle médiumokál t=0, időfüggő médiumokál t 0. A szemlélőek a helyzetét az objektumhoz képest az vektor jellemzi, míg a féy ill. hag hullámtermészetét a λ hullámhossz írja le. A g(x,y,t) függvéy matematikai értelembe folytoos, em egatív és korlátos továbbá a sík azo potjá va értelmezve, ahová leképeztük. Mide egyes szíill. hagjellemzőre létezik egy ilye leképezési függvéykapcsolat, pl. a szí eseté az egy lumiacia és a két kromiacia függvéy írható fel. Ez a leképezés a hardver eszközbe zajlik le. A videokamera eseté a töltéskép, a féyképezőgép eseté a film ill. az előhívott fotó, hagfelvételél a hagszalag tekithető a g(x,y,t) függvéy fizikai megtestesítőjéek. Fizikai értelembe azoba a részecskék véges méretét figyelembe véve legfeljebb diszkrét függvéyekről beszélhetük..1.. Mitavételezés Az időfüggetle médiumok eseté a g(x,y) függvéyel megadott sík egységyi területéről (kép) vett mitát, időfüggő médiumokál megadott időközökét a g(x,y,t) függvéyel leírt jelből vett mitát mitavételezések evezzük. Eek következtébe a folytoos g(x,y) ill. g(x,y,t) függvéyből állítjuk elő a g(x*,y*) ill. g(x*,y*,t) diszkrét függvéyeket. 6. ábra 7. ábra 10

7 Ebből egyértelműe következik, hogy miél kisebb az egységyi terület, amelyből mitát veszük (6-7. ábra), ill. miél gyakrabba veszük mitát (időfüggő médiumok), aál jobba közelít a g(x,y) ill. g(x,y,t) függvéy a h(x*,y*) ill. h(x*,y*,t) függvéyhez. Befolyásolja a h(x*,y*) függvéy miőségét a hozzáredelés módja, azaz, hogy az egységyi területből hogya válasszuk ki reprezetáló diszkrét értéket. A legegyszerűbb, de ugyaakkor legrosszabb eredméyt adó középpotból vett szímita helyett az átlagos szímita értéket haszáljuk. Az egységyi kis égyzet középpotjába lehet egy olya kiugró szíérték, amely jeletőse eltér a többitől és a hiba az egész égyzetre kiterjed. A mitavételezés tulajdoképpe egy itegrálás, amely sorá kapott képpotérték a h(x*,y*) függvéyek a kép adott potjába tartozó helyettesítő értéke egy egységyi terület meghatározott tulajdoságértékeit adja. A kép médium esetébe ez egy lumiacia és két kromiacia érték. Az itegrálás sorá a súlyfüggvéy a mitavételezés helyétől távolodva csökke, azaz a mitavételezés a távolfekvő értékeket kevésbé veszi figyelembe. Az ideális mitavételezés eseté a h(x*,y*) függvéyből a teljes itervallumba visszaállítható a g(x,y) eredeti függvéy Kvatálás A digitalizálás befejező művelete a kvatálás, amikor is a tetszőleges diszkrét értékű h(x*,y*) függvéyt egy meghatározott diszkrét értékű j(a,b) függvéyé traszformáljuk át. Ezek a meghatározott diszkrét értékek egy előre meghatározott mita értékei közé tartozak. Ezek az értékek bitbe, azaz hatváyaikét vaak megadva. Képekél 8 =56 féle, 16 = féle; hagokál 16 = féle elemű leggyakrabba ez a mita. Szíes kép eseté a kvatálás összetevőkét (lumiacia, kromiacia), egymástól függetleül törtéik. A mita lehet egyelő ill. em egyelő osztásközű, attól függőe, hogy melyik eredméyez jobb képet. 8. ábra 11

8 A kvatálás előbb leírt folyamatát a 8. ábra szemlélteti, ahol az Y 1 * értékhez redelt legközelebbi mitaelem az a 1. Mit a ábra mutatja képekél a mita elemeiek száma jeletőse befolyásolja a kvatálás miőségét. A 9. ábrá egy bit (4 szí), míg az 10. ábrá egy 8 bit (56 szí) szímélységű képet láthatuk, a külöbség ömagáért beszél... Digitális képek szerkesztése 9. ábra 10. ábra A digitális időfüggetle médiumok szerkesztési műveleteiről a korábbiakba már volt szó [1], a most következő részbe elmélyítjük eze ismereteiket. A végcél szempotjából a képjavításak kétféle módszerét külöböztetjük meg: képhelyreállítás, képmiőségfokozás. Az előbbiek célja, hogy a digitalizálás sorá torzult képből előállítsuk az ideális képet, amely eltávolítja a képet zavaró hatásokat. A képmiőség-fokozás célja ezzel elletétes lehet, amikor is a kép bizoyos tulajdoságait kiemeljük, hagsúlyozzuk. A képjavítási eljárások elvégezhetők a kvatálás utá kapott függvéy(ek) felhaszálásával - j(a,b) vagy pedig ezeket a függvéyeket a frekvecia tartomáyba traszformáljuk és így hajtjuk végre a szerkesztési műveleteket. Ez utóbbi esetbe Fourier traszformációt hajtuk végre, mert az - bizoyos feltételek teljesülése eseté - egyértelműe és ivertálható módo sorbafejthetők. Eek matematikai hátterét világítom meg rövide az elkövetkező fejezetbe...1. A képjavítás matematikai háttere a Fourier traszformáció a) Folytoos függvéyek Fourier traszformációja (FFT) A Fourier traszformációval kapott k(t) periódikus időfüggvéy sorbafejtés utá felbotható egy kostas tag, továbbá végtele sok harmoikus összetevő összegére. A harmoikus összetevőket általába sziuszos és kosziuszos időfüggvéyekkel írják le. A függvéy T periódusidejéek reciproka adja az alapharmoikus frekveciáját, és a további összetevők frekveciája eek az alapfrekveciáak az egész számú többszörösei (): k( t) = c0 + = 1 ( a t cos(π ) + b T si(π t T )) (1),ahol a kostas összetevő: a T T 0 k( t) 1 c = T 0 dt, míg a harmoikus összetevők amplitúdói: t T = k( t) cos( dt () T π t b = k( t) si( ) dt. 0 T T π T ) 0 (3) 1

9 13 A sorbafejtés feltételei, hogy a k(t) függvéy a T tartomáyba legye korlátos, itegrálható és legalább szakaszokét differeciálható. A trigoometrikus függvéyek komplex expoeciális függvéyekkel is kifejezhetők, eek alapja a következő két összefüggés: Ezek behelyettesítésével a k(t) függvéy a következőképpe írható fel (átcsoportosítva a szumma jel alatti tagokat): Ha bevezetjük a harmoikus összetevőkre a komplex amplitúdót akkor a k(t) még egyszerűbbe felírható: Az előbb defiiált a és b amplitúdók felhaszálásával redezés utá a C komplex amplitúdó a következőképpe határozható meg: A Fourier sorfejtés emcsak a periódikus időfüggvéyekre, haem tetszőleges k(x) skalárfüggvéyre igaz, ahol T periódus idő helyett az L periódushosszt bevezetve az előző két egyelet a következőképpe alakul: b) Diszkrét függvéyek Fourier traszformációja (DFT) A mitavételezésél már láttuk, hogy a függvéy em folytoos, haem diszkrét mitáival áll redelkezésre (11. ábra). (4) (5) (6) (7) (8) (9) ) ( 1 ) cos( e T t j e T t j T t π π π + = ) ( 1 ) si( e T t j e T t j j T t π π π = ) ( ) ( 1 0 e T t j jb a e T t j jb a c t k π π = =, jb a C = e T t j C t k π ) ( = = e T dt t j t k T C T = 0 ) ( 1 π e L x j C x k π ) ( = =

10 11. ábra L periódushossz alatt N darab mitát feltételezve, az i. helye k i értéket mérve igyekszük a sorbafejtést végrehajtai. Két mitavétel között a függvéy em mutathat olya változásokat, ami iformációvesztéshez vezet. A mitavételi tétel szerit a mitavételek olya sűrűek kell leie, hogy a jelbe előforduló legmagasabb frekveciájú összetevő egy periódusára legalább két mita essék. L A x = mitatávolságot felhaszálva a Fourier sor együtthatói csak közelítéssel N határozhatók meg: C x ki e 1 jπ i x L = N 1 N 1 1 L i= 0 ki e π j i N Az N darab elemből álló k i értéksorozat diszkrét Fourier taraszformáltját az előző képlet végé látjuk és D -el jelöljük: 1 N i= 0 (10) D 1 1 N = ki e N i= 0 π j i N, ahol N 1 Az előző együtthatók felhaszálásával a függvéy az alábbi összefüggés felhaszálásával traszformálható vissza: k p N 1 =0 π e j p N = D N 1 0 p N 1 0, ahol c) Folytoos függvéyek kosziuszos Fourier traszformációja (FCT) A gyakorlatba a Fourier traszformáció egy speciális esetét a kosziuszos Fourier traszformációt alkalmazzák. A (1)-(3) képletek felhaszálásával godoljuk végig a 14

11 sorbafejtést. A k(t) függvéyt sorral közelítjük ismét, de most csak a [0;τ] itervallumba, ui. az eze kívüli tartomáyba em cél a jó közelítés. 1. ábra Sőt arra a tartomáyra ézve tetszőleges feltételezést is tehetük a függvéy lefutására voatkozóa. Ezért az egyszerűség kedvéért a k(t) függvéy a [τ;τ] itervallumba legye t=τ helyre szimmetrikus a [0;τ]-hez képest (1. ábra). A k(t) függvéy T=τ szerit periodikus. Midezek figyelembe vételével a két harmoikus amplitúdó így alakul: = τ τ t k( t) cos( π dt τ a ) 0 b = 0 (13) (14) A k(t) függvéy szimmetrikusságáak az előye a (14) egyeletbe látható. A kostas együttható a (15) szerit írható fel. c τ 1 0 = τ k( t) 0 dt (15) A k(t) függvéy most már kosziuszos tagokból álló sor összegekét állítható vissza, ie ered a kosziuszos sorbafejtés elevezés: k( t) = c + 0 =1 t a cos( π ) τ d) Diszkrét függvéyek kosziuszos Fourier traszformációja (DCT) A fejezetbe megismert törvéyszerűségeket a..1.. fejezetbe bevezetett (11) és (1) képletekre alkalmazva a D és a k p az alábbiak szerit írhatók fel: (16) D N = 1 π 1 ki cos i + i= 0 N 0 N 1 (17) 15

12 k p N = N = 1 π 1 D0 D cos p + N N 0 0 p N 1 (18) Az összefüggések felírásakor felhaszáltuk a (4 és 5) komplex expoeciális függvéyeket is. e) Kétváltozós diszkrét függvéyek Fourier traszformációja (D DFT) A kép leírásához kétváltozós függvéyre ill. függvéyekre va szükség, még pedig szám szerit egyre ill. háromra attól függőe, hogy fekete-fehér vagy szíes kép leírásáról va-e szó. Fekete-fehér képél a k(x,y) a lumiacia, míg szíes képél eze kívül az l(x,y) ill. m(x,y) függvéyek a kromiacia leírására szolgálak. Az egyszerűség kedvéért most vizsgáljuk meg a lumiaciát leíró függvéyt egy x,y síko, potosabba diszkréte véve az m, síko (13. ábra). D m N 1M 1 1 = M N q= 0 p= 0 k pq e 1 1 jπ pm+ q M N 13. ábra A k(x,y) folytoos függvéy sorba fejtésével kapott együtthatómátrix értékeit az alábbi összefüggés adja a (11) felhaszálásával: A visszatraszformálást a (1) alapjá végezzük: 0 m M 1 és 0 N 1 k rs = N 1 M 1 = 0 m= 0 D m e 1 1 jπ mr+ s M N (0) A diszkrét függvéy az m, síko M és N szerit periodikus. A (0) szeriti iverztraszformációt felhaszálva állapítsuk meg, hogy az m, sík egyes potjaihoz milye 16

13 térharmoikusok tartozak. Először az r és s diszkrét változókak feleltessük meg az x és y folytoos változókat: r = x x és s = y y Ezt felhaszálva a (0) egy tagja: Κ x, y) = D ahol x és y a két mitavételi lépésköz. x y cos π m + + A B j si x y j m + m e π 1 1 (, M x N y = Dm, π m Az M N méretű téglalap eseté a (0,0) koordiátájú potba va a térfrekveciákak miimuma va. Fekete-fehér áryalatos képet feltételezve a (0,0) potba a lumiacia értéke miimális, ettől távolodva mide iráyba folyamatosa övekszik (14. ábra). x A + y B (1) 14. ábra Midezek alapjá megállapítható, hogy ha egy folytoos k(x,y) képfüggvéyt mitavételezük, akkor először a magas térfrekveciás harmoikusokat kell kiszűrük. A kétdimeziós mitavételi tétel kimodja, hogy ha a szűrés olya, hogy az m iráyba az M 1 N 1 = feletti térfrekveciákat, míg az iráyba az = feletti térfrekveciákat A x B y távolítjuk el, akkor a (1) szeriti tagokból álló traszformáció visszaadja az eredeti képet. A fekete-fehér képfelvételi eljárásokál ez tétel érvéyesül, hisze egy pixel em a kép egyetle potjáak féyességéből adódik, haem egy kicsi köryezet féyességéek átlagából adódik. Természetese szíes képél ez háromszor hajtódik végre. Visszatérve a 14. ábrához és a (1) összefüggéshez, a D m mátrix kis frekveciás elemei a traszformált mátrix sarokpotjaiba, míg a magas térfrekveciás együtthatók a téglalap közepére kerülek. f) Kétváltozós diszkrét függvéyek kosziuszos Fourier traszformációja (D DCT) Az előző potba megismertek alapjá felírhatjuk a kétváltozós diszkrét kosziuszos függvéyekre is a k rs t. 17

14 krs = N 1 M 1 Dm = 0 m = 0 cos π 1 1 ( + 1) r cos π ( m + 1) s 4 N 4 M () A levezetéseket mellőztem, de ez em jeletheti aak kevésbé fotosságát, hisze olya képformátum is mit a JPEG is ezt haszálja. Eek kiemelt fotosságára utalva, erről külö fejezetbe szólok... Képjavítás Általáos érvéyű megállapítás, hogy a képmiőséget javító eljárások em eredméyezhetek olya iformációt, amely valamilye formába e lett vola rajta a kiidulási képe is. A képjavítási eljárásokat a felmerülő hibák típusa szerit lehet csoportosítai. Ezek szerit megkülöböztetük: kotrasztfokozó, zajelyomó, élkiemelő műveleteket. Az egyes műveletek végrehajtásához az Adobe Phoshop program 5.0-s verzióját hívjuk segítségül. Az egyes műveletek bemutatásához a kiiduló kép legye 15. ábrá látható csedélet. [3-CD mellékleté található] A legfotosabb képjavító műveletek érvéyesíthetők a kép kijelölt részeire vagy az egész képre is. 15. ábra 16. ábra 17. ábra...1. Szíkorrekció A beszkeelt kép vagy digitális fotó élességéek fokozását szíkorrekcióak evezzük. Ezzel a művelettel képükö több és szebb szí látszatát tudjuk keltei, holott valójába csökke a szerkesztett képüket alkotó szíek száma. Két olya pixel, amelyekek a szíe külöböző volt, a szíkorrekció hatására azoos szíűekké válhatak. Lehet, hogy a kép sokkal jobba fog mutati, de kevésbé lesz szígazdag. Az ide tartozó műveletek az Image/Adjust meübe találhatók meg. A legfotosabb szíkorrekciós műveleteket: a szíkiegyelítés (Equalize) az összes szícsatorát alapul véve a legvilágosabb szít fehérre a legsötétebbet pedig feketére változtatja, ezáltal a képpotok egyeletes eloszlásúak leszek a lumiacia (féyerősség, világosság) tartomáyba (16. ábra). a határérték (Threshold) az összes olya szít, amelyek a beállított értékél világosabbak fehérré, míg amelyek sötétebbek feketévé alakítja át. Ez a művelet fekete-fehér képek szerkesztéséél alkalmazható. A szerkesztési műveletet elősegíti a bejeletkező hisztogram, amely a kép egészére mutatja a lumiacia értékek gyakoriságát (az adott lumiacia értékből háy pixel fordul elő a képe). A csúszkát úgy célszerű beállítai, hogy balról ill. jobbról ugyaakkora területet fedjeek le a függőleges voalak (17. ábra). Az eredméy a 18. ábrá látható. 18

15 a keméyítés (Posterize) a teljes lumiacia tartomáyt automatikusa felosztja meghatározott számú egyelőe övekvő részekre és a megadáskor azt az értéket állítjuk be, melyeket megakaruk tartai. Nagyobb értékek fiomabb, míg kisebb értékek durvább szíbeállítást eredméyezek. Ezt a műveletet em csak fekete-fehér, haem szíes képekre is alkalmazhatjuk, de ez akkor igazá hatékoy, ha magasa áteresztő szűrőkkel kombiálva alkalmazzuk. 18. ábra 19. ábra H - szíezet, szíáryalat S - szítelítettség A L- lumiacia 0. ábra A 0. ábrá látható ábra műveletei sorba a következők: rétegmásolat készítés magasa áteresztő szűrés - keméyítés a másolato a két réteg összefűzése rétegátfedési módok megadása (Lumiosity, Hard Light, Hue). a szíkorrekció (a szítulajdoságok széleskörű megváltoztatását eredméyezi (szíezet H, világosság L, szítelítettség S). A 16. ábrá a HSL szímodell összetevőit látjuk, amelyek megváltoztatása jeleti a kép átszíezését. Ezek a műveletek elvégezhetők az egyes szícsatorákra, vagy pedig az összes szícsatorára egyidejűleg (3. ábra - Edit). A szíezet (Hue) jeleti a szivárváy tiszta szíeit, amelyet egy os szögtartomáyba mérek, 0 -ál va a piros, 60 -ál a sárga, 10 -ál a zöld, 180 -ál a ciákék, 40 -ál a kék és 300 -ál pedig a bíbor szí található. A telítettség (Saturatio) adja a szí tisztaságát, élékségét. 100 jeleti a szürkét és +100 pedig az adott szíezet legtisztább szíeit adja. A világosság, féyesség (Lightess, Brightess, Lumiacia) adja a szí helyét a fehér-fekete tartomáyba. 100 jeleti a feketét és +100 pedig a fehéret (3. ábra). A Pipetták szolgálak szí hozzáadására ill. elvételére, míg a szítartomáy szabályzók segítségével kitágíthatjuk ill. leszűkíthetjük azt a tartomáyt, amelye a szíkorrekciót végrehajthatjuk.(csak ha a Master opció kívül vá- 19

16 lasztuk valamit). A 1. ábrá a vörös csatorába a H, S, L értékek egyidejű állításával sikerült éretle paradicsomok látszatát keltei, míg a 3. ábrá a Brightess/Cotrast állításával sikerült érettebb paradicsomok látszatát keltei. 1. ábra. ábra Szítartomáy szabályzók Szíezés 3. ábra Pipetták az átszíezésre többféle művelet is szolgál, emeljük ki ezek közül Replace Color és a Selective Color opciókat. ezek lehetővé teszik, hogy kijelöljük egy egymással összefüggő szíű területet, majd beállítsuk a szíezetét és a telítettségét (4. ábra). A Pipetták alkalmazásával lehet a szíeket kijelöli, bővítei ill. csökketei. A Fuzziess a kijelölt szíe túlmeőe kiválasztadó szítartomáy állítására szolgál. A 0 érték beállításakor csak a kijelölt szít választja ki, vagyis a tűrés értéke 0. A Fuzziess agyo hasolatos a Varázspálca kijelölés (Magic Wad) Tűrés (Tolerace) opciójához, azzal a külöbséggel, hogy a Tűrés állításával a kijelölés pereme fiom lesz (ati-aliased), míg a Fuzziess ikább egy áttűő, lépcsőzetes peremet eredméyez. A Trasform blokko belül látjuk azokat a tulajdoságokat, amelyek a kijelölt szíre voatkozóa megváltoztathatóak. A 5. ábrá látható a Selective Color paracs párbeszédablaka, ezzel elsősorba CMYK szíredszerbe készült képek szíezhetők át. A Colors opcióál kiválasztható a szerkesztei kívát szí, majd a égy yomdai szí szerkeszthetővé válik. Egy ilye szerkesztés eredméye látható a 5. ábrá. Az előző műveletekél fejlettebb szíkorrekciós paracs a Variatios (6. ábra), amellyel midazo műveletek elvégezhetőek, amelyekről eddig szó volt, csak mide egyidejűleg szemlélhető is. Az ablak közepé az RGB ill. CMY szíek láthatók, ezzel lehet eltoli a képet valamelyik szí felé, eek lépésközét a Fie-Coarse (Fiom-Durva) értéke adja. Az ablak tetejé lévő rádiógombok segítségével szabályozhatók, hogy a kép mely szíei legyeek befolyásolva. A Shadows a sötétebb, a Highlights a világosabb, míg a Midtoes a kettő közötti szíek változtatására szolgál. A Saturatio a szítelítettség állítására szolgál. Az ablak jobb szélé lévő Lighter-Darke a féyesség, lumiacia állítására szolgál. 0

17 4. ábra 5. ábra 6. ábra 1

18 Az eddig megismert képszerkesztési műveletek kibővített tárháza található a Levels ill. a Curves paracsokba. A Levels paracs meghívásakor a 7. ábrá látható ablak jeleik meg, amelyek értelmezése a következő: Chael szícsatora, amelyre a módosítás voatkozik, Iput levels bemeeti szitek (ezek összhagba vaak a hisztogram alatti három csúszkával) adják a kép kotrasztosságát. Az első (fekete) és utolsó (fehér) szám ill. csúszka 0 és 55 közötti értéket vehet fel. Az első rovatba írt 35 például azt jeleti, hogy az eredeti képe mide olya szí, amelyek féyessége (világossága) 35-él kisebb fekete lesz, ezzel a képet sötétítjük. Ha viszot az utolsó rovatba lévő értéket csökketem például 0-ra, akkor mide olya szí melyek féyessége (világossága) 0-ál több fehér lesz, ezzel a képet világosítjuk. A középső rovatba lévő Gamma érték ( ) ill. a középső csúszka adja a középszürke világossági értékét. Mide Gamma-érték változtatás a kép kotrasztosságáak csökkeését fogja eredméyezi aélkül, hogy az áryékok ill. az erős megvilágítások megváltozáak. A Gamma 1.00-re állítása adja a középszürkét, eek csökketése a középszürke (középtóus) sötétítését, övelése a aak világosítását eredméyezi. Output levels kimeeti szitek a világossági tartomáy (lumiacia) lerövidítésére szolgál. Eek eredméyekét a kép legsötétebb potjai világosodak, a világosak pedig sötétedek. A bal oldali rovatba írt 40 például azt jeleti, hogy képükö em lesz olya szí, amelyek világossága, féyessége (lumiaciája) 40-él kevesebb, ezzel a képet világosabbá teszi. Ha viszot a jobb oldali rovatba például 190- at íruk, em lesz a képükö olya szí, melyek világossága 190-ál több, ezzel a képet sötétebbé teszi. Eyedroppers pipetták automatikus világosságállítást fog eredméyezi. A fekete pipettával (bal oldali) egy pixelre kattitva az összes olya szít, amelyek világossága a pixeléél kevesebb, feketíti. A fehér pipettával (jobb oldali) egy pixelre kattitva az összes olya szít, amelyek világossága a pixeléél több, fehéríti. A középső pipetta a középszürke világosítására szolgál. A pipetták szerepe, tehát megegyezik az Iput levels-él leírtakkal. 7. ábra

19 Az előbb leírt műveletek az egyes szícsatorákba (R, G, B; C, M, Y, K) is elvégezhetőek. Mitaképek közlése helyett bátorítok midekit a következő értékek egymás utái kipróbálására egy tetszőleges képe: Iput levels Output levels táblázat A Curves paracs az előbb említett műveleteke túlmeőe a Gradációs görbék segítségével lehetővé teszi, hogy akár szícsatorákét az összes világosságértéket átkovertáljuk egy másik értékre. A féyerősségskála (vízszites tegely) két részből áll (fekete-fehér ill. fehér-fekete) a sorredek jeletősége va -, amelyek a szíeket jellemzik. A fekete-fehér sorred eseté az egyes szíeket féyerősségük alapjá adhatjuk meg, ha ilyekor a gradációs görbét felfelé mozdítjuk el, akkor a képet világosítjuk, ha pedig lefelé, akkor sötétítjük. A fehér-fekete sorred eseté az egyes szíeket a szükséges festék szeriti osztásba adja. A gradációs görbe módosítható potokét (görbe) vagy meg is rajzolható (ceruza). Ha a digitális képük életle féyképről származik, akkor az egyes képpotoko kapott itezitás és az adott potra beesett féymeyiség ics lieáris aráyba egymással. Alapértelmezésbe a lieáris kapcsolatból iduluk ki és ezt traszformáljuk például a 8. ábráak megfelelőe. A gradációs függvéy megadja tehát az egyes képpotok itezitását adja a megvilágítás (világosság) függvéyébe. Kimeeti szitek a bemeeti szitek alapjá Bemeeti szitek: - világosságértékek alapjá, - festékezés alapjá. világosság-görbe görbe - ceruza 8. ábra 3

20 9. ábra Fotos eleme lehet a szíkorrekcióak az ú. korrekciós réteg (Layer/New/Adjusmet Layer), amely olya réteg ami a matematikai szíkorrekciós iformációkat tartalmazza. Ez a réteg végrehajtja a korrekciót az összes alatta lévő rétege, de a fölötte lévőeke em. A paracs meghívása eseté a 9. ábrá látható ablak jeletkezik be, amely em csak a rétegekre jellemző paramétereket teszi beállíthatóvá, haem a Type opció keresztül támogatja a szíkorrekciót is. A réteg-alapú korrekció előyei: - örökre szerkeszthetőség, - támogatott rétegmaszkolás, - a korrekciók sorrediségéek megváltoztathatósága, - az összhatásmód módosíthatósága.... Képjavítás szűréssel A képet ért zavaró hatásokat zajak evezzük. A zajt a képfeldolgozás előtt el kell távolítai a képről, vagy legalább is miimalizáli kell. Ezt a műveletet zajszűrések evezzük. A legtöbb hibajavítás elvégezhető a zajszűréssel mid a frekvecia, mid pedig a Fourier traszformáció előtt, azaz a képtartomáyba. A frekvecia tartomáyba végrehajtott zajszűréskor em egyből a D m együttható mátrixszal (19) hajtjuk végre a visszatraszformálást, haem egy S m szűrőegyüttható mátrixszal beszorozzuk, majd ezek utá végezzük el az iverz Fourier traszformációt. A visszatraszformáláskor kapott k rs függvéy (0) helyett a szűrt függvéyel leírt képet kapjuk (k rs ). A frekveciatartomáyba végrehajtott szűrés alkalmas jól meghatározott frekveciájú periodikus zajak a képből törtéő kiszűrésére. Ez úgy törtéhet, hogy az S m bizoyos elemeit 0-ak vesszük, így a kép visszaállításakor eek az együtthatóak megfelelő bázisfüggvéy kiesik. A képet érő zajok egy jeletős része abba yilvául meg, hogy megváltozik bizoyos képpotok világosságkódja. A zaj a világosságkódokba a véletleszerű, hirtele bekövetkező változást jeleti, azok pedig az előbb említett magas frekveciájú bázisfüggvéyek leullázásával kiszűrhetőek. Eek azoba lehet egy hátráyos következméye is, ui. az élek is elmosódhatak. A zajszűrő függvéyeket aluláteresztő szűrőkek evezzük. Nézzük éháy aluláteresztő szűrőt: az ideális szűrő az u u 0 sugarú kör belsejébe eső frekveciákat átegedi, míg az eze kívülieket kiszűri. A 14. ábra alapjá tudhatjuk, hogy az origó köryezetébe vaak a kis frekveciás együtthatók, míg oa távolodva pedig a magasak találhatók. Így távolítja el a magas frekveciákat a lumiacia függvéyből. Az ideális szűrő hátráya, hogy a magas frekveciás összetevőket teljese kiszűri, így az éleket is elsímítja, a képet homályosítja. 4

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Folytonos idejű rendszerek stabilitása

Folytonos idejű rendszerek stabilitása Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Stabilitás Irányítástechnika PE MI_BSc 1

Stabilitás Irányítástechnika PE MI_BSc 1 Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet

Virág Katalin. Szegedi Tudományegyetem, Bolyai Intézet Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz

Részletesebben

A HŐMÉRSÉKLETI SUGÁRZÁS

A HŐMÉRSÉKLETI SUGÁRZÁS A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Képszerkesztés elméleti kérdések

Képszerkesztés elméleti kérdések Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/

REOIL. növeli a transzformátorok élettartamát. www.ekofluid.sk/hu/ 5 öveli a traszformátorok öveli a traszformátorok A techológia előyei A költségek csökketéseek folyamatos kéyszere és a zavartala eergiaellátás ehézségei szükségessé teszik a traszformátorok tervezett

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS Összefüggésvizsgálat, paraméterbecslés A kísérletek sorá a redszer állapotát ellemző paraméterek kapcsolatát vizsgáluk. A yert adatok alapá felállítuk a redszer matematikai

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Az iparosodás és az infrastrukturális fejlődés típusai

Az iparosodás és az infrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa

Részletesebben

Rádiókommunikációs hálózatok

Rádiókommunikációs hálózatok Rádiókommuikációs hálózatok Készült az NJSZT Számítógéphálózat modellek Tavaszi Iskola elöadás-sorozataihoz. 977-980. Gyarmati Péter IBM Research, USA; Budapest Föváros Taácsa. I this paper we show a somewhat

Részletesebben

Képszerkesztés elméleti feladatainak kérdései és válaszai

Képszerkesztés elméleti feladatainak kérdései és válaszai Képszerkesztés elméleti feladatainak kérdései és válaszai 1. A... egyedi alkotóelemek, amelyek együttesen formálnak egy képet. Helyettesítse be a pixelek paletták grafikák gammák Helyes válasz: pixelek

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

2.5. A lineáris kongruencia egyenlet.

2.5. A lineáris kongruencia egyenlet. 2.5. A lieáris kogruecia egyelet. Defiíció: Kogruecia Az a és b egész számokat kogruesek modjuk az modulus szerit, ha az szeriti osztás utái maradékaik megegyezek, vagy ami ugyaaz: ha. Jelölésbe: a bmod.

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudomáyegyetem Természettudomáyi és Iformatikai Kar horvath@if.u-szeged.hu. Mohó algoritmusok A mohó stratégia elemi 1. Fogalmazzuk meg az optimalizációs feladatot

Részletesebben

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció

Fizika II. tantárgy 4. előadásának vázlata MÁGNESES INDUKCIÓ, VÁLTÓÁRAM, VÁLTÓÁRAMÚ HÁLÓZATOK 1. Mágneses indukció: Mozgási indukció Fizika. tatárgy 4. előadásáak vázlata MÁGNESES NDKÓ, VÁLÓÁAM, VÁLÓÁAMÚ HÁLÓAOK. Mágeses idukció: Mozgási idukció B v - Vezetőt elmozdítuk mágeses térbe B-re merőlegese, akkor a vezetőbe áram keletkezik,

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika emelt szit Javítási-értékelési útmutató MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 0. október. Fotos tudivalók

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

4. óra 3 feladat. A kép egyes részei tovább élesíthetők a

4. óra 3 feladat. A kép egyes részei tovább élesíthetők a 4. óra 3 feladat Élesítés Élesítésre akkor van szükség, ha a kép, vagy annak valamelyik része elmosódott. Ez például akkor keletkezhet, ha a fényképezés ideje alatt elmozdul a gép. A GIMP két eszközt biztosít

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben