Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések"

Átírás

1 Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x (a) Adjon becslést a kalbrácós egenes paraméterere! (b) Vzsgálja meg 5%-os szgnfkancasznten, hog az gaz egenes átmeg-e az orgón? (c) Adjon 90%-os konfdenca-ntervallumot az egenes meredekségére! (d) Kmondhatjuk-e 90% valószínűséggel, hog az gaz egenes az x=4 helen Y=4 fölött halad? (e) Mlen ntervallumban lenne eg új mérés eredméne az x=4 helen 90% valószínűséggel? Megoldás (a) a = α = 4.08; b = β = 1.07; a = α = 0.08 Yˆ x (b) Statsztka próbával megoldva: H 0 : Y x=0 = 0 H 1 : Y x=0 0 s = s r = ( Y ) = ; s n Y (x=0) = s [ 1 + (x x ) n (x x ) ] = t 0 = Y x=0 = 0.08 = 0.706; t s Y (x=0) krt = t 0.05 () = Elfogadás tartomán: < t 0 < %-os szgnfkancasznten elfogadjuk, hog az gaz egenes átmeg az orgón. Konfdenca-ntervallummal megoldva: Kérdésünk ekkor az, hog az x = 0 helen az gaz egenes mlen értéket vesz fel 95%-os valószínűséggel. P(Ŷ x=0 t α/ s Y (x=0) < Y x=0 < Ŷ x=0 +t α/ s Y (x=0)) = 0.95 P( < Y x=0 < 1.059) = 0.95 az ntervallum tartalmazza a 0-t, tehát 5%-os szgnfkancasznten elfogadjuk, hog az gaz egenes átmeg az orgón. 1

2 (c) P(β tα/ s b < β < β +tα/ s b ) = 0.90 s b = s (x x ) ; s b=0.0685; t krt = t 0.05 () =.9 P(0.87 < β < 1.7) = 0.90 (d) Ŷ x=4 = 4.08 Statsztka próbával megoldva: H 0: Yx=4 4 H 1: Y x=4 >4 t 0 = Y x=4 (Y x=4 H 0 ) s Y (x=4) Elfogadás tartomán: = = t krt = t 0.1 () = 1.86 (egoldal!) -, t krt H0-t elfogadjuk. Az adatok nem bzonítják 10 %-os szgnfkancasznten, hog az gaz egenes az x=4 helen Y=4 fölött halad (de nem s mondanak ellent ennek). Konfdenca-ntervallummal megoldva: P(Ŷ x=4 t α s Y (x=4) < Y x=4 ) = P( < Y x=4 ) = = P(3.88 < Y x=4 ) = alatt értékek s beleesnek az ntervallumba, tehát az s elképzelhető, hog x=4 helen Y=4 alatt halad az egenes. Azaz nem lehetünk bztosak benne 10%-os szgnfkancasznten, hog az gaz egenes az x=4 helen Y=4 fölött halad. (e) Jóslás ntervallum kell. P(Ŷ x=4 t α/ s (x=4) < x=4 < Ŷ x=4 +t α/ s (x=4)) = 0.9 s (x=4) = s r [1 + 1 n + (x x ) (x x ) ] = ; s (x=4) = 0.4 P(3.373 < x=4 < 4.787) = 0.9. példa Eg kalbrácó során mért adatokat (és az azokból számolt mennségeket) tartalmazza az alább táblázat. x jelöl a koncentrácót, az analtka jelet. x (x-x_átlag) (x-x_átlag) _becsült (-_becsült) szumma (a) Adja meg a becsült egenes egenletét! (b) Adjon 95%-os konfdenca-ntervallumot a meredekségre!

3 (c) Hhető-e az az állítás 1%-os szgnfkancasznten, hog az gaz egenes meredeksége 1100? (d) Adjon 95%-os konfdenca-ntervallumot az egenes tengelmetszetére! (e) Hhető-e az az állítás 1%-os szgnfkancasznten, hog az gaz egenes átmeg az orgón? (f) Adjon 90%-os konfdenca-ntervallumot az analtka jel várható értékére x=0.3-nál! (g) Alátámasztják-e az adatok azt az állítást 5%-os szgnfkancasznten, hog az gaz egenes x=0.3-nál Y=3830 alatt halad? (h) Mlen ntervallumban várható eg új mérés eredméne x=0.3-nál 90%-os valószínűséggel? () Eg új mérés során x=0.3-nál 390-at mértek. A mért érték eg analtkus szernt túlzottan különbözk attól, amt a becsült kalbrácós egenes alapján várnánk, ematt azt ganítja, hog elállítódott a készülék. Vzsgálja a kérdést statsztka módszerrel, legen a szgnfkancasznt 0.1! (j) Az alább táblázat a fent adatsorra a STATISTICA szoftverrel végzett lneárs regresszó eredménet tartalmazza. Válaszolja meg az (a), (b) és (c) kérdéseket az tt közölt eredmének alapján! (A numerkus eltérések a kerekítésnek köszönhetőek.) Effect Intercept x Parameter Estmates (Spreadsheet14) Sgma-restrcted parameterzaton -95,00% +95,00% Param. Std.Err t p Cnf.Lmt Cnf.Lmt 10,8 9, ,4791 0, ,94 17, ,8889, ,4140, ,301566,47 Megoldás: (a) A táblázat a hánzó cellákkal (sárga színnel kemelve): x (x-x_átlag) (x-x_átlag) _becsült (-_becsült) szumma x =.373 = a n 9 x x b x x Y = (x ) = x 3

4 (b) s r ˆ Y 8414 s 10 n 7 t α/ = t 0.05 (7) =.365 P(β tα/ s b < β < β +tα/ s b ) = s b s x x = P( < β < ) = 0.95 P( < β < ) = 0.95 (c) H : 1100 H : t 0 = b 1100 = =.831 t s b α/ = t (7) = <.831 < tehát 1%-os szgnfkancasznten az adatok nem mondanak ellent annak az állításnak, hog a meredekség (d) s α = s Y (x=0) = s [ 1 + (x x ) n (x x ) ] = 10 [1 + ( ) ] = t α/ = t 0.05 (7) =.365 P(3.67 < α < 17.47) = 0.95 (e) H 0 : Y x=0 = 0 H 1 : Y x=0 0 t 0 = Y x=0 s Y (x=0) = = 3.470; t α/ = t (7) = Mvel a a (-3.499,3.499) ntervallumon még éppen belül van 1%-os szgnfkancasznten elfogadjuk azt a feltételezést, hog az egenes keresztülmeg az orgón. (f) Y x=0.3 = = s Y (x=3) = s [ 1 n t α/ = t 0.05 (7) = (x x ) (x x ) ] = 10 [1 9 P( < Y x=0.3 < ) = 0.90 ( ) + ] = H : Y 3830 H1 : Yx (g) 0 x 0.3 t 0 = Y x=3 Y x=3 H 0 s Y (x=3) Az elfogadás tartomán: = = 1.83; t 0.05 (7) , azaz elfogadjuk a nullhpotézst. Az adatok 5 %- os szgnfkancasznten nem bzonítják, hog az egenes x=0.3-nál 3830 alatt halad. 4

5 (h) Jóslás ntervallummal kell számoln. s Y = s [1 + 1 n P( < x=3 < 3878.) = (x x ) (x x ) ] = 10 [ ( ) + ] = () Mvel a 90%-os jóslás ntervallum eg új mérés értékére (ld. (h) alkérdés) nem tartalmazza a mért 390-as értéket, jogos a ganú 10%-os szgnfkancasznten. (Természetesen a kérdés statsztka próbával s vzsgálható. H 0 : E x=0.3 = Y x=0.3 ; t 0 = Y x=3 = = 3.04; t s Y (x=3) (7) Elutasítjuk a nullhpotézst.) (j) Effect Intercept x Parameter Estmates (Spreadsheet14) Sgma-restrcted parameterzaton -95,00% +95,00% Param. Std.Err t p Cnf.Lmt Cnf.Lmt 10,8 9, ,4791 0, ,94 17, ,8889, ,4140, ,301566,47 A STATISTICA szoftverrel kapott eredméntáblázat első oszlopának ( Param.) Intercept sorában az egenes tengelmetszetének, X sorában pedg a meredekségének becsült értékét láthatjuk. Ez alapján a becsült egenes egenlete: Y = x (A számolt és a szoftverrel kapott értékek közt numerkus eltérések a kerekítésnek köszönhetőek.) Az eredméntáblázat ötödk és hatodk oszlopának (-/+95,00% Cnf.Lmt) X sora mutatja a meredekség 95%-os konfdenca-ntervallumát: P( < β < ) = 0.95 A c) kérdésbel hpotézsvzsgálathoz számítandó próbastatsztka: t 0 = b 1100 Ehhez b értékét már tudjuk ( Param. oszlop X sora), míg sb értékét a másodk oszlop ( Std.Err) X sora mutatja. Eszernt: t 0 = =.84 t α/ = t (7) = Mvel <.84 < 3.499, 1%-os szgnfkancasznten az adatok nem mondanak ellent annak az állításnak, hog a meredekség s b 5

6 3. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x Rendelkezésre állnak az alább értékek: x 6 x x x (a) Adja meg a becsült egenes egenletét! (b) Menn a rezduáls szórásnégzet értéke? (c) Elfogadná-e 5%-os szgnfkancasznten azt az állítást, hog az gaz egenes meredeksége? (d) Adjon 95%-os konfdenca-ntervallumot az gaz egenes tengelmetszetére! (e) Mlen ntervallumban van 90% valószínűséggel az analtka jel () várhatóértéke az x=5 helen? (f) Mlen ntervallumban lesz 90% valószínűséggel eg új mérés eredméne az x=5 helen? Megoldás: (a) Y = x (b) s r = (c) s b = t 0 = 1.64; t krt = t 0.05 (3) = %-os szgnfkancasznten elfogadjuk, hog az gaz egenes meredeksége. (d) Ŷ x=0 = 0.556; s Y (x=0) = 0.769; P( < Y x=0 <.3) = 0.95 (e) Ŷ x=5 = 9.6; s Y (x=5) = 0.081; P(8.95 < Y x=5 < 10.9) = 0.90 (f) s = 0.406; P(8.094 < x=5 < ) = példa Eg kalbrácós egenes felvételekor az alább adatokat kapták: x A fent adatsorra a STATISTICA szoftverrel elvégezték a lneárs regresszót, melnek eredménét az alább táblázat mutatja: Effect Parameter Estmates (Lnreg_gak_4 pelda) Sgma-restrcted parameterzaton Param. Std.Err t p -95,00% Cnf.Lmt +95,00% Cnf.Lmt Intercept -,061 0,6913 -,981 0,046-3,75-0,369 x 7,745 0,509 30,861 0,0000 7,131 8,359 6

7 Effect Unvarate Tests of Sgnfcance for (Lnreg_gak_4 pelda) Sgma-restrcted parameterzaton Effectve hpothess decomposton; Std. Error of Estmate:, SS Degr. of Freedom MS F p Intercept 8, ,7179 8,888 0,04595 x 934, , ,405 0, Error 5, ,9808 Felhasználva a táblázat adatat, válaszoljon az alább kérdésekre! (a) Adja meg a becsült egenes egenletét! (b) Adjon 90%-os konfdenca-ntervallumot az egenes meredekségére! (c) Elfogadható-e 5%-os szgnfkancasznten, hog a tengelmetszet értéke -1? (d) Mlen x értéknél lesz a legksebb az llesztett egenes bzontalansága? Mért? Menn lesz az értéke? (e) Eg új mérés eredméne x=1-nél 8-nak adódott. Lát-e ebben bárm rendelleneset? Véleménét számolással támassza alá, a szgnfkancasznt legen 5%. Megoldás: (a) Y = x (b) s b = 0.509; t α/ = t 0.05 (6) = P(7.58 < β < 8.3) = 0.90 (c) H 0 : Y x=0 = 1; H 1 : Y x=0 1; s α = s Y (x=0) = ; t 0 = 1.53; t α/ = t 0.05 (6) =.447 (d) x =.375 s Y (x=0) (e) Y x=1 = 5.684; = s [ 1 + (x x ) n (x x ) ] = [1 + 0] = s Y = 1.; t α/ = t 0.05 (6) =.447 P(.98 < x=1 < 8.39) = 0.95, azaz előfordulhat, hog x=1-nél -ra 8-t kapunk, mvel x=1-nél számolt 95%-os kétoldal jóslás ntervallum tartalmazza a 8-t. 7

Biológiai anyagok hatásának értékelése, ha közvetlen fizikai vagy kémiai analízis nem alkalmazható.

Biológiai anyagok hatásának értékelése, ha közvetlen fizikai vagy kémiai analízis nem alkalmazható. Boassa Bológa anagok hatásának értékelése, ha közvetlen fzka vag kéma analízs nem alkalmazható. Alapja standard készítménnel való összehasonlítás: a vzsgált anag mlen mennsége ad uganakkora hatást, mnt

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr. Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

BIOMETRIA_ANOVA_2 1 1

BIOMETRIA_ANOVA_2 1 1 Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

KISTERV2_ANOVA_

KISTERV2_ANOVA_ Két faktor szerinti ANOVA Az A faktor minden szintjét kombináljuk a B faktor minden szintjével, minden cellában azonos számú ismétlés (kiegyensúlyozott terv). A terv szerkezete miatt a faktorok hatását

Részletesebben

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk

ANOVA. Egy faktor szerinti ANOVA. Nevével ellentétben nem szórások, hanem átlagok összehasonlítására szolgál. Több független mintánk van, elemszámuk Egy faktor zernt NOV Nevével ellentétben nem zóráok, hanem átlagok özehaonlítáára zolgál Több független mntánk van, elemzámuk,...,,, r y,...,, y, y,..., yr;,, r H : r NOV. élda (Box-Hunter-Hunter: Stattc

Részletesebben

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist. 1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen

Részletesebben

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma OLS regresszó - smétlés Mroöonometra,. hét Bíró Anó A tantárg tartalma Leggaorbb mroöonometra problémá és azo ezeléséne megsmerése Egén vag vállalat adato Keresztmetszet és panel elemzés Vállalat, pacelemzés

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ANOVA ( ) 2. χ σ. α ( ) 2. y y y p p y y = + + = + + p p r. Fisher-Cochran-tétel NOV ( ) ( ) ( ) ( ) ( ) ( ) a Y Y Y Y µ µ µ + + + ( ) ( ) ( ) ( ) + + Y µ µ µ ( ) ( ) ( ) + + µ χ e ( ) ( ) r + + Fher-Cochran-tétel mnd NOV ( ) e χ : H ( ) e S χ ( ) e r ν χ ( ) e S χ ( ) e r r ν χ F

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat? Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Többváltozós Regresszió-számítás

Többváltozós Regresszió-számítás Töváltozós Regresszó-számítás 4.-5. előadás Kvanttatív statsztka módszerek Dr. Szlág Roland Korrelácó Célja a kacsolat szorosságának mérése. X (X, X,, X ): magarázó változó(k), független változó(k) Y:

Részletesebben

Mérnöki alapok 5. előadás

Mérnöki alapok 5. előadás Mérnök alapok 5. előadás Készítette: dr. Várad Sándor Budapest Műszak és Gazdaságtudomán Egetem Gépészmérnök Kar Hdrodnamka Rendszerek Tanszék, Budapest, Műegetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9

Részletesebben

Egyváltozós függvények differenciálszámítása II.

Egyváltozós függvények differenciálszámítása II. Egváltozós függvének differenciálszámítása II.. 2. 3. 4. 5. 6. 7. 8. Végezzen teljes függvénvizsgálatot! A függvénvizsgálat szokásos menete:. Értelmezési tartomán, tengelmetszetek 2. Szimmetriatulajdonságok:

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

d(f(x), f(y)) q d(x, y), ahol 0 q < 1. Fxponttétel Már a hétköznap életben s gyakran tapasztaltuk, hogy két pont között a távolságot nem feltétlenül a " kettő között egyenes szakasz hossza" adja Pl két település között a távolságot közlekedés

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

Laboratóriumi kontrollkártya használata Tananyag. Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrinc Anna minőségirányítási előadó

Laboratóriumi kontrollkártya használata Tananyag. Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrinc Anna minőségirányítási előadó Laboratórum kontrollkártya használata Tananyag Készítette: Muránszky Géza vegyészmérnök Oktató: Lőrnc Anna mnőségrányítás előadó Tartalom. Bevezetés... 3. A kontroll kártyák típusa... 4 3. A statsztka

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Bevezetés a hipotézisvizsgálatokba

Bevezetés a hipotézisvizsgálatokba Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -

Részletesebben

= és a kínálati függvény pedig p = 60

= és a kínálati függvény pedig p = 60 GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kdolgozott feladatok a nemparaméteres statsztka témaköréből A táékozódást mndenféle színkódok segítk. A feladatok eredet szövege zöld, a megoldások fekete, a fgyelmeztető, magyarázó elemek pros színűek.

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

Normális eloszlás paramétereire vonatkozó próbák

Normális eloszlás paramétereire vonatkozó próbák Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió

Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió Gyakorló feladatok a kétváltozós regresszióhoz 2. Nemlineáris regresszió 1. A fizetés (Y, órabér dollárban) és iskolázottság (X, elvégzett iskolai év) közti kapcsolatot vizsgáljuk az Y t α + β X 2 t +

Részletesebben

Relációk. Vázlat. Példák direkt szorzatra

Relációk. Vázlat. Példák direkt szorzatra 8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát

Részletesebben

Vázlat. Relációk. Példák direkt szorzatra

Vázlat. Relációk. Példák direkt szorzatra 7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

ξ y = (EXCEL-ben: ÁTLAG)

ξ y = (EXCEL-ben: ÁTLAG) TÉMAVÁZLAT 4-7. ALKALOM Kéma Számítástechnka Gyakorlat, Kéma BSc I. évf. 07/08 I. félév (összeállította: Tóth Gergely) STATISZTIKAI ALAPOK Célja: egy halmazból, sokaságból kválasztott mnta alaján az egész

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Koordináta-geometria alapozó feladatok

Koordináta-geometria alapozó feladatok Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).

Részletesebben

Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018

Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018 Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,

Részletesebben

Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák

Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák Max-stabls folyamatok 6. előadás, 2017. márcus 29. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettudomány Kar Eötvös Loránd Tudományegyetem Árngadozások előadás Legyen T R d egy Borel-halmaz.

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Reakciókinetikai adatsor kiértékelése (mechanizmusvizsgálat kémia alapszakosoknak) feladatleírás, pontozási útmutató és megjegyzések 2014.

Reakciókinetikai adatsor kiértékelése (mechanizmusvizsgálat kémia alapszakosoknak) feladatleírás, pontozási útmutató és megjegyzések 2014. Reakóknetka adatsor kértékelése (mehanzmusvzsgálat kéma alapszakosoknak) feladatleírás, pontozás útmutató és megjegyzések 4. A feladat egy mért adatsor reakóknetka kértékelése. Az adatsor gényléséhez a

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

Regresszióanalízis. Lineáris regresszió

Regresszióanalízis. Lineáris regresszió Regrezóanalíz Lneár regrezó REGRESSZIÓ 1 Modell: Valamely (pl. fzka) törvényzerûég értelméen az x független változó zonyo értékénél a függõ változó értéke Y ϕ (x). Y helyett y értéket mérünk, E(y x) Y,

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Diszkrét idejű felújítási paradoxon

Diszkrét idejű felújítási paradoxon Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N

Részletesebben

Közgazdaságtan - 3. elıadás

Közgazdaságtan - 3. elıadás Közgazdaságtan - 3. elıadás A FOGYASZTÓI DÖNTÉS TÉNYEZİI 1 A FOGYASZTÓI DÖNTÉS ELEMEI Példa: Eg személ naponta 2000 Ft jövedelmet költhet el pogácsára és szendvicsre. Melikbıl mennit tud venni? 1 db pogácsa

Részletesebben

Statisztikai módszerek 7. gyakorlat

Statisztikai módszerek 7. gyakorlat Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i

Részletesebben

9. évfolyam Javítóvizsga felkészülést segítő feladatok

9. évfolyam Javítóvizsga felkészülést segítő feladatok Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával

Ötvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa

Részletesebben

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála

LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála LOGIT-REGRESSZIÓ a függő változó: névleges vagy sorrendi skála a független változó: névleges vagy sorrendi vagy folytonos skála BIOMETRIA2_NEMPARAMÉTERES_5 1 Y: visszafizeti-e a hitelt x: fizetés (életkor)

Részletesebben

Kiegészítés a felületi hullámossághoz és a forgácsképződéshez. 1. ábra. ( 2 ) A szögváltozó kifejezése:

Kiegészítés a felületi hullámossághoz és a forgácsképződéshez. 1. ábra. ( 2 ) A szögváltozó kifejezése: Kegészítés a felület hullámossághoz és a forgácsképződéshez Két korább dolgozatunkban [ KD1 ], [ KD2 ] s foglalkoztunk már a fapar forgácsoláselméletben központ szerepet játszó felület hullámosság kalakulásával,

Részletesebben

Feltételezzük, hogy a reaktáns koncentrációjának csökkenése felírható

Feltételezzük, hogy a reaktáns koncentrációjának csökkenése felírható Reakóknetka adatsor kértékelése (numerkus mehanzmusvzsgálat II. kéma alapszakosoknak) feladatleírás, pontozás útmutató és megjegyzések 3. A kapott adatsor egy reakóknetka mérésből származk. Egy reaktáns

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Acél tartószerkezetek

Acél tartószerkezetek Acél tartószerkezetek laborvizsgálatok összefoglalója 217 szept 28 Az Acél tartószerkezetek tárg keretében laborvizsgálatokat végeztünk melek során a hallgatók tapasztalatokat szerezhettek az acélszerkezetek

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

Statika gyakorló teszt II.

Statika gyakorló teszt II. Statika gakorló teszt II. Készítette: Gönczi Dávid Témakörök: (I) Egszerű szerkezetek síkbeli statikai feladatai (II) Megoszló terhelésekkel kapcsolatos számítások (III) Összetett szerkezetek síkbeli statikai

Részletesebben

A statika és dinamika alapjai 11,0

A statika és dinamika alapjai 11,0 FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort

Részletesebben

Hipotézis vizsgálatok

Hipotézis vizsgálatok Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Boros Daniella Nappali tagozat Kereskedelem és marketing 2. évfolyam Gödöllő Neptun kód: OIPGB9

Boros Daniella Nappali tagozat Kereskedelem és marketing 2. évfolyam Gödöllő Neptun kód: OIPGB9 Szent István Egetem Gazdaság- és Tásadalomtudomán Ka -------------------------------------------------------------------------------------------- Koelácó- és egesszó analízs ----------------------------------------------------------------------------------------------------------------------

Részletesebben

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június

OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA Közgazdaságtudomány

Részletesebben

Nemparaméteres eljárások

Nemparaméteres eljárások Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

MINİSÍTÉSES MÉRİESZKÖZÖK KÉPESSÉGVIZSGÁLATA

MINİSÍTÉSES MÉRİESZKÖZÖK KÉPESSÉGVIZSGÁLATA MŐEGYETEM 178 MINİSÍTÉSES MÉRİESZKÖZÖK KÉPESSÉGVIZSGÁLATA DKTRI ÉRTEKEZÉS KÉSZÍTETTE: VÁGÓ EMESE TÉMAVEZETİ: DR. KEMÉNY SÁNDR BME, Vegyészmérnök és Bomérnök Kar, Kéma és Környezet Folyamatmérnök Tanszék

Részletesebben

Matematikai összefoglaló

Matematikai összefoglaló Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

VIDÉKFEJLESZTÉSI MINISZTÉRIUM. Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola IDÉKFEJLESZTÉSI MINISZTÉRIUM Petrik Lajos Két Tanítási Nyelvű egyipari, Környezetvédelmi és Informatikai Szakközépiskola Budapest, Thököly út 8-. X. KÖRNYEZETÉDELMI ÉS ÍZÜGYI ORSZÁGOS SZAKMAI TANULMÁNYI

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben