Nukleáris környezetvédelem

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nukleáris környezetvédelem"

Átírás

1 Nukleáris környezetvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás rendszere 5. Természetes radioaktivitás a környezetben, radioaktív hulladékok 6. Szennyezések transzportja a környezetben, környezeti monitorozás 1

2 Irodalom a felkészüléshez - Fehér I., Deme S. (szerk.): Sugárvédelem (ELTE Eötvös Kiadó, Budapest, 2010.) - Kanyár B.: Radioökológia és környezeti sugárvédelem (Veszprém, 2000.) - Ormai Péter: A radioaktív hulladékok elhelyezésének lehetıségei Magyarországon (RHK kht.) _peter/letoeltes.html ozimetriasugarvedelem.pdf 2

3 Ionizáló sugárzások A közeg és a sugárzás közötti kölcsönhatás szerint: - Közvetlenül ionizáló sugárzások: α, β, γ, röntgen az elektronoknak képesek azok ionizációjához elegendı energiát átadni. Forrásuk elsısorban a radioaktivitás: gerjesztett állapotú atommagok energia-leadása (bomlása). Az α- és β-részecskék sok ütközésben ionizálnak, a γ- és röntgenfotonok csak az elsı lökést adják a meglökött elektron által továbbvitt ionizációkhoz. - Közvetve ionizáló sugárzás: neutron: atommagokkal való kölcsönhatás során ionizációra képes részecskék jelennek meg. Az anyagi közegnek a magsugárzásokkal kölcsönhatásra képes alkotórészei: elektronok, az atom elektromágneses erıtere, atommag. Az elektronokkal való ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy jelentıs része (általában %-a) nem ionizációt, csak gerjesztést eredményez, azaz a közeg termikus energiáját növeli meg. 3

4 Alfa- és bétasugárzás elnyelése az anyagban Ütközés elektronokkal energia átadása, ionizáció, gerjesztés 4

5 Lineáris energiaátadási tényezı (LET) alfa- és bétasugárzásra LET = de/dx α-let: >120 kev/µm β-let: < 10 kev/µm 5

6 Alfa- és bétasugárzás elnyelése α-sugárzás LET-értéke vízben: > 120 kev/µm Energiaátvitel: ionizáció, a meglökött elektronok számára ionizáció/gerjesztés β-sugárzás LET-értéke vízben: max.10 kev/µm Energiaátvitel: - elektronokkal ionizáció/gerjesztés; - atom elektromágneses erıterével: fékezési sugárzás (folytonos röntgensugárzás, energiája az elektron energiájától és a közeg rendszámától függ) - Cserenkov-sugárzás: az adott közegben érvényes fénysebességnél nagyobb sebességő elektron látható fényt is kibocsát. A sugárzás hatótávolsága lényegesen kisebb, mint az energiaátvitelben részt vevı elektronok összes úthossza. 6

7 Gamma-sugárzás elnyelése Foton energiaátadása részben hullám, részben anyagi természető rendszernek ütközés Elektronnal (ionizáció többféle kölcsönhatásban) Atommaggal (abszorpció küszöbreakció, >5 MeV energiánál) Atom elektromágneses erıterével (párkeltés - küszöbreakció, >1.2 MeV energiánál)) Általános törvényszerőség: sztochasztikus (véletlenszerő) kölcsönhatás: nem hatótávolság, hanem gyengítési együttható/felezési rétegvastagság jellemzi Az energiát átvett elektronok kinetikus energiája: - További ionizációt okozhat; - Ionizáció nélküli gerjesztést okozhat; - Szekunder fotonsugárzás (folytonos Röntgen-sugárzás) keltését eredményezheti. 7

8 Fotonsugárzás gyengülése ( * x) I = I0 *exp µ Párhuzamos fotonnyaláb gyengülése anyagi közegben µ = σ σ ρ A A = Z* σ = A N V * ρ A M A e m m m atom atom mól 3 m mól µ = σ e = elektron h.ü.k. σ A = atomi h.ü.k. ütközés: abszorpció vagy rugalmatlan szórás, a µ ezek valószínőségének összegét képviseli de dx E inc. µ/ρ [m 2 /kg] µ= lineáris energiaátadási tényezı = térfogategységre jutó hatásos ütközési keresztmetszet µ/ρ = tömegabszorpciós tényezı = tömegegységre jutó h.ü.k. LET = de/dx = a meglökött elektronra jellemzı lineáris energiaátadási tényezı 8

9 de E J D =, Gray, Gy dm m kg Elnyelt dózis dd dt = Φ * E µ ρ Φ E = Φ E : energiaáram-sőrőség (fluxus) [J/(m 2 s)] A = dn/dt : a sugárforrás aktivitása [bomlás/s = Bq] f R : részecske-(foton)gyakoriság [foton/bomlás] E R : fotonenergia [J/foton] H = D * w R [Sievert Sv ] A * 4 * Egyenérték dózis w R sugárzási tényezı - a LET függvénye w R,α = 20, w R,γ = 1, w R,β = 1, w R,n = 2,5 20 Az érték a sejti hatást jellemzi több hatás következhet be!, Fizikai és biológiai dózisfogalmak dd dt = f r k R 2 γ * E R * π * A Négyzetes gyengülési törvény dózisszámítás fotonoktól származó külsı sugárterhelés esetére k γ : dózistényezı r 2 9

10 Az ionizáló sugárzások egészséget károsító hatásai Determinisztikus hatás: - küszöbdózishoz kötött ( Gy); - szövetpusztulást okoz a sugárzás; - a hatás súlyossága függ a dózistól; - akut/azonnali hatás. Ha tá s 1 00% 0% Küs z öb Dóz is 10

11 Sztochasztikus hatás: - nincs küszöbdózis (bár a kis dózisok hatása nem igazolt); - sejtmutációt okoz a sugárzás (javító mechanizmusok); - a hatás valószínősége függ a dózistól; - kockázat/dózis függvény lineáris (?). Koc ká z a t m = 5*10-2 /S v Dóz is 11

12 A dózist okozó sugárforrás és a dózist elszenvedı személy kölcsönös pozíciója szerint külsı és belsı sugárterhelés jöhet létre. = E ( = H ) H w [ Sv] E T T T Effektív dózis w T szöveti súlyozó tényezı A szövet daganat kialakulására vonatkozó relatív érzékenységét mutatja T w T = 1 kockázat/effektív dózis-egyenes becsült meredeksége: eset / Sv Szöveti súlyozó tényezık (ICRP #60 [1991] a hatályos magyarországi szabályozásban is): ivarszervek w T =0.20 (genetikus hatás kockázati aránya) szomatikus hatások kockázati aránya legérzékenyebb w T =0.12 tüdı, gyomor, belek, vörös csontvelı érzékenyek w T =0.05 máj, vese, pajzsmirigy stb. 12 kissé érzékeny w T =0.01 bır, csontfelszín

13 w T Új ajánlások R. Tanner (Health Protection Agency) Szövet ICRP26 ICRP60 ICRP103 Ivarszervek (gen.) Vörös csontvelı Tüdı Emlık Pajzsmirigy Csontfelszín Maradék Belek Gyomor Hólyag Máj Nyelıcsı Bır Nyálmirigyek Agy

14 Két további dózismennyiség Lekötött dózis T = HC E( t) dt 0 Kollektív dózis C = H E, i n i i A szervezetben 1 évnél hosszabb ideig jelenlévı nuklid által T=50 vagy T=70 év alatt okozott effektív dózis Adott forrásból i számú, egyenként n i tagú embercsoportnak okozott dózis, egysége személy Sv. 14

15 Dózis mérése és számítása Külsı dózis Dózismérıvel, dózisteljesítmény-mérıvel mérhetı Számítási egyenlet (foton-dózisteljesítményre) k γ dózistényezık: pontforrásra, elnyelı anyagokra határozható meg Belsı dózis közvetlenül nem mérhetı Meghatározás módjai: egésztest-számlálás, vér- és exkrétum-analízis, bejutó anyagok (levegı, víz, ételek) analízise DCF [Sv/Bq] dóziskonverziós tényezı egységnyi radioaktivitás inkorporációjához köthetı effektív dózis A dózist fıként a radioaktivitást hordozó anyag tartózkodási ideje határozza meg Akut (pillanatszerő) vagy krónikus (folyamatos) bevitel eltérı effektív dózist eredményeznek 15

16 Külsı sugárterhelés mérésének feltétele a Bragg-Gray elv teljesülése A detektort és a mérendı személyt azonos távolságba helyezve a sugárforrástól mindkettıt azonos energiafluxus éri a dózismérıt érı dózis csak annak sugárgyengítési sajátossága miatt lehet más D D x m = Φ Φ E, x E, m * µ ( ) ρ µ ( ) ρ x m = f m Elvárás: Az abszorpciós együttható energiafüggése legyen azonos a detektorra és a testszövetre - szövetekvivalens detektor - energiafüggetlenség = azonos energiafüggés a két közegre. Ekkor a mérıeszköz és a viselı személy dózisa minden sugárzási energiánál azonosan arányos lesz. 16

17 Külsı sugárterhelés mérési eljárásai Dózismérés: utólagos kiértékelés filmdózismérı, nyomdetektor - kémiai változás TLD: szilárdtest-dózismérı (termolumineszcencia) elektronikus dózismérık: elektroszkóp, impulzusüzemő gáztöltéső és félvezetı detektorok Dózisteljesítmény-mérés: azonnali kiértékelés impulzusüzemő gáztöltéső és félvezetı detektorok szerves szcintillátor detektor 17

18 Belsı sugárterhelés számítása H T = u S S R R R R R ( S T ) * w * E * f * Q * 1 m T Belsı dózis a T cél (target) szövetben, az S forrás (source) szövetekbıl kiinduló R sugárzásoktól. u: a forrás-szövetekben bekövetkezı bomlások száma. Q: az R sugárzásnak az S szövetbıl kiinduló és a T szövetben elnyelıdı hányada. E R, f R,w R : a sugárzásra jellemzı adatok Modellkísérletekbıl, mérésekbıl E meghatározandók: u, Q DCF = A BE DCF: dóziskonverziós tényezı [Sv/Bq] E: effektív dózis A BE : bejutott radioaktivitás (rövid idı alatt) Eltérı lehet -Beviteli útvonal szerint (belégzés vagy lenyelés), -Kémiai forma szerint (a testnedvekben oldható vagy nem oldható) -Életkor szerint 18

19 Belsı sugárterhelés számítása A dózisszámításhoz a minták analízise szükséges. Az analízis akkor lehetséges, ha Ismertek a minta összetevıi, vagy azok az analízis eredményeibıl meghatározhatók, A mennyiségi összetétel számításához hatásfokkalibráció áll rendelkezésre. η = I m megszámolt Hatásfok: részecske A * f γ összes 19

20 Sugárvédelmi szabályzás - A sugárvédelem alapelvei Determinisztikus hatáshoz vezetı dózis legyen lehetetlen Csak az alkalmazásokhoz kapcsolható dózis korlátozható, a természetes eredető nem a korlátozás a többletdózisra vonatkozik Indokoltság: a sugárforrás alkalmazásának több elınye legyen, mint kára Optimálás: az alkalmazás a lehetı legnagyobb elınnyel kell, hogy járjon optimális dózisszint tervezési alap ALARA (As Low As Reasonably Achievable) Egyéni korlátozás immissziós és emissziós korlátok át nem léphetık, ha a tervezési alap helyes volt. 20

21 A dóziskorlátozás rendszere DL immissziós korlát foglalkozási korlát 20 msv/év (5 év átlagaként) lakossági korlát 1 msv/év DC - emissziós korlát = dózismegszorítás [Sv/év] A ki kibocsátási határérték [Bq/év] A A max, i és A max, i * DCF i i max, i << DL DC s DC A ki, i Az emissziós és immissziós korlátok nem keverhetık i és DC < DL DCF i DC Idáig 6. ea. Az 1. félévközi dolgozat anyaga A kibocsátott aktivitás a környezeti terjedés során jelentısen hígul 21

22 A dóziskorlátozás rendszere Szabályzásból kizárt sugárzási helyzetek (Exclusion) természetes radioaktivitás az emberi testben, kozmikus sugárzás a Föld felszínén Elhanyagolható dózis: H i 10 µsv/év csak akkora kockázatot jelent, ami ellen nem éri meg intézkedéseket hozni Mentességi szint: (Exemption) egy sugárforrás, illetve egy adott radioaktív koncentrációval jellemzett anyag a legkedvezıtlenebb forgatókönyv mellett sem okoz H i -nél nagyobb dózist (foglalkozási vagy lakossági helyzetben). [Bq], [Bq/kg] Felszabadítási szint: (Clearance) egy korábban sugárvédelmi szabályozás alá tartozó anyag kivonható a szabályzás alól jellemzıen hulladékokra alkalmazható (lakossági helyzetben). [Bq/kg], [Bq/m 2 ] Hasonlóság: kapcsolat H i -vel. Eltérés: forgatókönyv 22

23 Természetes és mesterséges radioaktivitás a környezetben radioaktív hulladékok Természetes radioaktivitás: * kozmikus sugárzás szoláris, galaktikus, befogott részecskék világőrben: protonok, α-részecskék, pozitív ionok légkörben: neutronok, fékezési fotonsugárzás (Föld felszínén: nsv/h) * kozmogén radionuklidok ( 3 H, 14 C, 7 Be) *ısi radionuklidok (az ıs-nap életciklusa során többféle ciklus -ban keletkeztek) Legfontosabbısi radionuklidok: - 40 K (T= 1.28 milliárd év, belsı sugárterhelés: 0.3 msv/év) - bomlási sorozatok: 238 U, 232 Th, 235 U 23

24 238 U bomlási sorozata 238 U: T= 4.47 milliárd év (4-6 ppm a Föld felszínén) bomlási sor leányelemek között 226 Ra, 222 Rn 222 Rn (T= 3.8 nap) rövid felezési idejő, α- és β - -sugárzó leányelemei 218 Po, 214 Pb, 214 Bi, 214 Po belsı sugárterhelés: átlagosan msv/év 222 Rn-koncentráció (EEC): szabad levegın 1 10 Bq/m 3 zárt térben Bq/m 3 sok radon: pince, bánya, barlang, építıanyag kevés radon: víz felett aktivációs termékek 238 U ból nukleáris reaktorban: 239 Pu stb. hasadóanyag, nagy DCF 24

25 További bomlási sorozatok 232 Th: T= 14.1 milliárd év (7-10 ppm a Föld felszínén) bomlási sor - leányelemek: köztük 220 Rn 220 Rn (T= 55 s) kevéssé tud kikerülni a levegıbe dózisjárulék 0.1 msv/év 235 U: T= 0.71 milliárd év (a természetes urán 0.7 %-a) a nukleáris energiatermelés legfontosabb alapanyaga: indukált hasadás neutronok hatására 25

26 Természetes sugárterhelés : átlagosan 2-3 msv/év belsı sugárterhelés 65 % külsı sugárterhelés 35 % (kozmikus sugárzás, ısi nuklidok a talajból, építıanyagokból) továbbá: orvosi eredető sugárterhelés átlagosan 0.3 msv/év 26

27 IDÁIG TARTOTT AZ 1. DOLGOZATHOZ TARTOZÓ ANYAGRÉSZ 27

28 Mesterséges (= hasznos emberi tevékenységhez köthetı) radioaktivitás folyamatos üzemi kibocsátás (kezelésük az üzemi költség része) folyamatosan keletkezı, az üzem területén tárolt hulladék (- -) leszerelési hulladék (költségviselı: önálló állami alap - KNPA) Radioaktív hulladékok forrásai - Nukleáris reaktorok hulladékai hasadási (pl. 131 I, 137 Cs), főtıelem-aktivációs (pl. 239 Pu) és szerkezeti anyag aktivációs ( korróziós, pl. 60 Co) termékek - Nukleáris robbantások, fegyverkísérletek hulladékai - Ipari sugárforrások - Orvosi (diagnosztikai és terápiás) sugárforrások - TENORM : mesterséges okból megnövekedett, de természetes radioaktivitástól származó sugárterhelés * szén-, olaj- és gáztüzeléső erımővek (salak, hamu, pernye) * nukleáris üzemanyag elıállítása * egyéb (mőtrágyagyártás, bányászat stb.) 28

29 S = i AK i MEAK Hulladékindex i Kategóriák a mentességi szint (MEAK [Bq/kg]) alapján: kis-, közepes- és nagyaktivitású hulladék AK: aktivitás-koncentráció [Bq/kg] Kisaktivitású hulladék (LLW) 1 < S < 1000 Közepes akt. h. (ILW) 10 3 < S <10 6 Nagy akt. h. (HLW) S > 10 6, hıfejlıdés > 2 kw/m 3 Mentesség Felszabadítás??? azonosság: kapcsolat az elhanyagolható dózissal (10 µsv/év) eltérés: forgatókönyvek A hulladékindexben a felszabadítási koncentrációnak kellene szerepelnie! 29

30 Radioaktív hulladék menedzsment Győjtés Osztályozás, minısítés Tárolás, szállítás Térfogatcsökkentés Kondicionálás Átmeneti és/vagy végleges elhelyezés Alternatív megoldások: kiégett nukleáris üzemanyag reprocesszálása, hosszú felezési idejő hulladék-komponensek transzmutációja 30

31 Radioaktív hulladék menedzsment Győjtés, osztályozás Fı szempont: hulladékindex (külön győjtendık az egyes kategóriák) Továbbiak: felezési idı, halmazállapot, felületi dózisteljesítmény a hulladékcsomagon. -Kis akt.: 1 dd/dt 300 µsv/h -Közepes akt.: 0,3 dd/dt 10 msv/h -Nagy akt.: dd/dt > 10 msv/h 31

32 Radioaktív hulladék menedzsment - térfogatcsökkentés V0 V1 hulladékáram c1 m1 mővelet c0<meak tiszta V2 szennyezett c2 m2 32

33 Radioaktív hulladék menedzsment - Térfogatcsökkentés Préselés: supercompactor 33

34 V 1 VR = Térfogatcsökkentés V 2 Általános: préselés, égetés/hıbontás, bepárlás Specifikus: felületi (szorpció), térfogati (extrakció) szubsztitúciós (ioncsere) vagy addíciós folyamatok c i,1 DF i = Kondicionálás c i, 0 Cementezés (folyadék: elıbb felitatás kovafölddel) (LLW, ILW) Bitumenezés (szerves LLW) cementezéssel kombinálva Üvegesítés (HLW) Minısítés: kimoshatóság, mechanikai szilárdság, hıés sugárállóság 34

35 Radioaktív hulladék elhelyezése Feltételek: Többszörös mérnöki gátak és mélységi védelem Átmeneti: telephelyen belül vagy önálló felszíni telephelyen (Paks KKÁT) nedves vagy száraz tárolás max. 50 évig Végleges: LLW ILW: felszínközeli vagy mélységi lerakóhely (Püspökszilágy, Bátaapáti) HLW: tervezett mélységi lerakóhely (Boda BAF) Alternatíva: reprocesszálás TENORM és nukleáris energiatermelés összehasonlítása üzemi adatok Kibocsátott összes radioaktivitás (1988): Paks AE: Ajka, Pécs szénerımő: 0.5 MBq/MW MBq/MW 35

36 36

37 37

38 38

39 Mélységi elhelyezés Bátaapáti (LLW) Gránitban, két lejtıs aknán elérhetı 300 m mélyen 39

40 Mélységi elhelyezés Bátaapáti (LLW) Gránitban, két lejtıs aknán elérhetı 300 m mélyen Mária lejtısakna bejárata a járathajtás alatt 40

41 Radioaktív hulladékok feldolgozása Püspökszilágy felszínközeli tároló LLW, ILW (kapacitás: 5000 m 3 ) + feldolgozó üzem és átmeneti tároló Agyaglencse (18 20 m vastagon) 41

42 42

43 Radioaktív hulladékok feldolgozása Felszínközeli végleges LLW tároló Tömörítés után visszatemetett hulladék elhelyezése Püspökszilágyon Mérnöki gátak 43

44 44

45 45

46 46

47 47

48 TENORM - Pécs környéki uránbánya területének helyreállítása Forrás: Mecsek-Öko ZRt. 48

49 TENORM - Pécs zagytározók rekultivációja: Tájrendezés Morfológia kialakítás, felületstabilizálás Beszivárgást minimalizáló fedés Felszíni vízrendezés, vízelvezetés Hosszú távú stabilitás biztosítása 49

50 TENORM Pécsi rekultiváció Geotechnika és rekultiváció... Az iszapmag konszolidációja a vízleengedés után 50

51 Radioaktív hulladékok feldolgozása - Reprocesszálás Storage pond for spent fuel at Sellafield UK reprocessing plant 51

52 6. Szennyezések terjedése a környezetben Általános terjedési egyenlet: dc dt = A + D + R + P λc A : advekció (hajtóerı: gravitáció, hidrosztatikai nyomás) D : diffúzió (hajtóerı: kémiai potenciál) R : reakció (fizikai és kémiai szorpció, ioncsere stb.) (hajtóerı: kémiai potenciál) P : ülepedés (hajtóerı: gravitáció) (forrástag idıben állandó) Homogén rendszerek: levegı, felszíni víz, karsztvíz Heterogén rendszerek: talajvíz, geológiai rétegek, biológiai anyagok Terjedési egyenletek inverze szükséges az emissziós korlátozás (a dózismegszorítás, illetve ebbıl az elhanyagolható dózishoz tartozó kibocsátható anyagmennyiség) megállapításához Nukleáris/radiológiai balesetek, kibocsátások Windscale, Three Mile Island, Csernobil, Goiania, Algeciras, Tokai-mura. Csernobil becsült magyarországi hatása 1 3 msv 52

53 53 Terjedési egyenletek c t S P R D A t c * ) ( λ = c t S c grad D div c grad u t c * ) ( )) ( * ( ) ( * λ + + = c t S i c D i x c u t c z y x i i x * ) ( ) * ( *,, λ + + = = Általános egyenlet idıfüggı forrástaggal Advekció és diffúzió kifejtése Egyirányú advekció, homogén diffúzió Megoldásuk célja: c idı- és térbeli függésének meghatározása, a környezeti közegek között érvényes állandó koncentrációarányok számítása érdekében

54 Nukleáris környezeti monitorozás DL és DC betartásának ellenırzése: Mérés Kiértékelés Beavatkozás A feladatok hasonlóak normális és baleseti helyzetben is. Irányadó szintek szükségesek minden radionuklidra a környezeti közegekben (levegı, víz, talaj stb.) Biztonság: a szint mérhetı kell, hogy legyen, mielıtt az irányadó szintet túllépnénk. Monitorozás: mintavétel, mérés és kiértékelés szervezett, standard rendszere. 54

55 Nukleáris környezeti monitorozás Helyi rendszerek: emissziót produkáló létesítmény körül [= kibocsátás-ellenırzés??] Regionális rendszerek: immisszió ellenırzése nagyobb területen egyenletesen elosztott mérıállomásokkal Gamma-dózisteljesítmény folyamatos mérése KORAI RIASZTÁS Légköri szennyezıdés folyamatos mérése dúsításos mintavétellel KORAI RIASZTÁS aeroszol- és jódszőrés (elemi, szerves) Szakaszos mintavételezéses módszerek: - száraz és nedves légköri kihullás, - felszíni-, ivó- és talajvíz, - talaj- és biológiai minták. Országos Sugárfigyelı, Jelzı és Ellenırzı Rendszer Radiológiai Távmérı Hálózat (OSJER TMH) 55

56 Nukleáris környezeti monitorozás korai riasztást adó rendszerek Gamma-dózisteljesítmény mérése folyamatos/automatizált mérési adatgyőjtés környezeti dózisteljesítmény (talajszint) OSJER figyelmeztetési szint OSJER riasztási szint : nsv/h : 200 nsv/h : 500 nsv/h Természetes radioaktivitás: szintje eltérı a környezetben, általában nem tárgya a szabályozásnak. (kozmikus sugárzás, földi radioaktivitás) TENORM: technologically enhanced naturally occurring radioactive material alkalmazásnak tekintendı, szabályozandó. Mesterséges radioaktivitás: alkalmazások kibocsátása, radioaktív hulladékok stb. Berendezések ionizáló sugárzása (pl. Röntgen) kikapcsolható. 56

57 Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti dózisteljesítmény monitorozása hosszú idın át dózisteljesítmény [nsvh] A felvételen három különbözı hatás látható: helyi hatások (emisszió), gyors környezeti hatások (változó szintő szennyezés), lassú környezeti hatások. A jelszint nem éri el a riasztási küszöböt. A felvétel részletes értékelésre e formában nem alkalmas. 57

58 dózisteljesítmény [nsvh] Nukleáris környezeti monitorozás korai riasztást adó rendszerek helyi hatások a környezeti dózisteljesítményre Oktatóreaktorban frissen elıállított 24 Na sugárforrások ideiglenes tárolását érzékelte a monitor. A felfutó él a mővelet pillanatszerőségére, a lefutás a fıkomponens felezési idejére jellemzı. 58

59 dózisteljesítmény [nsvh] Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti csapadékcsúcsok A csapadék kimossa a levegıbıl a talaj felszínére az aeroszolhoz kötött radon-leányelemeket. Ezek ( 222 Rn és 220 Rn-származékok) feldúsulása a ülepedési sebességtıl és hatásfoktól, bomlása az effektív felezési idıtıl függ. Hasonló alakú profilok származhatnak mesterséges eredető radioaktív szennyezést tartalmazó pöfföktıl is. 59

60 Következtetések: Nukleáris környezeti monitorozás korai riasztást adó rendszerek környezeti dózisteljesítmény mérése A dózisteljesítmény változása képet ad a környezet állapotáról. Helyi rendszerek: jelzik a helyi változásokat is. Regionális rendszerek: nehéz (néha lehetetlen) megkülönböztetni a természetes növekedést a mesterséges szennyezéstıl. A biztonságos riasztási küszöb jóval nagyobb kell, hogy legyen a természetes ingadozás maximumánál. További mérési módszer szükséges a jobb érzékenység eléréséért és 60 a téves riasztások kizárásához.

61 Nukleáris környezeti monitorozás korai riasztást adó rendszerek aeroszol mintavételezés és mérés Légköri radioaktív szennyezés dúsítása és mérése mintázás: speciális szőrık az alábbi anyagokra: - aeroszol, - atomos vagy molekuláris jód, - szerves jódvegyületek mérés: alfa/béta, gamma-spektrometria eljárás: folyamatos/automatikus mőködés, mozgószőrıs vagy állószőrıs kivitel 61

62 Nukleáris környezeti monitorozás aeroszol mintavételezés és mérés a kibocsátási forrás közelében Lokális rendszer egy emissziós forrás köré telepítve Várható szennyezési profil: egységugrás-függvény Activity on filter Elınyös módszer: mozgó szőrıszalag (differenciálás) time 62

63 Nukleáris környezeti monitorozás aeroszol mintavételezés és mérés a kibocsátási forrástól távol Regionális rendszer egyenletesen elosztott állomások - immisszió felügyelete Várható szennyezési profil: elnyújtott, lassan növekvı Activity on filter Elınyös módszer: álló szőrılap (integrálás) time 63

64 Nukleáris környezeti monitorozás környezet-ellenırzés aeroszol mintavétellel Az állomás vezérlı programja az alábbi feladatokat látja el: Adatgyőjtés a detektor(ok)tól; Nukleáris spektrumok kiértékelése mesterséges radioaktivitás azonosítása változó természetes alapvonalon mért érték [Bq/m 3 ]; Természetes radioaktivitás értékének számítása: Rn EEC [Bq/m 3 ] KIMUTATÁSI HATÁR (LD) megadása, ha mesterséges radioaktivitást nem detektált; A detektor(ok) rendszeres kalibrálása; Elektromechanikus elemek vezérlése (szivattyú, szőrıkezelés stb.); Adatgyőjtés más mérıberendezésekbıl (meteorológiai szenzorok, dózisteljesítmény-mérı stb.); Kommunikáció a központi számítógéppel. 64

65 Nukleáris környezeti monitorozás - Detektorok válasza Basic equation for activity build-up on filter surface (I m = measured intensity [cps]) I Közvetlenül mért érték: adott radioizotóp sugárzásának intenzitása. Keresett érték: ezen izotóp radioaktív koncentrációja a levegıben. m * ttrue γ fγ C. η = * t LIVE 0 * V*(1 e λ λt t ) dt * t LIVE TRUE η γ : efficiency for the gamma line of the given isotope, f γ : gamma abundance of the given gamma line, t LIVE : live time, t TRUE : true time, λ: decay constant, V. : volume rate of pump. After integration and solving for C, mean activity concentration during sampling cycle [Bq/m 3 ] C = I η * γ m f γ 1 * V λ * t * 1 e 1 λ * t TRUE λ* t TRUE TRUE Ezeket a számításokat a kiértékelı programnak kell elvégeznie. 65

66 222 Rn alfa-béta spektrum 66

67 220 Rn Rn alfa-béta spektrum 67

68 222 Rn Rn EEC változása környezeti mérıállomásokon 68

69 Radon LDs - Time Mesterséges radioaktivitás LD-jének változása környezeti mérıállomásokon 69

70 Nukleáris környezeti monitorozás korai riasztást adó rendszerek aeroszol-mintavétellel Összefoglalás: Részecskeszőrı és azt követıen jódszőrıt is alkalmazhatunk. Regionális rendszereknél az álló szőrı elınyösebb. Nuklidspecifikus meghatározás szükséges, hogy megkülönböztessük a természetes és a mesterséges radioaktivitást. Jelentendı értékek: természetes radioaktivitás ( 222 Rn-EEC stb.) minıség-ellenırzés mesterséges radioaktivitás (radionuklid, aktivitás-koncentráció, KIMUTATÁSI HATÁR (LD)) 70

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás

Részletesebben

Nukleáris környezetvédelem

Nukleáris környezetvédelem Nukleáris környezetvédelem 1. Dózisfogalmak 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi szabályzás rendszere 5. Természetes

Részletesebben

A sugárvédelem alapjai

A sugárvédelem alapjai A sugárvédelem alapjai 1. Dózisfogalmak 2. Az ionizáló sugárzások egészséget károsító hatásai 3. Sugárvédelmi szabályozás - korlátok 4. A dózismérés sajátosságai 5. Természetes radioaktivitás 6. Radioaktív

Részletesebben

Mesterséges radioaktivitás = hasznos emberi tevékenységhez köthetı anyagok

Mesterséges radioaktivitás = hasznos emberi tevékenységhez köthetı anyagok Mesterséges radioaktivitás = hasznos emberi tevékenységhez köthetı anyagok Radioaktív hulladék típusai folyamatos üzemi kibocsátás (kezelésük az üzemi költség része, hatásuk a dózismegszorítás része) folyamatosan

Részletesebben

Nukleáris környezetvédelem

Nukleáris környezetvédelem Nukleáris környezetvédelem 1. Fizikai alapok Ionizáló sugárzások és dózis 2. Az ionizáló sugárzások egészségkárosító hatásai 3. A dózis meghatározásának mérési és számítási módszerei 4. A sugárvédelmi

Részletesebben

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó

Sugárvédelem alapjai. Nukleáris alapok. Papp Ildikó Sugárvédelem alapjai Nukleáris alapok Papp Ildikó 2 Emlékeztető A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak 3 Pici történelem 1896: Henri Becquerel uránsók Azt találta, hogy sugárzás intenzitása

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Előadások: 2018. IX. 3. XII. 3. Félévközi dolgozatok: 2018. X. 15., XII. 3. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban vezető:

Részletesebben

Dozimetria és sugárvédelem

Dozimetria és sugárvédelem PR/B10ZP0318N0019FD003 Dozimetria és sugárvédelem Dr. Zagyvai Péter egyetemi docens Atomenergetikai Tanszék Nukleáris Technikai Intézet Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma

Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás. Kovács Krisztina, Alkímia ma Radioaktív elemek környezetünkben: természetes és mesterséges háttérsugárzás Tartalom bevezetés, alapfogalmak természetes háttérsugárzás mesterséges háttérsugárzás összefoglalás OSJER Bevezetés - a radiokémiai

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Tanmenet Előadások: 2016. IX. 5. XII. 5. Félévközi dolgozatok: 2016. X. 15., XII. 5. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Tanmenet Előadások: 2017. IX. 4. XII. 4. Félévközi dolgozatok: 2017. X. 16., XII. 4. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban

Részletesebben

Nukleáris környezetvédelem Környezeti sugárvédelem

Nukleáris környezetvédelem Környezeti sugárvédelem Nukleáris környezetvédelem Környezeti sugárvédelem Előadások: 2018. IX. 3. XII. 3. Félévközi dolgozatok: 2018. X. 15., XII. 3. Laborgyakorlatok: péntekenként, egyéni beosztás szerint, csoportokban vezető:

Részletesebben

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.

Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Radon a környezetünkben Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Természetes eredetőnek, a természetben eredetileg elıforduló formában lévı sugárzástól

Részletesebben

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám

A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai, szintjei. Salik Ádám A természetes és mesterséges sugárterhelés forrásai Természetes eredetű Kozmikus sugárzás (szoláris, galaktikus) Kozmogén radioaktív

Részletesebben

Sugárvédelem és dozimetria reaktorokban. A mőszaki (munkahelyi) sugárvédelem elemei. A BME Oktatóreaktor sugárvédelmi rendszere

Sugárvédelem és dozimetria reaktorokban. A mőszaki (munkahelyi) sugárvédelem elemei. A BME Oktatóreaktor sugárvédelmi rendszere Sugárvédelem és dozimetria reaktorokban A mőszaki (munkahelyi) sugárvédelem elemei. A BME Oktatóreaktor sugárvédelmi rendszere 1 Sugárvédelmi szabályozás A sugárvédelem alapelvei Determinisztikus hatáshoz

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Ionizáló sugárzások dozimetriája

Ionizáló sugárzások dozimetriája Ionizáló sugárzások dozimetriája A becsült átlagos évi dózis természetes és mesterséges forrásokból 3.6 msv. környezeti foglalkozási katonai nukleáris ipari orvosi A terhelés megoszlása a források között

Részletesebben

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Sugárvédelem kurzus fogorvostanhallgatók számra. Töltött részecskék elnyelődése. Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése Sugárvédelem kurzus fogorvostanhallgatók számra 2. Az ionizáló sugárzás és az anyag kölcsönhatása. Fizikai dózisfogalmak és az ionizáló sugárzás mérése Sugárzások és anyag kölcsönhatása. A sugárzások elnyelődése

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA

IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA IVÓVIZEK RADIOANALITIKAI VIZSGÁLATA Ádámné Sió Tünde, Kassai Zoltán ÉTbI Radioanalitikai Referencia Laboratórium 2015.04.23 Jogszabályi háttér Alapelv: a lakosság az ivóvizek fogyasztása során nem kaphat

Részletesebben

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI

A sugárvédelem alapelvei. dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem alapelvei dr Osváth Szabolcs Fülöp Nándor OKK OSSKI A sugárvédelem célja A sugárvédelem célkitűzései: biztosítani hogy determinisztikus hatások ne léphessenek fel, és hogy a sztochasztikus

Részletesebben

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO)

Sugárvédelem nukleáris létesítményekben. Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Sugárvédelem nukleáris létesítményekben Átfogó [fenntartó] SVK Osváth Szabolcs (OKK-OSSKI-LKSO) Tartalom Ki mit nevez nukleárisnak? Hasadóanyagok Neutronos láncreakció, neutronsugárzás Felaktiválódás,

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi

Részletesebben

Az ionizáló sugárzások előállítása és alkalmazása

Az ionizáló sugárzások előállítása és alkalmazása Az ionizáló sugárzások előállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM

Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Bővített fokozatú SUGÁRVÉDELMI TANFOLYAM Sugárfizikai alapismeretek. A röntgen sugárzás keletkezése és tulajdonságai. Salik Ádám, sugárvédelmi szakértő salik.adam@osski.hu, 30-349-9300 ORSZÁGOS SUGÁRBIOLÓGIAI

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN

ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ÉRTELMEZŐ INFORMÁCIÓK ÉS MEGHATÁROZÁSOK A SUGÁRVÉDELEMBEN ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE

A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE A PAKSI ATOMERŐMŰ NEM SUGÁR- VESZÉLYES MUNKAKÖRBEN FOGLALKOZTATOTT DOLGOZÓI ÉS LÁTOGATÓI SUGÁRTERHELÉSE Kerekes Andor, Ozorai János, Ördögh Miklós, + Szabó Péter SOM System Kft., + PA Zrt. Bevezetés, előzmények

Részletesebben

Sugárvédelem. 2. előadás

Sugárvédelem. 2. előadás Sugárvédelem 2. előadás 2 A biológiai hatások osztályozása Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik VAGY 3 A biológiai hatások osztályozása Direkt hatás a sugárenergia

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 RADIOAKTÍV HULLADÉK; OSZTÁLYOZÁS, KEZELÉS ÉS ELHELYEZÉS (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) Radioaktív hulladéknak tekinthető az a

Részletesebben

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04.

Kibocsátás- és környezetellenırzés a Paksi Atomerımőben. Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Kibocsátás- és környezetellenırzés a Paksi Atomerımőben Dr. Bujtás Tibor Debrecen, 2009. Szeptember 04. Elıadás fı témái Hatósági szabályozások Kibocsátás ellenırzés és rendszerei Környezetellenırzés és

Részletesebben

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI

Sugárvédelem alapjai. Atomenergetikai alapismeretek. Dr. Czifrus Szabolcs BME NTI Sugárvédelem alapjai Atomenergetikai alapismeretek Dr. Czifrus Szabolcs BME NTI 2 Rövid történeti áttekintés 1895: W. K. Röntgen elektroncső-kísérlet közben felfedezi a később róla elnevezett sugárzást.

Részletesebben

Az ionizáló sugárzások el állítása és alkalmazása

Az ionizáló sugárzások el állítása és alkalmazása Az ionizáló sugárzások elállítása és alkalmazása Dr. Voszka István Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Wilhelm Conrad Röntgen 1845-1923 Antoine Henri Becquerel 1852-1908 Ionizáló sugárzások

Részletesebben

Sugárvédelem alapjai

Sugárvédelem alapjai Sugárvédelem alapjai Atomenergetikai alapismeretek Papp Ildikó 2016.04.05. 2 Tartalom Emlékeztető a múlt félévből A sugárzások és az anyagi közeg kölcsönhatása Dózisfogalmak, külső- belső sugárterhelés

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

1. A radioaktív sugárzás hatásai az emberi szervezetre

1. A radioaktív sugárzás hatásai az emberi szervezetre 1. A radioaktív sugárzás hatásai az emberi szervezetre Az ember állandóan ki van téve a különböző természetes, vagy mesterséges eredetű ionizáló sugárzások hatásának. Ez a szervezetet érő sugárterhelés

Részletesebben

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6.

Radioaktív lakótársunk, a radon. Horváth Ákos ELTE Atomfizikai Tanszék december 6. Radioaktív lakótársunk, a radon Horváth Ákos ELTE Atomfizikai Tanszék 2012. december 6. Radioaktív lakótársunk, a radon 2 A radon fontossága Természetes és mesterséges ionizáló sugárzások éves dózisa átlagosan

Részletesebben

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok.

Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Sugárvédelmi feladatok az egészségügyben. Speciális munkakörökben dolgozók munkavégzésére vonatkozó általános és különös szabályok. Dr. Kóbor József,biofizikus, klinikai fizikus, PTE Sugárvédelmi Szolgálat

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Sugárvédelem és jogi alapjai

Sugárvédelem és jogi alapjai Sugárvédelem és jogi alapjai Fejezetek: 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

A sugárzás biológiai hatásai

A sugárzás biológiai hatásai A sugárzás biológiai hatásai Dózisegységek Besugárzó dózis - C/kg Elnyelt dózis - J/kg=gray (Gy) 1 Gy=100 rad Levegőben átlagos ionizációs energiája 53,9*10-19 J. Az elektron töltése 1,6*10-19 C, tehát

Részletesebben

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem

LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem SE FOK Sugárvédelem, 2010/2011 LAKOSSÁGI SUGÁRTERHELÉS 2010. október 6 (szerda), 15:40-16:50, Árkövy terem Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat 1 Sugárterhelések osztályozásának szempontjai - Sugárforrás

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály

CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN. Germán Endre PA Zrt. Sugárvédelmi Osztály CSERNOBIL 20/30 ÉVE A PAKSI ATOMERŐMŰ KÖRNYEZETELLENŐRZÉSÉBEN Germán Endre PA Zrt. Sugárvédelmi Osztály XXXI. Sugárvédelmi Továbbképző Tanfolyam Keszthely, 2006. május 9 11. Környezeti ártalmak és a légzőrendszer

Részletesebben

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata

Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Sugárvédelmi Ellenőrző és Jelző Rendszerének vizsgálata Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/5 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az

Részletesebben

Beltéri radon mérés, egy esettanulmány alapján

Beltéri radon mérés, egy esettanulmány alapján Beltéri radon mérés, egy esettanulmány alapján Készítette: BARICZA ÁGNES ELTE TTK, KÖRNYEZETTAN BSC. SZAK Témavezető: SZABÓ CSABA, Ph.D. Előadás vázlata 1. Bevezetés 2. A radon főbb tulajdonságai 3. A

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály

Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Nemzeti Népegészségügyi Központ Sugárbiológiai és Sugáregészségügyi Főosztály Bővített fokozatú sugárvédelmi tanfolyam 2019. március 18-21. Szóbeli és írásbeli vizsga napja: 2019. március 21. Képzési idő:

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben

Felhasználható szakirodalom

Felhasználható szakirodalom Sugárvédelem II. Fejezetek: 1. Bevezetés (áttekintés - ismétlés): fizikai és biológiai dózisfogalmak; az ionizáló sugárzás károsító hatásai; sugárvédelmi elvek és szabályozás 2. A külső dózis- és dózisteljesítmény

Részletesebben

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23.

Deme Sándor MTA EK. 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. A neutronok személyi dozimetriája Deme Sándor MTA EK 40. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2015. április 21-23. Előzmény, 2011 Jogszabályi háttér A személyi dozimetria jogszabálya (16/2000

Részletesebben

Sugárvédelmi mérések és berendezések

Sugárvédelmi mérések és berendezések Sugárvédelmi mérések és berendezések Zagyvai Péter Osváth Szabolcs Huszka Ádám BME NTI, 2014. 1/6 1. Bevezetés Minden nukleáris létesítmény bizonyos mértékű veszélyforrást jelent az ember és környezete

Részletesebben

50 év a sugárvédelem szolgálatában

50 év a sugárvédelem szolgálatában Magyar Tudományos Akadémia KFKI Atomenergia Kutatóintézet Fehér István, Andrási Andor, Deme Sándor 50 év a sugárvédelem szolgálatában XXXV. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2010. április

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN SUGÁRVÉDELMI EREDMÉNYEK 2014-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2014-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Fı részek 1. Magfizikai alapok. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Radioaktív anyagok terjedése a környezetben

Radioaktív anyagok terjedése a környezetben Tartalom: Radioaktív anyagok terjedése a környezetben 1. Ismétlés: dózisfogalmak, sugárvédelmi szabályozás 2. Radioaktív anyagok transzportja élő szervezetekben 3. Radioaktív anyagok terjedése a levegőben

Részletesebben

Radon, mint nyomjelzı elem a környezetfizikában

Radon, mint nyomjelzı elem a környezetfizikában Radon, mint nyomjelzı elem a környezetfizikában Horváth Ákos ELTE Atomfizikai Tanszék XV. Magfizikus Találkozó Jávorkút, 2012. szeptember 4. Radon környezetfizikai folyamatokban 1 Mi ebben a magfizika?

Részletesebben

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése

Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése Dozimetriai alapfogalmak. Az ionizáló sugárzás mérése A DÓZISFOGALOM FEJLŐDÉSE A sugárzás mértékét számszerűen jellemző mennyiségek ERYTHEMA DÓZIS: meghatározott sugárminőséggel (180 kv, 1 mm Al szűrés),

Részletesebben

Radioaktív anyagok terjedése a környezetben

Radioaktív anyagok terjedése a környezetben Tartalom: Radioaktív anyagok terjedése a környezetben 1. Ismétlés: dózisfogalmak, sugárvédelmi szabályozás 2. Radioaktív anyagok transzportja élő szervezetekben 3. Radioaktív anyagok terjedése a levegőben

Részletesebben

Bomlási módok. p: a bomlásban kibocsátott részecskék. m: nyugalmi tömeg E kin. : kinetikus (mozgási) energia

Bomlási módok. p: a bomlásban kibocsátott részecskék. m: nyugalmi tömeg E kin. : kinetikus (mozgási) energia Sugárvédelem II. Fejezetek: 1. Bevezetés: fizikai és biológiai dózisfogalmak; az ionizáló sugárzás károsító hatásai; sugárvédelmi szabályozás. A külsı dózis- és dózisteljesítmény mérésének elve és kivitelezése

Részletesebben

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK

ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK MSSZ_V15.1_M2 ÉRTELMEZŐ INFORMÁCIÓK MEGHATÁROZÁSOK ALARA-elv A sugárveszélyes munkahelyen foglalkoztatott személyek sugárterhelését az ésszerűen elérhető legalacsonyabb szinten kell tartani a gazdasági

Részletesebben

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.)

Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Radioaktív hulladékok (Fizikus B.Sc.) Radioaktívhulladék gazdálkodás (Gépész - energetikus B. Sc.) Tartalom: 1. A radioaktív hulladékokkal kapcsolatos sugárvédelmi ismeretek rövid összefoglalása 2. A radioaktív

Részletesebben

FIZIKA. Radioaktív sugárzás

FIZIKA. Radioaktív sugárzás Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos

Részletesebben

Radioaktivitás biológiai hatása

Radioaktivitás biológiai hatása Radioaktivitás biológiai hatása Dózis definíciók Hatások PTE ÁOK Biofizikai Intézet, 2012 december Orbán József A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi idő Maximalizált

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4

Országos Onkológiai Intézet, Sugárterápiás Centrum 2. Országos Onkológiai Intézet, Nukleáris Medicina Osztály 4 99m Tc-MDP hatására kialakuló dózistér mérése csontszcintigráfia esetén a beteg közvetlen közelében Király R. 1, Pesznyák Cs. 1,2,Sinkovics I. 3, Kanyár B. 4 1 Országos Onkológiai Intézet, Sugárterápiás

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós

Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor

SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN. Dr. Bujtás Tibor SUGÁRVÉDELMI EREDMÉNYEK 2016-BAN Dr. Bujtás Tibor 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2016-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak.

Részletesebben

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS

TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS TESTLab KALIBRÁLÓ ÉS VIZSGÁLÓ LABORATÓRIUM AKKREDITÁLÁS ACCREDITATION OF TESTLab CALIBRATION AND EXAMINATION LABORATORY XXXVIII. Sugárvédelmi Továbbképző Tanfolyam - 2013 - Hajdúszoboszló Eredet Laboratóriumi

Részletesebben

Radioaktív hulladékok és besorolásuk

Radioaktív hulladékok és besorolásuk Radioaktív hulladékok és besorolásuk Radioaktív hulladéknak azokat a radioaktivitást tartalmazó anyagokat tekintjük, amelyek további felhasználásra már nem alkalmasak, illetve amelyek felhasználójának,

Részletesebben

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál

Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. vízszintes csatornájánál Neutron- és gamma-dózisteljesítmény mérése az Oktatóreaktor 4. szintes csatornájánál Osváth Szabolcs, BME NI, 2012 Bevezetés Az oktatóreaktor 4. szintes csatornájának körkeresztmetszetű nyílásából közelítőleg

Részletesebben

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész

PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:

Részletesebben

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont

Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Jakab Dorottya, Endrődi Gáborné, Pázmándi Tamás, Zagyvai Péter Magyar Tudományos Akadémia Energiatudományi Kutatóközpont Bevezetés Kutatási háttér: a KFKI telephelyen végzett sugárvédelmi környezetellenőrző

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ

RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ Nagy Gábor SOMOS Kft., Budapest RADIOLÓGIAI FELMÉRÉS A PAKSI ATOMERŐMŰ LESZERELÉSI TERVÉNEK AKTUALIZÁLÁSÁHOZ (DIPLOMAMUNKA BEMUTATÁSA) XLII. Sugárvédelmi Továbbképző Tanfolyam Hajdúszoboszló, 2017. április

Részletesebben

RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta. BME-Egyetemi jegyzet

RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta. BME-Egyetemi jegyzet RADIOAKTÍV HULLADÉKOK 2. Dr. Zagyvai Péter szerkesztette: Dudás Beáta BME-Egyetemi jegyzet 1 Radioaktív hulladékok eredete 2/a Kutatóreaktorok Kisreaktorok : reaktorszerelvények szerkezeti anyaga Al; nyitott

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK

I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1 I. DOZIMETRIAI MENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 1) Iondózis/Besugárzási dózis (ro: Doza de ioni): A leveg egy adott V térfogatában létrejött ionok Q össztöltésének és az adott térfogatban található anyag

Részletesebben

Környezeti monitorozás

Környezeti monitorozás Környezeti monitorozás Mérésleírás 1 a Nukleáris környezetvédelem és klónjai (pl. Környezeti sugárvédelem) laborgyakorlatához Osváth Szabolcs, BME NTI, 2010 1. A radioaktív bomlás alapegyenletei Az izotópok

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Radonmérés és környezeti monitorozás

Radonmérés és környezeti monitorozás Bevezetés Radonmérés és környezeti monitorozás A radioaktív bomlás és a radioaktív sugárzások Az izotópok stabilak vagy radioaktívak lehetnek. A radioaktív izotópok instabilak, vagyis bizonyos idő múlva

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata

1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata 1. mérési gyakorlat: Radioaktív izotópok sugárzásának vizsgálata A méréseknél β-szcintillációs detektorokat alkalmazunk. A β-szcintillációs detektorok alapvetően két fő részre oszthatók, a sugárzás hatására

Részletesebben

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE

SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE SUGÁRVÉDELMI ÉRTÉKELÉS 2012. ÉVRE 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2012-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Radioaktív sugárzás elnyelődésének vizsgálata

Radioaktív sugárzás elnyelődésének vizsgálata 11. fejezet Radioaktív sugárzás elnyelődésének vizsgálata Az ólomtorony és a szcintillációs számláló A természetes radioaktív anyagok esetében háromféle sugárzást lehet megkülönböztetni. Erre egyszerű

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2015 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1665/2015 nyilvántartási számú akkreditált státuszhoz A Nemzeti Élelmiszerlánc-biztonsági Hivatal Élelmiszer- és Takarmánybiztonsági

Részletesebben

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei

Részletesebben

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN

SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN SUGÁRVÉDELMI EREDMÉNYEK 2007-BEN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2007-ben is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése

A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése A Bátaapáti kis és közepes aktivitású radioaktív hulladéktároló üzemeltetés előtti környezeti felmérése Janovics R. 1, Bihari Á. 1, Major Z. 1, Molnár M. 1, Mogyorósi M. 1, Palcsu L. 1, Papp L. 1, Veres

Részletesebben

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest

rvédelem Dr. Fröhlich Georgina Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Országos Onkológiai Intézet Sugárterápiás Központ Budapest Sugárv rvédelem Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés ionizáló sugárzás kölcsönhatása az anyaggal

Részletesebben

SUGÁRVÉDELMI HELYZET 2003-BAN

SUGÁRVÉDELMI HELYZET 2003-BAN 1 SUGÁRVÉDELMI HELYZET 2003-BAN 1. BEVEZETÉS Az atomerőműben folyó sugárvédelemi tevékenység fő területei 2003-ban is a munkahelyi sugárvédelem és a nukleáris környezetvédelem voltak. A sugárvédelemmel

Részletesebben

Sugárvédelem és jogi szabályozása

Sugárvédelem és jogi szabályozása Fejezetek: Sugárvédelem és jogi szabályozása 1. Mag- és sugárfizikai alapok 2. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés alapjai 5. Természetes

Részletesebben

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat

Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Sugárvédelem és jogi szabályozása Fizikus alapképzés Elıadásvázlat Fı részek 1. Magfizikai alapok. Dózismennyiségek 3. Az ionizáló sugárzás egészségkárosító hatásai, sugárvédelmi szabályzás 4. Sugárzásmérés

Részletesebben