HŐTAN Meghirdető tanszék(csoport) SZTE, TTK, Fizikus Tanszékcsoport, Kísérleti Fizikai. Tanszék Felelős oktató:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HŐTAN Meghirdető tanszék(csoport) SZTE, TTK, Fizikus Tanszékcsoport, Kísérleti Fizikai. Tanszék Felelős oktató:"

Átírás

1 A tárgy neve HŐTAN Meghirdető tanszék(csoport) SZTE, TTK, Fizikus Tanszékcsoport, Kísérleti Fizikai Tanszék Felelős oktató: Dr. Papp Katalin Kredit 3 Heti óraszám 2 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele Párhuzamosan feltétel Hőtan gyakorlat Előfeltétel Mechanika Helyettesítő tárgyak Periódus Tavaszi félév Javasolt félév 2. félév Kötelező vagy kötelezően fizika választható AJÁNLOTT IRODALOM Budó Ágoston: Kísérleti Fizika I. kötet, Tankönyvkiadó, Budapest, Bor Pál: Fizika III. Hőtan, Tankönyvkiadó, Budapest, Litz József: Általános fizika, Hőtan, Dialóg Campus Kiadó, Pécs, Tichy Géza, Kojnok József: Kísérleti Fizika, Hőtan, Typotex Kiadó, Bp., Atkins P. W.: Physical Chemistry, Oxford University Press, Oxford 1990

2 A TANTÁRGY RÉSZLETES TEMATIKÁJA A termodinamika nem egyszerűen hőtan, hanem a fizika igazi alapja. G. Falk) A kurzusról A Hőtan tantárgy a Kísérleti fizika alapkollégium részeként kerül meghirdetésre. Az előadás a középiskolai fizikai ismeretek mellett az alapképzés Mechanika kurzusának tananyagát is felhasználja. Feldolgozási módszere a jelenségek kísérleti bemutatása, a termodinamikai folyamatok elsősorban fenomenológikus tárgyalása. A demonstrációs kísérletek mellett számítógépes szimulációk, videofilmek segítik a folyamatok elemzését (a tananyag leírásban ezeket megkülönböztetett betűtípussal jelöltük). A tematikához szorosan hozzátartozik tananyagban szereplő legfontosabb fogalmak, törvények gyűjteménye, amelyhez a hallgatók a kurzus kezdetétől hozzájutnak a címen. Ugyancsak itt érhető el a kollokviumi tételsor és a rövid tematika. Az előadások anyagában hangsúlyos szerepet kap a történetiség, valamint a termodinamikai fő tételeinek, törvényeinek a természeti, technikai környezetünkben történő alkalmazása, különös tekintettel az élő szervezetekre. A hallgatók aktivizálása, a differenciált foglalkoztatás céljából az előadásokon feladatként szerepelnek az előadó által kitűzött problémák, amelyek megfelelő számú sikeres megoldása a vizsgán kedvezményt jelent. Az előadáshoz szorosan kapcsolódó gyakorlaton az előadási ismeretek alkalmazására kerül sor, elsősorban számításos feladatokat oldanak meg a hallgatók. Bevezetés (ráhangolódás, motiváció): a hőtan tárgya, összehasonlítás a mechanikával, a termodinamikai ismeretek jelentősége (Csernobil, Columbia, szupravezetés, szuperfolyékonyság, Nobel-díjas tudósok termodinamikai eredményei, természeti jelenségek, a hőmérséklet-mérés fontossága, az alacsony és a magas hőmérsékletek világa, kvantumlétra, Kürti Miklós), fenomenológikus és korpuszkuláris (statisztikus) megközelítés, kísérletező termodinamika, történeti aspektusok. Hőmérséklet, hőmérők: a hőmérséklet fogalom kialakulása (szubjektív hőérzet), fejlődése. A hőmérsékletmérés elvi kérdései (nincs halmazállapot változás, nincs kémiai reakció). A hőmérsékletmérés feltételei: a testek mérhető tulajdonsága változik a hőmérséklettel (pl. sűrűség, térfogat, nyomás, elektromos tulajdonság, rugalmassági állandó, törésmutató, szín, stb.), termikus egyensúly alakul ki, előállíthatók jól reprodukálható hő-állapotok (fixpontok). Empirikus (tapasztalati) hőmérsékleti skálák (Galilei: 1592, II. Ferdinand Medici toszkán herceg: 1657, Amontons: 1703, Fahrenheit: 1720, Celsius: 1741, Kelvin: 1848) nemzetközi hőmérsékleti skála (International Practical Temperature Standards), jellegzetes alappontok, a hőmérséklet SI egysége. A termodinamika 0. főtétele, a termodinamikai egyensúly, mint ekvivalencia reláció (C. Carathéodory, 1909). A különböző hőmérő típusok 2

3 bemutatása: folyadékos hőmérők, maximum-minimum hőmérők, gázhőmérő, fémeket tartalmazó hőmérő, az elektromos tulajdonság változásán alapuló hőmérők (termoelem, ellenállás-hőmérő, félvezetők, termisztor-típusok), különleges hőmérők: hőmérséklet változást jelző festékek, koleszterikus folyadékkristályok, termocolor vegyületek, Seger-gúlák, kvarckristály, infrasugaras hőmérséklet mérés, termogramok (hőfényképek) bemutatása, készítése, optikai pirométerek. Szilárdtestek és folyadékok hőtágulása: kondenzált rendszerek állapotegyenletei. Az állapotegyenlet, állapothatározók bevezetése, extenzív és intenzív állapothatározók, a termodinamikai rendszer fogalma, fajtái. Homogén izotróp szilárd testek hőtágulása. A lineáris és a térfogati hőtágulás bemutatása kísérlettel, a hőtágulási együttható függése az anyagi minőségtől. A hőtágulás értelmezése a potenciális energia-függvény segítségével, a hőtágulás gyakorlati alkalmazásai. Az izotermikus kompresszió modulus és az izobar hőtágulási együttható mérése. Tyndall féle kísérlet az összehúzódásnál (hűtésnél) fellépő feszültség (erő) bemutatására ( vas-törő ). A V=V(p,T) állapotegyenlet alakja szilárd testek és folyadékok esetében. A folyadékok hőtágulásának kísérleti bemutatása, pl.: petróleum, víz, alkohol, benzin hőtágulásának összehasonlítása. Folyadékok hőtágulási együtthatójának (β) mérése, Doulong-Petit módszere. A víz különleges viselkedése. Ideális gázok, a termikus állapotegyenlet: Állapothatározók, folyamat jellemzők, kvázisztatikus folyamatok, speciális folyamatok. Gázok hő okozta térfogat és nyomás változása, izotermikus, izochor, izobar állapotváltozások kísérleti vizsgálata. Boyle-Mariotte törvénye (1662), Gay-Lussac törvényei (1802). Az egyesített gáztörvény, Avogadro törvénye, a mol, mint az anyagmennyiség egysége, az R univerzális gázállandó bevezetése. Az ideális gáz modellje, megközelítése, tulajdonságok. Az ideális gázok termikus állapotegyenlete /f(p,v,t,n)=0/ grafikus ábrázolás a p V síkon, állapottérben, jellegzetes folyamatok ábrázolása, számítógépes illusztráció. Az állapothatározók közötti differenciális összefüggések. A reális gázok állapotegyenlete, a reális gázok viselkedését egyre pontosabban leíró elméletek áttekintése, kompresszibilitási együttható, viriál-együtthatós egyenletek, Van der Waals (1873) munkássága, a nyomáskorrekció (a/v 2 ) és a térfogati korrekció (b) bevezetése, számítógépes szimuláció (SOPE3) reális gázok, gőzök viselkedésének (pl. a széndioxid) tanulmányozására. A termodinamika első főtétele: kísérleti tapasztalatok a belső energia változtatásra, történeti áttekintés: Joseph Black munkássága ( ), B. Thompson (Rumford grófja) az ágyúfúró (1810), H. Davy, a jégdörzsölő (1819), Robert Mayer a hajóorvos (1841), J. P. Joule, a serföző ( ), H. Helmholtz (1847) tevékenysége, a kinetikusok és a calorikusok gondolatmenetei, a hő és a mechanikai munka kapcsolata. Az első főtétel megfogalmazása, ( E=Q+W), a belső energia, mint állapothatározó, a hőmennyiség (Q) és a munka (W) mint energia transzport-fajta, folyamat 3

4 jellemzők definiálása. Az I. főtétel differenciális alakja, a hőkapacitás, fajhő bevezetése, kalorimetria. Kísérletek különböző kaloriméter típusokkal (súrlódásos, keverési), a kaloriméter vízértéke, fajhőmérési módszerek szilárd, folyékony és gáz halmazállapotú anyagok esetén. Kísérlet a Tyndall-csővel, Joule kísérletének reprodukálása, számítógépes szimuláció. Az entalpia (hőtartalom), mint extenzív állapotfüggvény bevezetése. Az ideális gáz belső energiája és entalpiája. A két féle fajhő. Gay-Lussac kísérlete. Az első főtétel különböző megfogalmazásai, az első fajú perpetuum mobile. Valódi gázok belső energiája: állapotegyenlet alakja reális gázoknál, a belső energia változása, Joule-Thomson kísérlete (1853, történeti háttér), izentalp változás, a fojtás szerepe, inverziós hőmérséklet értelmezése, kísérleti bemutatás széndioxid esetén. A jelenség hasznosítása gázok cseppfolyósításánál. Történeti, gyakorlati vonatkozások. Ideális gázok speciális állapotváltozásai: a termodinamika első főtételének alkalmazása. Izotermikus, izochor, izobar és adiabatikus állapotváltozások energetikai jellemzése, az I. főtétel speciális alakjai, a folyamatok ábrázolása a p- V síkon. Az adiabatikus állapotváltozás részletes vizsgálata, Poisson egyenletek, kísérlet a pneumatikus tűzszerszámmal, adiabatikus tágulás és összenyomás a gyakorlatban (motorok). A κ kompresszibilitási tényező meghatározása különböző módszerekkel, a Clement-Desormes módszer részletezése. A Carnot-féle körfolyamat: a hő munkává alakításának igénye a XIX. században, hőanyag elmélet, Sadi Carnot ( ) munkássága. A nagy ötlet: körfolyamat, kvázisztatikus részfolyamatokból (két izotermikus, két adiabatikus), a folyamatok jellemzése hőfelvétel és munka végzés szempontjából. A folyamat ábrázolása a p-v síkon, számítógépes szimuláció. A körfolyamat termikus hatásfoka, a termodinamikai hőmérsékleti skála, jellemzése. A redukált hő fogalmának bevezetése, Clausius egyenlőség. A Carnot-körfolyamat tudomány-történeti hatása, következményei. Direkt, indirekt Carnot-gép, Clausius-gép, Kelvin gép, hőerőgép-típusok bemutatása működő modellekkel, hőszivattyúk. Jellegzetes periódikus folyamatok, belső és külső égésű motorok (Stirling (1816), Otto (1876), Diesel, (1892), gyakorlati vonatkozások. A temodinamika II. főtétele: a természeti folyamatok irányáról, Furcsa történetek, reverzibilis, irreverzibilis folyamatok, az entrópia, mint extenzív állapothatározó bevezetése, reverzibilis, irreverzibilis körfolyamat jellemzése, Clausius egyenlőtlenség, az entrópia növekedés elve. A II. főtétel matematikai megadása, különböző fenomenológikus megfogalmazások (Kelvin, Clausius, Planck). A Gibbs féle fundamentális egyenletek, a termodinamikai egyensúly feltételei, újabb állapothatározók, a szabad energia és szabad entalpia bevezetése, Gibbs-Helmholtz egyenletek. A termodinamika III. főtétele (Nernst, 1906, Planck (1911). 4

5 A második főtétel, különösen statisztikus megfogalmazásban, a természettudomány legnagyobb hozzájárulása az emberi szellem felszabadításához. Peter W. Atkins A kinetikus gázelmélet, a statisztikus fizika elemei: a nyomás, a hőmérséklet statisztikus értelmezése, az ideális gáz korpuszkuláris modellje, modell-kísérletek, (légpárnás asztal, rázógép) számítógépes szimulációk a makroszkópikus tulajdonságok mikroszkópikus értelmezésére. Kísérleti tapasztalatok, a Brown mozgás vizsgálata. A gáz-részecskék sebességének mérése, (Stern, Eldridge- Lammert módszere) a Maxwell-féle sebesség eloszlás. A Boltzmann állandó bevezetése, az ideális gáz állapotegyenletének statisztikus értelmezése, alakja. A Boltzmann állandó mérése. Az ekvipartíció tétele, a szabadsági fok fogalma. A hőkapacitás elméleti, kísérleti adatai, a Dulong-Petit szabály, eltérések, új utakra kényszerítő tapasztalatok. A II. főtétel statisztikus értelmezése, a termodinamikai valószínűség, makro- és mikroállapot fogalma, az entrópia statisztikus értelmezése, Boltzmann munkássága. A XIX. század utolsó harmadának történetéből: az atomisták (Maxwell, Boltzmann) és az energetikusok (Mach, Ostwald) harca. A Boltzmann eloszlás, a barometrikus magasságformula, szedimentáció. Ingadozási jelenségek, a Brown mozgás statisztikus értelmezése, közepes szabad úthossz, hatáskeresztmetszet fogalma, Perrin, Einstein munkássága. Transzport jelenségek: a makroszkópikus inhomogenitás kiegyenlítődni igyekszik, az extenzív állapothatározót tartalmazó áramsűrűség arányos a folyamatért felelős intenzív állapothatározó megváltozásával, L. Onsager törvénye. Belső energia átvitel (pl. hővezetés), impulzus átvitel, (pl. belső súrlódás), anyag átvitel (pl. diffúzió) vizsgálata. A diffúzió jellemzése, kísérleti megfigyelések (bróm-levegő, rézszulfát-víz), számítógépes szimuláció, stacionárius és nem stacionárius diffúzió, a diffúziós együttható függése a hőmérséklettől, az anyagi minőségtől, Fick I. és II. törvénye. A termodiffúzió bemutatása, a diffúzió gyakorlati alkalmazása, szerepe az élő szervezetekben. Az ozmózis, mint speciális diffúzió. Az ozmózisnyomás kísérleti szemléltetése, Van t Hoff törvénye (1885). Az ozmózis szerepe az élő szervezetben, a természetben, kísérletek vízüvegoldattal. Halmazállapot változások: fázisátalakulások osztályozása, példák elsőrendű és másodrendű fázis átalakulásokra. Jellegzetességük: az intenzív mennyiség (állapothatározó) változásával az extenzív mennyiség ugrásszerűen változik. Fázisegyensúly, átalakulási hő értelmezése. Olvadás (fagyás) jelensége, melegedési görbe felvétele, olvadáshő meghatározása (jég-kaloriméter). A Clausius- Clapeyron egyenlet. Az olvadás korpuszkuláris értelmezése, a víz különleges viselkedése. A regeláció jelensége, az olvadáspont nyomás függése. Párolgás, forrás, szublimáció vizsgálata, párolgás zárt térben, kísérlet krioforral, telített, telítetlen gőzök különleges viselkedése. A párolgási sebesség vizsgálata. Forralás melegítés nélkül, a forráspont nyomás függése. Kísérletek széndioxiddal, fázisdiagramok felvétele, jellegzetes görbéi: p-v, p-t síkon, p-v-t fázistérben való ábrázolás, számítógépes szimuláció. A hármaspont, a kritikus állapot jellemzése, kísérleti vizsgálata víz, széndioxid, bután esetén. Szublimáció vizsgálata 5

6 jóddal, széndioxiddal. Lecsapódás (kondenzáció), ködképződés kísérleti vizsgálata, opaleszkálás (széndioxid sűrűségingadozás), ködkamra (alfa részecskék kimutatása) bemutatása. Polimorf átalakulások, elegyek, oldatok vizsgálata, híg oldatok forráspontjának, fagyáspontjának változása a koncentrációval, kísérlet emlékező műanyaggal. Alacsony hőmérsékletek előállítása: történeti háttér, C. Drebbel (1620), R. Boyle (1665), W. Cullen (1748), T. Moore (1800), M. Faraday (1823), J. Dewar (1898), T Andrews (1865), H. Kamerlingh-Onnes (1908) munkássága. Az alacsony hőmérsékletek előállításának különböző lehetőségei: hőmérséklet kiegyenlítődés, hűtőkeverék alkalmazása, párolgás, indirekt Carnot körfolyamat, Peltier-hatás, adiabatikus lemágnesezés, nukleáris hűtés. Kompressziós hűtőgépek. Gázok hűtése tágulással, a Joule-Thomson effektus alkalmazása, a Linde-féle (1895) levegő-cseppfolyósítási eljárás elve, kaszkád módszer, gyakorlati megvalósítás. Kísérletek cseppfolyós nitrogénnel, a szupravezetés termodinamikájáról, a Meissner effektus bemutatása magas hőmérsékletű szupravezetővel. A hő terjedéséről: a hővezetés (belső, külső), mint a termikus energia transzportja, a stacionárius hővezetés kísérleti vizsgálata, a Fourier-féle hővezetési egyenlet (1811), a hővezetési együttható (λ) értelmezése, a nem stacionárius hővezetés. A Newton-féle lehülési törvény, a hőmérséklet csökkenés exponenciális jellege. Gyakorlati vonatkozások a természeti, technikai környezetben, az emberi szervezet hőháztartása. A hő áramlás (konvekció) vizsgálata, termikus energia és anyag transzport, kísérletek sűrűségváltozásra, hőcirkulációra folyadékok, gázok esetén. A hőkonvekció matematikai leírása, az α hőátadási tényezőt befolyásoló paraméterek. Hőáramlás a gyakorlatban, központi fűtés, hőszigetelés, szél, tengeri áramlatok létrejötte. A hősugárzás kísérleti megfigyelése, termoszkópok, radiométer. A hőmérsékleti sugárzás szerepe a modern fizika kialakulásában, a Stefan- Boltzmann törvény, az emissziós tényező, mint a kibocsátástól, illetve az elnyelő tulajdonságoktól függő tényező elemzése. Példák a hősugárzás gyakorlati alkalmazására. A Nap hősugarai, üvegházhatás, bemutatása modellkísérlettel. 6

7 KÉRDÉSEK (FOGALMAK, TÖRVÉNYEK) A HŐTAN ELŐADÁS ANYAGÁBÓL 1. Jellemezze az empirikus hőmérsékleti skálákat! 2. Jellemezze a termikus egyensúlyt! 3. Fogalmazza meg a 0. főtételt! 4. Definiálja a termodinamikai rendszert! 5. Jellemezze a nemzetközi és a termodinamikai hőmérsékleti skálát! 6. Az állapothatározó definíciója, osztályozásuk. 7. Mit nevezünk állapotegyenletnek? 8. Mit nevezünk zárt termodinamikai rendszernek? 9. Mit nevezünk izolált termodinamikai rendszernek? 10. Mondja ki a lineáris hőtágulás törvényét! 11. Mondja ki a köbös hőtágulás törvényét! 12. Fogalmazza meg a homogén, izotróp szilárd testek általános tágulási törvényét! 13. Jellemezze a folyadékok hőtágulását! 14. Definiálja a kompresszibilitási együtthatót! 15. Fogalmazza meg a Boyle-Mariotte törvényét! 16. Fogalmazza meg a Gay-Lussac törvényeket! 17. Adja meg az ideális gáz jellemzőit! 18. Ismertesse az ideális gáz állapotegyenletét! 19. Fogalmazza meg az egyesített gáztörvényt! 20. Definiálja az anyagmennyiség SI egységét! 21. Fogalmazza meg Avogadro törvényét! 22. Definiálja az univerzális gázállandót! 23. Jellemezze a reális gázokat! 24. Ismertesse a reális gázokra vonatkozó állapot egyenletet! 25. Fogalmazza meg a termodinamika I. főtételét! 26. Definiálja a hőkapacitást! Mi az egysége? 27. Definiálja a fajhőt! Mi az egysége? 28. Jellemezze a Q, W folyamatváltozókat! 29. Mit nevezünk vízértéknek? 30. Fogalmazza meg a Dulong Petit szabályt! 31. Jellemezze a kvázisztatikus folyamatot! 32. Jellemezze a termodinamika I. főtételében szereplő mennyiségeket speciális állapotváltozások esetén! 33. Definiálja az ideális gáz entrópiáját! 34. Ismertesse a Gay-Lussac kísérletet! 35. Ismertesse a Joule-Thomson kísérletet! 36. Mit nevezünk inverziós hőmérsékletnek? 37. Ismertesse a Poisson-egyenleteket! 38. Mit nevezünk körfolyamatnak? 39. Ismertesse a Gibbs-féle fundamentális egyenletet! 40. Definiálja a szabadenergiát! 41. Definiálja a szabad entalpiát! 7

8 42. Jellemezze a termodinamikai egyensúlyt a szabadenergia, szabad entalpia és az entrópia segítségével! 43. Ismertesse a Gibbs-Helmholtz-féle egyenleteket! 44. Fogalmazza meg a termodinamika III. főtételét! 45. Jellemezze a kinetikus gázmodellt! 46. Értelmezze a nyomást a kinetikus gázelmélet alapján! 47. Ismertesse a gázok állapotegyenletének molekuláris értelmezését! 48. Definiálja a Boltzmann állandót! 49. Mit nevezünk szabadsági foknak? 50. Mondja ki az ekvipartíció tételét! 51. Jellemezze a sebességeloszlási függvényeket! 52. Mit nevezünk közepes szabad úthossznak? 53. Mit nevezünk hatáskeresztmetszetnek? 54. Fogalmazza meg Dalton törvényét! 55. Ismertesse Fick törvényeit! 56. Definiálja a termodinamikai valószínűséget! 57. Fogalmazza meg a termodinamika II. főtételét (statisztikusan)! 58. Ismertesse Van' t Hoff törvényét! 59. Mit nevezünk makro- illetve mikro állapotnak? 60. Mit nevezünk hármaspontnak? 61. Mi a regeláció? 62. Jellemezze az ozmózis jelenségét! 63. Ismertesse a Clausius Clapeyron egyenletet! 64. Jellemezze a kritikus állapotot! 65. Definiálja a relatív nedvességet! 66. Jellemezze a fázisdiagramot! 67. Ismertesse a hővezetés alapegyenletét! 68. Fogalmazza meg a Newton-féle lehűlési törvényt! 8

Kísérleti Fizikai Tanszék Előadó: K, G

Kísérleti Fizikai Tanszék Előadó: K, G Hőtan előadás Kurzuskód: FBN203E-1 Tantárgykód: FBN203E Tanszék: Kísérleti Fizikai Tanszék Előadó: Dr. Bohus János Kredit: 3 Félév: 2. Heti óraszám: 2+1 Előfeltétel: Mechanika Követelmény: K, G Ajánlott

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

PHYWE Fizikai kémia és az anyagok tulajdonságai

PHYWE Fizikai kémia és az anyagok tulajdonságai PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban

4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energetika 1 4. Jellegzetes állapotváltozások; leírásuk: p-v, T-S, H-S diagramokban Energodinamikai rendszerek vizsgálata során elsősorban gáznemű halmazállapot esetén lényeges az állapotváltozásokat megkülönböztetni.

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Termodinamika. Tóth Mónika

Termodinamika. Tóth Mónika Termodinamika Tóth Mónika 2012.11.26-27 monika.a.toth@aok.pte.hu Hőmérséklet Hőmérséklet: Egy rendszer részecskéinek átlagos mozgási energiájával arányos fizikai mennyiség. Különböző hőmérsékleti skálák.

Részletesebben

Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I.

Visy Csaba Kredit 4 Heti óraszám 3 típus AJÁNLOTT IRODALOM. P. W. Atkins: Fizikai kémia I. A tárgy neve FIZIKAI KÉMIA 1. Meghirdető tanszék(csoport) SZTE TTK FIZIKAI KÉMIAI TANSZÉK Felelős oktató: Visy Csaba Kredit 4 Heti óraszám 3 típus Előadás Számonkérés Kollokvium Teljesíthetőség feltétele

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál

8. Belső energia, entalpia és entrópia ideális és nem ideális gázoknál 8. első energia, entalpia és entrópia ideális és nem ideális gázoknál első energia első energia (U): a vizsgált rendszer energiája, DE nem tartozik hozzá - a teljes rendszer együttes mozgásából adódó mozgási

Részletesebben

Munka- és energiatermelés. Bányai István

Munka- és energiatermelés. Bányai István Munka- és energiatermelés Bányai István Joule tétele: adiabatikus munka A XIX. Sz. legnagyobb kihívása a munka Emberi erőforrás (rabszolga, szolga, bérmunkás, erkölcs?, ár!) Állati erőforrás (kevésbé erkölcssértő?,

Részletesebben

Termodinamika. hőtan. termosztatika. termodinamika

Termodinamika. hőtan. termosztatika. termodinamika Termodinamika hőtan termosztatika termodinamika Hőtan alapfogalmai: hőmérséklet, hőmennyiség, energia, munka, hatásfok Termodinamika, mint módszer (pl. akár közgazdaságtanban): 1. Rendszer állapotjelzői

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Hőtan. A hőmérséklet mérése. A hő fogalma. PDF created with pdffactory trial version www.pdffactory.com. Szubjektív

Hőtan. A hőmérséklet mérése. A hő fogalma. PDF created with pdffactory trial version www.pdffactory.com. Szubjektív Fizika illamosmérnököknek FIGYELMEZEÉS! Hőtan Az előadásázlat a Széchenyi Egyetem elsőées illamosmérnök hallgatóinak készült a Budó Ágoston Kísérleti Fizika I. felsőoktatási tanköny alapján, a tankönyben

Részletesebben

A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév

A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév A fizika története (GEFIT555B, 2+0, 2 kredit) 2010/2011. tanév, 1. félév Dr. Paripás Béla 6. Előadás (2010.10.27.) Ponthatárok: 0 13 elégtelen (1) 14 18 elégséges (2) 19 22 közepes (3) 23 26 jó (4) 27

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

NT-17205 Fizika 10. (Fedezd fel a világot!) Tanmenetjavaslat

NT-17205 Fizika 10. (Fedezd fel a világot!) Tanmenetjavaslat NT-17205 Fizika 10. (Fedezd fel a világot!) Tanmenetjavaslat Az új fizika tankönyvcsalád és a tankönyv célja A Nemzeti Tankönyvkiadó Fedezd fel a világot! című új természettudományos tankönyvcsaládja fizika

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

TestLine - Fizika hőjelenségek Minta feladatsor

TestLine - Fizika hőjelenségek Minta feladatsor 1. 2:29 Normál zt a hőmérsékletet, melyen a folyadék forrni kezd, forráspontnak nevezzük. Különböző anyagok forráspontja más és más. Minden folyadék minden hőmérsékleten párolog. párolgás gyorsabb, ha

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

KISÉRLETI FIZIKA III. Optika-Termodinamika Bevezetés 1. (IX. 13)

KISÉRLETI FIZIKA III. Optika-Termodinamika Bevezetés 1. (IX. 13) ELTE II.Fizikus 2005/2006 I.félév KISÉRLETI FIZIKA III. Optika-Termodinamika Bevezetés 1. (IX. 13) I. Cél a)induktív (nem deduktív) elıadás Kisérletek alapján az elmélet összefüggések -Kiséletek bemutatása,

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet

5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet 5. Állapotegyenletek : Az ideális gáz állapotegyenlet és a van der Waals állapotegyenlet Ideális gáz Az ideális gáz állapotegyenlete pv=nrt empírikus állapotegyenlet, a Boyle-Mariotte (pv=konstans) és

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEŞ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet A MAGYAR TAGOZAT FIZIKA INTÉZETE 1.4 Szakterület FIZIKA / ALKALMAZOTT

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

NT Fizika 10. (Fedezd fel a világot! Emelt szint) Tanmenetjavaslat

NT Fizika 10. (Fedezd fel a világot! Emelt szint) Tanmenetjavaslat NT-17235 Fizika 10. (Fedezd fel a világot! Emelt szint) Tanmenetjavaslat A fizika tankönyvcsalád és a tankönyv célja A Fedezd fel a világot! című természettudományos tankönyvcsalád emelt szintű képzéshez

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Hőtágulás - szilárd és folyékony anyagoknál

Hőtágulás - szilárd és folyékony anyagoknál Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből. 2014. december 8. Hővezetés, hőterjedés sugárzással Fizika feladatok 014. december 8. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-3) Határozzuk meg egy 0 cm hosszú, 4 cm átmérőjű hengeres vörösréz rúdon

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Fizika összefoglaló kérdések (11. évfolyam)

Fizika összefoglaló kérdések (11. évfolyam) I. Mechanika Fizika összefoglaló kérdések (11. évfolyam) 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Bevezetés a lézeres anyagmegmunkálásba

Bevezetés a lézeres anyagmegmunkálásba Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok

Részletesebben

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilárd, folyékony vagy

Részletesebben

Hajdú Angéla

Hajdú Angéla 2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.

Részletesebben

Fizika vizsgakövetelmény

Fizika vizsgakövetelmény Fizika vizsgakövetelmény A tanuló tudja, hogy a fizika alapvető megismerési módszere a megfigyelés, kísérletezés, mérés, és ezeket mindig valamilyen szempont szerint végezzük. Legyen képes fizikai jelenségek

Részletesebben

Kémia I. 6. rész. Halmazállapotok, halmazállapot változások

Kémia I. 6. rész. Halmazállapotok, halmazállapot változások Kémia I. 6. rész Halmazállapotok, halmazállapot változások HALMAZÁLLAPOTOK I a körülöttünk lévő anyagok többsége a körülményektől függően háromféle halmazállapot -ban létezhet: elvileg minden anyag mindhárom

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

5. előadás 12-09-16 1

5. előadás 12-09-16 1 5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot

Részletesebben

Főkérdések fizikai-kémia kollokviumra gyógyszerész hallgatók számára, tanév, I. félév.

Főkérdések fizikai-kémia kollokviumra gyógyszerész hallgatók számára, tanév, I. félév. 1. Gáztörvények. Az ideális gáztörvény érvényességének feltételei. A termodinamikai hőmérséklet. 2. A termodinamika alapfogalmainak definíciói. 3. A termodinamika első főtétele. A belső energia, a munka

Részletesebben

TERMIKUS KÖLCSÖNHATÁSOK

TERMIKUS KÖLCSÖNHATÁSOK ERMIKUS KÖLCSÖNHAÁSOK ÁLLAPOJELZŐK, ERMODINAMIKAI EGYENSÚLY A mindennai élet legkülönbözőbb területein találkozunk a hőmérséklet fogalmáal, méréséel, a rendszerek hőtani jellemzőiel (térfogat, nyomás,

Részletesebben

MUNKA ÉS HŐ SZÁMÍTÁSA

MUNKA ÉS HŐ SZÁMÍTÁSA MUNKA ÉS HŐ SZÁMÍTÁSA 1. feladat Egy gázfázisú rendszerben a belső energia az =5+10J egyenlettel írható le. A rendszert az A B C D A körfolyamaton visszük keresztül. Tudjuk, hogy az A pontban a nyomás

Részletesebben

Hőtan főtételei. (vázlat)

Hőtan főtételei. (vázlat) Hőtan főtételei (vázlat) 1. Belső energia oka, a hőtan I. főtétele. Ideális gázok belső energiája 3. Az ekvipartíció elve 4. Hőközlés és térfogati munka, a hőtan I. főtétele ideális gázokra 5. A hőtan

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó.

A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. HŐTAN I. A hőmérséklet az anyagok egyik fizikai jellemzője, állapothatározó. E jellemzőt az ember elsősorban tapintás útján, a hőérzettel észleli, másodsorban hőmérő segítségével. A hőmérséklet a hőtan

Részletesebben

Általános kémia vizsgakérdések

Általános kémia vizsgakérdések Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.

Részletesebben

Előzmény: TD módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált

Előzmény: TD módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált Előzmény: D módszer, hőmérséklet, I. főtétel / ideális gáz, speciális állapotvált ermodinamika:. Kölcsönhatások intenzív és extenzív állapotjelzőkkel írhatók le. Fundamentális egyenlet: du ds p d + Σμ

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK. Műszaki hőtan. Szóbeli vizsgakérdések

ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK. Műszaki hőtan. Szóbeli vizsgakérdések ENERGETIKAI GÉPEK ÉS RENDSZEREK TANSZÉK Műszaki hőtan Szóbeli vizsgakérdések 2011 Ez a vizsgatétel gyűjtemény a Műszaki hőtan I. (BMEGEEN3033, BMEGEENK002 és BMEGEENLK01) Műszaki hőtan II. (BMEGEEN3034,

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele.

Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. BEVEZETÉS TÁRGY CÍME: FIZIKAI KÉMIA Ez mit jelent? Ahány könyv annyi interpretáció, annyi diszciplína kerül bele. Ebben az eladásban: a fizika alkalmazása a kémia tárgykörébe es fogalmak magyarázatára.

Részletesebben

Minek kell a matematika? (bevezetés)

Minek kell a matematika? (bevezetés) Tudomány Minek kell a matematika? (bevezetés) Osváth Szabolcs a tudomány az emberiségnek a világ megismerésére és megértésére irányuló vállalkozása Semmelweis Egyetem a szőkedencsi hétszáz éves hárs Matematika...

Részletesebben

Termodinamika és statisztikus mechanika. Nagy, Károly

Termodinamika és statisztikus mechanika. Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Termodinamika és statisztikus mechanika Nagy, Károly Publication date 1991 Szerzői jog 1991 Dr. Nagy Károly Dr. Nagy Károly - tanszékvezető egyetemi

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás I.

Általános és szervetlen kémia Laborelıkészítı elıadás I. Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

ÉGÉSELMÉLET, HŐTAN. ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIAGAZDÁLKODÁSI valamint KÉPLÉKENYALAKÍTÁSI SZAKIRÁNYON ANYAGMÉRNÖK MESTERKÉPZÉS

ÉGÉSELMÉLET, HŐTAN. ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIAGAZDÁLKODÁSI valamint KÉPLÉKENYALAKÍTÁSI SZAKIRÁNYON ANYAGMÉRNÖK MESTERKÉPZÉS ÉGÉSELMÉLET, HŐTAN ANYAGMÉRNÖK ALAPKÉPZÉS HŐENERGIAGAZDÁLKODÁSI valamint KÉPLÉKENYALAKÍTÁSI SZAKIRÁNYON ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI

Részletesebben

Halmazállapot-változások

Halmazállapot-változások Halmazállapot-változások A halmazállapot-változások fajtái Olvadás: szilárd anyagból folyékony a szilárd részecskék közötti nagy vonzás megszűnik, a részecskék kiszakadnak a rácsszerkezetből, és kis vonzással

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség. 2.5 Félév 1. 2.6. Számonkérés módja

TANTÁRGYI ADATLAP. Mechatronika/Mechatronikus mérnök Végzettség. 2.5 Félév 1. 2.6. Számonkérés módja TANTÁRGYI ADATLAP 1. A tanulmányi program jellemzői 1.1 A felsőoktatási intézmény Sapientia Erdélyi Magyar Tudományegyetem 1.2 Kar Marosvásárhelyi Műszaki és Humán Tudományok Kar 1.3 Tanszék Gépészmérnöki

Részletesebben

Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László

Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai. Dr. Nagy László Orvosi Fizika 11. Transzportfolyamatok termodinamikai vonatkozásai Dr. Nagy László Egyensúlyi termodinamika A termodinamika a klasszikus értelezés szerint a hőserével együtt járó kölsönhatások tudománya.

Részletesebben

Termodinamikai rendszerek. Kalorimetria. Extenzív és Intenzív mennyiségek. Hőkapacitás, fajhő Mennyi a felvett hő?

Termodinamikai rendszerek. Kalorimetria. Extenzív és Intenzív mennyiségek. Hőkapacitás, fajhő Mennyi a felvett hő? Termodinamikai rendszerek Kalorimetria Biofizika szeminárium 2014. 04.03. Nyitott Anyag és energiaáramlás Zárt Csak energia áramlás Izolált Se anyag se energia áramlás Hőmérséklet: az anyagot felépítő

Részletesebben

A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI

A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI A fizika kétszintű érettségire felkészítés legújabb lépései Összeállította: Bánkuti Zsuzsa, OFI (fizika munkaközösségi foglalkozás fóliaanyaga, 2009. április 21.) A KÉTSZINTŰ FIZIKAÉRETTSÉGI VIZSGAMODELLJE

Részletesebben

Kémiai alapismeretek 1. hét

Kémiai alapismeretek 1. hét Kémiai alapismeretek 1. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. február 7. 1/14 2011/2012 II. félév, Horváth Attila c Előadás látogatás

Részletesebben

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió

Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

VÍZKÉMIA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

VÍZKÉMIA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ KÖRNYEZETMÉRNÖKI MESTERKÉPZÉS TÖRZSANYAG TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014 1 Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyző, óraszám,

Részletesebben

Hőmérsékletmérés. Hőmérsékletmérés. TGBL1116 Meteorológiai műszerek. Hőmérő test követelményei. Hőmérő test követelményei

Hőmérsékletmérés. Hőmérsékletmérés. TGBL1116 Meteorológiai műszerek. Hőmérő test követelményei. Hőmérő test követelményei Hőmérsékletmérés TGBL1116 Meteorológiai műszerek Bíróné Kircsi Andrea Egyetemi tanársegéd DE Meteorológiai Tanszék Debrecen, 2007/2008 II. félév A hőmérsékletmérés a fizikai mennyiségek mérései közül az

Részletesebben

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján Készítette: Zsélyné Ujvári Mária, Szalma József; 2012 Előadó: Zsély István Gyula, Javított valtozat 2016 Laborelőkészítő előadás,

Részletesebben

FIZIKAI KÉMIA ANYAGMÉRNÖKI KAR ENERGETIKAI MÉRNÖKASSZISZTENS FELSŐFOKÚ SZAKKÉPZÉS

FIZIKAI KÉMIA ANYAGMÉRNÖKI KAR ENERGETIKAI MÉRNÖKASSZISZTENS FELSŐFOKÚ SZAKKÉPZÉS ENERGETIKAI MÉRNÖKASSZISZTENS FIZIKAI KÉMIA ANYAGMÉRNÖKI KAR ENERGETIKAI MÉRNÖKASSZISZTENS FELSŐFOKÚ SZAKKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET

Részletesebben

Műszaki hőtan Bihari, Péter

Műszaki hőtan Bihari, Péter Műszaki hőtan Bihari, Péter Műszaki hőtan írta Bihari, Péter Publication date 2011 Szerzői jog 2012 Bihari Péter Kézirat lezárva: 2012. január 31. Készült a TAMOP-4.1.2.A/2-10/1 pályázati projekt keretében

Részletesebben

TERMODINAMIKAI EGYENSÚLYOK. heterogén és homogén. HETEROGÉN EGYENSÚLYOK: - fázisegyensúly. vezérlelv:

TERMODINAMIKAI EGYENSÚLYOK. heterogén és homogén. HETEROGÉN EGYENSÚLYOK: - fázisegyensúly. vezérlelv: TERMODINAMIKAI EGYENSÚLYOK heterogén és homogén HETEROGÉN EGYENSÚLYOK: - fázisegyensúly vezérlelv: Gibbs-féle fázisszabály: Sz = K + 2 F Sz: a rendszer szabadsági fokainak megfelel számú intenzív TD-i

Részletesebben

Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód)

Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Előfeltétel (tantárgyi kód) Tantárgy neve Tantárgy kódja Meghirdetés féléve Kreditpont Összóraszám (elm+gyak) Számonkérés módja Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Tantárgyfelelős beosztása Fizikai alapismeretek Dr.

Részletesebben

ALKALMAZOTT KÉMIA ÉS TRANSZPORTFOLYAMATOK

ALKALMAZOTT KÉMIA ÉS TRANSZPORTFOLYAMATOK ALKALMAZOTT KÉMIA ÉS TRANSZPORTFOLYAMATOK Anyagmérnök/Kohómérnők MSc képzés Tantárgyi Kommunikációs Dosszié MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014 Tartalomjegyzék 1. Tantárgyleírás,

Részletesebben

V e r s e n y f e l h í v á s

V e r s e n y f e l h í v á s A természettudományos oktatás módszertanának és eszközrendszerének megújítása a Sárospataki Református Kollégium Gimnáziumában TÁMOP-3.1.3-11/2-2012-0021 V e r s e n y f e l h í v á s A Sárospataki Református

Részletesebben

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M)

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/13. 1 Tartalomjegyzék

Részletesebben

Dr. Író Béla HŐ- ÉS ÁRAMLÁSTAN

Dr. Író Béla HŐ- ÉS ÁRAMLÁSTAN Dr. Író Béla HŐ- ÉS ÁRAMLÁSTAN A jegyzet a HEFOP támogatásával készült. Széchenyi István Egyetem. Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató Vissza

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak (levelező tagozat) IV. évf. 2009/2010. tanév I. félév

TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak (levelező tagozat) IV. évf. 2009/2010. tanév I. félév TANTÁRGYI KÖVETELMÉNYRENDSZER Élelmiszermérnök szak (levelező tagozat) IV. évf. 2009/2010. tanév I. félév 1. TANTÁRGY CÍME: ÉLELMISZERIPARI MŰVELETEK 3. TANTÁRGY KÓDJA: LEMAT205 ELMÉLET 9+0 GYAKORLAT 0+5

Részletesebben