25. előadás: BIZONYTALANSÁG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "25. előadás: BIZONYTALANSÁG"

Átírás

1 25. előadás: BIZONYTALANSÁG Kertesi Gábor Muraközy Balázs Varró László Varian 12. fejezete átdolgozva

2 25.1 Bevezető A bizonytalanság az élet velejárója. A jövő nem látható előre. Gazdasági döntéseinket is annak tudatában kell meghoznunk, hogy a véletlen szeszélye folytán vagy más, általunk nem befolyásolható folyamatok eredményeként jövedelmünk és fogyasztási lehetőségünk a tervezetthez képest megváltozhat. Gyakran megeshet velünk az, hogy rosszabb helyzetbe kerülünk, mint amire számítunk. Számos esetben hozhatunk azonban olyan gazdasági döntést a lottószelvény-vásárlásától a balesetbiztosításig, melynek révén megváltoztathatjuk a dolgok kimenetelét. A bizonytalan körülmények között hozott döntések és az azokra épülő piacok elemzése a mikroökonómia egyik legizgalmasabb területe fólia Az előző órán azt vizsgáltuk, milyen következményekkel jár döntési modelljeinkre nézve az idő múlása, ha pontosan tudjuk, hogy mire számíthatunk a jövőben. A döntéshozókról feltételeztük, hogy pontosan ismerik döntéseik következményeit. Ezt a helyzetet szemlélteti a fólián látható A eset. A mai előadáson olyan szituációkat fogunk elemezni, ahol a döntés meghozatalakor nem ismerjük pontosan döntésünk következményeit. Az egyszerűség kedvéért viszont most az idő múlásától tekintünk el. Ezt a helyzetet szemlélteti a fólián látható B eset. Azt tudhatjuk esetleg, hogy milyen lehetséges kimenetelekre számíthatunk ( c, c, c ), de hogy e lehetséges kimenetelek közül végül is melyik fog realizálódni, azt előzetesen (ex ante) nem tudhatjuk. Utólag (ex post) persze okosak lehetünk, de ezzel többnyire nem megyünk sokra. Ha nem készültünk fel előre a többféle lehetséges kimenetelre, akkor semmilyen mértékben sem kezeltük a bizonytalanságot. Utólag, a bizonytalan kimenetelű esemény bekövetkezése után ex post már nem tudjuk magunkat a kedvezőtlen körülményektől megóvni, illetve nem tudjuk a kedvező körülményekben rejlő lehetőségeket kiaknázni. A bizonytalan kimenetelű eseményekre mindig előzetesen ex ante kell felkészülni. A mai előadás tárgya az, hogy a gazdasági döntések meghozatalánál miként lehet ez megtenni. A probléma komplett tárgyalása az volna, ha egyszerre vennénk figyelembe az idő múlását és a bizonytalanságot is. Ezt az helyzetet szemlélteti a C eset. Erre azonban az ilyen jellegű modellek bonyolultsága miatt egy alapozó árelméleti kurzus keretei között aligha kerülhet sor. Mindazonáltal az A és B típusú panelekből kellő kreativitással összerakhatók ilyen jellegű, komplettebb modellek is Néhány valószínűségszámítási fogalom Mielőtt belekezdenénk a bizonytalanság melletti döntések elméletének kifejtésébe, ismételjünk át röviden néhány valószínűségszámítási fogalmat! Egy diszkrét valószínűségi változó várható értékét a következőképpen definiálhatjuk: 25.2 fólia 2

3 A mellékelt példa a félévi mikroökonómia jegy várható értékére ad becslést a számtani átlag formulájának felhasználásával. Egy diszkrét valószínűségi változó varianciáját a következőképpen definiálhatjuk: 25.3 fólia A varianciára is adunk egy becslést a szórásnégyzet formulájának segítségével. A variancia a valószínűségi változó változékonyságát méri Véletlentől függő feltételes fogyasztás A bizonytalanság melletti döntések megértéséhez be kell vezetnünk egy új fogalmat: a természeti állapot fogalmát. Egy természeti állapot (világállapot) nem más, mint egy véletlenszerű esemény lehetséges kimenetele. Egy lehetséges természeti állapot lehet például egy farmer számára az, amikor az időjárás kedvező. Egy másik természeti állapot lehet ennek az ellenkezője: az, ha az időjárás kedvezőtlen. Egy tőzsdei spekuláns számára az árfolyamok növekedése vagy csökkenése, illetve egy nyersolajfelhasználó számára az iraki válság gyors és békés rendeződése vagy annak harci cselekményekkel is járó tartós megoldatlansága lehet egy-egy világállapot. A természeti állapotok száma természetesen nem csak kettő lehet. A kimenetelek száma a szituációtól függ. Kockadobás esetén például hat, egyforma valószínűséggel bekövetkező, egymástól különböző kimenetelre számíthatunk. Feltesszük, hogy a döntéshozónak nincs befolyása arra, hogy melyik természeti állapot milyen valószínűséggel következik be. Ezt a kikötést a mai előadás során mindvégig fenntartjuk. Az információ közgazdaságtanának alapelemeit ismertető jövő heti előadás során azonban lesz olyan eset, amikor feloldjuk. Az egyszerűség kedvéért induljunk ki egy olyan esetből, amelyben mindössze két természeti állapot lehetséges: leég a házunk vagy nem ég le. Legyen π annak valószínűsége, hogy leég, ( 1 π ) pedig annak valószínűsége, hogy nem ég le. Ha leég a házunk, azzal K értékű kár ér bennünket. Amennyiben y jövedelemmel rendelkezünk, fogyasztási lehetőségeinket a különböző természeti állapotokban a következő ábrán foglalhatjuk tömören össze fólia Ha leég a ház, akkor fogyasztásra költhető jövedelmünk nagysága ( y K) értékűre csökken; ha sikerül a tűztől házunkat megóvni, akkor jövedelmünk y marad. Most tételezzük fel, hogy γκ biztosítási díj ellenében bárki köthet olyan biztosítást, amely a kár bekövetkezése esetén teljes fedezetet nyújt egy esetleges tűz során bekövetkezett kárra. γ az egységnyi megtérített kárra jutó biztosítási díjtétel, azaz a kárelhárítás egységára. Normál körülmények között γ < 1. Ha biztosítást kötünk, fogyasztásunk a két világállapotban azonos: akár bekövetkezik a szerencsétlenség, akár nem, ( y γk) a jövedelmünk. 3

4 25.5 fólia A biztonságnak ára van: γ K értékben akkor is kevesebb lesz a jövedelmünk, ha nem ég le a ház. Cserébe viszont, a káresemény bekövetkezése után nem ( y K), hanem ennél nagyobb, ( y γk) lesz a jövedelmünk ( 0 < γ < 1). Mielőtt továbblépnénk, ismerkedjünk meg egy újabb fogalommal: a véletlentől függő, feltételes fogyasztási terv (contingent consumption plan) fogalmával. Egy feltételes fogyasztási terv a véletlenszerű események minden kimenetelére, azaz minden egyes természeti állapotra tartalmazza azt, hogy mennyit fogunk fogyasztani. A biztosítás vásárlásának esetében a feltételes fogyasztást biztosítási szerződés formájában írjuk le: mennyi pénzünk lenne, ha a veszteség bekövetkezik, és mennyi, ha nem. Ha a véletlentől függő, feltételes fogyasztási tervet közönséges fogyasztási kosárnak fogjuk fel, akkor ugyanabban a fogalmi keretben tudunk dolgozni, mint amelyet a fogyasztási elméletben megszoktunk. A bizonytalan kimeneteleket úgy illesztjük be a standard fogyasztási elmélet megszokott keretei közé, hogy a termékek terét a bizonytalan kimenetelek számától függően kitágítjuk. Ha például determinisztikus (bizonytalanságot nem tartalmazó) közegben egy kéttermékes modellben gondolkodunk, akkor abban az esetben, ha a bizonytalanság körülményei között mondjuk tíz lehetséges kimenetelre számíthatunk, akkor a bizonytalanságot is tartalmazó (szochasztikus) modellt úgy tudjuk a bizonyosság melletti döntés (determinisztikus) modelljének analógiájára elképzelni, mintha egy kétszer tíz termékből álló determinisztikus modellel lenne dolgunk. Ez a mély gondolat amelynek első megfogalmazása Kenneth Arrow 1, amerikai közgazdász nevéhez fűződik, tette lehetővé a közgazdászok számára azt, hogy a bizonytalanságot az árelmélet szokásos eszközeivel kezelni tudják. Ez az eljárás ugyan nem küszöböli ki a véletlen szerepét, mégis azzal, hogy elgondolhatóvá teszi a különböző természeti állapotok fennállása esetén rendelkezésünkre álló termékekkel való "kereskedést", olyan piacok létesítésének teremti meg az elvi alapját, amelyek a bizonytalan kimenetelekből adódó kedvezőtlen következmények hatását képesek enyhíteni. "Kereskedés" (trading) az, ha a feltételes fogyasztó tervek közti választás révén jövedelmet csoportosítunk át egy adott természeti állapotból egy másik természeti állapotba. A farmer megteheti, hogy burgonyát termel, ami jó és rossz időben egyaránt megterem, de nem túl jövedelmező. Az eper sokkal nagyobb jövedelmet hoz jó idő esetén, de szinte semmit sem hoz, ha kedvezőtlenek az időjárási viszonyok. Ha a farmer az eper mint feltételes fogyasztási terv mellett dönt, akkor a burgonytermelés esetéhez képest jövedelmet csoportosít át a kedvezőtlen időjárás természeti állapotából a kedvező időjárás természeti állapotába. 1 Kenneth J. Arrow (1921-), Nobel-díjas amerikai közgazdász. A véletlentől függő, feltételes fogyasztással kapcsolatos gondolatait Arrow egy ötven évvel ezelőtt megjelent, korszakalkotó tanulmányában fejtette ki először: Le rôle des valeurs boursières pour la répartition la meilleurre des risques. Ėconometrie (Colloques Internationaux du Centre National de la Recherche Scientifique), 1953, 11. évfolyam, old. A tanulmány ismertebb forrása: The role of securities in the optimal allocation of risk-bearing. Review of Economic Studies, 1963, 31. évfolyam, old. 4

5 A spekuláns dönthet arról, hogy bankszámlán tartja-e a pénzét, ahol csak állandó kamatot kap, vagy részvényeket vesz inkább, melyeknek az ára jelentősen ingadozik. Gazdasági fellendülések idején a részvényvásárlás a bankbetétnél magasabb hozammal (nagyobb fogyasztással) kecsegtet, gazdasági visszaesések ide-jén azonban alacsonyabb hozammal (kevesebb fogyasztással) jár. A lehetséges feltételes fogyasztási tervek és természeti állapotok eredményeit a kifizetési mátrixba sűríthetjük. A mátrix oszlopai a különböző természeti állapotokat jelentik: a T természeti állapot azt jelenti, hogy tűz lesz és leég a házunk, az N természeti állapot pedig azt, hogy nem ég le a házunk. A sorokban a fogyasztási tervek szerepelnek: az A terv azt jelenti, hogy nem kötünk biztosítást, a B terv pedig azt, hogy A teljes biztosítást kötünk. A mátrix elemei a fogyasztást jelentik: pl. c T azt jelenti, hogy mennyit fogyasztunk, ha leég a házunk és nem kötöttünk biztosítást fólia A kockázatot matematikailag úgy ragadhatjuk meg, mint fogyasztási lehetőségeink szóródását a különböző természeti állapotokban. Vannak kockázatmentes fogyasztási tervek, mint a krumpli vetése vagy a bankbetét. Minél változékonyabb az egyes természeti állapotokban a lehetséges fogyasztás, annál kockázatosabb az adott fogyasztási terv. Rulettezéskor például tehetünk egy színre, ahol 50 százalékos valószínűséggel duplázunk 2 vagy tehetünk számra, ahol kis valószínűséggel nyerhetünk sokat. Ha a kaszinó tisztességes szabályokat alkalmaz, akkor e két fogyasztási terv várható értéke azonos ugyan, szórása azonban biztosan különböző. Az utóbbi stratégia sokkal kockázatosabb. Egy fogyasztási terv nemcsak attól lehet kockázatosabb, ha nagyon alacsony kifizetések is lehetségesek, hanem attól is, ha nagyon magas kifizetések is vannak (például ha számra teszünk a ruletten, akkor ennek nagyon magas a kockázata: sok 0 kifizetés van és csak egy 36-szoros. Ha ez az egy kifizetés 72-szeres lenne, akkor a várható érték duplájára, a szórás pedig 2- szeresére nőne: ez egy kockázatosabb termék, bár köznapi értelemben nem neveznénk annak). A hasonlóság mellett van egy fontos különbség a bizonyosság, illetve a bizonytalanság körülményei között hozott fogyasztói döntések között. Bizonyosság esetén a választott optimális jószágkombináció valamennyi elemét elfogyasztja a fogyasztó, bizonytalanság esetén azonban a feltételes fogyasztási terv csak előzetesen (ex ante) értelmezhető jószágkombinációként, utólag (ex post) abból ténylegesen csak a valóban bekövetkezett természeti állapotnak megfelelő fogyasztás valósul meg. A bizonytalanság melletti fogyasztói döntés feltételes fogyasztási tervek közötti optimalizálást jelent. A gazdasági szereplők bizonytalanság jelenlétében ugyanúgy racionálisan hozzák meg döntéseiket, mint amikor a bizonyosság körülmé-nyei között tevékenykednek. Ez annyit jelent, hogy úgy igyekeznek megtalálni a számukra legkedvezőbb alternatívát, hogy közben figyelembe veszik döntéseik korlátozó feltételeit. 2 Ha eltekintünk a 0-tól 5

6 A fogyasztói döntések standard elméletének két meghatározó fogalma volt a költségvetési korlát és a hasznossági függvény. Némi változtatással ezek a fogalmak jól alkalmazhatók a bizonytalanság melletti döntések elemzésekor is Költségvetési korlát: a fogyasztási lehetőségek átcsoportosíthatósága a különböző természeti állapotok között A bizonytalanság melletti fogyasztói döntés modelljét a biztosítás példáján fogjuk bemutatni. A korábbi példát felelevenítve, tegyük fel, hogy fogyasztónk y jövedelemmel rendelkezik, ám π valószínűséggel K nagyságú tűzkár érheti. Lehetősége van azonban arra, hogy a tűzkárra biztosítást kössön, Ez a biztosítás γ * X forintnyi biztosítási díj fejében ( 0 < γ < 1) tűzkár esetén X forintnyi kártérítést fizet. A fogyasztó maga dönti el, hogy milyen összegre (mekkora X-re) kíván biztosítást kötni. (Ez a valóságban nincs így. A biztosítók a fogyasztók választási lehetőségeit nagyon is bekorlátozzák. Ennek ellenére, most a modell kifejtése során az egyszerűség kedvéért ezt tesszük fel.) 25.7 fólia A problémát a ábrán látható koordinátarendszerben ábrázoljuk. A vízszintes tengely mentén a T ("tűz lesz, és leég a házunk") világállapotban realizálható fogyasztást, illetve jövedelmet mérjük ( c T ), a függőleges tengelyen pedig az N ("nem lesz tűz") világállapotban realizálható fogyasztást, illetve jövedelmet ( c N ). A releváns síknegyed bármely pontja egy feltételes fogyasztási tervet reprezentál. Ha nem kötünk biztosítást, akkor az ( y K, y ) koordinátákkal jelölt pontban vagyunk. Ha tökéletes biztosítással kiegyenlítettük a két természeti állapot fogyasztási lehetőségeit, akkor egy origóból kiinduló 45 fokos egyenesre kerülünk; pontosabban a szóban forgó egyenesnek a ( y γk, y γk ) koordinátájú pontjába. Ezt az egyenest bizonyossági egyenesnek nevezzük. Az elnevezés arra utal, hogy ha az egyenesen vagyunk, akkor a két eltérő világállapot ellenére ugyanarra a jövedelemre számíthatunk. A biztosítás lehetővé teszi, hogy az eredeti ( y K, y ) készletpontból elmozduljunk. Ha K értékre kötünk biztosítást, akkor is le kell mondanunk γ K értékű fogyasztásról, ha nem következik be a káresemény. Cserébe viszont, ha leég a házunk, nem kell y K jövedelemmel (fogyasztással) megelégednünk. Ha van biztosításunk, akkor kár esetén fogyasztásunk pontosan ( K γk ) értékkel lesz nagyobb annál a jövedelemnél, amivel biztosítás hiányában kellene beérnünk. A kedvező természeti állapotbeli fogyasztásunk egy részét egyszerűen elcseréltük a kedvezőtlenebb természeti állapotbeli fogyasztásunkra. A káresemény nélküli állapotban rendelkezésünkre álló fogyasz-tásból γ K mennyiségről lemondunk annak érdekében, hogy a kár bekövetkezése esetén rendelkezésünkre álló fogyasztási lehetőséget ( 1 γ ) K mennyyiséggel növeljük fólia 6

7 A két természeti állapot közti csere aránya: γ. 1 γ A standard fogyasztói elméletben a költségvetési korlát bármely pontját választhatja elvileg a fogyasztó. Bizonytalansági modellünk eddigi kifejtése során csak két fogyasztási tervet és két természeti állapottól függő fogyasztási szint kombinációt ad-tunk meg. A biztosítás mértékének megválasztásával azonban el tudunk jutni az A és B pontot összekötő szakasz tetszés szerinti pontjába. A biztosítás hiánya és a teljes biztosítás között végtelen egyéb kisebb-nagyobb mértékű, részleges ( 0 < k < K ) biztosítás megkötésére adódik lehetőség fólia Az ily módon definiált költségvetési korlát azonban nem ér el a tengelyekig, ami felveti nagyon furcsa sarokmegoldások veszélyét. Ez a probléma is kezelhetővé válik azonban, ha megengedjük azt, hogy a ház értékénél nagyobb összegre ( k > K ) is köthessünk biztosítást. Ekkor el tudjuk érni a bizonyossági egyenes alatti régiót, azaz meg tudunk adni olyan feltételes fogyasztási tervet is, mely szerint fogyasztásunk akkor nagyobb, amikor leég a házunk fólia A gondolatmenet teljessé tétele érdekében vizsgáljuk meg ezek után azt, hogy hová kerülnénk az adott fogyasztási térben, ha nemhogy biztosítást nem kötünk, de még TV-t vagy egyéb vagyontárgyakat is kölcsön kérünk lakásunk komfortosabbá tétele érdekében. Ha nincs tűz (az N természeti állapot áll fenn), akkor fogyasztásunk ettől még magasabb, mert például TV-t is nézhetünk. Ha tűz pusztít, akkor viszont nem csak a lakást magát éri kár, hanem az elégett kölcsön TV-t is pótolnunk kell. Ekkor tehát az A pontból a balra felfelé, a függőleges tengely felé mozdultunk el. Az egyszerűség kedvéért tételezzük fel bár erre nincs garancia, hogy ezen elmozdulás áraránya megegyezik a biztosításéval, azaz nincs törés a költségvetési korlátban. A költségvetési egyenes szaggatott része tehát arra utal, hogy itt nem nyilvánvaló, hogy mekkora annak meredeksége, inkább csak feltételezzük az átváltási arány fennmaradását fólia A ábrán a folytonossá tett költségvetési halmazt a költségvetési egyenest látjuk. Amint most megmutattuk: a kiinduló készletpont adta fogyasztási lehetőségeinkből, megfelelő (biztosítási) piac kialakulása esetén, elmozdulhatunk az imént meghatározott költségvetési egyenes mentén Várható hasznosság A fogyasztói döntés standard modelljéhez hasonlóan a bizonytalanság esetén is hasznossági függvény segítségével jelenítjük meg a fogyasztó preferenciáit. A döntéshozó preferenciáit is a természeti állapotok által meghatározott fogyasztási térben értelmezzük. 7

8 Egy kockázatos döntés mérlegelésekor nyilvánvalóan tekintettel vagyunk a "nyeremény" nagyságára és a nyerés (a kimenetelek bekövetkezésének) valószínűségére is. Ezért a hasznossági függvényt az egyes természeti állapotok valószínűségeinek ( π 1, π 2,..., π n) és a bekövetkezésük esetén lehetséges fogyasztás értékeinek ( c 1, c2,..., cn) függvényében írjuk fel. Ha csak két természeti állapot van, akkor az egyik a másikat nyilvánvalóan kizárja: π1 = 1 π 2. A hasznossági függvény ilyenkor egyszerűbben is felírható fólia E hasznossági függvény konkrétabb formáját illetően az elemzésekhez a legalkalmasabbnak az úgynevezett Neumann 3 Morgenstern-féle hasznossági függvény bizonyult, mely szerint a hasznosság mértéke az egyes természeti állapotokban elérhető hasznosságok várható értéke fólia A várható hasznosság koncepciója ésszerű, mert a bizonytalanság melletti döntés során az egyik természeti állapotban realizálható fogyasztási lehetőséget nem befolyásolhatja az, hogy mekkora (vagy mekkora lenne) a fogyasztási lehetőségünk egy másik természeti állapot bekövetkezésekor. Azaz eleget tesz a függetlenségi feltételnek fólia Mennyire realisztikus ez a feltevés? A legtöbb ember valójában bosszankodna azon, ha tízévi lottózás után éppen akkor nem venne lottószelvényt, amikor a kedvenc számait kihúzzák. Ez ugyan gyakori, mégis irracionális szerencsejátékosi attitűd: a számok kihúzásának valószínűsége nem függ attól, hogy előtte mi azokat mennyi ideig játszottuk. Korábbi példánkhoz visszatérve: normál körülmények között a racionális döntéshozókat nem az érdekli, hogy mi lett volna, ha nem ég le a ház, hanem az, hogy előretekintve mennyit lennének hajlandók áldozni az esetleges kár mértékének csökkentése érdekében, ha mégis leégne a ház. A várható hasznosság éppen ennek a gondolkodásmódnak a matematikai megfogalmazása. A hagyományos hasznossági függvényhez hasonlóan értelmezhetjük a Neumann Morgenstern-féle hasznossági függvényt, illetve a hozzá tartozó közömbösségi görbéket. A fogyasztó számára mindegy, hogy egy számot vagy egy színt tesz-e meg a ruletten, ha ez a két különböző eloszlású feltételes fogyasztási terv azonos hasznosságot képvisel számára, azaz ha a fogyasztási lehetőségek terében ábrázolva ugyanazon a közömbösségi görbén fekszik fólia 2 Neumann János ( ), magyar matematikus a 20. század egyik legjelentősebb tudósa volt. Gondolatai jelentős mértékben hatottak nemcsak a matematika és a fizika, de a társadalomtudományok (mindenekelőtt a közgazdaságtan) fejlődésére is. Oskar Morgensternnel ( ) közösen írt, korszakos jelentőségű könyvükben (Theory of Games and Economic Behavior, 1944) javasolták a várható hasznossági függvény használatát bizonytalanság által jellemzett döntési helyzetekben. Neumann legjelentősebb hozzájárulása a közgazdaságtanhoz a játékelmélet matematikai kifejlesztése volt. 8

9 A fogyasztási elméletben kritikus fontossága van a helyettesítési határrátának, amely megmutatja nekünk, hogy fogyasztó milyen arányban lenne hajlandó a rendelkezésére álló termékeket egymásra cserélni. Jól emlékszünk rá, hogy ez egyben a közömbösségi görbe meredeksége is. A közömbösségi görbe meredekségét a Neumann Morgenstern-féle hasznossági függvény esetében is totális differenciálással számíthatjuk. A kaszinózás és lottózás kivételével az emberek normál körülmények között nem kedvelik a bizonytalanságot. Előfordulhatnak olyan helyzetek, amikor szeretjük a kockázatot, és vannak olyan emberek, akik általában keresik a kockázatos, bizonytalan kimenetelű helyzeteket. De inkább ez a kivétel. Az emberek többsége általában azt szereti, ha a különböző természeti állapotokban lehetséges eltérő fogyasztási lehetőségeit képes kiegyenlíteni. Ezt a magatartási sajátosságot, melyet a közgazdászok kockázatkerülő magatartásnak neveznek, az árelmélet nyelvén úgy írhatjuk le, hogy a Neumann Morgenstern-féle hasznossági függvény konkáv. A kockázatkerülő fogyasztó számára bizonytalan kimenetelű fogyasztási alternatíváinak várható értéke kisebb értéket képvisel, mint amit számára egy ugyanolyan várható értékű, de biztos alternatíva jelentene fólia A kockázatkedvelő ezzel szemben szereti a kockázatot. Az ő számára a nagyobb szórású feltételes fogyasztási terv nagyobb hasznosságot jelent, mint az azonos várható értékű, kisebb szórású vagy kockázatmentes alternatívák. Az ő várható hasznossági függvénye konvex fólia A kockázatsemleges fogyasztót a fogyasztási tervek szórása nem érdekli, egyedül a fogyasztás várható értéke. Ennek az esetnek a lineáris várható hasznossági függvény felel meg fólia Két lehetséges természeti állapot esetében a preferenciákat leíró közömbösségi görbék ábrázolhatók. Kockázatkerülő fogyasztó preferenciáinak jól viselkedő, konvex közömbösségi görbék felelnek meg. Ez tartalmilag azt jelenti, hogy a fogyasztó nem kedveli a szélsőségeket, vagyis nem kedveli azt, ha bizonytalan helyzetekben arra számíthat, hogy az egyik világállapotban sokat, a másikban pedig keveset fogyaszthat. Ha helyzetét mégis ez jellemezné, akkor törekedni fog rá, hogy a különböző világállapotokbeli fogyasztását kiegyenlítse fólia 9

10 25.6 Fogyasztói optimum Akárcsak a standard fogyasztói elméletben, az optimumot itt is egy feltételes szélsőértékfeladat megoldása révén kapjuk meg. A fogyasztó az egyes természeti állapotokhoz tartozó fogyasztá-sának várható hasznosságát maximalizálja a kiinduló állapot (mint készletpont), valamint az esetleges biztosítási vagy szerencsejáték-piacok által diktált átváltási arány által meghatározott költségvetési korlát figyelembevételével fólia A Lagrange-függvény felírása után, az elsőrendű feltételek meghatározása révén olyan egyenletrendszerhez jutunk, melyből meghatározható a bizonytalanság melletti optimális fogyasztói döntés kritériuma: π u'( c1 ) γ =. π u'( c ) 1 γ 1 2 Szavakkal megfogalmazva: a fogyasztó optimumában a két természeti állapot fogyasztása közti helyettesítési határarány egyenlő lesz a két természeti állapot közti jövedelemátcsoportosítások piaci cserearányával. Vagyis a fogyasztó a különböző természeti állapotokbeli fogyasztását egymáshoz képest pontosan annyira értékeli, mint amennyiért át tudná csoportosítani fogyasztását vagy jövedelmét az egyik természeti állapotból a másikba a biztosítási vagy szerencsejáték-piacon. A költségvetési korlát és az optimumfeltétel segítségével meghatározható az optimális döntés, vagyis a kimenetelektől függő feltételes fogyasztási lehetőségeknek az a kombinációja, mely a fogyasztót a számára elérhető legmagasabb hasznossági szintre képes eljuttatni. A feltételes fogyasztási lehetőségek optimális kombinációja azt is meghatározza, hogy a kiinduló állapothoz (készletponthoz) képest milyen irányú és mértékű változtatásra van szükség. Az optimális fogyasztói döntés meghatározása révén a fogyasztási lehetőségek közötti átcsoportosítás optimális nagyságát is meghatározzuk fólia A ábra a döntési probléma grafikus megoldását mutatja. Jól viselkedő (konvex) preferenciák esetén az optimumpontban teljesül az érintőfeltétel: az egyes természeti állapotbeli fogyasztási lehetőségek közötti átváltási arány meg kell hogy egyezzen a határhasznok bekövetkezési valószínűséggel súlyozott arányával fólia A költségvetési korlát elemzésekor megmutattuk, hogy a biztosítási díj határozza meg a költségvetési egyenes meredekségét. Méltányos biztosításról beszélünk akkor, ha a biztosítási díj nagysága éppen egyenlő a kár várható értékével 4, azaz ha γ K = πk, 4 A biztosító várható profitja ekkor éppen nulla. 10

11 vagyis ha γ = π. 5 Méltányos (fair) biztosítás esetében a fogyasztó optimális döntése az alábbi lesz: fólia Vegyük észre: abban a pontban, ahol a közömbösségi görbe a bizonyossági egyenest metszi, a közömbösségi görbe meredeksége éppen megegyezik az egyes kimenetelekhez tartozó valószínűségek arányával. Ebből levonhatunk egy fontos következtetést: Ha egy kockázatkerülő fogyasztónak lehetősége van méltányos biztosítás kötni, akkor teljes mértékű biztosítást fog kötni. Ez azt jelenti, hogy fogyasztása a természeti állapotoktól függetlenedik. Ez az eredmény nem függ attól, hogy a kezdeti készletpont hol helyezkedett el. Lehetséges továbbá az is, hogy a fogyasztó nem köznapi értelemben vett biztosítással, hanem szerencsejátékkal jut el a bizonyossági egyenesre fólia A méltányos biztosítás a gyakorlatban nagyon ritka. Általános esetben a költségvetési korlát meredeksége eltér a valószínűségek arányától. A biztosítótársaságoknak ugyanis vannak működési költségei, melyeket abból finanszíroznak, hogy a kár várható értékénél magasabb díjat szednek be. (Ekkor viszont γ > π, hiszen: γ K > πk.) Mint a ábrán látható, a kár várható értékénél nagyobb biztosítási díj miatt azonban a fogyasztó csak részleges biztosítást köt. Fogyasztási lehetőségeinek szórását csökkenti ugyan, de azt teljes mértékben nem küszöböli ki fólia Elképzelhető az is, hogy a biztosítás valamilyen oknál fogva például az állam aktív szerepvállalása miatt túl olcsó. A kockázatkerülő fogyasztó ilyenkor túlbiztosítja magát. Ezt az esetet látjuk a ábrán A kockázat szétterítése A kockázatkerülő döntéshozók szeretnék biztosítással csökkenteni kockázatukat; méltányos biztosítás esetében pedig még arra is módjuk van, hogy teljesen kiküszöböljék a kockázatot. Hogyan lehetséges ez? Ki áll majd a tranzakció másik oldalán? Milyen elven működnek a kockázatot csökkentő intézmények? A legősibb elvek egyike a kockázat szétterítése, melyet, szervezett keretek között, tudomásunk szerint már az ókori Babilonban is alkalmaztak. Elmondunk ezzel kapcsolatban egy érdekes példát. A kereskedőkaravánok indítása az ókori Babilonban a zűrzavaros politikai állapotok miatt igen kockázatos vállalkozás volt. Ha a karaván sikerrel visszaért, akkor a kereskedő óriási haszonra tett szert, ha viszont nem járt szerencsével, akár a teljes vagyonát is elveszíthette. Hogy a kockázatot csökkentsék, a kereskedők társulásokat szerveztek. A társulások a kockázatmegosztás elvén működtek. Ha hatvan kereskedője 5 Emlékeztetőül: γ a biztosítási egységdíj, míg π a kár bekövetkezésének valószínűsége. 11

12 volt egy közösségnek, akkor minden egyes karavánt úgy indítottak útnak, hogy minden kereskedő egyhatvanad résszel vett részt a finanszírozásban. Ennek megfelelően a majdani haszonból egyenlően (egyhatvanad) arányban részesedtek. Könnyen belátható, hogy ezzel a technikával voltaképpen egy méltányos biztosítási konstrukciót hoztak létre. A fólia segítségével megmutatjuk, hogy miként fólia Induljunk ki abból az esetből, hogy mekkora kockázatot vállaltak volna egyenként, ha külön-külön indították volna útnak karavánjaikat: ki-ki a magáét. Jelöljük az i-edik kereskedő jövedelmének varianciáját Var( y i ) -vel! Feltesszük, hogy kereskedők egyéni jövedelmei egymástól független és azonos eloszlású valószínűségi változók. A jövedelmek függetlensége miatt az n kereskedőből álló babiloni kereskedőközösség együttes jövedelmének varianciája az egyedi jövedelmek varianciáinak összege lesz, vagyis: nvar (y). Mi változik meg attól, ha a kereskedők összeállnak, és megállapodnak abban, hogy mindegyikük a közösség átlagos jövedelmét kapja meg? A közösség mint egész jövedelmének varianciája ugyan változatlan marad, de az egy kereskedőre jutó jövedelem varianciája jelentősen lecsökken. A korábbiakkal ellentétben már csak Var ( y) / n lesz. A kereskedők a kockázat szétterítésével jelentős mértékben tudták a jövedelmüket érintő bizonytalanságot csökkenteni. A kölcsönös biztosítás gyökerei, ha nem is az ókori keletre, de a középkorba nyúlnak vissza. Képzeljük el, hogy tűz következtében egy háztulajdonost 1% valószínűséggel ér 100 arany kár. Amennyiben 100 háztulajdonos megállapodik, hogy mindannyian fizetnek egy közös kasszába évi egy aranyat, amelyből kifizetik a tűzkárokat, ugyanazt a várható értéket kapják, de mindannyian a bizonyossági egyenesen, azaz a fogyasztói optimumban vannak. Ez kölcsönös kassza is egy fair biztosítás Záró megjegyzések Ebben a fejezetben végig azt feltételeztük, hogy az egyes természeti állapotok valószínűsége és a gazdasági szereplők magatartása független egymástól. Ezzel kapcsolatban nagyon izgalmas kérdéseket lehet feltenni. Növekszik-e a tűz valószínűsége, ha a fair biztosítás elkényelmesít és gondatlanná tesz? Nem éppen azok akarnake síbaleset ellen biztosítást kötni, akik túlontúl vakmerően síelnek? Ezek a kérdések átvezetnek minket a következő fejezethez, az információs problémák közgazdaságtanához. 12

13 Függelék: A variancia két tulajdonsága Ha ξ egy véletlen valószínűségi változó, melynek varianciája (szórásnégyzete) Var (ξ ), valamint a és b tetszőleges konstansok, akkor igaz, hogy: 2 Var ( aξ + b) = a Var( ξ ). Ha ξ 1, ξ2,..., ξn független valószínűségi változók, és varianciáik léteznek, akkor létezik összegük varianciája is, melyre igaz, hogy: Var ξ + ξ ξ ) = Var( ξ ) + Var( ξ ) Var( ξ ). ( 1 2 n 1 2 n A bizonyítást tanulták valószínűségszámításban. 13

14 Neumann János ( ) Kenneth J. Arrow (1921 ) 14

15 25. előadás BIZONYTALANSÁG MELLÉKLET Kertesi Gábor Muraközy Balázs Varró László 15

16 25.1 A döntések időhorizontja és a bizonytalanság 16

17 25.2 Várható érték Ha a ξ (diszkrét) valószínűségi változó π valószínűségekkel az x értékeket 1, π2,, πn 1,x2,, xn veszi fel, akkor várható értéke az alábbi lesz: n E ( ξ) = π x π = 1). i= 1 i i; ( n i= 1 Példa: ξ a mikroökonómia tárgyból elért jegy, mint valószínűségi változó. Föltesszük, hogy π i (i=1,2,3,4,5) értékek a következők: i xi πi 0,00 0,25 0,25 0,25 0,25 π i x i 0,00 0,50 0,75 1,00 1,25 1,00 3,50 = 5 1π i= = E( ξ) i x i 17

18 25.3 Variancia Egy ξ valószínűségi változó varianciája nem más, mint a várható értéktől való négyzetes eltérések várható értéke, vagyis: Var( ξ) = E(( ξ E( ξ)) 2 ) = E( ξ 2 ) E 2 ( ξ) Példa: A mikroökonómia jegy varianciája, mint a várható érték körüli szóródás mérőszáma xi πi π i x i 2 π i x i ,00 0,25 0,25 0,25 0,25 0,00 0,50 0,75 1,00 1,25 0,00 1,00 2,25 4,00 6,25 1,00 3,50 13,50 = 5 1π i= = E( ξ) i x i = 5 1π i= 2 i x i = E( ξ 2 ) Var( ξ) = E( ξ 2 ) E 2 ( ξ) = 13,5 (3,5) 2 = 13,5 12,25 = 1,25 18

19 25.4 Fogyasztási lehetőségek biztosítás nélkül 19

20 25.5 Fogyasztási lehetőségek teljes biztosítással 20

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. ELTE TáTK Közgazdaságtudományi Tanszék. 5. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Kockázatos pénzügyi eszközök

Kockázatos pénzügyi eszközök Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem modellje az adós büntetésével Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem Nyitott gazdaságok makroökonómiája 1. Bevezetés modellje az adós büntetésével Teljes piacok, Arrow-Debreu-értékpapírok

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő 2. szemináriumi feladatok Fogyasztás/ megtakarítás Több időszak Több szereplő 1. feladat Egy olyan gazdaságot vizsgálunk, ahol a fogyasztó exogén jövedelemfolyam és exogén kamat mellett hoz fogyasztási/megtakarítási

Részletesebben

A FOGYASZTÓI MAGATARTÁS

A FOGYASZTÓI MAGATARTÁS A FOGYASZTÓI MAGATARTÁS Kiindulópont: a fogyasztó racionálisan viselkedik a termékek árai és a fogyasztó jövedelme mellett szükséglet-kielégítésének maximalizálására törekszik. A szükségletek kielégítéséhez

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

x jószágkombinációk halmaza,

x jószágkombinációk halmaza, . Tegyük fel, hogy egy piacon a kereslet és a kínálat az alábbi összefüggésekkel adhatók meg: Q = 60 p és Q = p/2, ahol p az árat jelöli forintban! A kormány elrendeli, hogy a termelőknek a szóban forgó

Részletesebben

DE! Hol van az optimális tőkeszerkezet???

DE! Hol van az optimális tőkeszerkezet??? DE! Hol van az optimális tőkeszerkezet??? Adósság és/vagy saját tőke A tulajdonosi érték maximalizálása miatt elemezni kell: 1. A pénzügyi tőkeáttétel hatását a részvények hozamára és kockázatára; 2. A

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Mikroökonómia 2009 őszi félév

Mikroökonómia 2009 őszi félév Mikroökonómia 2009 őszi félév Budapesti Corvinus Egyetem, Közgazdaságtudományi Kar. 3. előadás Fogyasztás és kereslet Előadó: Berde Éva A jelen előadás fóliáiban többször felhasználtam a Hirshleifer Glazer

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 0611 ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM MIKROÖKONÓMIA I. FELELETVÁLASZTÓS KÉRDÉSEK

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

A termelés technológiai feltételei rövid és hosszú távon

A termelés technológiai feltételei rövid és hosszú távon 1 /12 A termelés technológiai feltételei rövid és hosszú távon Varian 18. Rgisztrált gazdasági szervezetek száma 2009.12.31 (SH) Társas vállalkozás 579 821 Ebbıl: gazdasági társaság: 533 232 Egyéni vállalkozás

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Kiszorító magatartás

Kiszorító magatartás 8. elõadás Kiszorító magatartás Árrögzítés és ismételt játékok Kovács Norbert SZE GT Az elõadás menete Kiszorítás és információs aszimmetria Kiszorító árazás és finanszírozási korlátok A BOLTON-SCHARFSTEIN-modell

Részletesebben

REGIONÁLIS GAZDASÁGTAN

REGIONÁLIS GAZDASÁGTAN REGIONÁLIS GAZDASÁGTAN ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan VON THÜNEN-MODELLEK Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s: Békés Gábor 2011. július Vázlat 1 Mai

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Mit jelent az optimalizálás?

Mit jelent az optimalizálás? Mikroökon konómiai optimumfeladatok megoldási módszereim Alapvetõ deriválási szabálok. Feltételes szélsõ érték feladatok megoldása. Mit jelent az optimalizálás? feltételes szélsõérték-feladat döntési helzet

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata.

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. Amennyiben a következő oldalakon bármilyen hibát talál, legyen az szakmai probléma, vagy helyesírási hiba, esetleg ötlete, vagy

Részletesebben

6. előadás PREFERENCIÁK (2), HASZNOSSÁG

6. előadás PREFERENCIÁK (2), HASZNOSSÁG 6. előadás PREFERENCIÁK (), HASZNOSSÁG Kertesi Gábor Varian 3. fejezetének 50-55. oldalai és 4. fejezete alapján PREFERENCIÁK FEJEZET FOLYTATÁSA 6. A helyettesítési határarány Dolgozzunk mostantól fogva

Részletesebben

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. B. Készítette: K hegyi Gergely, Horn Dániel és Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

5. előadás KÖLTSÉGVETÉSI KORLÁT, PREFERENCIÁK (1)

5. előadás KÖLTSÉGVETÉSI KORLÁT, PREFERENCIÁK (1) 5. előadás KÖLTSÉGVETÉSI KORLÁT, PREFERENCIÁK (1) Kertesi Gábor Varian 2. fejezete, illetve 3. fejezetének 21-50. oldalai alapján 5.1 Bevezető megjegyzések A fogyasztó közgazdasági elmélete: a számunkra

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

8. előadás EGYÉNI KERESLET

8. előadás EGYÉNI KERESLET 8. előadás EGYÉNI KERESLET Kertesi Gábor Varian 6. fejezete, enyhe változtatásokkal 8. Bevezető megjegyzések Az elmúlt héten az optimális egyéni döntést elemeztük grafikus és algebrai eszközökkel: a preferenciatérkép

Részletesebben

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a

1000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a A merész játékok stratégiája A következő problémával foglalkozunk: Tegyük fel, hogy feltétlenül ki kell fizetnünk 000 forintos adósságunkat, de csak 600 forintunk van. Egyetlen lehetőségünk, hogy a még

Részletesebben

1. gyakorlat. Oktatási segédlet hallgatók számára

1. gyakorlat. Oktatási segédlet hallgatók számára másik termék mennisége. gakorlat Transzformációs görbe, mikroökonómiai optimumfeladatok megoldásának alapmódszere Oktatási segédlet hallgatók számára Eg fontos közgazdasági alapmodell TLH, alternatív költség,

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Gazdasági Információs Rendszerek

Gazdasági Információs Rendszerek Gazdasági Információs Rendszerek 7. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 Opció fogalma Az opció jövőbeni döntési lehetőséget jelent valami megtételére,

Részletesebben

13. előadás ÁLTALÁNOS EGYENSÚLY TISZTA CSEREGAZDASÁGBAN

13. előadás ÁLTALÁNOS EGYENSÚLY TISZTA CSEREGAZDASÁGBAN 3. előadás ÁLTLÁNOS EGYENSÚLY TISZT CSEREGZDSÁGN Kertesi Gábor Varian 9. fejezetének -4. és 6-8 alfejezetei alapján. 3. evezető félév során mindeddig egyetlen termék elszigetelt piacával foglalkoztunk..

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Növekedés és fenntarthatóság. NFFT műhelykonferencia 2014. június 4. Bessenyei István

Növekedés és fenntarthatóság. NFFT műhelykonferencia 2014. június 4. Bessenyei István Növekedés és fenntarthatóság NFFT műhelykonferencia 2014. június 4. Bessenyei István Egy példa Rókák a Nyulak Szigetén Hová vezet ez: Falánk rókák és kevéssé szapora nyulak esetén mindkét populáció kihal.

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Miért készítünk modellt Hogyan készítünk modellt. Dolgozat Házi feladatok Esettanulmányok MATLAB. Kétidőszakos modell. Kétidőszakos modell

Miért készítünk modellt Hogyan készítünk modellt. Dolgozat Házi feladatok Esettanulmányok MATLAB. Kétidőszakos modell. Kétidőszakos modell Követelmények Dolgozat Házi feladatok Esettanulmányok MATLAB Kétidőszakos modell Miért készítünk modellt Hogyan készítünk modellt Kétidőszakos modell Tematika a honlapon, www.makrokurzusok.wordpress.com

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28

Részletesebben

7. előadás EGYÉNI DÖNTÉS

7. előadás EGYÉNI DÖNTÉS 7. előadás EGYÉNI DÖNTÉS Kertesi Gábor Varian 5. fejezete változtatásokkal; kiegészítve a kiadásminimalizálási probléma tárgyalásával. Az előadás nem érinti az adók megválasztásának problémáját (Varian

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

TERMÉKTÁJÉKOZTATÓ DEVIZAÁRFOLYAMHOZ KÖTÖTT ÁTLAGÁRAS STRUKTURÁLT BEFEKTETÉSEKRŐL

TERMÉKTÁJÉKOZTATÓ DEVIZAÁRFOLYAMHOZ KÖTÖTT ÁTLAGÁRAS STRUKTURÁLT BEFEKTETÉSEKRŐL TERMÉKTÁJÉKOZTATÓ DEVIZAÁRFOLYAMHOZ KÖTÖTT ÁTLAGÁRAS STRUKTURÁLT BEFEKTETÉSEKRŐL Termékleírás A devizaárfolyamhoz kötött átlagáras strukturált befektetés egy indexált befektetési forma, amely befektetés

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

A vám gazdasági hatásai NEMZETKZÖI GAZDASÁGTAN

A vám gazdasági hatásai NEMZETKZÖI GAZDASÁGTAN A vám gazdasági hatásai NEMZETKZÖI GAZDASÁGTAN Forrás: Krugman-Obstfeld-Melitz: International Economics Theory & Policy, 9th ed., Addison-Wesley, 2012 A vám típusai A vám az importált termékre kivetett

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Buda-Cash Brókerház. Határidős piacok. Határidős üzletkötő

Buda-Cash Brókerház. Határidős piacok. Határidős üzletkötő Buda-Cash Brókerház Határidős piacok Sőre Balázs Határidős üzletkötő Elmélet A határidős ügylet célja, egy mögöttes termékben, adott időszak alatt bekövetkező, kedvezőtlen irányú árfolyamváltozás kockázatának

Részletesebben

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén Közgazdaságtan II. Mikroökonómia SGYMMEN202XXX Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd Tantárgyi leírás építőmérnök

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Felépítettünk egy modellt, amely dinamikus, megfelel a Lucas kritikának képes reprodukálni bizonyos makro aggregátumok alakulásában megfigyelhető szabályszerűségeket (üzleti ciklus, a fogyasztás simítottab

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

STEP by STEP (Lépésről lépésre) előgondoskodás befektetési alapokkal

STEP by STEP (Lépésről lépésre) előgondoskodás befektetési alapokkal STEP by STEP (Lépésről lépésre) előgondoskodás befektetési alapokkal Marketing információ Adatok megadása felelősségvállalás nélkül! Állapot: 2014.03. ÉRTÉKPAPÍROKBA történő BEFEKTETÉS A tőzsdéket továbbra

Részletesebben

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás

A jövedelem- és árváltozások hatása a fogyasztói döntésre. Az ICC görbe. Az Engel-görbe. 4-5. előadás 4-5. előadás A jövedelem- és árváltozások hatása a fogasztói döntésre ICC és Engel-görbe, PCC és egéni keresleti függvén. A iaci keresleti görbe származtatása. A fogasztói többlet. Kereslet-rugalmassági

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

A tıke alternatívaköltsége. Ingatlanfinanszírozás és befektetés. up módszer. Hatékony portfóliók. Portfólió. Becslés a piaci tapasztalatok alapján

A tıke alternatívaköltsége. Ingatlanfinanszírozás és befektetés. up módszer. Hatékony portfóliók. Portfólió. Becslés a piaci tapasztalatok alapján A tıke alternatívaköltsége Ingatlanfinanszírozás és befektetés efektetési portfóliók r, R A várható hozam kifejezi a várható kockázat mértékét ecslése: uild-up up módszerrel, Piaci tapasztalatok alapján,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 2007. május 25. 8:00 KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Populáció A populációk szerkezete

Populáció A populációk szerkezete Populáció A populációk szerkezete Az azonos fajhoz tartozó élőlények egyedei, amelyek adott helyen és időben együtt élnek és egymás között szaporodnak, a faj folytonosságát fenntartó szaporodásközösséget,

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK 1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3

Részletesebben

Mikróökonómia feladatok

Mikróökonómia feladatok kidolgozva A feladatok még hiányosak, folyamatosan frissítem őket! Utolsó frissítés: 007-04-04 19:13:47 1. oldal, összesen 44 oldal Konzultáció 006-10-6 1. feladat (Cobb-Douglas függvény) Józsi bácsi 100

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben