Biometria: Statisztikai módszerek alkalmazása a biológiában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Biometria: Statisztikai módszerek alkalmazása a biológiában"

Átírás

1 Biometria: Statisztikai módszerek alkalmazása a biológiában Statisztika alkalmazási területei: Adatok ellenőrzése, értelmezése, ábrázolása, Jellemző paraméterek származtatása Valószínűség hozzárendelése elemi eseményekhez, objektumok tulajdonságaihoz, lehetséges mérési kimenetekhez Hipotézis tesztelés, állítások valóságtartalmának megállapítása, modell jóságának vizsgálata Váltózók összefüggéseinek vizsgálata Kísérlettervezés Vizsgálatunk tárgya: (többféle interpretáció) Kísérletek kimenetele = objektumok tulajdonságai. Elemi esemény, Elemi esemény kimenetele Milyen típusú lehet egy statisztikai változó? (objektum tulajdonsága, kísérlet kimenetele): Nominális (nincs rendezettség) Ordinális (rendezett, de nincs kivonás) Intervallum (számok az összes műveletekkel) Abszolút (van 0, kezdőpont) Teljes rendszer: az összes objektum, amivel foglalkozunk. Lehet végtelen elemszámú, pld. egy kísérletet végtelen sokszot el lehet végezni. Reprezentetív minta: Valamely statisztikai vizsgálat tárgyát képező elemek összességét statisztikai sokaságnak nevezzük. Legtöbbször a vizsgálatot úgy végzik, hogy reprezentatív mintát alkotnak, azaz a vizsgálat számára fontos megkülönböztető ismérvek segítségével véletlenszerüen egy kisebb részhalmazt választanak ki. Ilyenkor a kapott eredményeket becslésnek kell tekinteni, és meg kell határozni a lehetséges hiba mértékét. A minta vizsgálatának eredményéből következtetünk a sokaságra, a minta vétele tehát az eredmények értéke szempontjából elsőrendűen fontos. A minta legyen (a) reprezentatív, összetételében képviselje helyesen a sokaságot, amelyből vették, (b) véletlen, a mintaelemek kerüljenek egymástól függetlenül, egyenlõ valószínűséggel a mintába, (c) elégséges méretű, elegendően nagy ahhoz, hogy a minta alapján levont következtetések kellően valószínűek legyenek. Hibakeresés nagy táblázatokban: Kiugró adatok keresése (gépelési hiba? De ellenőrizni kell) Az adatok direkt ábrázolása vagy szórás számítás Valószínűség hozzárendelése lehetséges kimenetelekhez: Elvégzünk egy mérést (vagy megállapítjuk egy objektum egy tulajdonságát) ennek van valamilyen kimenetele. Megállapítható a lehetséges kimenetelek halmaza. Kérdés: mi a valószínűsége annak, hogy ha még egyszer elvégezzük a mérést (vagy egy véletlenszerűen kiválasztott

2 objektumnak megnézzük az adott tulajdonságát) akkor az egy adott értéket vesz fel, vagy egy adott intervallumba esik? Ez a valószínűség mindig tetszőleges pontossággal megadható. Hogyan mérjük (becsüljük ezt a valószínűséget?) Sokszor elvégezzük a mérést és gyakoriság hisztogramot készítünk (Hányszor esett a mérési eredmény egy adott tartományba? Hányszor kaptunk egy adott értéket?). Relatív gyakoriság: gyakoriság értékek osztva a mérések számával. Állítás: amint a mérések száma tart a végtelenhez, a relatív gyakoriság tart az adott kimenetel előfordulási valószínűségéhez. Vagyis egy esemény előfordulási valószínűsége tetszőleges pontossággal mérhető.

3 Könnyebség: Ha a változó intevallum vagy abszolút típusú, akkor nagyon gyakran megállapítható az eloszlás sűrűségfüggvénye (egy függvény illeszthető a relatív gyakoriság hisztogramra) a következő tulajdonságokkal:. Sürüségfüggvény: 1) Egy adott intervallumban a sűrűségfüggvény alatti terület megadja annak a valószínűségét, hogy egy adott kimenetel abba az intervallumba esik. 2) A sűrűségfügg vény alatti terület a teljes lehetséges kimeneteli tartományban 1. Normál eloszlás: Egy kitüntetett sűrűségfüggvény, mely sokszor alkalmazható és két paraméterrel (átlag, szórás) megadható. Gyakran alkalmazható lsd. A központi határeloszlás-tétel. Tulajdonságai: egy csúcsa van, szimmetrikus, jellegzetes haranggörbe alak (lapultság, ferdeség =0)

4 Átlag: legvalószínűbb érték (a csúcs helye) Szórás: az eloszlás kiterjedését jellemzi. Az átleg közelében 1x szóráson belül van az adatok 68.2%-a Ha nem illeszthető normál eloszlás az adatokra (nem-parametrikus eset, ordinális változókra is), akkor a mediánnal és percentile-okkal jellemezhető az eloszlás. Medián: A lehetséges kimenetelek fele kisebb, fele nagyobb, mint a medián. X.-percentile: Az adatok x %-a kisebb, 100-x %-a nagyobb nála. Lehetséges kimenetelek valószínűségének ábrázolása parametrikus esetben átlag+szórás, nem parametrikus esetben boxplot mediánnal és 50. percentile-kal.

5 Standardizált normál eloszlás: 0 átlagú, 1-es szórású normál eloszlás Mérés kimenetelének valószínűségének számítása normál eloszlás esetén: Táblázat alapján (integrálra nincs zárt alak).

6 Ha a normál eloszlás átlagát és szórását n mérésből becsüljük, akkor f=n-1 szabadsági fokú t-eloszlást használunk a valószínűségek kiszámításához. N mérés átlagainak átlaga és szórása: átlag nem változik, szórás négyzetgyök(n)-ed részére csökken Hipotézis tesztelés: Általában két csoport átlagának összehasonlítására. H1(eredeti) hipotézis: x1átlag<> < > x2átlag H0 (alternatív) hipotézis: x1átlag=x2átlag ==>A két csoport összevonható, abból kiszámítható a mért adatok valószínűsége. Ha p<0.05 (szignifikancia szint) H0-t elvetjük, H1-t elfogadjuk. Ha nem, H0-t nem tudjuk elvetni, vagyis H1-t nem tudjuk elfogadni. Parametrikus vs. non-parametrikus tesztek: Ha a valószínűségi változó normál eloszlású (ez feltételezi, hogy legalább intervallum típusú) akkor parametrikus teszteket használunk, ha nem akkor nem-parametrikus teszteket használunk hipotézistesztelésre.

7 Modell jóságának tesztje:

8 NYUGAT-MAGYARORSZÁGI EGYETEM SAVARIA EGYETEMI KÖZPONT TERMÉSZETTUDOMÁNYI ÉS MŰSZAKI KAR BIOLÓGIA INTÉZET ÁLLATÖKOLÓGIAI VIZSGÁLATOK (gyakorlat)

9 É ÖSSZEÁLLÍTOTTA: GYURÁCZ JÓZSEF, SZINETÁR CSABA Az 1., 2., 3. fejezetek Lengyel Szabolcs (Debreceni Egyetem) munkája alapján SZOMBATHELY 2009

10 1. A biológiai vizsgálatok általános menete Modellezés Megfigyelés, elővizsgálat Kérdésfeltevés Hipotézis Predikció Adatgyűjtés Értékelés 1.1. Megfigyelés vagy elővizsgálat tárgya: folyamat vagy mintázat lépték-függő Mit figyelünk meg? lényeges és ténylegesen létező folyamatok vagy mintázatok 1.2. Kérdésfeltevés a jó kérdés: - lényegi (esszenciális) - nem túl általános, de nem is túl specifikus - egyszerű kérdő mondat - világos, logikusan következő az ökológia két alapvető kérdéstípusa: - referenciális jellegű deviációs alapkérdések: - Hol? Mikor? Mennyi? LEÍRÓ vizsgálatok - kauzális jellegű kényszerfeltételi alapkérdések: - Miért?, Hogyan? HIPOTÉZIS-TESZTELŐ vizsgálatok 1.3. A hipotézis háttérmagyarázat, feltevés A gondolatmenet 1. jelenség megfigyelése

11 2. az összes, egymást kölcsönösen kizáró hipotézis megfogalmazása 3. mindegyik hipotézisre vizsgálat 4. az(oka)t a hipotézis(eke)t, melye(ke)t nem tudunk megcáfolni, igaz -nak fogadjuk el A jó természettudományos hipotézisek: - megcáfolhatóak - egymást kölcsönösen kizáróak - belőlük egy vagy több predikció vezethető le - egyszerűen vannak fogalmazva Az alkalmazás korlátai: - igazi háttérmagyarázat nem szerepel a hipotézisek között - tér- és/vagy időbeli korlátok - a háttérmagyarázatok nem egymást kölcsönösen kizárók, egyszerre több háttérmagyarázat is érvényes lehet - háttérmagyarázatok függnek egymástól - a hipotéziseket nem lehet cáfolni, csak valószínűségekkel jellemezni Tanulság - megcáfolható hipotézisek - minden lehetséges hipotézist vegyünk sorra - MI A KÉRDÉS?, MI A HIPOTÉZIS? 1.4. Predikció állítás, mely: - a hipotézisből logikusan következik - statisztikailag tesztelhető - Melyik változó fontos a rendszerben? biológiai tartalom - Mely változókat és hogyan hasonlítunk össze? statisztikai tartalom - biológiai hipotézis = háttérmagyarázat - statisztikai hipotézis: két állítás - nullhipotézis, H0: egyik mennyiség = másik mennyiség - alternatív hipotézis, HA: egyik másik statisztikai tesztek működése: x y H0: x = y HA: x > y adatok teszt-statisztika számítása (képlet) p-érték (szignifikancia-szint H0 támogatottsága)

12 ha p értéke nagy (> 5%) H0 támogatottsága magas tapasztalt különbség csak a véletlen műve ha p < 5% H0 támogatottsága alacsony különbség nem csak a véletlen műve, hanem lényeges (szignifikáns) HA-t fogadjuk el

13 1.5. Adatgyűjtés lépései: 1. Fontos változók azonosítása 2. Mintavételi módszer kiválasztása 3. Szükséges mintanagyság meghatározása 4. Mintavétel 5. Adatok rendszerezése, feldolgozásra előkészítése A változók kiválasztása változó(k): mért mennyiség(ek) típusai: - folytonos vagy diszkrét - nominális, ordinális, intervallum- vagy arányskálán mérhető Skála Nominális Ordinális Intervallum Arány Definíció kvalitatív, nevekből áll nincs rangsor kvalitatív, rangsor lehetséges értékek közti távolság tetszőleges kvantitatív, rangsor, értékek közti különbség mutatja a távolságot önkényes nulla pont arányok nem értelmezhetők kvantitatív, rangsor, értékek közti intervallum mutatja a távolságot valódi nullapont arányok értelmezhetőek Hány változót mérjünk? o mindent mérjünk o ne mérjünk semmit A mintavételi módszer kiválasztása mérésnél figyelembe kell venni: - skála-függés - mérési hiba specifikumok: ld. később Példák ivar, betegség agresszivitás: erős, közepes, gyenge hőmérséklet ( C), IQ testsúly, magasság, életkor

14 A mintavétel ha nem tudunk minden objektumot mérni statisztikai populáció: az összes vizsgálati objektum, melyre eredményeink vonatkoztathatóak ( biológiai populáció!) pontosan tisztázandó!!! minta: a populációnak az a része, melyet valóságban is mérünk o statisztikai minta (mérések adathalmaz) o fizikai minta (pl. talajminta) mintavételi egység: amin a mérés fizikailag történik a mintavétel alapszabályai: 1. RANDOMIZÁCIÓ (VÉLETLENSZERŰ VÁLASZTÁS) - cél: a statisztikai populáció tagjai egyenlő eséllyel kerülhessenek a mintába - torz a minta, ha bizonyos egyedek - nagyobb valószínűséggel kerülnek a mintába, mint mások - bekerülése befolyásolja más egyedek bekerülését - a reprezentativitás legfőbb biztosítéka - használható zavaró tényezők, tendenciák hatásának kiszűrésére (pl.: napszakos, évszakos v. térbeli különbségek) - randomizálás menete: Pl.: hét békából három kiválasztása: 1. békák megszámozása (1-7): 2. random számok táblázata (részlet): minta meghatározása: 1., 4., ADATPONTOK FÜGGETLENSÉGE - mintavétel egység statisztikai populáció egyede - következmény: o egyik egység mintába kerülését a másik egység mintába kerülése nem befolyásolja o nincs kapcsolat az egyes mintavételi egységek között Pl.: kísérleti patkányok agresszivitása: - verekedőseket választjuk - véletlenszerűen választunk

15 3. STANDARDIZÁLÁS - egy változó bizonyos szinten való tartása - pl. napszakos, évszakos, térbeli stb. különbségek kiiktatására - zavaró tényezők: - standard szinten tartás (érvényesség, kivitelezhetőség ) - randomizálás előre tisztázni kell! 4. ISMÉTELT MÉRÉS - egy mérés nem mérés ismételt mérés statisztikai minta - mérés hibája becsülhető - mérés pontossága: - precizitás: ismételt mérések közelsége - akkurátusság: mért és valós érték közelsége - ismételhetőség: - saját kutatásunkon belül, időben és térben - más kutatások számára, időben és térben Miért elengedhetetlenül FONTOS a fenti szabályokat betartani? - ha nincs randomizálás: torz minta tendencia furcsa eredmények - ha az adatok nem függetlenek: elnagyolt mintaelemszám lényeges (szignifikáns) különbséget kaphatunk ott, ahol valójában nincs Mintanagyság meghatározása 18 négy módszer : - tapasztalat - statisztikai teszt erősségének meghatározásával (ld. később) - faj-minta görbe alapján: Kumulatív Fajok Új fajok Kumulatív terület (m2) száma száma fajszám Kumulatív fajszám

16 - a mért paraméter változási görbéje alapján: Testtömeg (g) ,9 6,7 4,9 14,7 12,3 3,9 11,7 7,7 7,3 10,9 Kumulatív átlagos testtömeg 10,9 8,8 7,5 9,3 9,9 8,9 9,3 9,1 8,9 9, Kumulatív átlagos testtömeg (g) Minta száma Adatok összerendezése és számítógépre vitele ne az eredeti adathordozókkal dolgozzunk (másolatok) 7 adatok számítógépre vitele, tárolása (+ biztonsági másolatok) 1.6. Értékelés 6 statisztikai módszerek: o az adatok kvantitatív leírására és összegzésére o következtetések levonására o adatokban levő különbségek és tendenciák objektív értékelésére kétféle megközelítés: - exploratív elemzés: - adatok felderítése, ábrázolása - leíró statisztikák számítása: átlag, medián, szórás, variancia, konfidencia intervallum stb. - konfirmatív ( megerősítő ) elemzés: - predikciók, különbségek, tendenciák vizsgálata statisztikai tesztek általános működése: mindig a nullhipotézist (H0-t) teszteljük, pl.: két minta átlagának összehasonlítása x 1. H0: x = y y HA: x > y 4 5 Min

17 2. adatok teszt-statisztika p (valószínűség) 3. p: szignifikancia-szint, H0 támogatottsága, a döntéshozatal alapja, kritikus értéke: 0,05 ha p > 0.05 H0-t elfogadjuk ha p < 0.05 H0-t elvetjük H0-t megtartjuk H0-t elvetjük H0 igaz jó döntés elsőfajú hiba: H0 hamis másodfajú hiba: jó döntés (elsőfajú hiba valószínűsége) p (szignifikancia-szint) a teszt menete: - kézzel: követni a receptkönyveket - komputerrel: 1. adatbevitel, adatrendezés, előkészítés 2. adatfile statisztikai program 3. a teszt meghatározása, program futtatása 4. eredmények vizsgálata és interpretálása Mitől függ, hogy egy különbség szignifikáns? - szórástól - mintaelemszámtól (ha, akkor a szórás ) - statisztikai próba érzékenységétől statisztikai tesztek két nagy csoportja: - parametrikus próbák: - populációs átlag becslése alapfeltétel a normál eloszlás és a varianciák homogenitása - érzékenyebbek - nemparametrikus próbák: - nem becsülnek paramétereket kevesebb feltétel - kevésbé érzékenyek minden statisztikai próba feltétele: - a random mintavétel - az adatpontok függetlensége statisztikai tesztek típusai: - átlagok összehasonlítására - két vagy több változó közötti kapcsolat vizsgálatára - eloszlások, gyakoriságok összehasonlítására, illeszkedésvizsgálat Alapvető biológiai megközelítések: megfigyelés (nincs beavatkozás) * kísérlet (beavatkozás, manipuláció) *

18 modellezés (logikai absztrakció) evolúciós összehasonlítás (több faj, általános tendenciák) 2. A MEGFIGYELÉS MÓDSZER 2.1. A megfigyelés megfigyelés a legáltalánosabb értelemben nem történik beavatkozás a rendszerbe, nem kontrollálunk egy tényezőt sem, pusztán adatgyűjtés történik hagyományos, gyakori, könnyen kivitelezhető megfigyelés vagy kísérlet? Példa: hegyi kecske és fafaj elterjedése Szempont Manipuláció Kezelés Kutatói irányítás Független változó Függő változó Statisztikai elemzés Elemzés módja Ok-okozati viszony Magyarázó erő Prediktív erő,költségigény Munkaigény Megfigyeléses módszer Nincs Nincs Minimális Kecskék száma - folytonos Facsemeték száma - folytonos Kevésbé érzékeny tesztek Korrelációanalízis Nem állapítható meg Kicsi Minimális Kicsi Kicsi belső érvényesség és külső érvényesség 2.2. A megfigyeléses módszer néhány jellemzője a mintavétel alapvető szabályai érvényesek (randomizáció, függetlenség, standardizálás, ismételhetőség stb.) mintavételi stratégia (kutatási terv) kidolgozása, megvitatása, átdolgozása munkaterv meg kell előznie az aktuális adatgyűjtést! adatgyűjtés megfigyeléssel: - legyen időnk a tervezésre és a terepen előre nem látható akadályozó tényezőkre is - ne legyenek prekoncepcióink, legyünk elfogulatlanok - felejtsük el a tervet, a bizonyítani kívánt hipotézist speciális mintavételi módszerek: ld. később 2.3. A megfigyeléses módszer az ökológiában hazai, egyed feletti szerveződési szintekkel foglalkozó biológia részei:

19 - szünfenobiológia: LEÍRÓ jellegű, megfigyeléses megközelítés (fenológia, chorológia, etológia) - (másik terület): OK-OKOZATI összefüggések, kísérletes módszerek (ökológia, viselkedésbiológia)

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató

Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana Domokos Tamás, módszertani igazgató A helyzetfeltárás célja A közösségi kezdeményezéshez kapcsolódó kutatások célja elsősorban felderítés,

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69)

STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) STATISZTIKAI MÓDSZEREK ALKALMAZÁSA SZABVÁNYOK ÁTTEKINTÉSE (ISO TC 69) 1. AZ ISO SZABVÁNYOK TÉRKÉPE 2. A SZABVÁNYOK BEMUTATÁSA 3. HASZNÁLATI TANÁCSOK 4. A STATISZTIKAI SZABVÁNYOK ÉS AZ ISO 9001 5. JAVASLATOK

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Az értékelés során következtetést fogalmazhatunk meg a

Az értékelés során következtetést fogalmazhatunk meg a Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1

A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Vargha András Károli Gáspár Református Egyetem Budapest

Vargha András Károli Gáspár Református Egyetem Budapest Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai

Részletesebben

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015 A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,

Részletesebben

Hanthy László Tel.: 06 20 9420052

Hanthy László Tel.: 06 20 9420052 Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Sta t ti t s i zt z i t k i a 1. előadás

Sta t ti t s i zt z i t k i a 1. előadás Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Sta t ti t s i zt z i t k i a 3. előadás

Sta t ti t s i zt z i t k i a 3. előadás Statisztika 3. előadás Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan A statisztika, mint gyakorlati tevékenység a tömegesen előforduló jelenségek egyedeire vonatkozó információk

Részletesebben

NYUGAT-MAGYARORSZÁGI EGYETEM SAVARIA EGYETEMI KÖZPONT TERMÉSZETTUDOMÁNYI ÉS MŰSZAKI KAR BIOLÓGIA INTÉZET ÁLLATÖKOLÓGIAI VIZSGÁLATOK (GYAKORLAT)

NYUGAT-MAGYARORSZÁGI EGYETEM SAVARIA EGYETEMI KÖZPONT TERMÉSZETTUDOMÁNYI ÉS MŰSZAKI KAR BIOLÓGIA INTÉZET ÁLLATÖKOLÓGIAI VIZSGÁLATOK (GYAKORLAT) NYUGAT-MAGYARORSZÁGI EGYETEM SAVARIA EGYETEMI KÖZPONT TERMÉSZETTUDOMÁNYI ÉS MŰSZAKI KAR BIOLÓGIA INTÉZET ÁLLATÖKOLÓGIAI VIZSGÁLATOK (GYAKORLAT) É 1 2 3 2 4 5 6 7 ÖSSZEÁLLÍTOTTA: GYURÁCZ JÓZSEF, SZINETÁR

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Dr. Piskóti István Marketing Intézet. Marketing 2.

Dr. Piskóti István Marketing Intézet. Marketing 2. Kutatni kell kutatni jó! - avagy a MIR és a marketingkutatás módszerei Dr. Piskóti István Marketing Intézet Marketing 2. Marketing-menedzsment A marketing összes feladatát és aktivitásait összefoglalóan,

Részletesebben

Adatelemzés az R-ben. 2014. április 25.

Adatelemzés az R-ben. 2014. április 25. Adatelemzés az R-ben 2014. április 25. Kísérleti adatok elemzése Kísérlet célja: valamilyen álĺıtás vagy megfigyelés empirikus és szisztematikus tesztelése. Pl. a nők többet beszélnek, mint a férfiak,

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

A társadalomkutatás módszerei I.

A társadalomkutatás módszerei I. A társadalomkutatás módszerei I. 2. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 22. Outline 1 Bevezetés 2 Társadalomtudományi módszerek Beavatkozásmentes vizsgálatok Kvalitatív terepkutatás

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

3. A mintavételi kockázat elfogadható szintjének meghatározása (pl. 5 vagy 10%)

3. A mintavételi kockázat elfogadható szintjének meghatározása (pl. 5 vagy 10%) MINTAVÉTELEZÉSI ELJÁRÁSOK A mintavételezés célja A statisztikai és nem statisztikai mintavételi eljárások során az ellenőr megtervezi és kiválasztja az ellenőrzési mintát, valamint kiértékeli a mintavétel

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Bevezetés a statisztikába

Bevezetés a statisztikába Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 9. Bevezetés a statisztikába Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.

Részletesebben

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15.

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. 1 3.3.3 Minősítési rendszerek és a kockázatok számszerűsítése Minősítések hozzárendelése PD, LGD, CF meghatározása Közös vizsgálati

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom

Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Populációbecslések és monitoring 2. előadás tananyaga

Populációbecslések és monitoring 2. előadás tananyaga Populációbecslések és monitoring 2. előadás tananyaga 1. A becslések szerepe az ökológiában. (Demeter és Kovács 1991) A szabadon élő állatok egyedszámának kérdése csak bizonyos esetekben merül fel. De

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

PEDAGÓGIAI KUTATÁS KVANTITATÍV MÓDSZEREI. T. Parázsó Lenke

PEDAGÓGIAI KUTATÁS KVANTITATÍV MÓDSZEREI. T. Parázsó Lenke PEDAGÓGIAI KUTATÁS KVANTITATÍV MÓDSZEREI T. Parázsó Lenke Kutatás fogalma A kutatás alatt értendő valamilyen tudatosult igény, probléma megoldására irányuló megoldási folyamat, melynek során a jelenséget

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS

Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS Valószínűségszámítás és Statisztika I. zh. 2014. november 10. - MEGOLDÁS 1. Kihasználva a hosszasan elhúzódó jó időt, kirándulást szeretnénk tenni az ország tíz legmagasabb csúcsa közül háromra az elkövetkezendő

Részletesebben

Hol terem a magyar statisztikus?

Hol terem a magyar statisztikus? Hol terem a magyar statisztikus? 90 éves az MST jubileumi konferencia Balatonőszöd, 2012. november 15-16. Rappai Gábor PTE KTK Ki a statisztikus? Értelmező Szótár Statisztikával foglalkozó szakember. Etikai

Részletesebben

Pszichometria Szemináriumi dolgozat

Pszichometria Szemináriumi dolgozat Pszichometria Szemináriumi dolgozat 2007-2008. tanév szi félév Temperamentum and Personality Questionnaire pszichometriai mutatóinak vizsgálata Készítette: XXX 1 Reliabilitás és validitás A kérd ívek vizsgálatának

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Ittfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat.

Ittfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat. 1 Ittfoglalomösszea legfontosabbtudnivalókat, részleteka honlapon, illetvea gyakorlatvezetőtől is kaptok információkat. A statisztika tanulásához a legtöbb infomrációkat az előadásokon és számítógépes

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus

Részletesebben