II. Állapottér-reprezentáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "II. Állapottér-reprezentáció"

Átírás

1 Állapottér-reprezentáció elemei II. Állapottér-reprezentáció Állapottér: a feladat homlokterében álló adat (objektum) lehetséges értékeinek (állapotainak) halmaza lényegében egyetlen típusérték-halmaz és annak összetett szerkezetű reprezentációja a típus invariánssal Műveletek: állapotból állapotba vezetnek megadásukhoz: előfeltétel és hatás-leírás Kezdő állapot(ok) vagy azokat leíró kezdőfeltétel Célállapot(ok) vagy feltétel Megoldás: műveletek sorozata Az állapottér általában nem azonos a problématérrel, hiszen a problématér elemei, azaz a lehetséges válaszok a műveletsorozatok, nem pedig az állapotok. Kiinduló válasz a kezdő állapotból induló nulla hosszú műveletsorozat Egy műveletsorozatnak (válasznak) szomszédjai azok a sorozatok, amelyek egy újabb művelettel hosszabbak. Hanoi tornyai probléma Kezdőállapot Célállapot [,,] C B A [,,] A B C Állapottér: Állás = vec( [A,B,C];{,,}) megjegyzés : a rudakon lentről felfelé csökkenő méret szerint helyezkednek el a korongok Művelet: Rak(honnan, hová):állásállás HA a-ban (a:állás) a honnan nem üres, és a hová üres vagy a legfelső korongja nagyobb, mint honnan legfelső korongja AKKOR a[honnan legfelső korongja] := hová Művelet: Rak(honnan, hová):állásállás (a:állás) Implementáció l,i=search i=a..c (a[i]=honnan) i-t akarjuk mozgatni l,j=search i=a..c (a[j]=hová) j-re akarunk rakni Hanoi tornyai [,,] [,,] [,,] állapot gráf [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] HA l és (l vagy i<j) AKKOR a[i] := hová [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,] [,,]

2 Állapottér-reprezentáció állapot gráfja Állapot gráf az állapottér-repr. reprezentációs gráfja állapot csúcs művelet hatása irányított él művelet költsége élköltség kezdő állapot csúcs állapotok csúcsok műveletsorozat hatása irányított út Az útkeresés hatékonysága a problématér bonyolultságán múlik, ami a reprezentációs gráf (itt ez az állapotgráf) bonyolultságától függ csúcsok és élek száma ( csúcs, csúcsból kivezető él max: ) utak száma, hossza (adott csúcsból kivezető k hosszú utak száma, ha a közvetlen visszalépést kizárjuk: k ) körök gyakorisága és hossza általános állapot n-királynő probléma. feltétel Állapottér: Tábla = mátrix([..n,..n];{, _ }) invariáns: a királynők ( jelű mezők) száma = n Művelet: Áthelyez(x,y,u,v):TáblaTábla (a:tábla) HA (a[x,y]=) és (a[u,v]=_ ) AKKOR a[x,y], a[u,v] := a[u,v], a[x,y] Sok modellje lehet ugyanannak a feladatnak: keressük meg a legkisebb problématerűt o Az. reprezentációban az állapottér mérete : de még ennél is nagyobb egy adott állapotból kiinduló utak száma (azaz a problématér mérete.) n n o Bővítsük az állapotteret az n-nél kevesebb királynőt tartalmazó állásokkal, de használjunk új műveletet : a királynő-felhelyezést. Ekkor a problématér csak a legfeljebb n hosszú utakból áll majd, és a megoldást a pontosan n hosszúak között találjuk. o A műveletek előfeltételének szigorításával csökken a problématér: - Először az első sorba, aztán a másodikba, és így tovább helyezzünk fel egy-egy királynőt! Ekkor az n hosszú utak száma: n n - Ütést tartalmazó állásra ne rakjunk fel újabb királynőt! kezdőállapot n-királynő probléma. közbülső állapot állapot Állapottér: Tábla = mátrix([..n,..n];{, _ }) invariáns: a királynők ( jelű mezők) száma n csak az első valahány sorban van egy-egy királynő Művelet: Helyez(oszlop):TáblaTábla (a:tábla) HA királynők száma < n és nincs ütés a táblán és jelölje a sor a soron következő üres sort AKKOR a[sor,oszlop] := 9 0 A művelet előfeltételének bonyolultsága csökkenthető ha o az állapotteret (vagy annak invariánsát) módosítjuk és o a művelet hatását ennek megfelelően szigorítjuk (ugyanaz a megszorítás vándorol a specifikáción belül) Például o A királynők számát eltároljuk az állapotban (ebből ismert lesz a következő üres sor is) ahelyett, hogy mindig kiszámolnánk. o Kikötjük az invariánsban, hogy nincs ütés a táblán ahelyett, hogy ezt mindig ellenőrizzük. Ennek betartásához azonban nem szabad alkalmazunk olyan műveletet, ami ütést hoz létre. o De ha tároljuk, hogy mely üres mezőket tartanak ütés alatt a királynők, akkor konstans időben eldönthető, hogy egy újonnan elhelyezett királynő ütné-e az előzőeket. kezdőállapot: db = 0 n-királynő probléma. közbülső állapot: db = állapot : db = Állapottér: Tábla = rec(m:mátrix([..n,..n];{,, _ }), db:n) invariáns: csak az első db sorban van egy-egy királynő (), db n, királynők nem ütik egymást, egy királynő által ütésben álló (foglalt) üres mezőt, _ az ütésben nem álló szabad mezőt jelöli

3 n-királynő probléma. -királynő állapot gráf Művelet: új királynő felhelyezése a soron következő üres sor szabad mezőjére (invariáns tartó művelet) Helyez(oszlop):TáblaTábla (a:tábla) HA a. db < n és a.m[a.db+,oszlop]= _ AKKOR a.db:=a.db+ a.m[a.db,oszlop] := minden megfelelő i,j -re: a.m[i,j] := Kezdőállapot: a.m üres mátrix, a.db=0 Célállapot: a.db=n kezdőállapot: tetszőleges Tologató játék (-as, -ös) állapot: szokásos Állapottér: Tábla = rec(mátrix:{0..}, üreshely :{..} {..}) invariáns: a mátrix sorfolytonos kiterítése a 0.. számok permutációja, az üreshely a 0 elem sor és oszlopindexe. Művelet: Tol(irány):TáblaTábla (a:tábla) HA a.üreshely+irány egy érvényes pozíció AKKOR a.mátrix[a.üreshely], a.mátrix[a.üreshely+irány] := a.mátrix[a.üreshely+irány], a.mátrix[a.üreshely] a.üreshely := a.üreshely+irány A keresés szempontjából a reprezentációs gráfnak csak a csúcsból elérhető része érdekes, ez az, amit egy keresés felfedhet a gráfból. A felfedett részt (a keresési teret) is sokszor csak torzultan látja : Ha a keresés nem vizsgálja, hogy egy már korábban elért állapotba jutott-e el újra, akkor nem az eredeti állapot gráfot, hanem annak fává kiegyenesített változatát látja. Nem feltétlenül baj, ha a keresési tér végtelen nagy lesz, ha cserébe nincsenek már benne körök. A szülőcsúcsba való visszalépést viszont érdemes direkt módon kizárni, hiszen így egy egyszerű vizsgálattal felesleges éleket, oda-vissza köröket hagyhatunk el a keresési térből. állapot Keresési tér duplikátum Fekete-fehér kirakó Egy n+m+ hosszú sínen n fekete és m fehér lapka és egy üres hely van. Egy lapkát szomszédos üres helyre tolhatunk vagy a szomszéd felett üres helyre ugrathatunk. Kezdetben a feketék után jönnek a fehérek, majd az üres hely. Kerüljenek a fehérek a feketék elé! Állapottér: Sín =rec(v:vec( [..n+m+];{b, W,_}), poz:[.. n+m+]) invariáns: egy üres hely, poz az üres hely inexe, n darab B és m darab W Műveletek: TolBal, TolJobb, UgrikBal, UgrikJobb: Sín Sín Például: TolBal (üres helyet toljuk balra) HA a.poz (a : Sín) AKKOR a.v[a.poz-] a.v[a.poz] : a.poz :=a.poz- Kezdőállapot: [B,, B, W,, W, _ ] Célállapot: i,j [.. n+m+], i<j : (a.v[i]=b a.v[j]=w)

4 0 m Fekete-fehér kirakó állapot gráfja Kancsók problémája B _ W W _ B W W W B _ W W B W _ W _ W B B W W W W B B W _ W _ W B W W _ B W W W B _ W W _ B Három kancsóban, egy öt, három és két literesben, együttesen liter bor van. Kezdetben az öt literes kancsó van tele. Töltögetéssel érjük el, hogy a két literesbe pontosan liter bor kerüljön! Állapottér: Kancsók= vec( [,,];[0..]) invariáns: i [,,] v[i] = i{,,}: v[i]i Kezdő állapotból elérhető állásokban egyik kancsó üres vagy teli. Művelet: Tölt(i,j): Kancsók Kancsók (v : Kancsók) HA i,j[,,] ij min(v[i], j-v[j])>0 AKKOR v[i],v[j] := v[i]-min(v[i], j-v[j]),v[j]+min(v[i], j-v[j]) Kezdőállapot: (, 0, 0) Célállapot: (x, y, ) ahol x [0..], y [0..], x+y= 9 0 Kancsók-probléma állapot gráfja Kancsók-probléma állapot gráfjának másik ábrázolása l 0 l 0 Műveletek: ütközésig l - l l - l l - l l 0 Misszionárius kannibál probléma Misszionárius kannibál állapot gráf n misszionárius és n kannibál át akar kelni egy folyón egy h személyes csónakban az evezés nem Állapottér: Part = rec(m:[0..n], k:[0..n], c:l) külön állapot invariáns: nincs emberevés, azaz I(m,k) m=k m=0 m=n Kezdőállapot: (n,n,igaz) Célállapot: (0,0,hamis) Műveletek: Át(x,y):PartPart és Vissza(x,y):PartPart (a:part) HA a.c xa.m ya.k HA a.c xn a.m yn a.k x+yh I(a.m x, a.k y) x+yh I(a.m+x, a.k+y) AKKOR a.c:=hamis : AKKOR a.c:=igaz : a.m:=a.m x: a.k:=a.k y a.m:=a.m+x: a.k:=a.k+y Ha egy átevezés előtt és után nincs emberevés, akkor a csónakban sincs. a megoldási út folytonos és szaggatott élek váltakozó sorozata Vissza(0,) Át(0,) (,0) hamis igaz 0 k (,,) esetnél állapot (0,0) (,) (0,) Megoldhatóság feltétele: h vagy h- n

5 SAT kielégíthetőségi probléma. SAT kielégíthetőségi probléma. Adott egy KNF nullad-rendű formula n darab ítéletváltozóval. Pl: F(x) = (x x x ) (x x x ) (x x ) (x x x ) A változók milyen értéke mellett lesz az F formula igaz? Állapottér: I = vec( [..n];{igaz, hamis}) Művelet: Vált(i): I I (a : I) a[i] := a[i] Kezdőállapot: tetszőleges interpretáció Célállapot: F-nek a állapot szerinti interpretációja igaz Hogyan csökkenthető a problématér mérete? Adott egy KNF nullad-rendű formula n darab ítéletváltozóval és K darab klózban. A változók milyen értéke mellett lesz a formula igaz? Állapottér: I = rec(v: vec ( [..n];{igaz, hamis, }), i:n, db:n) invariáns: az első i változónak van már értéke és db az igaz klózok száma 0 i n, 0 db K Műveletek: Igaz: I I és Hamis: I I (a : I) i := i+: a.v[i] := igaz i := i+: a.v[i] := hamis a.db újraszámolása az i-dik változót tartalmazó klózokban Kezdőállapot: ([,, ], 0) Célállapot: a.db=k SAT állapot gráfok Feladatok. reprezentáció Állapot gráf: csúcsok (állapotok) száma: n. Minden csúcsból n él indul ki, bármelyik csúcsból bármelyik csúcsba el lehet jutni. Adott csúcsból induló K hosszú utak száma n K, A legfeljebb K hosszú utak száma (ami a problématérnek csak egy része) : (n K )/(n ). reprezentáció Állapot gráf: K mélységű bináris fa, csúcsok (állapotok) száma: K+ Problématér elemei: csúcsból induló K hosszú utak. Száma: K. Utazó ügynök probléma. Gráf színezési probléma. Sakktábla bejárása lóval. Rubik kocka. Bűvös négyzet. -ös mátrix 0,-esekkel úgy, hogy minden -es más. Ábrarajzolás egy vonallal. Útvonal tervezés városban (egyirányú utcák) 9. Nagypapa játéka

II. Állapottér-reprezentáció

II. Állapottér-reprezentáció II. Állapottér-reprezentáció 1 Állapottér-reprezentáció elemei Állapottér: a feladat homlokterében álló adategyüttes (objektum) lehetséges értékeinek (állapotainak) halmaza lényegében egyetlen típusérték-halmaz

Részletesebben

Modellezés Gregorics Tibor Mesterséges intelligencia

Modellezés Gregorics Tibor Mesterséges intelligencia Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran

Részletesebben

1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?

1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? 2012. 06. 20. 1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? A heurisztika olyan, a feladathoz kapcsolódó ötlet, amelyet közvetlenül építünk be egy algoritmusba, azért,

Részletesebben

1. AZ MI FOGALMA. I. Bevezetés. Ers mesterséges intelligencia (EMI) Gyenge mesterséges intelligencia. MI története. Els szakasz (60-as évek)

1. AZ MI FOGALMA. I. Bevezetés. Ers mesterséges intelligencia (EMI) Gyenge mesterséges intelligencia. MI története. Els szakasz (60-as évek) 1. AZ MI FOGALMA I. Bevezetés 1. A mesterséges intelligencia (MI) fogalma 2. Probléma modellezés 3. Keres rendszerek az MI-ben 1956 nyár. Darthmouth College-i konferencia Kezdeti cél: Az emberi gondolkodás

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények: 1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Evolúciós algoritmusok

Evolúciós algoritmusok Evolúciós algoritmusok Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen

Részletesebben

Állapottér reprezentáció/level1

Állapottér reprezentáció/level1 Állapottér reprezentáció/level1 kecske káposzta A tutajosnak át kell szállítani a folyó másik partjára egy farkast, egy kecskét és egy káposztát. A csónakban egyszerre csak az egyiket viheti át a három

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia

Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri

Részletesebben

Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi

Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,

Részletesebben

Keresések Gregorics Tibor Mesterséges intelligencia

Keresések Gregorics Tibor Mesterséges intelligencia Keresések ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus

Részletesebben

Algoritmizálás, adatmodellezés 1. előadás

Algoritmizálás, adatmodellezés 1. előadás Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Logika és számításelmélet. 11. előadás

Logika és számításelmélet. 11. előadás Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Felvételi vizsga mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

38. A gráfalgoritmusok alkalmazása

38. A gráfalgoritmusok alkalmazása 38. A gráfalgoritmusok alkalmazása Állapotok és átmenetek A gráf adattípus nagyon sokféle feladat megoldásánál alkalmazható. Rejtvények, játékok, közlekedési és szállítási problémák, stratégiai feladatok

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények: 1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált

Részletesebben

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez

ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez Az MI az informatikának az a területe, amelyik az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,

Részletesebben

Hatékonyság 1. előadás

Hatékonyság 1. előadás Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek)

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek) 1. AZ MI FOGALMA I. Bevezetés Nincs pontos definíció Emberi gondolkodás számítógépes reprodukálása Intelligens viselkedésű programok Az ember számára is nehéz problémák számítógépes megoldása Intellektuálisan

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Szoftver-modellellenőrzés absztrakciós módszerekkel

Szoftver-modellellenőrzés absztrakciós módszerekkel Szoftver-modellellenőrzés absztrakciós módszerekkel Hajdu Ákos Formális módszerek 2017.03.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 BEVEZETŐ 2

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök

21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök 2. Adatszerkezetek Az adattípus absztrakciós szintjei http://people.inf.elte.hu/fekete/docs_/adt_ads.pdf Absztrakt adattípus (ADT) Az adattípust úgy specifikáljuk, hogy szerkezetére, reprezentálására,

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y. Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000

Részletesebben

Alkalmazott modul III 3. feladatcsoport. Közös követelmények:

Alkalmazott modul III 3. feladatcsoport. Közös követelmények: Alkalmazott modul III 3. feladatcsoport Közös követelmények: A program játékfelületét dinamikusan kell létrehozni futási időben. Egyes feladatoknál különböző méretű játékmezők létrehozását kell megvalósítani,

Részletesebben

24. MINIMÁLIS KÖLTSÉGŰ UTAK I.

24. MINIMÁLIS KÖLTSÉGŰ UTAK I. 24. MINIMÁLIS KÖLTSÉGŰ UTAK I. Az útvonaltervezés az egyik leggyakrabban végrehajtott eljárása a gráfok alkalmazásai körében. A feladat például a közlekedésben jelentkezik. A gráfot itt az a térkép jelenti,

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

AZ INFORMATIKA LOGIKAI ALAPJAI

AZ INFORMATIKA LOGIKAI ALAPJAI AZ INFORMATIKA LOGIKAI ALAPJAI Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 4. gyakorlat Interpretáció A ϱ függvényt az L (0) = LC, Con, Form nulladrendű nyelv egy

Részletesebben

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

MestInt gyakorlat visszalépéses keresés

MestInt gyakorlat visszalépéses keresés MestInt gyakorlat visszalépéses keresés Probléma leírása N királynő probléma Az n királynő probléma, azt a kérdést veti fel, hányféleképpen lehet lerakni n darab királynőt egy n n-es táblán úgy, hogy a

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Algoritmizálás és adatmodellezés 2. előadás

Algoritmizálás és adatmodellezés 2. előadás Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

Adatszerkezetek 1. Dr. Iványi Péter

Adatszerkezetek 1. Dr. Iványi Péter Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE

Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E

5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E 5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus

Részletesebben

10. előadás Speciális többágú fák

10. előadás Speciális többágú fák 10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35 Grafika I. Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László:

Részletesebben

Mesterséges intelligencia

Mesterséges intelligencia Mesterséges intelligencia Problémák és az útkeresések kapcsolata Az MI problémái, hogy a megoldandó feladatai nehezek, hatalmas a lehetséges válaszok tere (problématér), a helyes válaszok megtalálása intuíciót,

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és

Részletesebben