II. Állapottér-reprezentáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "II. Állapottér-reprezentáció"

Átírás

1 II. Állapottér-reprezentáció 1

2 Állapottér-reprezentáció elemei Állapottér: a feladat homlokterében álló adategyüttes (objektum) lehetséges értékeinek (állapotainak) halmaza lényegében egyetlen típusérték-halmaz és annak összetett szerkezetű reprezentációja a típus invariánssal Műveletek: állapotból állapotba vezetnek megadásukhoz: előfeltétel és hatás-leírás Kezdő állapot(ok) vagy azokat leíró kezdőfeltétel Célállapot(ok) vagy célfeltétel 2

3 Megjegyzés Megoldás: műveletek sorozata Az állapottér általában nem azonos a problématérrel, mert a problématér elemei, azaz a lehetséges válaszok többnyire a kezdőállapotból induló műveletsorozatok, nem pedig az állapotok. A kiinduló válasz a kezdő állapotból induló nulla hosszú műveletsorozat Egy műveletsorozatnak (válasznak) szomszédjai azok a sorozatok, amelyek egy művelettel hosszabbak. 3

4 Hanoi tornyai probléma Kezdőállapot Célállapot Állapottér: Állás ={1,2,3} n megjegyzés : a rudakon lentről felfelé csökkenő méret szerint helyezkednek el a korongok. Egydimenziós, 1..n intervallummal indexelt n elemű tömb, amely elemeit az {1,2,3}-ból veszi Művelet: Rak(honnan, hová):állás Állás [3,3,3] [1,1,1] HA a-ban (a:állás) a honnan nem üres, és a hová üres vagy a legfelső korongja nagyobb, mint honnan legfelső korongja AKKOR a[honnan legfelső korongja] := hová 4

5 Implementáció Művelet: Rak(honnan, hová):állás Állás (a:állás) l1,i=search i 1..n (a[i]=honnan) i-t akarjuk mozgatni l2,j=search j 1..n (a[j]=hová) j-re akarunk rakni HA l1 és ( l2 vagy i<j) AKKOR a[i] := hová 5

6 Hanoi tornyai [3,3,3] start állapot-gráf [2,3,3] [1,3,3] [2,1,3] [1,2,3] [1,1,2] [1,1,3] [3,1,3] [3,2,3] [2,2,3] [2,2,1] [3,1,2] [2,1,2] [1,2,1] [3,2,1] [3,2,2] [2,3,2] [1,3,1] [3,1,1] [2,2,2] [1,2,2] [1,3,2] [3,3,2] [3,3,1] [2,3,1] [2,1,1] [1,1,1] cél

7 Állapottér-reprezentáció állapot-gráfja Állapot-gráf az állapottér-repr. reprezentációs gráfja állapot csúcs művelet hatása irányított él művelet költsége élköltség kezdő állapot startcsúcs célállapotok célcsúcsok műveletsorozat hatása irányított út Az útkeresés hatékonysága a problématér bonyolultságán múlik, ami az állapot-gráf bonyolultságától függ csúcsok és élek száma (3 n csúcs, 1 csúcsból kivezető él max: 3) utak száma, hossza (adott csúcsból kivezető k hosszú utak száma, ha a közvetlen visszalépést kizárjuk: 2 k ) körök gyakorisága és hossza 7

8 n-királynő probléma 1. általános állapot célfeltételnek megfelelő állapot kétdimenziós tömb (n n-es mátrix) Állapottér: Tábla = {, _ } n n amely elemeit a {, _ }-ból veszi invariáns: egy állapotban a királynők ( jelű mezők) száma = n Művelet: Áthelyez(x,y,u,v):Tábla Tábla HA (a[x,y]=) és (a[u,v]=_ ) (a:tábla) AKKOR a[x,y] a[u,v] 8

9 Problématér mérete Sok modellje lehet ugyanannak a feladatnak: keressük meg a legkisebb problématerűt o o o Most annyi állapot van, ahányféleképpen n királynőt elhelyezhetünk. Ennél jóval nagyobb a problématér, azaz egy adott állapotból kiinduló utak halmaza, hiszen egy állapotból n*(n 2 n) féleképpen lehet továbblépni, és egymás után végtelen sok ilyen lépést lehet tenni. Bővítsük az állapotteret az n-nél kevesebb királynőt tartalmazó állásokkal, de használjunk új műveletet : a királynő-felhelyezést. A problématér a legfeljebb n hosszú utakból áll majd, és a megoldást a pontosan n hosszúak között találjuk. Ezek száma: A műveletek előfeltételének szigorításával csökkenhet a problématér: - Sorról sorra csak egy-egy királynőt helyezzünk fel a táblára! Ekkor az n hosszú utak száma: n n - Ez tovább csökkenthető, ha ütést tartalmazó állásra nem rakunk fel újabb királynőt! 9

10 kezdőállapot n-királynő probléma 2. célállapot Állapottér: Tábla = {, _ } n n invariáns: a királynők ( jelű mezők) száma n csak az első valahány sorban van egy-egy királynő Művelet: közbülső állapot Helyez(oszlop):Tábla Tábla HA a táblán (a:tábla) a királynők száma < n és nincs ütés és a sor a soron következő üres sort jelöli AKKOR a[sor,oszlop] := 10

11 Állapot-gráf 11

12 Művelet végrehajtásának hatékonysága A művelet előfeltételének kiszámítási bonyolultsága csökkenthető, ha o az állapotteret (vagy annak invariánsát) szigorítjuk és o a művelet hatását ennek megfelelően módosítjuk (ugyanaz a megszorítás vándorol a specifikáción belül) Például o o o A királynők számát eltároljuk az állapotban (ebből ismert lesz a következő üres sor is) ahelyett, hogy mindig kiszámolnánk. Ha tároljuk, hogy mely üres mezőket tartanak ütés alatt a királynők, (ezeket a művelet végrehajtásakor, egy újabb királynő elhelyezésekor kell bejelölni, akkor konstans időben eldönthető, hogy egy új királynő üti-e az előzőeket, és ezt a tényt egy logikai változóban rögzíthetnénk, amiből látni, hogy további királynőt nem szabad elhelyezni. Sőt (és ez már új megszorítás) ne is legyen ütés a táblán. 12

13 kezdőállapot: db = 0 n-királynő probléma 3. közbülső állapot: db = 2 célállapot : db = 4 Állapottér: Tábla = rec(m :{,, _ } n n, db : N) invariáns: csak az első db sorban van egy-egy királynő (), db n, királynők nem ütik egymást, egy királynő által ütésben álló (foglalt) üres mezőt, _ az ütésben nem álló szabad mezőt jelöli 13

14 n-királynő probléma 3. Művelet: új királynő elhelyezése a soron következő üres sor szabad mezőjére (invariáns tartó művelet) Helyez(oszlop):Tábla Tábla (a:tábla) HA a. db < n és a.m[a.db+1,oszlop]= _ AKKOR a.db:=a.db+1 a.m[a.db,oszlop] := minden megfelelő i,j -re: a.m[i,j] := Kezdőállapot: a.m üres mátrix, a.db=0 Célállapot: a.db=n 14

15 4-királynő állapot gráf 17

16 kezdőállapot: tetszőleges Tologató játék (8-as, 15-ös) Állapottér: Tábla=rec(m :{0..8} 3 3, ü :{1..3} {1..3}) invariáns: a mátrix sorfolytonos kiterítése a számok permutációja, az üreshely a 0 elem sor és oszlopindexe. Művelet: Tol(irány):Tábla Tábla (irány *(1,0),(0,1),(-1,0),(0,-1)}) HA a.ü+irány egy érvényes pozíció (a:tábla) AKKOR a.m[a.ü] a.m[a.ü+irány] a.ü := a.ü+irány célállapot: szokásos a.ü+irány koordinátánként értendő 19

17 Mit lát egy keresés a problématérből? A keresés szempontjából egy reprezentációs gráfnak csak a startcsúcsból elérhető része érdekes (9!/2), ugyanis ez az, amit egy keresés felfedhet a gráfból. Ráadásul ezt a felfedett részt is sokszor csak torzultan látja a keresés: (keresési tér) Ha a keresés nem ellenőrzi, hogy egy általa elért állapotot már korábban felfedezett-e, akkor nem az eredeti reprezentációs gráfot, hanem annak fává kiegyenesített változatát látja. Nem feltétlenül baj, ha emiatt a keresési tér végtelen nagy lesz, ha cserébe nincsenek már benne körök. A szülőcsúcsba való visszalépést viszont érdemes direkt módon kizárni, hiszen ez egy egyszerű vizsgálat, amellyel a felesleges éleket, oda-vissza köröket hagyhatjuk el a keresési térből. 20

18 Keresési tér célállapotok duplikátumok

19 Fekete-fehér kirakó Egy n+m+1 hosszú sínen n fekete és m fehér lapka és egy üres hely van. Egy lapkát szomszédos üres helyre tolhatunk vagy a szomszéd felett üres helyre ugrathatunk. Kezdetben a feketék után jönnek a fehérek, majd az üres hely. Kerüljenek a fehérek a feketék elé! Állapottér: Sín=rec(v : {B, W,_} n+m+1, poz : [1.. n+m+1]) invariáns: egy üres hely, poz az üres hely indexe, n darab B és m darab W Műveletek: TolBal, TolJobb, UgrikBal, UgrikJobb: Sín Sín Például: TolBal (üres helyet toljuk balra) HA a.poz 1 (a : Sín) AKKOR a.v[a.poz-1] a.v[a.poz] ; a.poz :=a.poz-1 Kezdőállapot: [B,, B, W,, W, _ ] Célállapot: i,j [1.. n+m+1], i<j : (a.v[i]=b a.v[j]=w) 22

20 Fekete-fehér kirakó állapot gráfja start cél cél cél cél 23

21 C A B Kockavilág probléma Egy asztalon van néhány kocka (A,B,C, ), amelyeket egy robotkar mozgat: felemel, rátesz, levesz, lerak. Építsünk fel egy meghatározott alakzatot egy rögzített helyzetből kiindulva! Állapottér: Kockák= set(alapliterálok) Alapliterálok={az ontable(x), on(x,y), clear(x), handempty, holding(x) összes alapelőfordulása, azaz ontable(a), ontable(b), } invariáns: egy állapot ellentmondás mentes (pl.: nincs on(c,b) és clear(b)), de lehet hiányos (lásd célállapot) Például: Kezdőállapot: ontable(a), clear(a), ontable(b), on(c,b), clear(c),handempty Célállapot: on(a,b), on(b,c) 24

22 C A B HA Kockavilág probléma műveletei Teljes leírású állapotból teljes leírású állapotba vezetnek, de lehet alkalmazni hiányos állapotra is, Műveletek: sőt nemcsak alapliterálokkal leírt állapotokra is. Pickup(x): Kockák Kockák (h : Kockák) ontable(x),clear(x),handempty h AKKOR h := h {ontable(x),clear(x),handempty } {holding(x)} Putdown(x): Kockák Kockák HA holding(x) h (h : Kockák) AKKOR h := h {holding(x)} {ontable(x),clear(x),handempty} Stack(x,y): Kockák Kockák HA holding(x), clear(y) h (h : Kockák) AKKOR h := h {holding(x), clear(y)} {on(x,y),clear(x),handempty} Unstack(x,y): Kockák Kockák (h : Kockák) HA on(x,y),clear(x),handempty h AKKOR h := h {on(x,y),clear(x),handempty} {holding(x), clear(y)} 25

23 Kancsók problémája Három kancsóban, egy öt, egy három és egy két literesben, együttesen 5 liter bor van. Kezdetben az öt literes kancsó van tele. Töltögetéssel érjük el, hogy a két literesbe pontosan 1 liter bor kerüljön! Állapottér: Kancsók= vektor( [5,3,2];{0..5} ) invariáns: i [5,3,2] v[i] = 5 i [5,3,2]: v[i] i Kezdő állapotból elérhető állásokban egyik kancsó üres vagy teli. Művelet: Tölt(i,j): Kancsók Kancsók (v : Kancsók) HA AKKOR Kezdőállapot: [5, 0, 0] Célállapot: [x, y, 1] i,j [5,3,2] i j min(v[i], j-v[j])>0 v[i],v[j] := v[i]-min(v[i], j-v[j]),v[j]+min(v[i], j-v[j]) 26

24 Kancsók-probléma állapot gráfja cél cél cél cél start 27

25 Misszionárius - kannibál probléma Elég csak a bal partot jegyezni az átkelés nem külön állapot n misszionárius és n kannibál át akar kelni egy folyón egy h személyes csónakban Ha a bal parton nincs emberevés, akkor a jobb parton sincs Állapottér: Part = rec(m : [0..n], k : [0..n], c : 𝕃) invariáns: nincs emberevés, azaz I(m,k) m=k m=0 m=n Kezdőállapot: (n,n,igaz) (0,0,hamis) Ha Célállapot: az átevezés előtt és után nincs emberevés, akkor a csónakban sincs. Műveletek: Oda(x,y):Part Part és Vissza(x,y):Part Part (a:part) HA a.c x a.m y a.k HA a.c x n a.m y n a.k 0<x+y h I(a.m x, a.k y) 0<x+y h I(a.m+x, a.k+y) AKKOR a.c:=hamis : AKKOR a.c:=igaz : a.m:=a.m x: a.k:=a.k y a.m:=a.m+x: a.k:=a.k+y 29

26 Feladatok 1. Utazó ügynök probléma 2. Gráf színezési probléma 3. Sakktábla bejárása lóval 4. Rubik kocka 5. Bűvös négyzet ös mátrix 0,1-esekkel úgy, hogy minden 2 2-es más 7. Ábrarajzolás egy vonallal 8. Útvonal tervezés városban (egyirányú utcák) 9. Nagypapa játéka 34

II. Állapottér-reprezentáció

II. Állapottér-reprezentáció Állapottér-reprezentáció elemei II. Állapottér-reprezentáció Állapottér: a feladat homlokterében álló adat (objektum) lehetséges értékeinek (állapotainak) halmaza lényegében egyetlen típusérték-halmaz

Részletesebben

Modellezés Gregorics Tibor Mesterséges intelligencia

Modellezés Gregorics Tibor Mesterséges intelligencia Modellezés 1. Állapottér-reprezentáció Állapottér: a probléma leírásához szükséges adatok által felvett érték-együttesek (azaz állapotok) halmaza az állapot többnyire egy összetett szerkezetű érték gyakran

Részletesebben

1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?

1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? 2012. 06. 20. 1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? A heurisztika olyan, a feladathoz kapcsolódó ötlet, amelyet közvetlenül építünk be egy algoritmusba, azért,

Részletesebben

Cselekvési tervek generálása a robotikában

Cselekvési tervek generálása a robotikában Cselekvési tervek generálása a robotikában Nagy Tímea, T Régeni Ágnes Robotika bevezető Meghatároz rozás Osztályoz lyozás Jellemzők Robotgeneráci ciók Tartalom Cselekvési si tervek Bevezető Algoritmusok

Részletesebben

1. AZ MI FOGALMA. I. Bevezetés. Ers mesterséges intelligencia (EMI) Gyenge mesterséges intelligencia. MI története. Els szakasz (60-as évek)

1. AZ MI FOGALMA. I. Bevezetés. Ers mesterséges intelligencia (EMI) Gyenge mesterséges intelligencia. MI története. Els szakasz (60-as évek) 1. AZ MI FOGALMA I. Bevezetés 1. A mesterséges intelligencia (MI) fogalma 2. Probléma modellezés 3. Keres rendszerek az MI-ben 1956 nyár. Darthmouth College-i konferencia Kezdeti cél: Az emberi gondolkodás

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 6. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények: 1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált

Részletesebben

TERVGENERÁLÁS. Robotika részfeladatai. Állapot-leírás logikai állításokkal. Kocka világ. Állapot-leírás tulajdonságai. Példa

TERVGENERÁLÁS. Robotika részfeladatai. Állapot-leírás logikai állításokkal. Kocka világ. Állapot-leírás tulajdonságai. Példa Robotika részfeladatai TERVGENERÁLÁS 1. Állapottér-reprezentáció 2. Probléma redukció 3. Probléma dekompozíció 4. Logikai reprezentáció robot-szerkezet építése cél-meghatározás érzékelés, alakfelismerés

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi

Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,

Részletesebben

Struktúra nélküli adatszerkezetek

Struktúra nélküli adatszerkezetek Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A

Részletesebben

2. Visszalépéses keresés

2. Visszalépéses keresés 2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel

Részletesebben

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan

Részletesebben

Állapottér reprezentáció/level1

Állapottér reprezentáció/level1 Állapottér reprezentáció/level1 kecske káposzta A tutajosnak át kell szállítani a folyó másik partjára egy farkast, egy kecskét és egy káposztát. A csónakban egyszerre csak az egyiket viheti át a három

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Adatszerkezetek II. 1. előadás

Adatszerkezetek II. 1. előadás Adatszerkezetek II. 1. előadás Gráfok A gráf fogalma: Gráf(P,E): P pontok (csúcsok) és E P P élek halmaza Fogalmak: Irányított gráf : (p 1,p 2 ) E-ből nem következik, hogy (p 2,p 1 ) E Irányítatlan gráf

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

Keresések Gregorics Tibor Mesterséges intelligencia

Keresések Gregorics Tibor Mesterséges intelligencia Keresések ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

38. A gráfalgoritmusok alkalmazása

38. A gráfalgoritmusok alkalmazása 38. A gráfalgoritmusok alkalmazása Állapotok és átmenetek A gráf adattípus nagyon sokféle feladat megoldásánál alkalmazható. Rejtvények, játékok, közlekedési és szállítási problémák, stratégiai feladatok

Részletesebben

MestInt gyakorlat visszalépéses keresés

MestInt gyakorlat visszalépéses keresés MestInt gyakorlat visszalépéses keresés Probléma leírása N királynő probléma Az n királynő probléma, azt a kérdést veti fel, hányféleképpen lehet lerakni n darab királynőt egy n n-es táblán úgy, hogy a

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Algoritmizálás és adatmodellezés tanítása 6. előadás

Algoritmizálás és adatmodellezés tanítása 6. előadás Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,

Részletesebben

Algoritmusok és adatszerkezetek I. 1. előadás

Algoritmusok és adatszerkezetek I. 1. előadás Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

II. Szabályalapú következtetés

II. Szabályalapú következtetés Szabályalapú következtetés lényege II. Szabályalapú következtetés Szabályalapú technikáknál az ismereteket vagy ha-akkor szerkezetű kal, vagy feltétel nélküli tényállításokkal írják le. a feladat megoldásához

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon ÖSSZEFOGLALÁS Az MI az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos elveket, módszereket, technikákat kutatja, fejleszti, rendszerezi. Miről ismerhető fel az MI? Megoldandó

Részletesebben

21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök

21. Adatszerkezetek Az adattípus absztrakciós szintjei Absztrakt adattípus (ADT) Absztrakt adatszerkezet (ADS) Egyszerű adattípusok Tömbök 2. Adatszerkezetek Az adattípus absztrakciós szintjei http://people.inf.elte.hu/fekete/docs_/adt_ads.pdf Absztrakt adattípus (ADT) Az adattípust úgy specifikáljuk, hogy szerkezetére, reprezentálására,

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation

Permutáció n = 3 esetében: Eredmény: permutációk száma: P n = n! romámul: permutări, angolul: permutation Visszalépéses módszer (Backtracking) folytatás Permutáció n = 3 esetében: 1 2 3 2 3 1 3 1 2 Eredmény: 3 2 3 1 2 1 123 132 213 231 312 321 permutációk száma: P n = n! romámul: permutări, angolul: permutation

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények:

1. beadandó feladat: egyszerű grafikus felületű alkalmazás. Közös követelmények: 1. beadandó feladat: egyszerű grafikus felületű alkalmazás Közös követelmények: A megvalósításnak felhasználóbarátnak, és könnyen kezelhetőnek kell lennie. A szerkezetében törekedni kell az objektumorientált

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény:

2. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév. 1. Számkeresztrejtvény: 1. Számkeresztrejtvény: MEGOLDÁSOK Pontszerző Matematikaverseny 2014/2015 tanév 2. forduló Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy a négyzet alakú mezőkbe

Részletesebben

Algoritmizálás, adatmodellezés tanítása 7. előadás

Algoritmizálás, adatmodellezés tanítása 7. előadás Algoritmizálás, adatmodellezés tanítása 7. előadás Oszd meg és uralkodj! Több részfeladatra bontás, amelyek hasonlóan oldhatók meg, lépései: a triviális eset (amikor nincs rekurzív hívás) felosztás (megadjuk

Részletesebben

A félév során előkerülő témakörök

A félév során előkerülő témakörök A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok

Részletesebben

Algoritmizálás és adatmodellezés 2. előadás

Algoritmizálás és adatmodellezés 2. előadás Algoritmizálás és adatmodellezés 2 előadás Összetett típusok 1 Rekord 2 Halmaz (+multialmaz, intervallumalmaz) 3 Tömb (vektor, mátrix) 4 Szekvenciális fájl (input, output) Pap Gáborné, Zsakó László: Algoritmizálás,

Részletesebben

Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa:

Megjegyzés: A programnak tartalmaznia kell legalább egy felhasználói alprogramot. Példa: 1. Tétel Az állomány két sort tartalmaz. Az első sorában egy nem nulla természetes szám van, n-el jelöljük (5

Részletesebben

MESTERSÉGES INTELLIGENCIA DR. KOVÁSZNAI GERGELY JEGYZETE. Verziószám: 1.0 2008. május 19.

MESTERSÉGES INTELLIGENCIA DR. KOVÁSZNAI GERGELY JEGYZETE. Verziószám: 1.0 2008. május 19. MESTERSÉGES INTELLIGENCIA DR. KOVÁSZNAI GERGELY JEGYZETE Verziószám: 1.0 2008. május 19. 1 Tartalomjegyzék 1. A mesterséges intelligencia története...4 1.1. Korai lelkesedés, nagy elvárások (az 1960-as

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t.. A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6

Részletesebben

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek)

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek) 1. AZ MI FOGALMA I. Bevezetés Nincs pontos definíció Emberi gondolkodás számítógépes reprodukálása Intelligens viselkedésű programok Az ember számára is nehéz problémák számítógépes megoldása Intellektuálisan

Részletesebben

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA

26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA 26. MINIMÁLIS KÖLTSÉGŰ UTAK MINDEN CSÚCSPÁRRA Az előző két fejezetben tárgyalt feladat általánosításaként a gráfban található összes csúcspárra szeretnénk meghatározni a legkisebb költségű utat. A probléma

Részletesebben

ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez

ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez Az MI az informatikának az a területe, amelyik az intelligens gondolkodás számítógépes reprodukálása szempontjából hasznos

Részletesebben

INFORMATIKA javítókulcs 2016

INFORMATIKA javítókulcs 2016 INFORMATIKA javítókulcs 2016 ELMÉLETI TÉTEL: Járd körbe a tömb fogalmát (Pascal vagy C/C++): definíció, egy-, két-, több-dimenziós tömbök, kezdőértékadás definíciókor, tömb típusú paraméterek átadása alprogramoknak.

Részletesebben

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Felvételi vizsga mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív

Részletesebben

Alkalmazott modul III 3. feladatcsoport. Közös követelmények:

Alkalmazott modul III 3. feladatcsoport. Közös követelmények: Alkalmazott modul III 3. feladatcsoport Közös követelmények: A program játékfelületét dinamikusan kell létrehozni futási időben. Egyes feladatoknál különböző méretű játékmezők létrehozását kell megvalósítani,

Részletesebben

Smalltalk 2. Készítette: Szabó Éva

Smalltalk 2. Készítette: Szabó Éva Smalltalk 2. Készítette: Szabó Éva Blokkok Paraméter nélküli blokk [műveletek] [ x := 5. 'Hello' print. 2+3] Kiértékelés: [művelet] value az értéke az utolsó művelet értéke lesz, de mindet kiírja. x :=

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

Evolúciós algoritmusok

Evolúciós algoritmusok Evolúciós algoritmusok Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen

Részletesebben

BACKTRACKING Visszalépéses keresés

BACKTRACKING Visszalépéses keresés BACKTRACKING Visszalépéses keresés I. rész A wiki.prog.hu weboldal az alábbi leírással vezeti fel a visszalépéses keresés algoritmus bemutatását: A visszalépéses keresés (Backtracking) olyan esetekben

Részletesebben

Optimalizációs stratégiák 2.

Optimalizációs stratégiák 2. Optimalizációs stratégiák 2. Visszalépéses keresés, szétválasztás és korlátozás előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

7. Strukturált típusok

7. Strukturált típusok 7. Strukturált típusok 1. Mintafeladat a különböző tömbtípusok konstanssal való feltöltésére és kiíratására! (minta7_1) program minta7_1; fejlec:array[1..8] of char = 'Eredmény'; adatok:array[1..4] of

Részletesebben

Halmaz típus Értékhalmaz:

Halmaz típus Értékhalmaz: Halmaz, multihalmaz Halmaz féleségek 1. Halmaz Gyümölcsök: {alma,körte,szilva,barack} 2. Multihalmaz Állatok: {(macska,4),(rigó,2),(galamb,3)} 3. Intervallumhalmaz diszjunkt Óráim: {[8-10],[13-14],[16-20)}

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek

Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000

Részletesebben

24. MINIMÁLIS KÖLTSÉGŰ UTAK I.

24. MINIMÁLIS KÖLTSÉGŰ UTAK I. 24. MINIMÁLIS KÖLTSÉGŰ UTAK I. Az útvonaltervezés az egyik leggyakrabban végrehajtott eljárása a gráfok alkalmazásai körében. A feladat például a közlekedésben jelentkezik. A gráfot itt az a térkép jelenti,

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

17. A 2-3 fák és B-fák. 2-3 fák

17. A 2-3 fák és B-fák. 2-3 fák 17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak

Részletesebben

Algoritmizálás, adatmodellezés 1. előadás

Algoritmizálás, adatmodellezés 1. előadás Algoritmizálás, adatmodellezés 1. előadás Algoritmus-leíró eszközök Folyamatábra Irányított gráf, amely csomópontokból és őket összekötő élekből áll, egyetlen induló és befejező éle van, az induló élből

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

A MESTERSÉGES INTELLIGENCIA KÉRDÉSEI A KÖZÉPISKOLAI OKTATÁSBAN

A MESTERSÉGES INTELLIGENCIA KÉRDÉSEI A KÖZÉPISKOLAI OKTATÁSBAN Eszterházy Károly Főiskola Matematikai és Informatikai Intézet A MESTERSÉGES INTELLIGENCIA KÉRDÉSEI A KÖZÉPISKOLAI OKTATÁSBAN DR. KOVÁSZNAI GERGELY ÉS DR. KUSPER GÁBOR JEGYZETE Tartalomjegyzék 1. Bevezetés...4

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Totális Unimodularitás és LP dualitás. Tapolcai János

Totális Unimodularitás és LP dualitás. Tapolcai János Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

Gráfalgoritmusok ismétlés ősz

Gráfalgoritmusok ismétlés ősz Gráfalgoritmusok ismétlés 2017. ősz Gráfok ábrázolása Egy G = (V, E) gráf ábrázolására alapvetően két módszert szoktak használni: szomszédsági listákat, illetve szomszédsági mátrixot. A G = (V, E) gráf

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar

PROGRAMOZÁS tantárgy. Gregorics Tibor egyetemi docens ELTE Informatikai Kar PROGRAMOZÁS tantárgy Gregorics Tibor egyetemi docens ELTE Informatikai Kar Követelmények A,C,E szakirány B szakirány Előfeltétel Prog. alapismeret Prog. alapismeret Diszkrét matematika I. Óraszám 2 ea

Részletesebben

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk). Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés

Részletesebben

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi

Részletesebben

Algoritmizálás és adatmodellezés tanítása 2. előadás

Algoritmizálás és adatmodellezés tanítása 2. előadás Algoritmizálás és adatmodellezés tanítása 2. előadás Tartalom Összegzés vektorra, mátrixra Megszámolás vektorra, mátrixra Maximum-kiválasztás vektorra, mátrixra Eldöntés vektorra, mátrixra Kiválasztás

Részletesebben

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk

van neve lehetnek bemeneti paraméterei (argumentumai) lehet visszatérési értéke a függvényt úgy használjuk, hogy meghívjuk függvények ismétlése lista fogalma, használata Game of Life program (listák használatának gyakorlása) listák másolása (alap szintű, teljes körű) Reversi 2 Emlékeztető a függvények lényegében mini-programok,

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24.

Rendezések. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar október 24. Rendezések 8. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. október 24. Sergyán (OE NIK) AAO 08 2011. október 24. 1 / 1 Felhasznált irodalom

Részletesebben

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat 9. Előadás Rendezések A rendezési probléma: Bemenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat Kimenet: a bemenő sorozat olyan (a 1, a 2,,a n ) permutációja, hogy a 1 a 2 a n 2 Rendezések Általánosabban:

Részletesebben

23. SZÉLESSÉGI BEJÁRÁS

23. SZÉLESSÉGI BEJÁRÁS 23. SZÉLESSÉGI BEJÁRÁS A bejárási algoritmusok feladata általában a gráf csúcsainak végiglátogatása valamilyen stratégia szerint. A bejárás gyakran azért hajtjuk végre, mert adott tulajdonságú csúcsot

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Gyakorló feladatok ZH-ra

Gyakorló feladatok ZH-ra Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y. Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME

Részletesebben

tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is

tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel (record) tétel: különböző típusú adatokat csoportosít, ezeket egyetlen adatként kezeli, de hozzáférhetünk az elemeihez is A tétel elemei mezők. Például tétel: személy elemei: név, lakcím, születési

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben