Gráfokról 5-8. osztályosoknak Erdős Gábor, Nagykanizsa

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gráfokról 5-8. osztályosoknak Erdős Gábor, Nagykanizsa"

Átírás

1 Kistérségi tehetséggondozás Gráfokról 5-8. osztályosoknak Erdős Gábor, Nagykanizsa Az iskolai tananyagban csak a középiskolában esik szó gráfokról, holott véleményem szerint egyszerű fogalomról van szó. A versenyeken azonban számos olyan feladat előkerül, amelyben a megoldás sokkal egyszerűbb a gráfoknál megismert fogalmak és összefüggések segítségével. Hányszor merül fel az a kérdés, hogy pl. n ember közül mindenki mindenkivel kezet fog, hány kézfogásra került sor? Vagy hogy egy körmérkőzéses bajnokságban n csapat esetén hány mérkőzésre kerül sor? Vagy hogy n pont a síkon legfeljebb hány egyenest határozhat meg? Fontos, hogy lássák a gyerekek, hogy matematikailag analóg problémáról van szó: n pontú teljes gráfnak hány éle van? Előadásomban feladatokon keresztül szeretném bemutatni, szerintem hogy lehet bevezetni a fogalmakat, megfelelő eszközöket adni a gyerekek kezébe. Igaz-e, hogy egy 27 fős társaságban mindig van olyan, akinek a jelenlévők közül ugyanannyi ismerőse van? Szándékosan mondok 27-et. Nem túl nagy, de mégis akkora, hogy nem érdemes ész nélkül nekiesni. Szoktassuk a gyerekeket a jelszóra: Kezdjük kicsivel! Kipróbálhatjuk 4-re, ott nem igaz, pl. ha mindenki mindenkit ismer. Mi a helyzet 5-nél? Nézzünk meg eseteket, de hogy? Egyszerűbb rajzolni! Legyenek az emberek pontok, az ismeretségek vonalak. Bevezethető fogalmak: gráf, csúcs vagy pont, él, fokszám. A gyerekek is érzik, ha beszéltetjük őket a feladatról, hogy jobb, ha a dolgoknak nevük van, sokkal egyszerűbb így fogalmazni. Megfigyelés: ha 5 pont esetén behúzok egy élt, a fokszámok összege 2-vel nő. Vagyis mindig páros, nem más, mint az élek számának kétszerese. Vagyis nem lehet mind az öt pont fokszáma páratlan, mert 5 páratlan szám összege páros lenne. Általánosíthatunk, ez igaz mindig, ha páratlan sok emberről van szó. Páros esetben mindig van ellenpélda, pl. a teljes gráf. Mi mindent tanultunk ezzel a feladattal? Kezdjük kicsivel, általánosítás, indirekt bizonyítás előkészítése, no meg egy alapvető tétel, amit a gyerekekkel többféleképpen megfogalmaztathatunk! Pl.: Ha a csúcsok száma páratlan, akkor van páros fokú pont. Ha a csúcsok száma páratlan, akkor a páros fokú pontok száma páratlan. Általában a páratlan fokú pontok száma páros. A fokszámok összege egyenlő az élek számának kétszeresével. 68

2 Erdős Gábor: Gráfokról 5-8. osztályosoknak Néhány embertől megkérdezték, a többiek közül hányat ismer. Melyik esetben nem füllentett egyik válaszoló sem? a) 1, 2, 2, 3, 5, 5 b) 5, 5, 5, 6, 6, 6, 7, 7, 7 c) 3, 3, 3, 3, 5, 6, 6, 6 d) 1, 1, 3, 3, 3,3, 5, 6, 8, 9 Természetesen a feladat átfogalmazható, pl. egy bajnokságban minden gyerektől megkérdezték, hány meccset játszott már le, stb. a) A 6 fő közül kettő mindenkit ismer, vagyis a többieknek legalább ők ketten ismerősei, így nem lehet olyan, akinek 1 ismerőse van. Fontos rámutatni: az, hogy a fokszámok összege páros, szükséges, de nem elégséges feltétel. b) Ez az eset lehetséges. Viszont sokkal egyszerűbb a 9 csúcsú gráf esetén azt lerajzolni, hogy ki kit nem ismer. Keressünk minél több lényegesen eltérő megoldást! Nem elég megmondani, hogy lehetséges, adni kell egy konstrukciót. Fogalmak: komplementer gráf, izomorf gráfok. c) A fokszámok összege páratlan. d) A 9-es mindenkit ismer, a két 1-est is. Ez a két 1-es senki mást nem ismerhet, ekkor viszont nem lehetne 8-as. (Indirekt gondolat, jól előkészíti az indirekt bizonyítást.) Graffy úr és neje estélyt adnak, melyre 4 házaspárt hívnak meg. Amikor a vendégek érkeznek, mindenki kezet fog azzal, akit már korábbról ismer. Graffy úr megfigyelte, hogy a másik 9 ember mindegyike különböző számú emberrel fogott kezet. Hány emberrel fogott kezet Mrs. Graffy? A gyerekek kérdéseiben előbb-utóbb előjön, hogy nyilván a feleségével nem fog kezet az ember egy estély kezdetén. A lehetséges kézfogások száma a többi 9 ember esetén így 0, 1, 2, 3, 4, 5, 6, 7, 8. De a 8 párja csak a 0 lehet, hogy mindenki mással kezet fogott. A gráfot felrajzolva, ezt a gondolatot folytatva adódik, hogy a 7 párja az 1, a 6-é a 2, az 5-é a 3, így Graffy úré a 4. 69

3 Kistérségi tehetséggondozás Egy három házaspárból álló társaság együtt vacsorázik egy étteremben. A társaság minden tagja külön-külön érkezik és kezet nyújt a jelenlévőknek, kivéve saját házastársát. (Őt csókkal köszönti.) Amikor mind a hatan megérkeznek, Kovácsné megkérdezi a többiektől, ki hány embernek nyújtott kezet, és mindenkitől más számot kap válaszul. Hányadiknak érkezett Kovácsné? Fontos tisztázni, hogy a kéznyújtás nem kölcsönös, így minden kézfogást egyszer számolunk. Hatan vannak, mindenki 4 emberrel fogott kezet, így 12 kéznyújtás történt összesen. Mivel a párjával senki nem fogott kezet, így csak az lehetséges, hogy a többiek =10 alkalommal nyújtottak kezet összesen, azaz Kovácsné 2 embernek nyújtott kezet. Hányadiknak érkezett? Ez attól függ, hogy Kovács úr ott volt-e már akkor, azaz csak annyit tudunk, hogy harmadiknak vagy negyediknek érkezett. Egy iskolai asztalitenisz bajnokságban 9 tanuló indult. A mérkőzéseket akkor játsszák le, amikor éppen ráérnek, és az eredményt felírják a faliújságon lévő táblázatba. Mindenki mindenkivel egy mérkőzést játszik. a) Hány mérkőzésből áll a bajnokság összesen? b) Bizonyítsd be, hogy bármikor nézünk rá a táblázatra, biztosan találunk két olyan versenyzőt, aki ugyanannyi mérkőzést játszott már le. c) Hétfő reggel 10 mérkőzés eredménye szerepelt a táblázatban. Bizonyítsd be, hogy van olyan versenyző, aki már harmadik meccsét is lejátszotta. a) A meccsek száma 9 8 = b) A lejátszott meccsek száma lehet 0, 1, 2,, 7 vagy 8. Azonban a 0 és a 8 egyszerre nem fordulhat elő. A lehetőségek száma tehát 8, míg a versenyzőké 9, vagyis van két olyan versenyző, aki ugyanannyit játszott. (A skatulyaelvet használtuk.) 70

4 Erdős Gábor: Gráfokról 5-8. osztályosoknak c) Ha mindenki legfeljebb 2 meccset játszott volna, akkor a lejátszott meccsek 9 2 száma legfeljebb = 9 lenne. Van, aki legalább 3-at játszott. (Indirekt 2 bizonyítás.) Érdemes megfogalmazni az egyes feladatokat a gráfok nyelvén, akár általánosítva is. Pl. a b) feladat tanulsága, hogy bármely egyszerű gráfban van két azonos fokú pont. Három osztály mindegyikébe 30 tanuló jár. Minden tanuló a másik két osztályból összesen 31 tanulót ismer. Bizonyítsuk be, hogy ki lehet választani osztályonként 1-1 gyereket úgy, hogy ők hárman ismerjék egymást. Kérdezzünk meg minden gyereket, hogy hány főt ismer a másik osztályból és hányat a harmadikból. Minden gyerek két számot mond. Válasszuk ki azt a gyereket, akinek a szájából a legnagyobb szám elhangzott. Hívjuk őt Maxnak. Max az A osztályba jár, és a legnagyobb szám, ami elhangzott, k volt, mivel a B-ből k főt ismer. Ezek szerint a C-ből 31-k főt ismer. legyen az egyik C-s ismerőse C 1, míg a B-s ismerősei B 1, B 2,, B k. Ha C 1 ismer B 1, B 2,, B k közül bárkit, mondjuk B j -t, akkor készen vagyunk, hiszen Max, B j és C 1 kölcsönösen ismerik egymást. Ha egyiküket sem ismerné C 1, akkor a B-sek közül legfeljebb a többi 30-k főt ismerné. Ekkor viszont legalább 31-(30-k)=k+1 főt kellene ismernie az A-ból. Ez nem lehetséges, hiszen a legnagyobb elhangzott szám k volt. A feladat a Kürschák versenyen szerepelt 1977-ben. Adottak a síkon egy szabályos hatszög csúcsai, továbbá a hatszög belsejében hat további pont. A 12 pont közül semelyik három nincs egy egyenesen. Anna és Bea a következő játékot játssza: Felváltva húznak be olyan szakaszokat, amelyeknek mindkét végpontja a megadott csúcsok között van. Olyan szakaszt nem szabad behúzni, amely belső pontban metszi valamelyik korábban behúzottat. A játék akkor ér véget, amikor a soron következő játékos már nem tud újabb szakaszt behúzni. Ez a játékos veszített. A játékot Anna kezdi. Melyik játékosnak van nyerő stratégiája? 71

5 Kistérségi tehetséggondozás A játék akkor ér véget, amikor a síkon egy hatszöget látunk, amely háromszögekre van darabolva, tovább minden belső pontból indul ki szakasz. Hány háromszög van az ábrán? Ha a háromszögek számát h-val jelöljük, akkor a háromszögek belső szögeinek összege kiadja egyrészt a hatszög belső szögeit, továbbá a belső pontoknál fokot. Felírható tehát a következő összefüggés: h 180 = , ahonnan h = 16. Hány szakaszt húztak be a játékosok összesen, míg kialakult a végállapot? Meghúzták a hatszög oldalai, továbbá b darab, a hatszög belsejében haladó összekötő szakaszt. A hatszög oldalai egy háromszöghöz tartoznak, a belső szakaszok kettőhöz, vagyis 3h = 6 + 2b. Mivel h = 16, így b = 21 belső szakaszt, vagyis összesen 27 szakaszt húztak be összesen. Mivel a 27 páratlan, így nincs igazi nyerő stratégia! Akárhogy játszik is a két játékos, mindenképp Anna nyer, hiszen az első szakaszt ő húzza be, így az utolsót is. Bizonyítsd be, hogy egy 6 fős társaságban mindig van vagy 3 olyan ember, akik kölcsönösen ismerik egymást, vagy van 3 olyan, akik közül senki senkit nem ismer ben szintén Kürschák-versenyen volt kitűzve. Azóta azonban egyike azoknak a feladatoknak, amelyek ismerete nélkül nagyon nehéz versenyeken hasonló feladatokat megoldani. Egy versenyzőnek ezt a feladatot ismernie kell. Átfogalmazás: Ha egy hatcsúcsú egyszerű gráf éleit pirosra vagy kékre színezzük, akkor az ábrán mindig van egyszínű háromszög. Válasszunk ki egy tetszőleges pontot. Ebből 5 él indul, melyek mindegyike piros vagy kék. Valamelyik színűből legalább 3 darab van, legyen mondjuk pirosból. Ha ezen 3 él végpontjai közül bármely kettőt piros él köz össze, akkor ezzel zárul egy piros háromszög. Ha ezeket a végpontokat csupa kék él köti össze, akkor pedig egy kék háromszög keletkezett. Érdemes szoktatni a gyerekeket arra, hogy ne álljunk meg itt, hanem tegyünk fel további kérdéseket. Az egyik ilyen kérdés, hogy mi a helyzet 5 pont esetén? Ekkor van ellenpélda. Ugyanis ha egy ötszög oldalait pirosra, átlóit kékre színezzük, akkor nem keletkezik egyszínű háromszög. Másik lehetséges kérdés: csak egy háromszög keletkezik biztosan, vagy esetleg több is? Belátható, hogy mindig keletkezik legalább két egyszínű háromszög, ennek belátását az olvasóra bízzuk. Lehet, hogy mindig van egy harmadik is? Nem, erre már van ellenpélda. Legyen a 6 fős társaságban 3 fiú és 3 lány. A fiúk ismerik egymást és a lányok is, de egyik fiú sem ismeri egyik lányt sem. Jelöljük az ismeretséget pirossal, a nem ismeretséget kékkel. Két piros háromszög van a 3 fiú, illetve a 3 lány, de kék háromszög nincs, hiszen 72

6 Erdős Gábor: Gráfokról 5-8. osztályosoknak bármely 3 gyerek között van egynemű, akik ismerik egymást. Újabb továbbkérdezési lehetőségekről szól a következő két feladat. 17 tudós levelez egymással 3 témakörben. Mindegyik tudós mindegyik másikkal levelez a három téma egyikéről. Bizonyítsuk be, hogy lehet találni 3 olyan tudóst, akik egymással ugyanarról a témáról beszélgetnek. Ugyanaz, mint az előző feladat, csak ezúttal 3 színt használunk. Válasszunk ki egy tetszőleges pontot, és nézzük meg, innen milyen színű élből indul a legtöbb! Ilyen színűből legalább 6 indul. Ha ezek végpontjai közül bármely kettőt ugyanilyen színű él köt össze, akkor van egyszínű háromszög. Ha nem, akkor ezen 6 végpont között futó éleket a maradék két színnel színeztük, így az előző feladat megoldása alapján van egyszínű háromszög. Hogy folytatható a gondolat? Mi a helyzet 4, 5, 6, szín esetén? 4 színre 66, 5 színre 327 pont esetén teljesül az állítás, és az ennél kisebb számokra van ellenpélda. Ennek megtalálása azonban már 3 szín, 16 pont esetén sem olyan egyszerű. A feladat a Nemzetközi Matematikai Diákolimpián szerepelt. Egy baráti találkozó 10 résztvevője közül bármely 3-at tekintve, van köztük 2, akik kezet fogtak. Igazoljuk, hogy van 4 olyan ember, akik mindannyian kezet fogtak egymással. Jelöljük piros éllel, ha ismerik egymást, kékkel, ha nem. Teljes n-esnek hívunk egy olyan részgráfot, amelyben minden pont minden ponttal össze van kötve. Átfogalmazás: Ha egy 10-csúcsú teljes gráf éleit pirosra vagy kékre színezzük, akkor ha nincs piros háromszög, akkor van kék teljes négyes. Más szóval: van piros háromszög vagy van kék teljes négyes. Bizonyítás: Ha van olyan csúcs, amiből minimum 4 piros él indul, akkor ezek végpontjai között nem futhat piros él, hiszen akkor van piros háromszög. Így ezen 4 pont között csak kék élek futhatnak, ez viszont egy teljes négyes. Ha nincs olyan csúcs, amiből minimum 4 piros él indul, akkor maximum 3 piros él indul mindegyikből, így minimum 6 kék él indul. Ezek végpontjaira a kettővel ezelőtti feladat alapján van egyszínű háromszög. Ha ez piros, akkor készen vagyunk, ha kék, akkor 73

7 Kistérségi tehetséggondozás pedig az elsőként kiválasztott csúccsal együtt ez egy kék teljes négyest alkot. Mi a helyzet, ha csak 9 csúcsa van a gráfnak? Az állítás ekkor is igaz! Ha van olyan csúcs, amiből minimum 4 piros él indul, akkor az előző bizonyítás erre az esetre is jó. Ha nincs, akkor viszont csak annyit tudunk, hogy minden csúcsból legalább 5 kék él indul. De az nem lehet, hogy mindegyikből 5 kék él indul, hiszen akkor a kék gráf fokszámainak összege 45 lenne, ami nem lehetséges. Ez azt jelenti, hogy van olyan csúcs, amelyikből legalább 6 kék él indul, innen a bizonyítás már ugyanúgy folytatható. 8 csúcs esetén már van ellenpélda. Adott a síkon 6 általános helyzetű pont, bármely kettő távolsága különböző. A pontokat egyenes szakaszokkal összekötjük, majd minden háromszögben a leghosszabb oldalt h, a legrövidebbet r betűvel jelöljük. Bizonyítsuk be, hogy van olyan szakasz, amelyre h és r betű is van írva. Minden háromszögben a leghosszabb oldalt fessük pirosra, a többi oldalt kékre. Nincs kék háromszög, hiszen minden háromszögben van leghosszabb oldal, ami piros. Ekkor viszont van piros háromszög, amelynek minden oldalára h betűt írtunk. Ennek van legrövidebb oldala, amin r betű is szerepel. Lehet-e 6 egész számot megadni úgy, hogy bármelyik 3 között legyen 2, melyek relatív prímet, és legyen 2, melyek nem azok? Legyenek a számok egy gráf csúcsai! Ha relatív prímek, akkor kössük össze őket pirossal, ha nem, akkor kékkel! A feladat olyan gráfot két, amelyben minden háromszögben van piros és kék él is, azaz nincs egyszínű háromszög. Ez viszont nem lehetséges, 6 ilyen szám nem adható meg. 5 viszont igen, ebben segít az 5-re konstruált ellenpélda, ilyen számötös például: 10, 14, 21, 33,

8 Erdős Gábor: Gráfokról 5-8. osztályosoknak Igaz-e, hogy 6 darab irracionális szám között mindig van 3 olyan, hogy közülük bármely 2 összege irracionális? Legyenek a számok egy gráf csúcsai! Ha összegük racionális, akkor kössük össze őket pirossal, ha irracionális, akkor kékkel! A feladat akkor teljesül, ha van kék háromszög. Ehhez elég azt belátni, hogy nincs piros háromszög. Tegyük fel, hogy van, a három csúcsban lévő számok a, b és c. Ekkor a + b, a + c és b + c is racionális. Ezeket összegezve, majd 2-vel osztva kapjuk, hogy a + b + c is racionális, így ( ) ( ) a b c b c a = is racionális, ami ellentmondás. Nincs tehát piros háromszög, vagyis kell legyen kék. Az előadáson még további feladatok, illetve didaktikai kiegészítések is elhangzanak, illetve lehetőség lesz konzultálni a feladatokról és arról, hogy a témakörben milyen mélységig lehet és érdemes elmerülni általános iskolás korú diákokkal. 75

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

A zsebrádiótól Turán tételéig

A zsebrádiótól Turán tételéig Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Gráfelméleti feladatok (középszint)

Gráfelméleti feladatok (középszint) Gráfelméleti feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/7) Egy öttagú társaságban a házigazda mindenkit ismer, minden egyes vendége pedig pontosan két embert ismer. (Az ismeretségek kölcsönösek.)

Részletesebben

Bevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget!

Bevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget! Bevezetés A megoldásokat a feladatsor végén találod! 1. Hencidát út köti össze Kukutyimmal, Boncidával, Lustafalvával és Dágványoshetyével. Boncidáról Álmossarokra is vezet út. Lustafalvát út köti össze

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük. Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,

Részletesebben

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni 1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2010.03.2. 1. Jelölje B n azt a gráfot, melynek csúcsai az n hosszúságú 0 1 sorozatok, két sorozat akkor és csak akkor van összekötve éllel, ha pontosan egy vagy két helyen különböznek. Adjuk

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

SzA X/XI. gyakorlat, november 14/19.

SzA X/XI. gyakorlat, november 14/19. SzA X/XI. gyakorlat, 2013. november 14/19. Színezünk és rajzolunk Drótos Márton drotos@cs.bme.hu 1. Mennyi a következő gráfok kromatikus száma: C 4, C 5, K 2,4, alábbi 2 gráf χ(c 4 ) = 2, páros hosszú

Részletesebben

Színezések Fonyó Lajos, Keszthely

Színezések Fonyó Lajos, Keszthely Színezések Fonyó Lajos, Keszthely 1. A sík pontjait kiszínezzük két színnel. Bizonyítsuk be, hogy tetszőleges d R + esetén lesz két egymástól d távolságra levő pont, amelyek azonos színűek. I. megoldás:

Részletesebben

Ramsey tétele(i) gráfokra

Ramsey tétele(i) gráfokra Ramsey tétele(i) gráfokra A témakör a szociológusok alábbi észrevételének általánosítása: legalább hat tagú társaságban vagy van háromfős klikk, vagy van háromfős antiklikk. Itt klikk olyan emberek halmazát

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K

KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

SKATULYA-ELV. Sava Grozdev

SKATULYA-ELV. Sava Grozdev SKATULYA-ELV Sava Grozdev Ha 3 apró labdát akarunk elhelyezni a nadrágunk 2 zsebébe, akkor kétség sem férhet hozzá, hogy legalább 2 labda azonos zsebbe fog kerülni. Hasonlóan, ha 4 kicsi dobozt akarunk

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi Szoldatics József: MEMO MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi A feladatmegoldó szemináriumon első részében egy rövid beszámolót fognak hallani a 010. szeptember 9. és

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

Speciális gráfelméleti témák

Speciális gráfelméleti témák Speciális gráfelméleti témák 9 10. évfolyam Szerkesztette: Surányi László Ábrák: Hraskó András 2017. január 16. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

6. Gráfok. 5. Bizonyítsuk be, hogy egy összefüggő gráfban mindig van olyan pont, amelynek elhagyása esetén is összefüggő marad a gráf.

6. Gráfok. 5. Bizonyítsuk be, hogy egy összefüggő gráfban mindig van olyan pont, amelynek elhagyása esetén is összefüggő marad a gráf. 6. Gráfok I. Feladatok 1. Egy országban minden városból legfeljebb három buszjárat indul, és bármely városból bármely városba eljuthatunk legfeljebb egy átszállással. (Ha két város között közlekedik buszjárat,

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

Síkba rajzolható gráfok

Síkba rajzolható gráfok Síkba rajzolható gráfok Elmélet Definíció: egy G gráfot síkba rajzolható gráfnak nevezünk, ha az felrajzolható a síkra anélkül, hogy az élei metsszék egymást. Egy ilyen felrajzolását a G gráf síkbeli reprezentációjának

Részletesebben

Megoldás: a) Nem lehet. A 25 gyerek között fellép ( 25

Megoldás: a) Nem lehet. A 25 gyerek között fellép ( 25 1. A játszótéren 5 gyerek áll úgy, hogy a köztük fellépő távolságok mind különbözőek. Kezdetben mindegyiküknél egy labda van. Ha a tanár megfújja a sípját, minden gyerek eldobja az összes nála lévő labdát

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

A skatulya-elv Béres Zoltán (Szabadka, Zenta)

A skatulya-elv Béres Zoltán (Szabadka, Zenta) A skatulya-elv Béres Zoltán (Szabadka, Zenta) Ez a 205. november 28-i komáromi előadás kibővített, javított, újraszerkesztett és megoldásokkal ellátott feladatsora Alapfeladatok. Van 4 skatulyám és 5 gyufaszálam.

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy Feladatok 1. Hányféleképpen állhat sorba n fiú és n lány úgy, hogy azonos neműek ne álljanak egymás mellett?. Hány olyan hétszámjegyű telefonszám készíthető, amiben pontosan két különböző számjegy szerepel,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

349. amelyek közti útvonal Budapesten halad át. A Debrecen Siófok távolság 332 km, ez megegyezik

349. amelyek közti útvonal Budapesten halad át. A Debrecen Siófok távolság 332 km, ez megegyezik Alapfogalmak. Gráfok 6. a) A gráf egyszerû. komponensbôl áll, 7 pontja (ezek közül kettô izolált), 5 éle van. Az egyes csúcsok fokszámai rendre,,,,, 0, 0. b) A gráf komponensbôl áll. 8 pontja (egy izolált),

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

Ismétlés nélküli kombináció

Ismétlés nélküli kombináció Ismétlés nélküli kombináció Hányféleképpen lehet n különböz elembl kiválasztani k elemet úgy, hogy a sorrend nem számít, és minden elemet csak egyszer választhatunk? 0. Egy 1 fs csoportban hányféleképpen

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Eredmény: Igen, Eredmény: 13, 7, 4

Eredmény: Igen, Eredmény: 13, 7, 4 Kincsesláda 5 pont Egy szultánnak 143 felesége volt. 1000 napon keresztül adót szedett. Az első napon 144 aranyat, a többi napon pedig mindig egy arannyal többet szedett, mint az azt megelőző napon. Az

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006 A Network-Elemzés - és felhasználása általános iskolai osztályok társas szerkezetének és a szerveződésért felelős személyes tulajdonságok feltárására Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;

Részletesebben

CHRISTOPH DRÖSSER CSÁBÍTÓ SZÁMOK, AVAGY A MINDENNAPOK MATEMATIKÁJA

CHRISTOPH DRÖSSER CSÁBÍTÓ SZÁMOK, AVAGY A MINDENNAPOK MATEMATIKÁJA CHRISTOPH DRÖSSER CSÁBÍTÓ SZÁMOK, AVAGY A MINDENNAPOK MATEMATIKÁJA MEGOLDÁSOK 16. oldal Ha négy emberrel számolunk négyzetméterenként, akkor mindenkire egy negyed négyzetméteres, azaz egy fél méterszer

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Kombinatorika. 9 10. évfolyam. Szerkesztette: Surányi László Ábrák: Hraskó András. 2015. december 6.

Kombinatorika. 9 10. évfolyam. Szerkesztette: Surányi László Ábrák: Hraskó András. 2015. december 6. Kombinatorika 9 10. évfolyam Szerkesztette: Surányi László Ábrák: Hraskó András 2015. december 6. A kötet létrehozását 2008-tól 2010-ig a Fővárosi Közoktatásfejlesztési Közalapítvány támogatta Technikai

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok

Részletesebben

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére

Részletesebben

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x,

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x, 1. Egy 31 fős osztály játékos rókavadászaton vett részt. Az erdőben elrejtett papír rókafejeket kellett összegyűjteniük. Minden lány 4 rókafejet talált, a fiúk mindegyike pedig 5 darabot. Ha minden lány

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam eszközök tánítók részére 1. félév 1. modul 1. melléklet 3. évfolyam tanító/1. DARABSZÁM tíz ház 2-3 kutya 4 regény 1. modul 1. melléklet 3. évfolyam

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: november. I. rész Dobos Sándor, 005 november melt szintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005 november I rész 1 feladat Adott a síkon két kör, meghúztuk a közös külső és belső érintőiket

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb. 1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k

Részletesebben

MATEMATIKA C 6. évfolyam 9. modul A BULIBAN

MATEMATIKA C 6. évfolyam 9. modul A BULIBAN MATEMATIKA C 6. évfolyam 9. modul A BULIBAN Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 9. MODUL: A BULIBAN TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

2009. májusi matematika érettségi közép szint

2009. májusi matematika érettségi közép szint I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két

Részletesebben

DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY

DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY 5. OSZTÁLY 1.) A páratlan számjegyek száma 5, közülük 1 db, illetve 3 db lehet a háromjegyű számunkban. Ha mindhárom számjegy páratlan, akkor az 5 lehetőségből választhatunk mindhárom helyiértékre. Így

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök

5.osztály 1.foglalkozás. 5.osztály 2.foglalkozás. hatszögéskörök 5.osztály 1.foglalkozás 5.osztály 2.foglalkozás hatszögéskörök cseresznye A cseresznye zöld száránál az egyeneshez képest 30-at kell fordulni! (30 fokot). A cseresznyék között 60 egység a térköz! Szétszedtem

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben