A Laplace transzformáció és egyes alkalmazásai
|
|
- Bálint Katona
- 2 évvel ezelőtt
- Látták:
Átírás
1 A aplac razormáció é gy alkalmazáai A PTE PMMFK villamomérök zako lvző agozao allgaói zámára kéziraké özállíoa Ki Mikló őikolai adjuku 3 Irodalomjgyzék: Bako Ivá: Elkrocika I-II (KKVMF Budap 969 Duca J: Bvzé a komplx üggvéyaba (Műzaki Köyvkiadó Budap 97 Dömöör Gábor dr (zrk: Mamaika I-II (Műzaki Köyvkiadó Budap 975 Kovác J Takác G Takác M: Aalízi (Műzaki Köyvkiadó Budap 989 Scarizky V: Vkorgomria é liári algbra (Műzaki Köyvkiadó Budap 989 Slmczi K dr Scöllr A: Villamoága I-II (Műzaki Köyvkiadó Budap 999 Sréré dr ukác Z (zrk: Mamaika ladagyűjméy (BMF KKVFK Bp
2 Ki Mikló: A aplac razormáció (Kézira 3 A aplac razormáció gy üggvéy razormáció: gyválozó való üggvéyz rövid üggvéyz komplx zám válozó komplx zám érékű üggvéy rövid komplx üggvéy rdl (A ovábbiakba az gyválozó való üggvéy ké razormáladó üggvéyké az z ozzárdl komplx üggvéy pdig razormál üggvéyké ogjuk mlíi A aplac razormáció gy ajáoágaiak é gyakorlai alkalmazááak imr azér oo a villamomérökök zámára mr a dirciálgyll modllz zabályozái rdzrk ulajdoágai é ulajdoágok vizgálai módzri a zakirodalom az z alapuló bből kijlz ylv írja l Ezér a mamaikába álaláoa zokáo ljégr az alábbiakba m örkdük azaz a aplac razormáció lmélék rézl é mélyraó ldolgozáa ly mglégzük a gyakorlai alkalmazái módzrk é az zk zmpojából lgooabb ulajdoágok imréévl A aplac razormáció érlmzé é diíciója gy az ( gy olya üggvéy amly a mgaív való zámok almazáak lj gézé érlmz azaz érlmzéi aromáya: D { } R gy ( igrálaó az érlmzéi aromáyáak mid korláo rézirvallumá ézzk olya M R é λ R az ( üggvéyől üggő való zámok ogy mid D λ é ljüljö az ( M gylőlég Jl végül gy olya komplx zámo vagyi α j β aol α R β R é j amly ljíi az α > λ lél Nyilvávaló ogy gy a i ulajdoágokkal rdlkző mgaározo ( üggvéy é mgado é az ( d > gy olya a komplx zám -ől mi üggl válozóól üggő ϕ ( üggvéy amlyk érék i komplx zám Állíá: Az igrálá rdméyké kapo ϕ ( üggvéy abzolú érékék mid olya α j β (komplx zám üggl válozó érék é lézik lő korlája amlyik mgll az α > λ lélk azaz M ( α λ ϕ( ( d ( α λ Bizoyíá: Az ( üggvéy igrálaóága kövkzéb valami az igrál ulajdoágai é az xpociáli alakú komplx zám abzolú érékék érlmzé azaz az ( α j β α j β α alapjá: ( d ( ( α j β d ( ( α j β d M λ α d
3 Ki Mikló: A aplac razormáció (Kézira 3 ( α λ ( α λ M ( α λ M ( α λ M d M ( ( ( α λ ( α λ α λ Mivl α > λ azaz a vző m ulla zér a lő korláké kapo kijzé érlmz Állíá: A korláoág áll az ( üggvéy érlmzéi aromáyáak lj gézé vagyi M ( d α λ Bizoyíá: Az α λ > mia ( α λ ( α λ zér az állíá lyég yilvávaló a gy az igrálá lő aára válozó kkor az ( d ϕ( ; válozóba olyoo zér érlmz i mid { } R é A ikr igylmml mgadaó a aplac razormáció diíciója üggvéy Diíció: gy az ( üggvéy érlmzéi aromáya { } D R lgy ( igrálaó az érlmzéi aromáyáak mid korláo rézirvallumá ézzk az M R é a λ R olya való zámok ogy az ( üggvéyr mid D é ljüljö az válozó amly mgll az Ekkor az ( λ ( M gylőlég gy az α j β olya komplx zám α > λ lélk ( aplac razormálja lézik é az az üggvéy [ ] [ ( ] ( d özüggé diiálja A aplac razormáció álal az ( üggvéyz rdl komplx válozó üggvéy a razormál üggvéy rövid ( i jlöli á [ ( ] ( Mgjgyzzük ogy az ( abzolú érékér voakozó diícióbli gylőlég a razormál üggvéy lézéék m zükég d légég lél A zükég lél(kr m érük ki mr a gyakorlai alkalmazá orá öbbyir olya üggvéykkl alálkozuk amlyk mgllk az légég lélk A aplac razormáció alapvő ooágú ulajdoágá az alábbiakba gy állíáké adjuk mg 3 Állíá: A aplac razormáció liári ulajdoágú azaz a az ; ( ; ( üggvéykk lézik a aplac razormálja é k ( k c ; c; c ado komplx zámok akkor [ c c ( c ( ] c [ ( ] c [ ( ] c [ ( ] ( k k k k (A liariá léygé rövid úgy oglalajuk öz ogy az özg agoké razormálaó é a koa zorzó kimlő a razormációból Bizoyíá: A aározo igrál ulajdoágai alapjá az állíá lyég yilvávaló 3
4 Ki Mikló: A aplac razormáció (Kézira 3 Néáy a gyakorlaba oo üggvéy aplac razormálja (Az alábbiakba az α jβ komplx zám válozó való illv képz rézé ké R illv Im ogja jlöli á α R illv β Im Expociáli é rigoomriku üggvéyk Állíá: Ha a R ado való zám é R > a a [ ] a Bizoyíá: A diíció zri: akkor ( a a a ( a [ ] d d ( a ( a a ( a ( a ( a ( a Téyzőké vizgáljuk a aárérék aralmazó lő ago Mivl R α > a zér az ( a α j β ( a α j β ( a a ( α j β ( a α j β ( a α j β ( a α β algbrai alakú komplx zám abzolú érék ( a α j β ( a α β ( a ( a α β ( a α β ( a α β érlmz iráyzög pdig β ϕ π arcg a α azaz a i komplx zám korláo abzolú érékű é -ól üggl Tkiv ovábbá ogy j ( a (( a j ( a j ( a ( a β α β α β α α amlyk aárérék ( a α mivl R α > a Ezér ( ( a a vagyi az állíábli üggvéy az xpociáli üggvéy razormálja A ik alapjá bizoyíá élkül mgadjuk az alábbi razormálaka i: a [ ] a R > a ; j a a [ ] é [ ] j a R > a j a j a A komplx zámok rigoomriku é xpociáli alakja közöi özüggé líró jϕ co ϕ j iϕ Eulr ormula alapjá a rigoomriku üggvéyk kijzők xpociáli üggvéykkl gy ϕ a aol a R zőlg ado kkor
5 Ki Mikló: A aplac razormáció (Kézira 3 co a j i a j a j a co a j i a Az özüggék özadva illv az lőből a máodika kivova mgkapjuk a rigoomriku üggvéyk kijzéé xpociáli üggvéykkl: j a j a j a j a coa é i a j Ezk alapjá állapíjuk mg a rigoomriku üggvéyk razormáljá Állíá: Ha a R ( a zőlg ado való zám akkor mid é a [ co a] é [ i a ] a a Bizoyíá: A rigoomriku üggvéyk kijzv xpociáli üggvéykkl é a razormáció liári ulajdoága mia: j a j a j a j a [ co a] ( [ ] [ ] j a j a ( j a ( j a ; ( j a ( j a j a a j a j a j a j a [ i a] ( [ ] [ ] j j j j a j a ( j a ( j a j a a j ( j a( j a j j a a Impulzuüggvéyk A zabályozái rdzrk vizgálaa orá gyakra alkalmazzák az ( jlöléű (azimmriku gaív gyégugrá üggvéy Ek diíciója: a < ( a Ami láaó az ( gyégugrá üggvéy a való zámok lj almazá a razormáció lélk mgllő módo érlmz ovábbá M é λ válazáával yilvávalóa ( M λ Állíá: Az gyégugrá üggvéy aplac razormálja: [ ( ] aol R > Bizoyíá: A aplac razormáció diíciója zri: [ ( ] ( d d iz ami az az xpociáli üggvéy aplac razormáljáak bizoyíáa orá már bláuk az igrálá rdméyéb álló aárérék ulla Ugyacak oo a δ ( jlöléű (azimmriku gyégimpulzu üggvéy má év a Dirac-él dla üggvéy amlyk diíciója: 5
6 Ki Mikló: A aplac razormáció (Kézira 3 6 < < < a a a a ( δ aol A Dirac-él dla üggvéy zmlél: gy zimmriku áromzög alakú mgaív érékű impulzu a gly poziív lék ljé amlyk zélég -oz a magaága -z ar d ől ügglül a graikoja é a gly közöi íkidom rül Állíá: A Dirac-él dla üggvéy aplac razormálja [ ] ( δ Bizoyíá: A aplac razormáció diíciója zri arra igylmml ogy : [ ] d d d ( ( δ δ Az igrál kizámíááoz zükég primiív üggvéyk: C C d é C C d Folyava a aplac razormál kizámíáá: [ ] ( δ 8 adódik a blyíé az özvoá é a kimlé uá A kapo ör zámlálója é vzőj gyará ulláoz ar zér a aárérék kizámíáára alkalmazzuk kézr a Hopial él! [ ] ( ( ( δ
7 Ki Mikló: A aplac razormáció (Kézira 3 3 Haváyüggvéy 3 Állíá: A aváyüggvéy aplac razormálja:! [ ] aol ; ; 3; é R > Bizoyíá: Számíuk ki az lőokú aváyüggvéy razormáljá! [ ] d mr a Hopial él alkalmazva az lő agra adódik ogy ( ( á a máodik ag aárérék i Ha a zőlg poziív géz kivő aváyüggvéyr alkalmazzuk a aplac razormáció diíciójá é a primiív üggvéy a parciáli igrálá zabálya zri aározzuk mg akkor rdméyül az alábbiaka kapjuk: [ ] d d A máodik özadadóbli igrál épp a [ ] [ ] aváyüggvéy razormálja á így cak a aárérék kll kizámíauk Az aló aáro v lyíéi érék yilvávalóa a lő aáro v lyíéi érék aáréréké pdig a Hopial él -zri alkalmazáával zámíajuk ki: ( ( ( ( ( ( ( 33! ( A aváyüggvéy aplac razormáljára á az alábbi özüggé kapuk: [ ] [ ] Alkalmazzuk z az özüggé rdr a ; ; 3 ; aváyüggvéykr: 3 [ ] [ ] [ ] [ ] [ ] [ ] [ ] Ha igylmb vzük ogy [ ] akkor [ ] 3! ami az állíouk ( ( ( ( ( ( ( ( ( ( 3 7
8 Ki Mikló: A aplac razormáció (Kézira 3 Szorzaüggvéyk a xpociáli üggvéyl é a a- A gyakorlaba oo ogy imrjük az váyüggvéyl zorzo ( razormál üggvéyk a Állíá: [ ( ] ( a a üggvéy razormáljá az [ ( ] é az [ ( ] aol a R zőlg ado é R > a (A razormál üggvéybli jlölé érlmzé: az ( imr ( razormál üggvéyéb az üggl válózó lyéb blyíjük az a külöbég azaz a razormál üggvéy m közvlül -ől am a -ól ügg Bizoyíá: Az állíá lyég yilvávaló a a diiáló özüggéb alkalmazzuk az gylő alapú aváyok zorzaára voakozó azooágo: a a ( a [ ( ] ( d ( d ( a ( Állíá: [ ( ] ( ( aol ; ; 3; ado é R > (A jlölé érlmzé: az ( imr ( razormál üggvéyék a aváykivővl mggyző rdű -zrii driválüggvéyé képzzük é z aól üggő vzük poziív vagy gaív lőjlll ogy a aváykivő páro vagy párala zám Bizoyíá: Tkiük az ( üggvéy aplac razormáljá diiáló ( d ( özüggé é dirciáljuk az válozó zri midké oldal (A bizoyíá orá a driválak rdjé m vzőkkl am a rdk a magaabb rdű driválak é zokáo módo zárójlb orzámával jlöljük Ekkor ( ( d ( ( adódik iz a driválá zmpojából koa Midké oldal zorozva -gyl é a éyzők orrdjé mgválozava a ( özüggé kapjuk azaz d ( [ ( ] ( ( ( á é az állíá igaz Az árdzé uá kapo özüggé midké oldalá dirciáljuk imé az válozó zri Ekkor a kapo ( ( d ( ( özüggé ugyaúgy mi az lőbb árdzük: ( d ( ( Tá é i igaz az állíá: 8
9 Ki Mikló: A aplac razormáció (Kézira 3 ( [ ( ] ( Tgyük l ogy ér igaz az állíá blájuk ogy akkor igaz -r i Tá ( [ ( ] ( ( a lvé zri igaz állíá azaz ( ( d ( ( Újra dirciáljuk az válozó zri midké oldal: ( ( ( d ( ( z a már mgzoko módo árdzzük: azaz ( d ( ( [ ( ] ( ( miké az állíouk ( ( 5 Az igrálüggvéy é a driválüggvéyk Tkiük az F( ( x dx (aol {} R válozó özüggél diiál F ( üggvéy amly a bvzőb mgaározo ulajdoágokkal rdlkző ( üggvéy [ ; ] irvallumo v igrálüggvéyék vzük Emlékzük arra ogy az igrálüggvéy driválüggvéy a ] ;[ irvallumo ( azaz F ( ( x dx ( (Azér yíl az irvallum mr az igrálüggvéy az irvallum kzdőpojába lg cak jobbról végpojába balról dirciálaó 5 Állíá: Az igrálüggvéy aplac razormálja: [ F( ] ( x dx ( λ a lézik M R é λ R ogy ( M é R R( α j β α > max{; λ} Bizoyíá: A razormáció diíciójá alkalmazzuk: [ F ] x dx x dx d ( ( ( amlyb a parciáli igrálá módzrévl aározuk mg a primiív üggvéy Ekkor 9
10 Ki Mikló: A aplac razormáció (Kézira 3 x dx d x dx d ( ( ( Blájuk ogy bb az lő ag Mivl a ( x dx x dx ( külöbégb a kivoadó yilvávalóa iz ( x dx ( x dx zér cak a kibbídő kll mgvizgáluk Az ( üggvéy igráljáak ulajdoága alapjá kéél kll mgkülöbözi Ha a ( x dx kizámíáa uá gy (vég agyágú való zámo kapuk rdmé- yül akkor a kibbídő iz R > mia a vző Ha a ( x dx m vég akkor az igrál abzolú éréké kijük é az így kapo ör aárérékék kizámíáára a Hopial él alkalmazzuk: ( x dx ( x dx λ ( M ( j α β ( α j β M ( j β α λ ( α j β mr az lő ké zorzóéyző gy-gy korláo abzolú érékű komplx zám a armadikak pdig a aárérék mivl R α > λ Vizaérv a aplac razormál diíciójáak alkalmazáával yr ( x dx x dx d ( ( özüggér lévé az lő ag zér az állíáak mgllő ( x dx ( d ( d ( Tkiük a bvzőb mlí ulajdoágú ( üggvéy amlyről az i lélzzük ogy a lj érlmzéi aromáyá dirciálaó é ( driválüggvéy midü kivév a -ba mr o lg cak jobbról olyoo 5 Állíá: A i ulajdoágokkal rdlkző driválüggvéy aplac razormálja ( ( ( [ ] Bizoyíá: A aplac razormáció diíciójába álló igrál a parciáli igrálá módzrévl zámíjuk ki:
11 Ki Mikló: A aplac razormáció (Kézira 3 [ ] ( d [ ( ] ( ( d ( Mgvizgáljuk az lő ago: ( [ ( ] ( ( λ azaz a aárérék mivl ( M é R > λ iz az ( üggvéyk lézik a razormál üggvéy amly épp a máodik ag -zr Tá ami az állíouk [ ( ] ( ( ( d ( ( Mo az ( üggvéyről az lélzzük ogy a lj érlmzéi aromáyá kézr dirciálaó é ( máodrdű driválüggvéy midü kivév a -ba mr o lg cak jobbról olyoo 53 Állíá: A i ulajdoágokkal rdlkző máodrdű driválüggvéy aplac razormálja ( ( ( ( [ ] Bizoyíá: A razormáció diíciójába álló igrál a parciáli igrálá módzrévl zámíjuk ki: [ ( ] ( d [ ( ] ( ( d ( ( ( ( ( ( ( ( ami az állíouk mivl a aárérék ugyaazér mi amily okra az lőző állíá bizoyíáába ivakozuk Bizoyíá élkül mgmlíjük az -drdű driválüggvéy aplac razormáljá amly [ ( ] ( ( ( ( ( ( ( 3 ( ( ( lév ogy az ( üggvéy a lj érlmzéi aromáyá -zr dirciálaó ( é ( az -drdű driválüggvéy midü kivév a -ba mr o lg cak jobbról olyoo 6 További a üggl válozó liári razormációja rdméyképp kapo üggvéyk aplac razormálja A gyakorla zmpojából lgooabb üggvéyk razormáljaiak loroláá bjzv ké émiképp az lőző üggvéyk álaláoíó mgjgyzé zük Ha valamly g ( üggvéy érlmzéi aromáya bővbb vagyi D g {} R akkor kiük k az alábbi ( lzűkíéé a poziív való zámok almazára: a < ( g( a Ha a ( üggvéy érlmzéi aromáya él zűkbb vagyi D {} R akkor ly kiük aak alábbi ( kirjzéé a poziív való zámok almazára:
12 Ki Mikló: A aplac razormáció (Kézira 3 ( a D ( a {} R \ D Ily kb a g ( é a ( üggvéy ly a lzűkíél illv a kirjzél adódó ( üggvéy aplac razormáljá képzzük Ez alapul az alábbi állíá az úgyvz lolái él 6 Állíá: Rdlkzz az ( üggvéy a bvzőb mgaározo ulajdoágokkal ovábbá [ ( ] ( Tkiük az ( üggvéyk gy az alábbi érlmb v loláá: a < a g( ( a a a Ekkor a g ( üggvéy aplac razormálja: a [ g( ] ( Bizoyíá: A aplac razormáció diíciójá alkalmazzuk: [ g( ] g d a d ( ( a iz az igrál érék a [ ; a [ irvallumo mr i g ( A primiív üggvéy lyíé igráláal zámíajuk ki: bvzjük az u a lyíé Ekkor a ( a ami az állíouk d u u ( u Az alábbi állíá a aolóági él ( u a du a u u ( u u du a ( 6 Állíá: Rdlkzz az ( üggvéy a bvzőb mgaározo ulajdoágokkal ovábbá [ ( ] ( gy az ( üggvéy üggl válozójáak liári razormálja a aol a > ado való zám é kiük az ( a üggvéy Ek aplac razormálja: [ ( a ] a a Bizoyíá: A aplac razormáció diíciója zri: [ a ] ( a d ( amly a lyíé igrálá módzrévl zámíuk ki gy lyíé τ τ a ( a d ( τ dτ τ a a a adódik ami az állíouk τ a é lvégzv a Végzül mgmlíjük ogy az lolái é a aolóági él a aplac razormáció ozzárdléi zabálya iráyáak mgordíáába az ivrz aplac razormáció érlmzééb é az ivrz razormál mgaározáába jázik oo zrp
13 Ki Mikló: A aplac razormáció (Kézira 3 7 A aplac razormáció özoglaláa Az alábbiakba a lélk mllőzv cak loroljuk az lőzőkb állíáokké mgogalmazo razormáció özüggék Diíció é jlölé: [ ( ] ( ( d 3 iariá: [ c c ( ] c [ ( ] c [ ( ] Expociáli üggvéy: [ ] a ( a Trigoomriku üggvéyk: [ co a] é [ i a ] a Impulzuüggvéyk: [ ( ] é [ δ ( ] Haváyüggvéy: [ ]! a Szorzaüggvéyk: [ ( ] ( a é [ ( ] ( ( Igrálüggvéy: [ F( ] ( x dx ( Driválüggvéyk: [ ( ] ( ( [ ( ] ( ( ( a Elolái él: [ g( ] ( a a ( ( ( [ ( ] ( ( ( ( aol a a Haolóági él: [ ] ( a g( ( a 8 Gyakorló ladaok a razormál üggvéy mgaározááoz i 5 co3 3 5 a [ ] 3 b [ ] 3 c [ co ] d 3i [ 3 ( i ] [ co ] g [ g( ] a [ g( ] a g ( 3 ( a a < 3 3 π a < g( 3 π π co a 3 3 a a ( < a a
14 Ki Mikló: A aplac razormáció (Kézira 3 Az alábbi razormálaka aározza mg a aolóági élll é a kapo rdméy llőrizz a üggvéyr voakozó razormáció zabály alapjá! 6 a [( 3 ] b [ co 5] 3 Az alábbi razormálaka aározza mg a driválüggvéy razormáció zabályaival é a kapo rdméy llőrizz a üggvéy kizámío driváljáak razormációja újá! a [( ] b [(co ] c [( i ] d [ ( co3 ]
adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak
1. Hálózi olymok Diníció: Lgyn G = (V, E) gy irányío grá, mlynk minn (u, v) élén o gy nmngív c(u, v) kpciá. A gránk kiünjük ké ponjá: z rmlő é ogyzó. Ekkor (G; c; ; ) négy hálóznk nvzzük. Szmléléképpn
BIATORBÁGYI ÁLTALÁNOS ISKOLA MINŐSÉGIRÁNYÍTÁSI PROGRAMJA
A Biaorbágyi Álaláno Ikola Minőégirányíái Programja 2009. Kézí: Bnkő C. Gyuláné BIATORBÁGYI ÁLTALÁNOS ISKOLA MINŐSÉGIRÁNYÍTÁSI PROGRAMJA Kézí: Bnkő C. Gyuláné igazgaó A minőégirányíái munkacopor közrműködéévl
Vezetéki termikus védelmi funkció
Budaps, 011. április Bvzés A vzéki rmikus védlmi fukció alapvő a hárm miavélz fázisáram méri. Kiszámlja az ffkív érékk, és a hőmérsékl számíásá a fázisáramk ffkív érékér alapzza. A hőmérséklszámíás a rmikus
Aktív lengéscsillapítás. Másodfokú lengrendszer tesztelése.
Aktív lgécillapítá. Máodfokú lgrdzr tztlé.. A gyakorlat célja Jármvk aktív lgé cillapítááak modllzé máodfokú lgrdzrkét. Szoftvrfjlzté a rdzr való idj tztléér, a tztrdméyk kiértéklé.. Elmélti bvzt. A máodfokú
Operatív döntéstámogatás módszerei
..4. MSKOLC YM azaságtuomáyi Kar Üzlti formációgazálkoási és Mószrtai tézt Számvitl tézti aszék Opratív ötéstámogatás mószri Dr. Musiszki Zoltá Opratív ötéstámogatás mószri Statisztikai, matmatikai mószrk
Ó É Á É Ü É Á Á Ú É Á ű ő ő Ú ő Ü Ü ő ő Á É Á Ú É Á ő ő ő ő Á ő Á É ő Á ő ő ő É ő Á Á ő Á É Á ő Ú ű ő ű ő Ú ő ő Ú Ú ő Ó Ú ő É Ú ő Á É ő Ú Ó É ő ő ő Ü ő ő ű Á Ú ő Ü Á É É Á Á ő É Ú ű Á Ü Ú Ü ű Ü ű Ú Ú Ú
Intuitív ADT és ADS szint:
A zkvcál adazkz olya dz pá amlyél az R lácó azív lzája lj dzé lácó. zkvcál adazkzb az gy adalmk gymá uá hlyzkdk l, va gy logka odjük. Az adaok közö gy-gy jllgű a kapcola: md adalm cak gy hlyől éhő
Laplace transzformáció
Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra
Országos Szilárd Leó fizikaverseny feladatai
Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta
A központos furnérhámozás néhány alapösszefüggése
A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.
53. sz. mérés. Hurokszabályozás vizsgálata
53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási
é é é ó ű é ó ó é é ú ú ó ó ó é ó úá é é ó ű ú é é ű ó ú ö é ó ó é ű é ó é ó é é ü úá ó ó ű ú é ű ó ú ö ó ó é é É ű é é é ó é ö ó ó é é ú ú ó ó ó é ó úá é é ű ú é é ű ó ú é ó ó é ű é ó é ó é é ü úá Á ó
III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)
5.3.3. VÁLLALATI ÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE ( óa Összállíoa: Naá János okl. üzmgazdász, okl. közgazdász-aná Részvény: olyan ljáa nélküli éékaí, amly a ásasági agnak: az alaők mghaáozo hányadá
Feladatok megoldással
Fladatok mgoldással. sztmbr 6.. Halmazrdszrk. Igazoljuk! A \ B A r (A r B) (A [ B) r ((A r B) [ (B r A)) Mgoldás. A r (A r B) A \ A \ B A \ A [ B A \ A [ (A \ B) A \ B (A [ B) r ((A r B) [ (B r A)) (A
Statisztika gyakorló feladatok
. Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.
Á Á Ó É ö ó ó É í ó ü ó ö ö í ó ö ó í ó í ú Í í ó í ö í ó ű ű ü ó ó ú í ö í ö ü ú í í ü ü ó ó ó ó ó ú í ü í ű ó í í ö ü ü í ű ó í ó ü ö ü í í ü ó ű ó í ü ü ó í ó ó í ó í ú í ó ó í ö ó ö Á óö ö í í ó ó
ó ü ú ü ú ó ó ú ü ú ü ú ö ö ű ü ö ö ö ú ó ü ö ö ö ü ö ö ö óó ü ö ö ó ó ö ó ö ú ó ó ó ó ű ö ö ó ö ó ó ú ű ü ö ö óó ú ó ö ö ü ó ó ó ó ó ó ó ü ó ú ű ü ó ö ú ű ó ü ö ö ó ó ü Á ó ű ó ü ó ó ú ó ú ó ó ö ö ü ú
ö ö ö ó ö ö ú ö ö ö ö ö ú ő ő ö ő ö ó ó ő ű ó ö őö ő ü ő ő ú ó Á Á Á Á ó ü ó ó ú Á Á Á ő ő ö ő ö ü É Á Á ú ö Á Á É É ö ü ö ö ő Í Á Ő É Ő ú Á É É ö ű ü ő ő ö ü ó ö Á É É ő ó ó ö ő ó Ö ő ó Ő ő ü ö ö ó ö
Ö Í Ő Ó ó ö ó ó ő ö ú ö ú ö ö ú Í ó ö őö ő ü É É ő ő ö ö ó ó ö ő ő ő Ü É ü ú Ö Ö É É ő Ü Ö Í É Ó Ö Ó Ü É Ö ú Ó É Ő É É ö ö ü ö Ü ö ö ő ö ő ő Ö Ú Ő É Ő Ú É É ö ű ő ő ö ó ö Ú É É Ő Ó Ó ö Ó ö ó ő ó ő ó ű
Ó Ó ö ő ő Ü ö Ü ő ö ö Ü Ó ö Ó Ó Ü ö Ó Ó Ü Ó Ü ö ö ő Ü ő ö Ü ő Ó Ü ő ö Ó Ó Ü ö ő Ü Ü Ü Ó ö ö ő Ü Ó Ö ö Ó Ü Ó Ü Ó ő ö ö Ü Ü ő ö Ó Ü Ó ö Ó Ó ö Ü ö ő ö Ó ö ö ö ö ö ö ö ö ö Ü ő ű ű ö Ó ű ő Ó Ó Ü Ó Ü ő Ü Ó
Í ú Ó Á Á ö ö ő ö ő ö Á ö ő Í Í Í ö ö ő Í ö ö ű ö ü ö ú ü ő ü ő ö ő ö ő ú ő ö ő ö ő ö É ő ü ő ő ö ő ő Í ő ö ő ő ő ö ö ö ö ü ő Í ő ö ő Ó ü ő ő ü ü ő ő ő ő ü ő ö ű ő ő ő ő ő ő ű ő ő ő Í ű ő ö ö ő ő ő ű ő
É É ő ü ó ü ú ü ó Ö ű ő ú ű ő ü ó ó Ö Ü ó ó ő ü ú ü ű ó ő ő ő ő ő ó ő ő ü ó ő ó ő ő Ö ó ő ő Ö ő ü ó ü Ö ő ü ó ő ő Á Á ő ó ó ó ő ő Á ű ő ó ó ő ü ő ü ő ő Á ú ü ü ó ő ű ő ő ő ó ü ó ő ő ü ó ó ó Á ő Á ő ó ő
ü ö ú ü ü ö ú ő ö ő ő ű ö ú ő ű ö ü ü ő ú ö ü ü ö ö ő ö ú ű ü ö ő ű ö őö ő ü ő ö ő ö ö ü ü ő ű ö ö ü ü ő ü ü ő ü ú ö ö ü ö ü ö ö ő ú ő ő ú ü ő ő ü ö ú ő ö ü ő ú ő ő ö ö ö ő ő Á ő ö ő ü ő ö ő ú ü ü ő ő
Ó ú ö ő Á ö ő ő ő Á ú ú ő ő ö ú ő ő ü ö ö ü ő ö ő ö ő Ó ö ö Ó ö ö ú ö ö ő ö ö ö ü ú ő ú ö ú ő ő ő ő ö ő ő ú ő ő ö ú ú ő ő ú ő ö ö ü ő ö ö ö ö ő ü ő ö ö ő ö ö ü ő ő ö ő ö ő ö ő ö ö ö ö ő ö ö ő ő ű ű ű ö
ö Ö ő Í Ó ö ö Ö ő ő ű ö ő ö ö ö ö ő ő ö ő ő ő ő Ö ő ö ö Ö ö Ö ö ő ö Ö ő ö ő ö Ú ő ő ö ö Ö ő ö Ó ő ő ő Ö ö ő ö ö ú ö ő ö ö ö ö ű ö Ö ö Ó ö ú ú ö ő ö ú ö ö ö ö ö Ó ő ő öő ő Á ű ő ö Ö ő Á Ó ö Ó Ó ö ű ú ú
ö ú Ú ö ö Ú Á É Á ő ú Ú Ú É É ő É É ö ú Ú ö É Á Á Á ö ö ö É ö ö ö Ú É ö Ú É ö ő ú Ú É ö Ü ö ö Ü ö Á Á ö ő ű ú ö ú Ú É É ö ű ú É ú ö ő ű ö ü É ú ú ö É ö ű É ú ö ú Ü ü É Á ö ő ű ö ö ú É ú ü ú É ö ű ú Á ü
ľ ú á Ö á á ĺ ľ Ż á ö óľ ö ő ö á ó á ü ő ü ú ľ á ü ö ö á ó ó á á í ő ő á á ó ĺ ő í á ő ü á í á ő ó ű ő ú á ö ń ö ő ö ö á ö ü ő Á á á í á á ü ö ü ő Ĺ ö ö ę á ü ü á ő Ĺ ý ź í ú ü Ł ö ő á ő Í á á ź á ö ő
ĺ ĺ í ő í ü ö ö ő ó ó ó ő ź ő ő ó í ĺĺ ő ó ó ź ĺ í ő ó í ö ź ĺ ő ó ó ó ó ö ó ő í ó ő ó ó ĺ Á ĺ ő ö ő í ő ó ó ó ő ó ó ö ő ź ő ő ő ó ő ĺ ź ő ő ő ő ö đő ź ź ú ź ó ő ő ő ö ő ó ó ĺ ź ő ő ő ő ĺ đő ź ĺ í ó ę
Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343
Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális
ü Ö ü í ü ü ü ü í Ö ö ü ú ü ü ö ü ü ű ö í í ö í űá ú ü ö ö ö í ü ü ü ü ü ű ö í í ö í ű ú ü ü í ü ü ű ö í í ö í űá ú ü íí ü Á í í í Á ű ú í ö ö í ü ö ö ö í ö í ú ö ü ü ű ö ö í ű ö í ű ü ű ö í ű ö í ö í
ó ű ó ü ó ó ü ó ü Í Ö Ő ű Á ó Á Á Á ó ü ó Ö Ö ÚÁ Ö Ó Ó Ó ó Á Ö Ö Á Ó Á Á ó Á Ö Ú Á Ú Ö Ö Á Ö ú Ú Ö ü ú ú ó ü ú ű ó ú ü ú ó ó ü ó ú ü ú Ű ó ü ó ú ó ű ó ú ú ú ó ó ú ú ü ó ü ó ú ó ó ü Ö ó ó ű ó ú ü Ö ű ó
É ű Ö ű ű Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű Ó ű ű É ű ű ű ű ű Ö ű ű ű Ó ű Á Á ű ű ű Á Ü Ű ű ű ű Ő Á Á Á ű Á Á É É Á Á Á ű ű ű Á É Á Á ű Á ű Á Á ű ű ű ű ű ű ű ű ű ű ű ű Á Á É ű Á ű É ű Ü ű É É É
Ó ő Ó ő ú ő ö ü Ó ő ö ő ü ő ö ő ü ö ö ő ö ü ú ö ő ü ú É ő ő ő ö ő ü ö Ó ő Á ő Á ú ü ő ú ú Ó ő Ó ő Á ő ő ő Ó ő Á ő ö ő ü ö ő ő ő ú ő Á ő ő ő Á ő ö ö ő ü ü ö ö ü ő É ő ő Á ő Á Ö ü ú ö Á ü ö ö ő ö ö ú ö ő
Á Á Á Ú Á Á ö Ó ö Ú ü ü Á Á ü ö Á ü Á ö ű ö ű ü Ú ü ü ö Á ű ű ö ö ű ű ü Á ü ü ö ű ü ü Á Á ö Ú Á Á Á Á Á Á ü Ü Ú ü ö ö Á ö ö ü ü ű ű ö ö ö Á ö ö Á Ó ö Ú ö ö ö ö űü ö Á ö ű Ú ö ö Á ü Ú ö ö Á ű ö ö Á ö ö
Hatvani István Fizikaverseny 2014-15. 3. forduló megoldások. 1. kategória. 7. neutrínó. 8. álom
1. kaegória 1.3.1. 1. CERN 2. PET 3. elekronvol. ikloron 5. Porozlay. Fiziku Napok 7. neurínó 8. álom 9. környezefizikai 10. Nagyerdő A megfejé: SZALAY SÁNDOR Szalay Sándor (195-1975) köveő igazgaók: Berényi
GÉPÉSZETI ALAPISMERETEK
Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók
ü ę ć Í Ĺ źú ĺ ź Í ö Ĺ öĺ ź ö ü ĺ Ű ĺ Ü ĺ Ü ĺ Ü Ü ĺ Ű ö ź ĺ ö ü ü Á ź ö ĺ ü ę ź Ü ü ĺ ü ö ĺ ü ü ź ü ö ź ü ö ĺ ö ę ü đ ń ö ö Ą ĺ ł ĺ ú ĺ Á É Á Ű É Ü É Á Á ü ú ö ü ń ł ú ĺ ü ĺĺ ĺ ü ü ä žł Ü ä ń ĺ ł ĺ Ü É
KOD: B377137. 0, egyébként
KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,
Ĺ ĺ Ĺ ĺ ĺ Ő É ę ü ĺ Í ńź ü ö ĺ ü ö ź ź ű ź ĺ ę ź ö ö ź ö ö ö ę ö ĺ ö ĺ Ú ĺ ĺĺ ĺ ź ö đ ź ď ź ź ę Ú ü ü ö ö ę ĺ ö ĺ ü ü ĺ ź ĺń ź ĺ ď ź đ ź ü ű źú Ĺ ź ź ź ź ź ĺ ĺ ź ü ĺ ö ú ö ę ú đ ö ö ö ü ö ö ü đ ĺ Í ę ę
Szabályzószelep üzemi vizsgálata Control valve testing during operation
Innaional Jounal o Engining and Managmn Scincs (IJEMS) ol. 2. (27). No. DOI:.279/IJEMS.27..3. Szabályzószlp üzmi vizsgálaa Conol valv sing duing opaion R. KOKAS Univsiy o Dbcn, kokizz465@gmail.com Abszak.
VILLAMOSSÁGTAN. Szerzők: Haluska János (11. fejezet) Kővári Attila (1-10 fejezetek)
VAMOSSÁGAN Szrzők: Halska János (. fjz) Kővári Aila (- fjzk) aralomjgyzék Elkroszaikai alapfogalmak, lkromos mző... 5. Elkroszaika, ölés... 5. Elkromos mző, érrősség... 5.3 olomb örvény... 6.4 Prmiiviás,
SZERKEZETÉPÍTÉS I. FESZÜLTSÉGVESZTESÉGEK SZÁMÍTÁSA NYOMATÉKI TEHERBÍRÁS ELLENŐRZÉSE NYÍRÁSI VASALÁS TERVEZÉSE TARTÓVÉG ELLENŐRZÉSE
01.0.7. SZERKEZETÉPÍTÉS I. NYOATÉKI TEHERBÍRÁS ELLENŐRZÉSE TARTÓVÉG ELLENŐRZÉSE GYAKORLAT KÉSZÍTETTE: FEHÉR ZOLTÁN A ervezé orán meg kell haározni, hogy a időonban mekkora a haáo fezíéi fezülég a ázmákban
Forrás Nyelő. Fizikai. Kémiai BELSŐ. Biológiai. Mesterséges szennyvíz KÜLSŐ. Természetes. hordalék felkeveredés
BESŐ ÜSŐ Fizikai émiai Biológiai Forrá Nylő hordalék flkvrdé nirifikáció, NO - NO lpuzul, auolízi, akriáli loná, minralizáció Mrég znnyvíz vzé Trméz flzíni folyá, capadékvízzl, l. a-hoz köö znny a. kiülpdé
ő ęľĺ ő Ö ľ ő ü ő ő ü ę ó ú ü ľ É ó ö ľ ő ő ő ź ó ľ ő ľ ő ź óľ ő ľ Í ü ő ź ő ź ź É ó ö ú ó ü ö ö ü ö ű ź őľ ľ ő ű đ ö ö đ ő ú ľ Ĺ ř đ ľ ő ő ę ľ Ĺ ó źú ľő ź ó ő Í ő ő ń ő ľ ľ ľ ľ ő đ ö ö ź ü ľü ę ű ę ú
Mágneses anyagok elektronmikroszkópos vizsgálata
Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok
Az I. forduló megoldásai
Szakác Jnő Mgyi Fizika Vrny 005/006 Az I. foruló goláai. 500 5 k 5 000 α 0 ÉK x? y? z?. z Az ábra alapján z 500 x + y + z + z z 4 99 ( 5000) x inα 7 496 (500) 4 pon 7 pon x K. Θ α y É y coα 98 4 pon. 400
ω = r Egyenletesen gyorsuló körmozgásnál: ϕ = t, és most ω = ω, innen t= = 12,6 s. Másrészről β = = = 5,14 s 2. 4*5 pont
Hódezőváárhely, Behlen Gábor Gináziu 004. áprili 3. Megoldáok.. felada (Hilber Margi) r = 0,3, v = 70 k/h = 9,44 /, N =65. ω =? ϕ =? β =? =? A körozgára vonakozó özefüggéek felhaználáával: ω = r v = 64,8
Középszintű érettségi feladatsor Fizika. Első rész
Középzinű éreégi feladaor Fizika Elő réz 1. Egy cónak vízhez vizonyío ebeége 12. A cónakban egy labda gurul 4 ebeéggel a cónak haladái irányával ellenéeen. A labda vízhez vizonyío ebeége: A) 8 B) 12 C)
í ő ľ ü ó ľ ľ ő ľ ü Ü Ü Ł ľ ü ľ ü ľ ö ľü íľ ő ő ź ő í ó ü ľ ö ü ü ó ő ö ľĺ ó ľó ő ő ö ź í ö ő źą ö í ő ü ö ö ü ő í ľ ó ó ó ü ó ó ó ő ö í ó í ü ö í ő ę í ö ü ą í ľ ó ő í ú í ó ő ö ó ó ő ü í ó ľ í ľź ľ ú
Középszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.
Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a
A piaci egyensúly és stabilitása
1 A iaci gynsúly és sailiása Dr. Myr Dimar BME Közgazdaságan Tanszék dmyr@lucifr.kg.m.hu A Marshall-krsz Krsl, krsli függvény, krsli gör Kínála, kínálai függvény, kínálai gör Marshall-krsz 2 A Marshall-krsz
1. Gyors folyamatok szabályozása
. Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál
Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)
lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7
MINERVA TÉRINFORMATIKAI RENDSZER ÚT-ŐR KÖZTERÜLET HELYSZÍNELÉSI ÉS FELÚJÍTÁSI ÜGYKEZELŐ MODUL
N E V É N E N Z E NEV ÉN ENZE -Ő ÖZEÜLE HELYZÍNELÉ É ELJÍÁ ÜGYEZELŐ UL., l : ) 7 2 f x : ( ) 7 9 m o b l : ( 7 ) 9 9 5 7 7 m l : n f o @ m n r v. h w b : w w w. m n r v. h N E V É N E N Z E özrül hlyzínl
ź ü ü ö ö ź đö ű í ö ü É Í Ő É É Á Á Ü Á Á É Á ř Ą Ą É Í Ü É ĺ ł É Ü É ĺ É ĺ Á É É É ĺ ĺ Íĺ ĺ ĺ ĺ ź ü Í ý ü źú Ż ĺ ö ö ö ö ź ö ź źú ű ö ö ú ö ö ö í ö ö ű ö í ĺ ź í ö ę ö ö í ö ű ĺ ö í ĺ ö í ö ű ö ű ö ű
Matematika képletgyűjtemény a hallgatói számára
Mmik kélgyűjméy hllgói zámár Driválá Elmi függvéyk driválj f f f f f f c i co h ch co i ch h l log g cg co rci h ch ch i h l rcco l rcg rccg Driválái zályok rh rch rh, rch, c f c f f g f g f g f g f g
A művészeti galéria probléma
A műészti galéria probléma A műészti galéria probléma (art galry problm): A műészti galéria mgfigylés kamrákkal / őrökkl. Hálózattrzés Alapjai 2007 8: Műészti Galéria Probléma Őrzési / Mgilágítási problémák
ľ ó ó ú í ĺĺľ ű ó ó ľ ě ď ö íĺ ź í ź ú ó ĺ ĺ ó ö ľ ľ ź đ ó ü ú ó ľ ö ó ö ľ ó ľ ö ľ ź ĺ ö ź źú ö ľ ó óö ü ú í ó ĺ ź ö Í ó ć ö ü í ö ö Í ź ú ľ ü ü ú ű ö ö ľ ĺĺ ľ ó ű ó ľ ú ö í ľ ö Ĺ ź ĺ í ĺ ű ö í źú ö ö
ĺ ö í ĺ ĺí íó ĺ ź ö ű ĺ ź ű ó í ĺ Ĺ ö ĺ ú ó ó ó ó ĺ ź í ź ö ó ó ĺ ó ó ó ü ü ź í üö ó ö ó í ĺ ĺ ź ĺ ĺ í Ü ü Ü ó Ü ĺ Ü Ü Ü ö ź ĺ ó í ó ü ó Ĺ ó í ó ó ü ó
ó ĺ đí í Ĺĺ íü í ó ĺ í ó í ü ť źů í Ĺ É ĺ É É ó ĺ ł ĺ ó É Á Í Á É Í Ü É ó łł Řł ł É Ü É É ĺ Ä Ĺ ĺ ĺ ł Đ ü ĺ ĺ ĺ ĺ ź ź ü ü Í ĺ ö ĺĺ ó ó ö ü ö ź üö ö ü ö ó í ź ź ĺ ö ó ĺ ú Ĺ ó ź ź ü ź ö ü ü ű ĺ ź ó ó ĺ Ü
csomópontba befolyó és onnan kifolyó áramok algebrai (előjeles) összege zérus. Az előjelezés az alábbiak szerint történik: I > 0 ha J da> I 5 I 3 I 4
4. Kirchoff törvéyk. Joul-törvéy itgráli alakja. Kirchoff törvéyk alkalazáa. llállá-ok oro é párhuzao kapcoláa. Whatto-híd kapcolá. Mérőűzrk éréhatáráak kitrjzté. Özttt árakörök (voala hálózatok): Tkitük
Gondolkozzon nagyban rendszerekre összpontosítva
Gondolkozzon nagyban rndzrkr özpontoítva Mi a lgjobb? Egy bzállító vagy több? Egy intgrált rndzr, amly mindn funkciót gybn kínál, vagy több gymáal özkötttébn lévő rndzr lm. Mindöz gy partnr a trvzél, bépítél,
Orosz Gyula: Markov-láncok. További feladatok
Oroz Gyula: Markov-lánok További flaatok.6. flaat: Két játéko y zabályo érmét többzör flob ymá után. Az A játéko akkor yőz ha a fjk záma hárommal több lz mint az íráok záma; mí B akkor yőz ha az íráok
ü ü ü É ź ü ü ú ü ł ę ü ö ú ú ź ü ü ö ź ú ü ö ö ö ú ö ö ű ö ö ö Ĺ ź ź ź ń ö ö ö ű ö ú ź ü ö ö ü źů ü Ö ź űö ü ö ú ű ü ú ź ü ö Ö ô ź ź ę ú ú źů Ö ź ű ö ö ź ü ö ü ö ú ą ö ü ź ü ź ű ö ö ű ö ź ö ö ü Í ö źů
ä ú á á á á á ú á á á ĺ ę ą ą ú á á á á ĺ á ĺ ĺ á á á ö í ů á á á í ł ü ü á á ĺź ĺ á á ó Źá ó á ű ö á á ó í á á ó á ä ü ú á á á á á ü ĺí ü ö áĺ ü á í á ó á ö á á á ó ü á ö á ĺ Ż Ż á í ö Á ź í á á á á ö
Név:... osztály:... Matematika záróvizsga 2008. 1. Tedd ki a megfelelő relációjelet! ; 4
Mtmtik záróvizsg Név:... osztály:... 1. T ki mgllő rláiójlt! 15 4 675 ; 180 115, 151, ; 31% 10 3 1000 ; 4 5 5 + ; 8. Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z gynlőségjlt!.
Villamosságtan példatár 1.4 verzió A példatár hibáit a. email címeken szíveskedjen mindenki jelenteni!
Vszrémi Egym Auomaizálás anszék Villamosságan éldaár. vrzió A éldaár hibái a nova@axl.hu ohrola@vn.hu mail címkn szívskdn mindnki lnni! Villanyan éldaár Bvzés: A Villamosságan éldaár a Vszrémi Egymn okao
A mi kísérletünk azt mutatja, hogy a negatív töltésű elektroszkópról elektronok folytak, áramlottak át a pozitív töltésű elektroszkópra.
.. ölékigynlíődé gyoran végbgy.2. víz ááralik a agaabb (ponciáli nrgiájú) hlyről az alaconyabbra.3. farúd ébn a ölék ozgaáához jlnő fzülég zükég.4. z áranak hő-, kéiai é ágn haáa i van Köük öz a ké, azono
12. Laboratóriumi gyakorlat MÉRÉSEK FELDOLGOZÁSA
. Laoratórum gakorlat MÉRÉSK FLDOLGOZÁSA. A gakorlat célja Lgks égztk LS) módszré alapuló polom-llsztés proléma mutatása és a módszr alkalmazása mérés rdmék fldolgozására, lltv érzéklő karaktrsztkák aaltkus
Í ľ ťę ó ľ ĺ ő ĺ ő ő ľ ĺ ľ ľ ü ü ő ó ľ ľ ľ ľ í ľ Úĺ ľ đ ĺ ťľ ę ľ ĺ ť ő í Ĺ ĺ É Í ó ľ É É ł ł ĺ ó É Í ľľ Ö Ö É Ü É ń Ä ł Á ł Ö É É É ł ŕ ł ŕ É Á ĺ Ó ő ľ ü ĺ ź í í ź ć ü ý ő ĺ ő ń ĺ ü ő ü ó ľ ź í Á đ ľ ü
Keszthely Város Önkormányzata Képviselő-testületének 32/2009. (X.15) rendelete Keszthely közigazgatási területének helyi építési szabályzatáról (továbbiakban: KÉSZ) ᔗ厇- ü ö ó ó ó 990. LX. ö ( ) 8.. ( )
Fűtéstechnika II. Példatár
Fűéschia II Példaár 005 BME Épülgépészi Taszé Fűéschia II példaár Taralomjgyzé Nélgs szabályozási függéy Miőségi (hőmérsél szabályozás Myiségi (ömgáram szabályozás Szabályozás háromjáraú szlppl Mgrülő
Portfólióelmélet. Portfólió fogalma. Friedman portfólió-elmélete. A befektetés három jellemzője. A kockázat általános értelmezése (Kindler József)
ofólió fogalma ofólióelméle Ké zóeede Lai zó oae hodai, vii Fólió ügy, ia Olaz zó icéek ézácája ofólió ág éelmezée vagyoágyak özeége ofólió zűk éelmezée külöböző, őzdé jegyze éékaíok özeége Fiedma ofólió-elmélee
Ą Í ľ ü í ú ľ ľ ú ó ĺĺ ů ĺó ľ ľ í ü ľ ĺí đ źł í ü É Íľ ľ É ĺ ł Á Á Ü Á ł ľ ł É Íľ ľľ ó ľ É Ü É ĺ Éľ Á Ą łĺ ĺ É ľ ľĺ Ł ľ ĺ í Í ź ź ü ü ľ ů ö ľ ó ĺ ĺ ö ű ö ö ź ľ ľ ó ö ľ ę ú ó ę ó í ó Ĺ ü í ź źń í ó ĺ ó
EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.
www.symhs.hu mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ
ő ü ó ľ ő ľ Ü Ő ľ ü ü ľ ľ ľ ő ź ő Ĺ ę ö ö ľ ľ ő ó ľ ľ ö Ĺ źýź ü ź ő ö ö ü ő ő ó ö ü źů ü ő ö ö ö ü ů ö ö ö Ĺ ő ü ö ö ü ů ź ó ý ű ö ę ő Ö ź ű ü ü ő ý ę ő ü ó ę ó ó ö ü ö ó ę ę Ü ö ü ź ü ń ľ ö ő ű ö ü ó
ą Ą ó ľ ő ü ő ő ő ü ő ú ü ľ ľ ü ĺ í ł ü É Í É ľ ľ É Á ľ ľ É ł É Íľ Á É Íľ Á ł É Ü ľľ ľ É ľ ľ É ĺ ľ ĺ ľé ľ ĺ ľ ł ĺ ĺ ł ľ ľő ľ ý ő ő ĺ ő ő ĺ ó ľ ľ ĺ đ ĺ ü ű ľ ó Ĺ ü ő ľ ľ ö ű ü ő í ő ü ü ü í Ĺ ő ý ľ ź ľ
ď ł ł ĺ ł ő ľ ű ö ő Á ľĺ ľá É ľ ľĺá ÁľÁ Á ł ő ľ ü ó ľ ĺ ő ź ľ ĺ í ő ő ó ľ ö ľ Í őő źĺ ľ ü ő ö ő ő ő ľ ľ ö ź ĺ ľ ĺĺ ó ó ó ö ľó ó ó ö ö ő ó ó ľ ź ĺ ľ ó ĺĺľ ő ľ ö ö ő ö í ő ü í ő ö ú ö ö ó ľ ľ Üđ ľ ű ő ó
1 Tétel - Gyors folyamatok irányításának tervezése. Modulus kritérium (Kessler változat). Szimmetria kritérium
Iáyíáechka Igea Regl Auomae Lcezvzga éelek éel - Gyo olyamaok áyíááak evezée. Moulu kéum ele váloza. Szmmea kéum Alegeea acoaea egulaoaelo peu pocee ape. eul moululu vaaa ele. eul mee. Gyo zabályozá ezeekl
GYŐR-MOSON-SOPRON MEGYEI KÖNYVTÁRELLÁTÁSI SZOLGÁLTATÁS 5 ÉVES FEJLESZTÉSI TERVE
K Ö N Y V T Á R E L L Á T Á S I S Z O L G Á L TAT Ó R E N D S Z E R GYŐR-MOSON-SOPRON MEGYEI KÖNYVTÁRELLÁTÁSI SZOLGÁLTATÁS 5 ÉVES FEJLESZTÉSI TERVE Dr. Kovács Pá Mgyi Köyvár és Közösségi Tér Győr, 2013
ő ó ü ő ü ę Ą ő ľ ő ü ü ľ ó ű üľ ó ó ő ő ę ü ű ü ü ö ľ ľ ó ú ź Í ľ ü ú ü ö ö ó ő ú ń ő ę ő ľü ę ľ ę ľ ę ő ó đ ú ę ó ű ľ ü ľ ó ú ő ö ö ú ű ź ő ö ö ö ö ó ó ó ö ó Í źľ ő ó ü ľ ó ľ Í Ĺ ú ő ő ý ó ü ő ő ő ě
ő á ľü ő ź ź ő Ĺ á á á á ő ľ ő ľ ľ í á á ńá ő á á á á í ź ĺ ĺ ľ á óĺ á á ő ő á ő í ó á á á źĺ í ü ö á ú Í ü á á á á á ő ľ ó íľ á ó á á ź ľ ü ĺ ó á ó ő ľ í ľ ĺ ő ő ľ á ó ľ ü öľ á í ź ĺí á á á ť í ü á í
Túlgerjesztés elleni védelmi funkció
Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan
A MEGTAKARÍTÁSÉRT. A MINŐSÉGÉRT. A KÖRNYEZETÉRT. A HOCO-TÓL.
Épít b. Élvzz lőnyit. 10 Alumínium bjárati ajtók A MEGTAKARÍTÁSÉRT. A MINŐSÉGÉRT. A KÖRNYEZETÉRT. A HOCO-TÓL. HOCO ALUMÍNIUM BEJÁRATI AJTÓK. Mggyőző érvk a takarékoág é igényég mlltt! A jövőr trvzv! Bizto
ő ę ó ő íĺ ľ ĺ ó ö ö ć ľ í ľ É ľ ó ľ ľ ó ő ő ľ ő ő í ő ő ü ľ ö ľ ü ő ó ľ ő ü ź ú ö ö ż ö ú ó ö ö ź Ĺ ę í ó í ó ĺ í ó ő ľ ü ľ ú ö ó í ő ľ ź í ó ü ľ ő ű ö ó ü ó ĺ í ó ę ő őö ő ź ö ú ľ ő ő ź ö Ę í í ó í ő
Ě ŕ Ś đ ü ü ö ő ő ö ö ö ö ö ö ö ö ö ź ź ľ ą Ä ľ ľ ö ľ ľ ľ ľ Đ öľ ő ö ö ő ő ľ ő ő ý ľ ő ú ú ő ö ő ú ę ą ő ö ő ű ö ő ő Ü ö ö ľ ś ő ń ä ę ľ Ü ľ ő ü ő ú ľ ľ ö ö ő ü ő ú Á Á ľ ę ő ü ő Á ľ ő ő ü ľ Ę ő ü ö ú
ą ő ü ó ę ą ą ą ó ú ą ąą ő ą ą í ó Í ö ą ő ą ő ó ó ő ľ ő ľ ő ö ő ą ü ő ö ą ó í ą ö í ó ö ľ ő í ó ő ĺ ő ľü ó ľ ź ľ ó ľő ő ő ő ő ő ő ö ę öľ ő ü ľő ö ö ĺí ó ő ľö ĺ ł ĺ ĺ ľ ó ü ľ ó í ó ĺ íľ ő Ĺ ĺ ľ ź ź ľ ľ
A kör harmadik pontjának meghatározásához egy könnyen kiszámítható pontot keressünk
7. Átviteli ellemzők fogalma é ábrázoláa! A kondenzátor kapacitív reaktanciáa: Z Tehát az áramkör ellemzői a rákapcolt zinuzo el frekvenciáától függenek, ha az áramkör energiatároló elemet, i tartalmaz.
Villamos érintésvédelem
Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás
á á á ľ á ő ĺ ö á ľ ĺ ö ľő ć ő ö ľ á ľ ó á áľó ú á á á Ö ľ á á ő ö á á á ö á ö á ú á á á Ö á ő ľ ű ö á á ő ő ő ľ á ľ ü ő ü á áĺ Íő ü á á ú á á á á ő ü á á á ú á á á Ö á ó ű ö á áľő ő ő ö ľ á ľ ľ ü ő á
Varga Bal a mk. század os A TV2-117A TÍPUSÚ HELIKOPTERHAJTÖNO KOMPRESSZORÁNAK VIZSGÁLATA
Varga Bal a mk. zázad o TV2-117 TÍPUSÚ HELIKOPTERHJTÖNO KOMPRESSZORÁNK VIZSGÁLT Eb bon a cikkben zeretném f o l y t a t n i az 1001/1. zámban m e g je le n t, a h a jtó m ű -v iz g á la tr ó l z ó ld tanulmányom,
HÍRLEVÉL A MINŐSÉG MINDIG SZÁMÍT!
HÍRLEVÉL...a még jobb ájékozaásér! A Holsi Gika Kf. időszaki kiadváya 2016. május A MINŐSÉG MINDIG SZÁMÍT! A Holsi Gika Kf. 26 évs fállása óa az lmúl szdőb éréksí a lgöbb szaporíóayago. Ez a éy az gyr
ľ Ä ę íł Ř Ę ł ł ó ú ľ í đ í Ú ľ ó ó ő ő ó ő ü ő É Á ľ Áľ É ű ö ź ľ ź ő Á ő ó ę í ő ö ö ö ö ö ü ö ő ü ő ó í ő ö ö ő í ü ő ö ö ó ł ĺű ó ľ ó ź ó ó ó ľ ö ó ó ó ó í ő í ü ľ ĺ í ő ő ü ľ ö ű ö ó ő ü ó ó ö ő
7. osztály, minimum követelmények fizikából
7. ozály, iniu köeelények fizikából izikai ennyiégek Sebeég Jele: Definíciója: az a fizikai ennyiég, aely eguaja, ogy a e egyégnyi idő ala ekkora ua ez eg. Kizáíái ódja, (képlee):. Szaakkal: ú oza a egéeléez
Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2014. november 06. A közgazdaságtan játékelméleti megközelítései
Műzak folyamatok közgazdaág elemzée Előadávázlat 04. november 06. A közgazdaágtan átékelmélet megközelítée a Története: - Táraátékok elmélete (Zermelo - Neumann Jáno (mnmax-tétel, azaz mkor létezk megoldá
Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)
oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a
D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k t u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y. I I I.
D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y A S E M L E G E S S É G > d A L A K U L Á S Á N A K F O L Y A M A T A
Kisbodaki Harangláb Kisbodak Község Önkormányzatának lapja 2012. február hó V. évfolyam 1. szám
Kibodaki Haangláb Kibodak Közég Önkományzatának lapja 2012. fbuá hó V. évfolyam 1. zám hatályát vzttt a kataztófák llni védkzé iányítááól, zvztéől é a vzély anyagokkal kapcolato úlyo baltk llni védkzéől
öľ í ö í ľ ő ő Á Á ľ Á Ü É Ü ľí íľ ő ü ö ö í ľ ő ö ü ő ľ í ő ő ľóü í ö í ó í ö ź ő í ü ő ő ö í ó ľ ó ő ő ő ő ľ ľ ö ź đ ő ő ź ő í í ľ ü ő ę ľ ő ö ó ő ź
ó ö ő íľ ŕ Ĺ í ő í ő ľľ ő ü ő ő Ĺ ő ő ü í í í ö ő íü ľ í ö ö ö ľ í öľ ö ľ üö ľ ő í íľ ľ ź ľ ő ö ľ ö Í ö ö ü ő ö ľ üö ő ö źúź ő öľ ľ ő ú ó ľö ö ľ ő Í ľ ľ ľü ő í ú ö ľ ź ő ö ü ü ö Ĺ ü ź í ę ľ óí í ü í ö
ú ő ö ľ ľ ű ö ľó ú ő ü ö ó ő ö ö ő ő ő ö ł ö ö ő Á ö ú ľ ľ ö ú ľ ö í ö í ö í ľ ő ľ ľ ő ő ő ö ö ź í ú ú ó íĺ ü í ő ü Í ű ó ľ ű ű ľ ű ö ő ű ö í ĺ ü ű ö í í ó í ú ó ö Í ö ľ ĺ ĺľ ö ö ö ó ő ü ę ű ö ő ľ ú í