Operációkutatás. 1. konzultációs hét. Irodalom. A gráf definíciója. NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Operációkutatás. 1. konzultációs hét. Irodalom. A gráf definíciója. NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2."

Átírás

1 Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 22/2. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 94 Sopron, Bajcsy Zs. u. 9. GT fszt.. (99) () takach@inf.nyme.hu takach 1. konzultációs hét Gráfelmélet Alapfogalmak Euler-vonal Hamilton-kör Legrövidebb út Minimális feszítőfa Algoritmusok! Hozzárendelési feladat Folyamprobléma Szélsőértékszámítás!!! Irodalom F. S. Hillier és G. J. Lieberman. Bevezetés az operációkutatásba. LSI Oktatóközpont, Budapest, Szükséges részek: 1. fejezet, azaz , oldal. A többi anyagrészhez: ld. tantárgy honlapja A gráf definíciója 1. DEFINÍCIÓ. Legyen V egy véges halmaz, E pedig V -beli rendezetlen elempárok véges rendszere. Ekkor a G=(V, E) párt gráfnak nevezzük. V elemei a gráf csúcsai, E elemei a gráf élei. Ha e = (v 1, v 2 ) egy él, akkor azt mondjuk, hogy az e él a v 1 és a v 2 csúcsokat köti össze.

2 2 Egy labdarúgó tornán 6 csapat vesz részt. Ez a gráf azt írja le, hogy mely csapatok mérkőztek meg egymással az első négy fordulóban. V = {A, B, C, D, E, F } E = {(A, B), (A, C), (A, D), (A, F ), (B, C), (B, E), (B, F ), (C, D), (C, E), (D, E), (D, F ), (E, F )} Rendezetlen elempáron azt értjük, hogy nem teszünk különbséget a (v 1, v 2 ) és a (v 2, v 1 ) pár között, a rendszer pedig abban különbözik a halmaztól, hogy egy elem többször is szerepelhet benne. Gráfelméleti alapfogalmak 2. DEFINÍCIÓ. Egy gráf egy csúcsa izolált csúcs, ha nem indul ki belőle él. (W ) Többszörös élről beszélünk, ha két pontot több él köt össze.((y, V ) ) A hurokél önmagába visszatérő él, azaz két végpontja azonos.((x, X)) Az üres gráf csupa izolált pontokból álló gráf, azaz E =. Az egyszerű gráfok nem tartalmaznak sem hurokélet, sem többszörös élet. Gráfelméleti alapfogalmak. DEFINÍCIÓ. A teljes gráfok olyan egyszerű gráfok, amelyekben bármely két különböző csúcs között vezet él. K n : n csúcsú teljes gráf. Egy G egyszerű gráf komplementere az a Ḡ gráf, amely teljes gráffá egészíti ki; tehát G és Ḡ csúcsai megegyeznek, továbbá két csúcs között pontosan akkor vezet él Ḡ-ben, ha G-ben nem vezet él. A G 1 = (V, E ) gráf a G = (V, E) gráf részgráfja, ha E E; tehát G 1 -et G-ből néhány él elhagyásával kapjuk. A G 1 és G 2 gráfok izomorfak, ha létezik a csúcsok között olyan bijekció, hogy két G 1 -beli csúcs között pontosan akkor vezet él, ha a megfelelő két G 2 -beli csúcs is össze van kötve.

3 Síkgráfok 4. DEFINÍCIÓ. Egy gráf síkgráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. G síkgráf, mert a vele izomorf H a síkba van rajzolva. Ha egy gráf lerajzolható a síkba, akkor lerajzolható úgy is, hogy minden éle egyenes szakasz legyen. (K) Síkgráfok K 5 és K, nem rajzolhatók le a síkba. Az is belátható, hogy ha egy gráf nem rajzolható síkba, akkor K 5 vagy K, valahol "benne van" a gráfban. Fokszámok 5. DEFINÍCIÓ. Egy csúcs fokszáma a belőle kiinduló élek száma. Megjegyzés. Egy n-pontú teljes gráfban minden csúcs fokszáma n 1, és összesen ( n 2) élet tartalmaz. 6. TÉTEL. Egy gráf páratlan fokú csúcsainak száma páros. Bizonyítás. Felhasználjuk az alábbi segédtételt. 7. SEGÉDTÉTEL. Egy gráf csúcsai fokszámainak összege megegyezik az élek számának kétszeresével. Ezek után a tétel bizonyítása a következő: Jelölje a gráf csúcsait A 1,... A n, a megfelelő fokszámokat ρ(a 1 ),..., ρ(a n ). Tegyük fel, hogy ρ(a 1 ),..., ρ(a k ) páratlan számok, ρ(a k+1 ),..., ρ(a n ) párosak. A segédtétel szerint ρ(a 1 ) ρ(a n ) páros, így páros számokat elhagyva ρ(a 1 ) ρ(a k ) is páros lesz. Páratlan számok összege pedig csak akkor lehet páros, ha páros sok van belőlük.

4 Fokszámok 4 8. TÉTEL. Legyen G egy n-csúcsú egyszerű gráf, n 2. Ekkor van legalább két olyan csúcs, melyek fokszáma megegyezik. Bizonyítás. Minden egyes csúcs fokszáma, 1,..., n 1 lehet, vagyis n-féle. Egy -fokú csúcs izolált csúcs, egy (n 1)-fokú pedig minden másik csúccsal össze van kötve. Tehát nem lehet a gráfban egyszerre -fokú és (n 1)-fokú csúcs is, vagyis csak (n 1) féle lehet a fokszám. Ekkor a skatulya-elv szerint van két azonos fokszámú csúcs.

5 Gráfok bejárása 9. DEFINÍCIÓ. Sétán két csúcsot összekötő élsorozatot értünk. Speciális séták: vonal: olyan séta, melyben minden él legfeljebb egyszer szerepel (a csúcsok többször is szerepelhetnek). zárt vonal: olyan vonal, melynek kezdő és végpontja azonos. nyílt vonal: olyan vonal, melynek kezdő és végpontja különböző. út: minden csúcsot legfeljebb egyszer érintő séta. kör: olyan séta, melynek a kezdő és végpontja azonos, a többi csúcsot legfeljebb egyszer érinti DEFINÍCIÓ. Egy gráf összefüggő, ha bármely két csúcs között vezet út. Königsbergi hidak Eulertől megkérdezték Königsberg lakói, hogy miért nem tudnak átmenni a város hídjain úgy, hogy mindegyiken pontosan egyszer mentek át: Euler-vonal Melyik ábra (gráf) rajzolható le egy vonallal a ceruza felemelése nélkül?

6 6 A kukásautónak egy körzet minden utcáján végig kell mennie, és be kell gyűjteni a szemetet. Meg tudja-e ezt tenni úgy, hogy minden utcán csak egyszer megy végig? Euler-vonal 11. DEFINÍCIÓ. Euler-vonal: olyan vonal (séta), melyben minden él pontosan egyszer szerepel. Szükséges feltétel Euler-vonal létezésére: zárt Euler-vonal esetén minden pontba pont ugyanannyiszor megyünk be mint ki minden pont foka páros. Belátható, hogy ez elegendő is! 12. TÉTEL. Egy összefüggő gráfban pontosan akkor létezik zárt Euler-vonal, ha minden csúcs fokszáma páros. Egy összefüggő gráfban pontosan akkor létezik nyitott Euler-vonal az A csúcsból a B csúcsba, ha csak A és B fokszáma páratlan. Ha egy összefüggő gráfban a páratlan fokszámú csúcsok száma 2k, akkor a gráf k darab diszjunkt vonal egyesítése. Algoritmusok "Algoritmus" zárt Euler-vonal keresésére: Tetszőleges csúcsból kiindulva rajzolom fel a gráfot, ügyelve arra, hogy a le nem rajzolt rész összefüggő maradjon. "Algoritmus" nyílt Euler-vonal keresésére: Ugyanaz, mint a zártra, de a kiindulópont szükségszerűen az egyik páratlan fokú csúcs. Utazó ügynök probléma Egy ügynöknek meg kell látogatnia bizonyos városokat útja során (és végül haza kell térnie). Adott: mely városokból mely másik városokba van járat(közvetlen út) milyen költséggel tud eljutni egyik városból másikba (repülőjegy, autóút ára).

7 7 Cél: az utak összköltségét minimalizálni. Ez a feladat sok alkalmazás során felmerül, és csak bizonyos speciális esetekben ismeretesek jó algoritmusok a megoldására. Ha bármely két város közt, melyek között van összeköttetés, az 1 költségű, és az ügynöknek minden várost meg kell látogatnia, akkor a feladat a Hamilton-kör létezésére vezet. Hamilton-kör 1. DEFINÍCIÓ. A Hamilton-kör olyan kör, amely minden csúcson átmegy (szükségszerűen pontosan egyszer). A Hamilton-kör létezésére nem ismert egyszerű szükséges és elégséges feltétel, s ugyancsak nincs gyors algoritmus sem Hamiltonkör keresésére. Elégséges, de nem szükséges feltétel Hamilton-kör létezésére: 14. TÉTEL. Legyen G n-csúcsú egyszerű összefüggő gráf. Ha minden csúcs fokszáma legalább n/2, akkor a gráfban létezik Hamilton-kör. Hamilton-kör Szükséges, de nem elégséges feltétel Hamilton-kör létezésére: 15. TÉTEL. Ha egy G = (V, E) gráfban van Hamilton-kör, akkor bármely S V ponthalmaz esetén S pontjait és a belőlük kiinduló csúcsokat elhagyva a maradék gráfnak legfeljebb annyi össefüggő komponense van, mint S. Másképpen: Ha egy G = (V, E) gráfban létezik olyan S V ponthalmaz, hogy S pontjait és a belőlük kiinduló csúcsokat elhagyva a maradék gráfnak S -nál több össefüggő komponense van, akkor a gráfban nincs Hamilton-kör. Legrövidebb út keresése Alapfeladat: Adott egy összefüggő gráf, egy kezdő- és egy végső csúcs, valamint az élekhez rendelt távolságok. Keressük a legrövidebb utat a kezdő és a végső csúcs között. Figyelem! Nem a felhasznált élek számát kell minimalizálni, hanem a hosszaik összegét. Átfogalmazások: Az elemekhez rendelt számok jelképezhetnek költségeket illetve időtartamokat is. Ilyenkor a minimális költségű illetve a legkevesebb idő alatt bejárható utat keressük. Algoritmus. A gráf minden élére meghatározzuk a kezdőponttól oda vezető legrövidebb utat. A kezdőponttól mért távolságok szerint növekvő sorrendben vesszük a pontokat. 1. iterációs lépés: Meghatározzuk a kezdőponthoz legközelebbi pontot. n. iterációs lépés: Meghatározzuk a kezdőponthoz n. legközelebbi pontot. Bemenet: A legközelebbi n 1 csúcs, beleértve a legrövidebb útvonalakat is. (Ezeket nevezzük megoldott pontoknak (beleértve a kezdeti pontot is), a többit megoldatlan pontnak mondjuk.) Jelöltek: minden megoldott ponthoz a legközelebbi megoldatlan pont (ha van ilyen). Döntés: minden jelöltre kiszámítjuk a jelölő kezdő távolság és a jelölt jelölő távolság összegét, és ezek közül a minimálisat választjuk. A jelölő csúcsot is feljegyezzük. A legrövidebb út: Ha az iterációban elérek a végső pontig, akkor készen vagyok. (Visszafejtés!)

8 8 Visszafejtés n Jelölő Jelölt Távolság Győztes Távolság Összeköttetés 1 O A 2 A 2 OA 2 O C 4 C 4 OC A B = 4 B 4 AB 4 A D = 9 B E 4 + = 7 E 7 BE C E = 8 5 A D = 9 B D = 8 D 8 BD E D = 8 D 8 ED 6 D T = 1 T 1 DT E T = 14 Az összeköttetés oszlop tartalma: OA, OC, AB, BE, BD, ED, DT Azaz OABEDT és OABDT a két legrövidebb út. Fák 16. DEFINÍCIÓ. Fának nevezzük az olyan összefüggő gráfokat, amikben nincs kör. A fák szükségszerűen egyszerű gráfok, hiszen a hurokél 1-hosszú kör, a többszörös él 2-hosszú kör.

9 9 Fák jellemzése 17. TÉTEL. Legyen G egy n-csúcsú gráf. Ekkor a következő állítások ekvivalensek 1. G fa; 2. G összefüggő és n 1 éle van;. G összefüggő, de tetszőleges élét elhegyva már nem lesz összefüggő. 4. G-ben nincs kör, de egy tetszőleges új élet hozzávéve már lesz benne kör. Feszítő fák 18. DEFINÍCIÓ. Legyen G egyszerű, összefüggő gráf. Az F fa a G gráf feszítő fája, ha F olyan részgráfja G-nek, mely a G minden csúcsát és bizonyos éleit tartalmazza. Minimális kifeszítő fa keresése Feladat: Adott egy n csúcsú, egyszerű összefüggő gráf, valamint az élekhez rendelt valós számok, amelyek az élek hosszai. Keressük azt a kifeszítő fát, amelyben az élek összhossza minimális. 1. ALGORITMUS (KRUSKAL-FÉLE MOHÓ ALGORITMUS): Rendezzük hosszuk szerint növekvő sorrendbe az éleket.

10 Válasszunk ki sorban éleket, de olyan élet ne válasszunk ki, melynek kiválasztásával kör keletkezne. 1 Az előző pontot ismételjük n 1-szer. 2. ALGORITMUS: ld. [HL], 1.4. Ez szintén mohó algoritmus, de végig összefüggő részgráfot alkotnak a kiválasztott élek. Páros gráfok 19. DEFINÍCIÓ. Egy G = (V, E) gráfot páros gráfnak nevezünk, ha van olyan V = B J felbontás, hogy B J =, továbbá minden él egyik végpontja B-ben, a másik J-ben van. Jelölése: G = (B, J; E). Vegyük észre, hogy ha B és J nem adott, akkor nem egyszerű feladat eldönteni, hogy a gráf páros-e. Hozzárendelési feladat páros gráfokban 2. DEFINÍCIÓ. A G = (B, J; E) páros gráf éleinek egy M halmaza lefedést (matching-et, független élrendszert, párosítást) alkot, ha nincs két olyan M-beli él, amelyeknek van közös végpontja. Egy csúcs lefedetlen az M élrendszerben, ha nem végpontja egyetlen M-beli élnek sem. Egy lefedés teljes lefedés, ha a gráf minden csúcsát lefedi. (Teljes lefedés csak akkor létezhet, ha B = J teljesül.) Javító útak 21. DEFINÍCIÓ. Adott egy M párosítás egy páros gráfban. Ha egy út felváltva tartalmaz M-hez tartozó és M-hez nem tartozó éleket, akkor alternáló útnak nevezzük. Egy alternáló út javító út (bővítő út), ha mindkét végpontja lefedetlen csúcs.

11 11 Javító útak Vegyük észre, hogy ha U egy bővítő út az M párosításra nézve, akkor az U M eggyel nagyobb elemszámú párosítás, mint M. Tehát az alternáló út M-hez tartozó éleit M-ből elhagyva, az M-hez nem tartozó éleit M-hez hozzávéve eggyel nagyobb elemszámú párosítást nyerünk. 22. TÉTEL. Egy páros gráf M lefedése akkor és csak akkor maximális elemszámú független élrendszer, ha nem létezik bővítő út a gráfban M-re nézve. Matching-algoritmus Adott egy G = (B, J; E) páros gráf, valamint egy M kiindulási párosítás (amely esetleg üres is lehet). M-ből kiindulva keresünk egy maximális elemszámú párosítást G-ben. Ha nincs lefedetlen csúcs B-ben, akkor M maximális párosítás, STOP. Ha van, akkor folytassuk a következő lépéssel. Keressünk egy bővítő utat, Ha találunk bővítő utat, akkor ennek segítségével bővítsük M-et, és folytassuk az első lépéssel. Ha nem találtunk bővítő utat, akkor M maximális elemszámú párosítás. Javító út keresése Kisebb gráfok esetén ránézésre, nagyobb méret esetén erre is van algoritmus: Cimkézzünk meg minden B-beli lefedetlen csúcsot -val. Minden egyes i B csúcsra és (i, j) / M élre cimkézzük meg a (J-beli) j csúcsot i-vel. Minden egyes lefedett j J csúcsra cimkézzük meg a (B-beli) i csúcsot j-vel, ahol (i, j) M.

12 TÉTEL. Egy páros gráfban tetszőleges párosítás elemszáma kisebb vagy egyenlő tetszőleges éllefogó ponthalmaz elemszámánál. Következésképpen ha M = W teljesül, akkor M maximális elemszámú párosítás, W pedig minimális elemszámú éllefogás. Hálózatok Alapfeladat: Adott egy gráf, minden élének mindkét irányú kapacitása, valamint két kitüntetett csúcs: a forrás és a nyelő. Keresünk egy maximális értékű megengedett folyamot (áramlást). Szemléltetésképpen feltehetjük, hogy a hálózattal egy olajvezetékrendszert ábrázolunk. A kapacitások a vezeték vastagságát jelentik, vagyis azt, hogy egységnyi idő alatt mennyi olaj folyhat át azon a vezetékdarabon. A kérdés az, hogy egy adott hálózaton mennyi olaj folyhat át s-ből t-be. Szoktak beszélni úthálózatokról is, ahol a kapacitás az utak áteresztőképessége, és árukat kell eljuttatni a termelőtől a fogyasztókhoz. De beszlélhetünk számítógéphálózatokról és adatátviteli sávszélességről is. Folyamok

13 1 25. DEFINÍCIÓ. Folyamon a hálózat minden egyes éléhez rendelt számot értünk, amely azt mutatja, hogy mekkora az élen átáramló anyag mennyisége. Meg kell adni az áramlás irányát is. (Irányított gráf!) Megengedett folyamnak nevezünk egy olyan folyamot, ahol a forrásból csak kifelé, a nyelőbe csak befelé vezet áramlás, minden egyes egyéb csúcs esetén a kifolyó áramlások összege megegyezik a befolyók összegével, továbbá a egyik élen sem haladja meg az él kapacitását. 26. DEFINÍCIÓ. Egy út kapacitásán a rajta lévő minimális élkapacitást értjük. Algoritmus 1. Keresünk egy forrás nyelő utat pozitív kapacitással (c). Ha nincs ilyen út, akkor a jelenlegi folyam maximális. STOP! 2. Növeljük a folyamot c-vel ezen az úton.. Csökkentsük ezen az úton c-vel a kapacitást minden élen. Növeljük az ellenkező irányú úton a kapacitást c-vel minden élen. Folytassuk az 1. lépéssel. Vágások Hogyan győződhetünk meg egyszerűen arról, hogy egy folyam maximális, azaz hogy nem tudunk további áramlást indítani s-ből t-be? 27. DEFINÍCIÓ. Egy vágás irányított élek olyan halmaza, amelyek minden forrás nyelő útból tartalmaz egy élet. Egy vágás értéke a hozzá tartozó élek kapacitásainak összege. 28. TÉTEL. Minden megengedett folyam értéke kisebb minden vágás értékénél. Sőt, a maximális folyamok(ok) értéke egyenlő a minimális vágás értékével. A tétel megkönnyíti az algoritmus 1. lépésében a döntést: ha úgy tűnik, hogy nincs már pozitív kapacitású forrás nyelő út, akkor megpróbálok keresni egy -értékű vágást. Ha van nulal értékű vágás, akkor biztos hogy nincs pozitív kapacitású forrás nyelő út. Ha úgy tűnik, hogy nincs nulal értékű vágás, akkor valószínűleg van pozitív kapacitású forrás nyelő út...

14 Van-e Euler vonal az alábbi gráfban? Minden csúcs foka Nincs!

15 Van-e Euler vonal az alábbi gráfban? Minden csúcs foka páros Van, méghozzá zárt! KÉSZ!!!

16 Van-e Hamilton-kör az alábbi gráfban? Igen, pedig a csúcsok foka = < 8/2

17 Van-e Hamilton-kör az alábbi gráfban? 2 pont elvételével komponensre esik Szét, tehát nincs Hamilton-kör!

18 Keressünk egy minimális feszítőfát! A C 5 D B E F G H n=8 csúcs esetén n-1=7 él kell kész!

19 Keressünk egy maximális folyamot A- bőlg-be! 6 A 4 6 A A B kapacitású út 5 B E E B 2 C 5 2 D 5 G G E 8 F 5 9 G értékű folyamot indítunk. Az útvonalon módosítjuk a kapacitásokat.

20 A B C D E F G A D F G A D F G kapacitású út 4 értékű folyamot indítunk. Az útvonalon módosítjuk a kapacitásokat.

21 A B C D E F G A C E G A C E G kapacitású út 2 értékű folyamot indítunk. Az útvonalon módosítjuk a kapacitásokat.

22 A B C D E F G A C F G A C F G kapacitású út értékű folyamot indítunk. Az útvonalon módosítjuk a kapacitásokat.

23 A B 5 C 4 D E 8 F 2 5 G 7 Látszólag nincs több pozitív kapacitású forrás-nyelő út. Keressünk egy nulla értékű vágást! Tehát az aktuális folyam maximális!

24 Mi az aktuális (s egyben maximális) folyam? Összaadhatnánk az indított áramlásokat, de egyszerűbb a kezdeti és az aktuális kapacitások különbségét tekinteni! A B C D E F G A B C D E F G Ellenőrizzük a csomóponti törvényt, illetve a folyamértéket! A folyam értéke: 12

25 Operációkutatás 1 NYME KTK, gazdálkodás szak, levelez alapképzés 22/2. tanév, II. évf. 2.félév El adó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 94 Sopron, Bajcsy Zs. u. 9. GT fszt.. (99) () takach@inf.nyme.hu takach Parciális függvény, parciális derivált (ismétlés) Deníció. Az f(x, y) kétváltozós függvény y = b-hez tartozó parciális függvénye az f x = f x (x) = f(x, b) egyváltozós függvény, az x = a-hoz tartozó parciális függvénye az f y = f y (y) = f(a, y) egyváltozós függvény. Tehát az egyik változót lerögzítjük. Kétváltozós függvények grakonja egy felület: az értelmezési tartomány a sík, ill. a sík egy részhalmaza, és minden x, y ponthoz a felület (x, y, z) pontja tartozik, ahol z = f(x, y). A parciális függvény grakonja a felületb l az y = b illetve x = a (függ leges) síkok által kimetszett síkgörbe. függvénygrakon domborzat, parciális függvény út (Észak-Déli, illetve Kelet-Nyugati) Deníció. f y. Egy kétváltozós függvény parciális deriváltjain a parciális függvények deriváltjait értjük. Jelölés: f x ill. Mivel a parciális derivált függ attól is, hogy hogyan rögzítettük le a másik változót, szokás kétváltozós függvénynek is tekinteni. Pl. f x(1, ) azt jelenti, hogy az f(x, ) = f x függvényt deriváljuk, majd x = -at behelyettesítünk. A gyakorlatban azonban általánosan van szükségünk f x(x, y)-ra; ezt úgy kapjuk meg, ha y-t számnak képzeljük, és úgy deriválunk, mintha egyváltozós függvényr l lenne szó, amely csak x-t l függ.

26 A fenti g(x, y) = 2x 2 y + xy + 2x 5y + 1-re g x(x, y) = 4xy + y Hasonlóan g y(x, y) = 6x 2 y 2 + x 5. Az egyváltozós esethez hasonlóan beszélhetünk magasabbrend parciális deriváltakról. Itt azonban nem egy, hanem négy másodrend parciális derivált van. Ha f(x, y)-t el ször x szerint deriváljuk, majd y szerint, akkor kapjuk f xy(x, y)-t, ha mindkétszer y szerint, akkor f yy(x, y)-t, stb. Ellen rzési pont, hogy általában. f xy(x, y) = f yx(x, y) Széls értékszámítás Deníció. Az f függvénynek lokális minimuma van az m M helyen, ha létezik m-nek olyan K környezete, hogy tetsz leges x M K esetén f(x) > f(m). f-nek globális minimuma van az m M helyen, ha tetsz leges x M esetén f(x) > f(m). maximum fogalmát hasonlóképpen értelmezhetjük. A lokális és globális Tétel. Legyen az (a, b) pont az f(x, y) függvény értelmezési tartományának egy bels pontja. Ha f(x, y)-nak széls értéke van az (a, b) helyen, akkor els rend parciális deriváltjai az (a, b) helyen nullák, azaz f x(a, b) = f y(a, b) =. Ha az f(x, y) függvény els rend parciális deriváltjai az (a, b) helyen nullák, továbbá a másodrend parciális deriváltakra D(a, b) = f xx(a, b)f yy(a, b) f xy(a, b)f yx(a, b) >, akkor f-nek széls értéke van az (a, b) helyen. Méghozzá minimuma, ha f xx(a, b) >, és maximuma, ha f xx(a, b) <. A D(a, b) = f xx(a, b)f yy(a, b) f xy(a, b)f yx(a, b) > feltétel azt fejezi ki, hogy a két parciális függvénynek ugyanolyan típusú széls értéke legyen. Az olyan tulajdonságú pontot, ahol az egyik parciális függvénynek minimuma, a másiknak pedig maximuma van, nyeregpontnak nevezzük. Ha az els rend parciális deriváltak nullák, de D(a, b) <, akkor biztosan nincs széls érték, ha pedig D(a, b) =, akkor további vizsgálat szükséges.

27 Széls érték korlátos zárt halmazon Rögzítsünk egy M R n halmazt, továbbá egy olyan n-változós f függvényt, amely M minden pontjában értelmezve van és dierenciálható. (Nálunk n = 1 vagy n = 2 lesz.) Tétel. (Weierstrass) Ha M korlátos és zárt, akkor f-nek van globális minimuma és maximuma M-en. Tudjuk, hogy ha m a M értelmezési tartomány bels pontja és f-nek lokális széls értéke van m-ben, akkor f els rend parciális deriváltjai m-ben nullák (illetve f (m) = az egyváltozós esetben). Ez módot ad M azon bels pontjainak meghatározására, ahol lokális széls értékek lehetnek. A másodrend deriváltak segítségével azt is megállapíthatjuk, hogy melyik helyen van minimum, maximum, ill. nincs széls érték. Ha csak véges sok lokális széls érték van, akkor a globális széls érték nem más, mint a legnagyobb lokális széls érték, tehát behelyettesítéssel eldönthetjük, hogy hol van globális széls érték. Az értelmezési tartomány határán azonban széls érték lehet akkor is, ha a derivált(ak) nem nulla. Például a [, 1] zárt intervallumon értelmezett g(x) = 2x + függvénynek lokális minimuma van a -ban, lokális maximuma az 1-ben. Lemma. Az [a, b] zárt intervallumon értelmezett g(x) egyváltozós függvénynek pontosan akkor van lokális minimuma a-ban, ha g (a) >, b-ben pedig pontosan akkor, ha g (b) <. Feladat. Határozzuk meg az f(x) = x 6x 2 15x+ függvény lokális és globális széls értékeit a [-1, 6] intervallumon! Megoldás. Deriválással megállapítható, hogy az x = 1 helyen maximum, az x = 5 helyen minimum van. Mivel f ( 1) > és f (6) >, ezért az x = 1 helyen minimum, az x = 6 helyen maximum van. Behelyettesítéssel meggy z dhetünk arról, hogy a globális széls értékek az x = 1 és az x = 1 helyen vannak. Kétváltozós függvények esetén szorítsuk meg az f függvényt M határára, és állapítsuk meg az ottani lehetséges (glob is) széls érték-helyeket. Ez általában már csak egyváltozós széls érték-számítás, de továbbra is egy korlátos zárt halmazon. A globális széls értékek megállapításához a bels és határpontokban lév lehetséges lokális széls értékhelyek mindegyikén számuljuk ki a függvény helyettesítési értékét. Feladat. Határozzuk meg az f(x, y) = x 2 + 2xy + 8y 4x függvény globális széls értékeit az M = {(x, y) x, y 1} halmazon! Megoldás. Az egyenletrendszer megoldása a ( 4, 6) pont, f x = 2x + 2y 4 = f y = 2x + 8 =

28 azonban ez nincs M-ben. Tehát M bels pontjaiban nincs lokális széls érték sem. Az M tartomány egy téglalap, 4 határát négy szakasz alkotja: Ha x =, akkor az f(y) = 8y, ( y 1) egyváltozós függvény széls értékeit keressük. Mivel f(y) monoton n, y = -ban minimuma, y = 1-ben maximuma van. Tehát az f(x, y)-nak a (, ) pont lehetséges minimumhelye, a (, 1) pont lehetséges maximumhelye. Ha x =, akkor f(y) = 14y, ( y 1) szintén monoton n, így f(x, y)-nak az (1, ) pont lehetséges minimumhelye, az (1, 1) pont lehetséges maximumhelye. Ha y =, akkor az f(x) = x 2 4x, ( x ) egyváltozós függvényt vizsgáljuk. f (x) = 2x 4 pozitív a (2, ] intervallumon, negatív a [, 2) intervallumon, így f(x)-nek lokális minimuma van x = 2-ben, lokális maximuma van x = -ban és x = -ban. Tehát az f(x, y)-nak a (2, ) pont lehetséges minimumhelye, a (, ) és a (, ) pontok lehetséges maximumhelyei. Ha y = 1, akkor hasonlóan kapjuk, hogy f(x, y)-nak az (1, 1) pont lehetséges minimumhelye, a (, 1) és a (, 1) pontok lehetséges maximumhelyei. Ezek után behelyettesítünk a lehetséges széls értékhelyeken: f(, ) = f(, 1) = 8 f(1, 1) = 7 f(2, ) = 6 f(, ) = f(, 1) = 11 Ennek alapján a (2, ) globális minimumhely, a (, 1) globális maximumhely. Feladat. Határozzuk meg az el z feladatbeli függvény lokális széls értékeit! Megoldás. Vizsgáljuk meg a fenti hat lehetséges széls értékhelyet: A (, ) és a (, ) pontok biztosan nem lokális széls értékhelyek, mert az egyik parciális függvénynek minimuma, a másiknak maximuma van, ahogyan azt az el z feladatban is kiszámoltuk (nyeregpontok). A (, 1) pontban mindkét parciális függvénynek maximuma van, ami lokális maximumhelyre utal. Valóban, f x < és f y > nemcsak a (, 1) pontban, hanem egy környezetében is fennáll. Tehát ha az M-beli (a, b) pont elég közel van a (, 1) ponthoz, akkor f(, 1) > f(, b) > f(a, b). Hasonlóan indokolható, hogy a (, 1)-ben is maximum van. Az (1, 1) ill. a (2, ) pontban az f y = 2x+8 képletbe helyettesítve kapjuk, hogy az f(y) parciális függvénynek maximuma ill. minimuma van. Ez el z ekhez hasonlóan kapjuk, hogy az (1, 1) nyeregpont, a (2, ) pedig minimumhely. Feladat. Határozzuk meg az f(x, y) = x 2 + 2y 2 + függvény globális széls értékeit az M = {(x, y) x 2 + y 2 1} halmazon! Megoldás. Az f x = 2x = f y = 4y = egyenletrendszer megoldása a (, ) pont, lehetséges széls értékhely. Az M tartomány egy körlap, határát az x 2 +y 2 = 1 egyenlet kör alkotja. A függvényt úgy szorítjuk meg a körvonalra, hogy a körvonal egyenletének segítségével kiküszöböljük ez egyik változót f(x, y)-ból: f(y) = y 2 + 4, ( 1 y 1). f (y) = 2y-ból f(y)-nak y = minimumhelye, y = 1 és y = 1 maximumhelyei. pontok, azaz (1, ), ( 1, ), (, 1), (, 1) az f(x, y) lehetséges széls értékhelyei. Az ezen y értékeknek megfelel Behelyettesítéssel kapjuk, hogy a (, 1), (, 1) (nem szigorú) globális maximumhelyek, a (, ) pedig globális minimumhely.

29 1 Operációkutatás #, NYME KTK III. évf. nappali Játékelmélet Dr. Takách Géza NyME FMK Informatikai Intézet takach 24. ősz Játékelmélet Irodalom: Hilier-Lieberman 12. fejezet Kétszemélyes zéróösszegű játékot tekintünk: az egyik játékos azt nyeri meg, amit a másik elveszít. Mindkét játékos néhány lehetőség (stratégia) között dönt, nem ismerve a másik döntését. Ugyanakkor sok menetet játszanak, s így esetleg kiismerhetik a másik stílusát. A kifizetési táblázat (mátrix) mutatja, hogy mely esetben mennyi lesz az 1. játékos nyeresége (= 2. játékos vesztesége). A mátrix sorai felelnek meg az 1., az oszlopai a 2. játékos startégiáinak. Feltételezzük, hogy mindkét játékos 1. racionális (logikusan gondolkozik), és 2. önző (kizárólag maximális nyereségre törekszik). Dominált stratégiák Definíció. Egy játékos egyik stratégiája dominálja a másikat, ha az ellenfél minden döntése esetén legalább olyan jó, mint a másik. A dominált stratégiákelhagyhatóak feltételezéseink miatt. Példa Az 1. játékos -as startégiáját dominálja az 1-es, vagyis az. sor elhagyható: A 2. játékos -as startégiáját dominálja az 1-es, vagyis az. oszlop elhagyható: Az 1. játékos 2-es startégiáját dominálja az 1-es, vagyis az 2. sor elhagyható:

30 A 2. játékos 2-es startégiáját dominálja az 1-es, vagyis az 2. oszlop elhagyható: Kaptuk: mindkét játékosnak az 1. stratégiát célszerű választania. Ekkor az 1. játékos nyeresége 1 lesz. Ezt a számot a játék értékének nevezzük. Minimax-elv A minimax-elv szerint mindkét játékosnak minimalizálnia kell a maximális veszteségét, másképpen maximalizálni a minimális nyereségét. Azaz: 1. játékos: a sorok minimumai közül melyik a maximális? Ez a játék alsó értéke. 2. játékos: az oszlopok maximumai közül melyik a minimális? Ez a játék felső értéke. Ha a játék alsó és felső értékét a táblázat ugyanazon eleme adja, akkor az szükségszerűen egy nyeregpont, azaz sorában minimális, oszlopában maximális elem. Ez mindkét játékos számára hasznos, mert ha a másik eltér ettől, akkor ez neki csak javítja a hasznát. 1 2 Min Max 5 6 Ha nincs nyeregpont... A nyeregpont léte stabil megoldást ad, azaz egyik játékosnak sem hasznos eltérni a minimax kritérium adta stratégiától. (Ez a dominált stratégiák kiküszöbölésekor is igaz.) Ha nincs nyeregpont, akkor instabil lesz a megoldás: 1. sor. elemét adná a minimax elv. DE: 2. játékosnak az 2. stratégia jobb. 1. játékos ezt kiismeri, és áttér a 2. sorra. 2. játékos ezt kiismeri, és áttér a. oszlopra. 1. játékos ezt kiismeri, és áttér a 1. sorra.. Kevert startégiák 1 2 Min Max Legyenek x 1,..., x m illetve y 1,..., y n valószínűségeloszlások, ahol m illetve n az 1. illetve a 2. játékos számára rendelkezésre álló stratégiák száma. Ezen vektorok által megadott kevert stratégiák abban állnak, hogy a játékosok az adott valószínűségeloszlások szerint véletlenszerűen választják a megfelelő startégiákat. Például (1/2, 1/, 1/6) esetben a játékos feldob egy kockát, és 1,2, esetén az 1., 4,5 esetén a 2., 6 esetén a. stratégia mellett dönt. A várható kifizetés, amit az 1. játékos kap: a ij x i y j, i,j

31 ahol a ij a kifizetési táblázat megfelelő elem. Minimax kritérium:minimalizálni kell a várható veszteségek maximumát, másképpen maximalizálni a várható nyereség minimumát. 2 2-es táblázat Tegyük fel, hogy a kifizetési táblázat q 1 q 1 2 p 1 k 11 k 12 1 p 2 k 21 k 22 és a játékosok a táblázat szélein jelzett p és 1 p ill. q és 1 q valószínűséggel választják az egyes stratégiákat. Ekkor az első játékos várható nyeresége: K = k 11 pq + k 12 p(1 q) + k 21 (1 p)q + k 22 (1 p)(1 q) = ( = Apq + Bp + Cq + D = A pq + B A p + C A q + D ) = A [( = A p + C ) ( q + B ) BC A A A 2 + D ] = A ( = A p + C ) ( q + B ) + D BC A A A. ( K = A p + C ) ( q + B ) + D BC A A A A szorzattá alakítás után maradt D BC A lesz a játék értéke, míg az optimális stratégiát az biztosítja, hogy az A(p + C A )(q + B A ) szorzat legyen. Tehát p opt = C A ill. q opt = B A. Ez abból következik, hogy ha pl. p C A, akkor a II. játékos q megfelelő megválasztásával elérheti, hogy a szorzat értéke negatív legyen, s így K értéke csökken, azaz I. kevesebbet nyer. Mintapélda Adjunk optimális kevert startégiát az alábbi játékra: Megoldás. Tehát p opt = 4 9, q opt = 5 9 és v = q 1 q 1 2 p p 2-1 K = 1pq + 4p(1 q) + (1 p)q 1(1 p)(1 q) = 9pq + 5p + 4q 1 = 9(pq 5 9 p ) = = 9[(p 4 9 )(q 5 9 ) ] = 9(p 4 9 )(q 5 9 )

32 Grafikus eljárás 4 Akkor alkalmazható, ha az egyik, mondjuk az 1. játékosnak csak 2 stratégiája van. y 1 y 2 y 1 2 x x Ha y = 1, akkor K = x + 5(1 x) = 5 5x Ha y = 2, akkor K = 2x + 4(1 x) = 4 6x Ha y =, akkor K = 2x (1 x) = + 5x Keressük ezek minimumainak maximumát, azaz az egyenesek alsó burkolójának maximumát. Ábráról: x = 7/11, a játék értéke pedig K = 4 6 7/11 = 2/11. A 2. játékos szempontjából: y 1 (5 5x) + y 2 (4 6x) + y ( + 5x) = 2/11 y 1 (5 5x) + y 2 (4 6x) + y ( + 5x) = 2/11 Másrészt y 1 + y 2 + y = 1. Innen adódik, hogy y 1 =. Általában is felhasználhatjuk, hogy amely egyenes nem megy át a kérdéses metszésponton, az ahhoz tartozó y j értéke. Marad: y 2 (4 6x) + y ( + 5x) = 2/11. Ennek minden és 1 közti x-re teljesülnie kell, speciálisan -ra és 1-re is: Ebből y = 6/11, y 2 = 5/11. 4y 2 y = 2/11 2y 2 + 2y = 2/11

33 . konzultáció: Hozzárendelési feladat 1 Példa. Adott 5, alvállalkozóknak kiadandó feladat. 5 alvállalkozó mindegyike árajánlatot ad mind az 5 feladatra, de mindegyikük csak egy feladatot tud elvégezni a szoros határidők miatt. Rendeljünk minden feladathoz különböző alvállalkozót úgy, hogy az összes kifizetés minimális legyen! Feladat. Teljes páros gráfban keresünk min. költségű teljes párosítást. Más megfogalmazás. Adott egy n n-es C (költség)mátrix, melynek minden eleme nemnegatív egész. Válasszunk ki n elemet, hogy semelyik sorból és oszlopból se legyen több belőlük, és összegük minimális legyen Képletekkel megfogalmazva: x ij {, 1} (i = 1,..., n; j = 1,..., n) j x ij = 1 (i = 1,..., n) i x ij = 1 (j = 1,..., n) K(x) = i j c ijx ij min Itt x ij = 1, ha a c ij elemet kiválasztottuk, azaz az i-edik munkát a j-edik alvállalkozónak adtuk ki, x ij =, ha nem. Redukálás Tétel. Ha a költségmátrix egy sorának vagy oszlopának minden eleméhez ugyanazt a számot adjuk, vagy abból ugyanazt a számot kivonjuk, ekvivalens feladatot kapunk. Ugyanott lesz az optimum, csak értéke lesz más. Bizonyítás. Ha az i-edik sorból kivonunk c-t, akkor a célfüggvény értéke minden párosítás esetén c-vel csökken, ami független a párosítástól. Módszer. Redukáljuk a költségmátrixot. Ha utána nulla összköltségen tudunk párosítani, akkor az biztosan optimális. Első lépésben minden sorból kivonjuk a minimális elemét, majd minden oszlopból is. Természetesen ahol van nulla, az marad változatlan. Ezek után általában szükség van még további redukálásra, pl. egy oszlophoz hozzáadok egy számot, hogy ezután több sorból is kivonhassam ugyanazt a számot. Ennek rendezett formába hozása lesz a magyar módszer. Független nullák. Definíció. A költségmátrixban található két nullát függetlennek nevezünk, ha nem fekszenek azonos sorban sem azonos oszlopban. Nulla összköltségű párosítás n darab (páronként) független nulla kiválasztását jelenti. Ennél több független nulla nincs is. Tehát minél több független nullára van szükségünk. Módszer független nullák kiválasztására. Az egyik legkevesebb nullát tartalmazó sort vagy oszlopot kiválasztjuk, az egyik nullát kijelöljük, majd kihúzzuk a sorát és oszlopát. Ha ezután találunk olyan sort vagy oszlopot, amelyben már nincs nulla, azt is ki lehet húzni, s ezután előlről folyatjuk. Fedővonalak Definíció. Fedővonalon a költségmátrix egy sorára vagy oszlopára fektetett vonalat értünk. Fedővonalak nullákat fednek le: Tétel. (König-Egerváry) Egy mátrixban kiválasztható független nullák maximális száma megegyezik az összes nullát lefedő fedővonalak minimális számával. Bizonyítás. Nem kell.

34 Módszer minimáli számú fedővonal keresésére. Először a nem független (azaz az előzőekben ki nem választott) nullákat 2 fedjük le. Ezek ugyanis azért nem függetlenek, mert a sorukban vagy az oszlopukban van még egy kiválasztott nulla. Ennek megfelelően a nem független nulla sorára vagy oszlopára tesszük a fedővonalat, hogy egyúttal egy független nullát is lefedjünk. ε-transzformáció Ha a König-Egerváry tétel alapján megállapítjuk, hogy nem tudunk nulla költségen párosítani (vagyis nem létezik n darab független nulla), akkor: ε-transzformáció. Jelölje ε a költségmátrix legkisebb elemét (ε > egész). A lefedetlen elemeket csökkentsük ε-nal, az egyszeresen fedetteket hagyjuk változatlanul, a kétszeresen fedetteket pedig növeljük ε-nal. Más megközelítésben: A fedetlen sorokból kivonjuk ε-t, a lefedett oszlopokhoz pedig hozzáadjuk ε-t. Tehát az ε-transzformáció redukálást jelent, s így ekvivalens feladatra vezet, ahol általában nagyobb lesz a fügetlen nullák száma. Előfordulhatnak olyan lépések is, ahol nem nő a független nullák száma, de az optimális megoldás költsége minden lépésben csökken, így véges sok lépésben eljutunk egy olyan költségmátrixhoz, ahol nulla az optimum, azaz n darab független nulla van. Megjegyzés. Az optimális megoldás csökkenése egy lépésben: R ε = ε (n lefedetlen sorok száma + lefedett oszlopok száma). Általánosítások Maximumfeladat kezelése. A költségek ellentettjével egy minimumfeladatot kell megoldani. Ekkor azonban negatív költségek is vannak: redukcióval (hozzáadás) el kell érni, hogy sehol se legyen negatív költség. (Pl. minden sorhoz hozzáadom a benne álló legnagyobb abszolút értékű negatív szám abszolút értékét. n m-es költségmátrix. Szükség van úgynevezett névleges "állomás" beiktatására. Ez azt jelenti, hogy négyzetesre egészítjük ki a költségmátrixot, csupa nulla költséggel. Ezután megoldjuk a feladatot, és azon elemeknek, amelyeknek ilyen névleges pár jut, nem lesz párjuk. Tiltott viszonylatok. Ha egy viszonylatban tilos a párosítás, akkor oda végtelen költséget kell írni. Ilyenkor szokás szerint c = a számolási szabály. Túl sok végtelen költség esetén nem biztosított a véges összköltségű párosítás létezése.

35 Operációkutatás 1 NYME KTK, gazdálkodás szak, levelez alapképzés 22/2. tanév, II. évf. 2.félév El adó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 94 Sopron, Bajcsy Zs. u. 9. GT fszt.. (99) () takach@inf.nyme.hu takach Széls érték korlátos zárt halmazon Feladat. Adott egy kétváltozós f(x, y) függvény, valamint egy g(x, y) = feltétel. Jelölje G a g(x, y) = feltételt kielégét pontok (tehát a g(x, y) = egyenlet görbe pontjainak) halmazát. Keressük a D f G halmazra megszorított f(x, y) függvény széls értékeit; ezeket nevezzük az f(x, y) függvény g(x, y) = feltételre vonatkozó széls értékeinek. Lagrange-módszer. vonatkozó Tekintsük a ϕ(x, y) = f(x, y)+λ g(x, y) függvényt. Igazolható, hogy az x, y, λ ismeretlenekre ϕ x(x, y) = ϕ y(x, y) = ϕ λ(x, y) = g(x, y) = egyenletrendszer megoldásai között biztosan ott lesznek az f(x, y) feltételes széls értékei. Fordítva nem okvetlenül! Feladat. Keressük meg az az x + y 2 = egyenes origóhoz legközelebbi pontját! Megoldás. Az f(x, y) = x 2 + y 2 függvény x + y 2 = feltételre vonatkozó minimumát kell megkeresni. g(x, y) = x + y 2, valamint ϕ(x, y) = x 2 + y 2 + λ(x + y 2), tehát a megoldandó egyenletrendszer: ϕ x(x, y) = 2x + λ = ϕ y(x, y) = 2y + λ = g(x, y) = x + y 2 = λ értékére nincs szükségünk, x = y = 1 pedig könnyen adódik. Mivel ϕ xx ϕ xy ϕ yx ϕ yy = 2 2 = 4 >, továbbá ϕ xx = 2 >, ezért itt ϕ(x, y)-nak minimuma van, tehát az (1, 1) pont annál inkább feltételes széls értékhely. Feladat. Keressük meg az f(x, y) = x 2 + xy + y 2 függvény maximumát feltéve, hogy x + y = 1! Megoldás. ϕ(x, y) = x 2 + xy + y 2 + λ(x + y 1), tehát a megoldandó egyenletrendszer: ϕ x(x, y) = 2x + y + λ = ϕ y(x, y) = x + 2y + λ = g(x, y) = x + y 1 =

36 2 λ értékére itt sincs szükségünk, x = y = 5 pedig viszonylag könnyen adódik. Mivel a másodrend parciális deriváltakból alkotott determináns itt negatív, ϕ(x, y)-nak nincs széls értéke ebben a pontban, de f(x, y)-nak mégis feltételes maximuma van. Valóban, a kérdéses feltétel mellett az x =, 5, 1 helyeken felvett függvényérték rendre 1, 125, 1, vagyis x 1 intervallumon valahol maximumnak kell lennie, ez pedig csak az x = 5-ben lehet. Feladat. Keressük meg az f(x, y, z) = x 2 +2y 2 +z 2 függvény x 2 +y 2 +z 2 = 1 feltételre vonatkozó globális feltételes széls értékeit! Megoldás. ϕ(x, y, z) = x 2 + 2y 2 + z 2 + λ(x 2 + y 2 + z 2 1), tehát a megoldandó egyenletrendszer: ϕ x(x, y, z) = 2x + 2λx = ϕ y(x, y, z) = 4y + 2λy = ϕ z(x, y, z) = 6z + 2λz = g(x, y, z) = x 2 + y 2 + z 2 1 = Átrendezve x(λ + 1) = y(λ + 2) = z(λ + ) = x 2 + y 2 + z 2 = 1 Ennek 6 megoldása van: x, y és z közül pontosan kett nulla, a harmadik pedig ±1. Behelyettesítés!!! Széls érték korlátos zárt halmazon: a határon lév lehetséges széls értékek meghatározása történhet Lagrangemódszerrel. n-változós függvény esetén is m ködik, ott n + 1 egyenletb l áll az egyenletrendszer. Több feltétel esetén g 1, g 2,... s ennek megfelel en λ 1, λ 2,... szükséges: ϕ(x 1, x 2,...) = f(x 1, x 2,...) + λ 1 g 1 (x 1, x 2,...) + λ 1 g 1 (x 1, x 2,...) +...

37 Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 22/2. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 94 Sopron, Bajcsy Zs. u. 9. GT fszt.. (99) () takach@inf.nyme.hu takach 4. konzultáció: Sorbanállás Irodalom: Csernyák 5. fejezet 5.1. A későbbiekhez kell: jelölések, a későbbi bizonyításokban felhasználandó egyszerű összefüggések A 4 feltevés, illetve a differenciálegyenletrendszer (biz. nélkül) 5.. Stacionárius folyamatra vonatkozó egyenletrendszer 5.4. és 5.5. végig kell, bizonyításokkal, kivéve a Kendall-képlet. Exponenciális elsozlás (ismétlés) Az exponenciális eloszlás folytonos eloszlás, sűrűségfüggvénye { µe µt ha t f(t) = ha t < Eloszlásfüggvénye: Ez eloszlás két fontos tulajdonsága: F (t) = P (η < t) = { 1 e µt ha t ha t < 1. (Örökifjú tulajdonság) Annak a valószínűsége, hogy még egy percnél többet kell várnom a buszra, nem függ attól, hogy eddig mennyit vártam. 2. Annak a valószínűsége, hogy éppen a következő percben jön a busz, egyre csökken.

38 Örökifjú tulajdonság 2 1. Örökifjú tulajdonság. Annak a valószínűsége, hogy még egy percnél többet kell várnom a buszra, nem függ attól, hogy eddig mennyit vártam. Állítás. P (η > t + t η > t) = P (η > t). Bizonyítás. A bal oldal: P (η > t + t η > t) = = P (η > t + t és η > t) P (η > t) 1 P (η < t + t) 1 P (η < t) = e µ t = P (η > t + t) P (η > t) = 1 (1 e µ(t+ t) ) 1 (1 e µt ) = = A jobb oldal: A remény fogy...(?) P (η > t) = 1 P (η < t) = 1 (1 e µ t ). Annak a valószínűsége, hogy éppen a következő percben jön a busz, egyre csökken. Állítás. P (t η < t + t) > (t 1 η < t 1 + t), ha t < t 1. Bizonyítás. és hasonlóan P (t η < t + t) = (1 e µ(t+ t) ) (1 e µt ) = e µt (1 e µ t ) P (t 1 η < t 1 + t) = e µt1 (1 e µ t ). Mivel t < t 1, ezért µt > µt 1, vagyis e µt > e µt1. Teljes eseményrendszer Definíció. Teljes eseményrendszer: A 1, A 2,..., A n véges sok, vagy A 1, A 2,... végtelen sok esemény, melyek páronként kizárják egymást, és összegük a biztos esemény. A P (A 1 ), P (A 2 ),..., P (A n ) illetve P (A 1 ), P (A 2 ),... véges vagy végtelen sok szám diszkrét eloszlást alkot, vagyis olyan és 1 közti számokról van szó, melyek összege 1. Sorbanállás Modell: m ennyi egység képzelhető el összesen a rendszerben (általában végtelennek tételezzük fel) n beérkező egységek, azaz sorbanállók + kiszolgálásban részesülők v várakozók (sorbanállók) j kiszolgálásban részesülők S kiszolgáló csatornák ρ üres csatornák n S esetén n = j (mindenkit kiszolgálnak) és n + ρ = S, v =. n > S esetén ρ = (minden csatornánál folyik a kiszolgálás), és S = j, n = v + j.

39 Valószínűségek Tegyük fel, hogy n, v, j valószínűségi változók, és p k = P (n = k). A rendszerben lévő egységek várható száma: A sor hosszának várható értéke: M(n) = p + 1 p m p m = m ip i M(v) = p + p p S + 1 p S p S (m S)p m =. Az üres állomások várható értéke: Nyilván M(n) = M(v) + S M(ρ). i=1 m i=s+1 S 1 M(ρ) = Sp + (S 1)p p S 1 + p S p m = (S i)p i Poisson-típusú sorbanállási rendszer Jelölések: e k ( t) = P ( t idő alatt k egység érkezik a rendszerbe). p k (t) = P (t időpontban k egység van a rendszerben). Feltételezéseink: 1. e k ( t) csak a t időintervallum hosszától függ, a kezdetétől nem. i= (i S)p i 2. ahol λ az időegységenkénti átlagos beérkezés. e 1 ( t) lim = λ, t t. (ritkasági feltétel) e 2 ( t) + e ( t) e ( t) e 1 ( t) lim = lim =, t t t t azaz egyszerre több egység nem érkezik a rendszerbe. Poisson-típusú sorbanállási rendszer Tétel. 1,2, teljesülése esetén Bizonyítás. Nem kell. e k ( t) = (λt)k e λt (k =, 1, 2,...). k! További feltételezésünk, hogy 4 Egy egység kiszolgálásának időtartama exponenciális eloszlású 1 µ várható értékkel, azaz időegységenként µ egységet tud kiszolgálni egy csatorna. Tétel. 1-4 teljesülése esetén a p i valószínűségek kielégítik következő differenciálegyenlet-rendszert.... Bizonyítás. Nem kell!

40 Stacionárius folyamat 4 Ha p n(t) =, azaz p n (t) = p n nem függ az időtől, akkor a fenti differenciálegyenlet-rendszer az alábbi egyenletrendszerbe megy át: = λp + µp 1 (n = ) = (λ + nµ)p n + λp n 1 + (n + 1)µp n+1 (1 n < S) = (λ + Sµ)p n + λp n 1 + Sµp n+1 (n S) Ezen egyenletrendszerből vezetjük le a p i -kre vonatkozó képletet. Az egycsatornás rendszereknél, ahol S = 1, nincs olyan n, amire 1 n < S. Így az egyenletrendszer: = λp + µp 1 (n = ) = (λ + µ)p n + λp n 1 + µp n+1 (n 1) Egycsatornás rendszerek Definíció. Legyen ψ = λ µ a forgalom intenzitása, azaz az időegység alatti beérkezések és kiszolgálások hányadosa. Egy csatorna esetén elvárható, hogy ψ < 1 teljesüljön, különben a sora végtelenségig növekedne. Állítás. p = 1 ψ, p n = (1 ψ)ψ n. Bizonyítás. Az egyenletrendszerben az első egyenletből: = λp + µp 1 (n = ) p 1 = λ µ p = ψp. A második egyenletből: Tehát = (λ + µ)p n + λp n 1 + µp n+1 p n+1 = (λ + µ) 1 µ p n λ µ p n 1 p 2 = (λ + µ) 1 µ p 1 λ µ p = (λ + µ) 1 λ µ µ p λ µ p = λ2 µ 2 p = ψ 2 p Egycsatornás rendszerek Hasonlóan p =... = ψ p. p n =... = ψ n p Másrészt Ebből p = 1 ψ, és p n = (1 ψ)ψ n. 1 = p + p = n= p ψ n = p 1 1 ψ.

41 További képletek 5 Tétel. 1. M(n) = ψ 1 ψ 2. M(v) = ψ2 1 ψ. várható sorbanállási idő: M(t s ) = 1 µ ψ 1 ψ 4. várható rendszerben töltött idő: M(t r ) = 1 µ 1 1 ψ Bizonyítás. könyvben. Megjegyzés. 1. M(n) M(v) = S = 1 2. M(t r ) M(t s ) = 1 µ (kiszolgálási idő.. ψ 1 esetén M(n), M(v), M(t s ), M(t r ). Többcsatornás rendszerek Ha S csatorna van, akkor λ továbbra is az egységnyi idő alatt a rendszerbe érkezők száma, de µ az egy csatornán időegység alatt kiszolgált egységek száma. Tehát ψ = λ µ < S a feltétele, hogy ne torlódjon a sor a végtelenségig. Tétel. Az egyenletrendszer megoldása S csatornás rendszer esetén: ψ n p n = p n! (1 n S) ψ n p n = p S!S n S (S < n) p 1 = ψ S S 1 ψ n S!(1 ψ s ) n= n! Bizonyítás. könyvből. Tétel. M(v) = ψs+1 S S! 1 (1 ψ p S )2 M(n) = M(v) + S M(t s ) = M(v) λ M(t r ) = M(n) λ M(ρ) = S ψ ψ S P (t s > ) = P (n S) = p n = p S!(1 ψ n S S ) Bizonyítás. könyvből.

42 Képletgyűjtemény 6 ψ = λ µ = beérkezések kiszolgálások (időegységenként) S = 1 ψ < 1 p = 1 ψ p n = (1 ψ)ψ n M(n) = ψ 1 ψ M(v) = ψ2 1 ψ S > 1 ψ < S p = M(t s ) = 1 ψ µ 1 ψ M(t r) = 1 1 µ 1 ψ 1 ψ S + S 1 ψ n S!(1 ψ s ) n= n! ψ n ψ n p n = p (1 n S) p n = p n! S!S n S (S < n) M(v) = ψs+1 S S! 1 (1 ψ p S )2 M(n) = M(v) + S M(t s ) = M(v) λ P (t s > ) = p S!(1 ψ S ) M(t r ) = M(n) λ ψ S M(ρ) = S ψ

43 1 Operációkutatás #, NYME KTK III. évf. nappali Szállítási feladat Dr. Takách Géza NyME FMK Informatikai Intézet takach 24. ősz Mintafeladat. Két raktárban (feladóhelyek) rendre 2 illetve 25 raklap áru van, ezeket kell elszállítani három üzletbe (rendeltetési helyek), amelyek rendre 1, 2 illetve 15 raklap áruratartanak igényt. A szállítási költségek táblázata: R 1 R 2 R F F Hogyan szervezzük a szállítást, hogy minimális legyen a szállítási összköltség? Visszavezetés a hozzárendelési feladatra. Ez egy ös hozzárendelési feladat, F 1 -nek 25 sor felel meg, R 1 -nek 1 oszlop, stb. A feladat LP modellje A költségek és kapacitások: R 1 R 2 R F F A szállított mennyiségek: R 1 R 2 R F 1 x 11 x 12 x 1 2 F 2 x 21 x 22 x Az LP model: x 11 + x 12 + x 1 = 2 x 21 + x 22 + x 2 = 25 x 11 + x 21 = 1 x 12 + x 22 = 2 x 1 + x 2 = 15 2x 11 + x x 1 + 4x 21 + x x 2 min LP modell általánosan Adott m feladóhely: F 1,..., F m, és n rendeltetési hely: R 1,..., R n. Az i-edik feladóhelyen f i mennyiségű homogén áru áll rendelkezésre, ezeket kell elszállítani a rendeltetési helyekre. A j-edik rendeltetési hely r j árumennyiséget igényel. Feltételezzük, hogy a készletek és az igények összhangban vannak, azaz m f i = i=1 n r j. j=1

44 Jelölje c ij az egységnyi áru szállítási költségét az i-edik feladóhelyről a j-edik rendeltetési helyre történő szállításkor: 2 R 1 R 2... R n F 1 c 11 c c 1n F 2 c 21 c c 2n.... F m c m1 c m2... c mn Jelölje x ij az i-edik feladóhelyről a j-edik rendeltetési helyre szállítandó árumennyiséget: R 1 R 2... R n F 1 x 11 x x 1n f 1 F 2 x 21 x x 2n f F m x m1 x m2... x mn f m r 1 r 2... r n A következő feltételek azt fejezik ki, hogy a feladóhelyekről minden árut el kell szállítani, és a rendeltetési helyek igényét ki kell elégíteni: m x ij = r j (j = 1,..., n) i=1 n x ij = f i (i = 1,..., m) j=1 x ij (i = 1,..., m; j = 1,..., n) A célfüggvény, aminek a minimumát keressük, K = n i=m j=1 n c ij x ij min. Ez egy lineáris programozási feladat: mn változó, m + n feltétel A = = x = [x 11, x 12,..., x 1n ; x 21, x 22,..., x 2n ; x m1, x m2,..., x mn ] c = [c 11, c 12,..., c 1n ; c 21, c 22,..., c 2n ; c m1, c m2,..., c mn ] b = [f 1, f 2,..., f m ; r 1, r 2,..., r n ] = [f, r ] Ax = b x K(x) = c x min [ A1 A 2 ] Az A mátrix oszlopvektorai: A = [a 11, a 12,..., a 1n ; a 21, a 22,..., a 2n ; a m1, a m2,..., a mn ]

45 ahol a ij = [ ei e j ] (e i egy m, e j egy n komponensű egységvektor) A mátrixos alak feleslegesen sok nullát tartalmaz, hiszen egy egyenlőtlenségben m vagy n 1-es szerepel, a többi elem nulla. Ezért célszerűbb a bázistáblánál tömörebb írásmód használata: disztribúciós táblázat. Ez nem jelent mást, mint hogy a költségmátrixban bekeretezzük azon viszonylatoknak megfelelő elemeket, ahol szállítunk és azt is melléírjuk, hogy abban a viszonylatban mennyit szállítunk. Tétel. Ha feladóhelyek száma m arendeltetési helyek száma n, akkor az (m+n) (mn)-es A együtthatómátrix rangja m+n 1. Bizonyítás. A rang nem lehet nagyobb, mint a sorok száma, azaz m + n. Mivel az első n sor összege és az utolsó m sorösszege egyaránt csupa 1 komponensekből áll, ezért az első n sor összege és az utolsó m sorösszegének különbsége : 1 A 1 1 A 2 = 1 1 = Vagyis A sorai lineárisan függőek, így a rang kisebb m + n-nél, legfeljebb m + n 1. A rang m + n 1, mert az első blokk oszlopai, valamint a további blokkok első oszlopai oszlopai lineárisan függetlenek: [ ] [ ] [ ] e1 e1 e1 a 11 =, a e 12 =,... a 1 e 1n =, 2 e n [ ] [ ] [ ] e2 e em a 2n =, a e n =,... a n e mn =, n en Disztribúciós módszer Tétel. A szállítási feladatnak mindig van lehetséges megoldása. Bizonyítás. A bizonyításban módszert is adunk egy lehetséges megoldás megkeresésére. (Disztribúciós módszer) A mintafeladaton: R 1 R 2 R F F R 1 R 2 R F F R 1 R 2 R F F R 1 R 2 R F F Disztribúciós módszer Válasszuk ki a C költségmátrix egy c ij elemét, s legyen x ij = min(f i, r j ).

46 A c ij elemet bekeretezzük, fölé írva x ij értékét. 4 Ha f i < r j, azaz x ij = f i, akkor az F i készlete kiürült, míg R j igénye x ij -vel csökkent. Ennek megfelelően az i-edik sort töröljük, r j -t pedig r j f i -re változtatjuk. Ha r j < f i, azaz x ij = r j, akkor az R j igényeit kielégítettük, míg F i készlete x ij -vel csökkent. Ennek megfelelően az j-edik oszlopot töröljük, f i -t pedig f i r j -re változtatjuk. Ha f i = r j : degeneráció, ld. később. Ezt ismételgetve m + n 2 lépés után egyetlen sor és oszlop marad, amit már egyszerre törölhetünk. Tehát mindig m + n 1 viszonylatban fogunk szállítani. Azon c ij ket, ahol szállítunk, kötött elemeknek, a többit szabad elemeknek nevezzük. Megjegyzés. Belátható hogy az így kapott megoldás bázismegoldása a szállítási feladathoz tartozó LP feladatnak: (Biz. nem kell, a könyvbeli bizonyítás hiányos.) Optimum létezése Tétel. A szállítási feladat célfüggvénye korlátos a lehetséges megoldások halmazán. Bizonyítás. Mivel n j=1 x ij = f i (i = 1,..., n), ezért K = n n n n c ij x ij i=m j=1 c ij x ij i=m j=1 n n n n max c ij x ij = max c ij j j = i=m n i=m j=1 max c ij f i, j i=m j=1 x ij = és ez már konstans. Megjegyzés. A könyvbeli bizonyításban durvább becslés szerepel. Optimális-e az aktuális program? A mintafeladat LP modellje: Duálisának feltételrendszere: x 11 + x 12 + x 1 = 2 x 21 + x 22 + x 2 = 25 x 11 + x 21 = 1 x 12 + x 22 = 2 x 1 + x 2 = 15 2x 11 + x x 1 + 4x 21 + x x 2 min u i + v j c ij (i = 1,..., m; j = 1,..., n), ahol az u i -k a sorokhoz, v j -k az oszlopokhoz tartozó változók. Ismert, hogy ezek előjelkötetlen változók, mert egyenleteknek felelnek meg. A feltételrendszer eltérésvektorokkal: u i + v j + δ ij = c ij (i = 1,..., m; j = 1,..., n), ahol δ ij.

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom 1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3.

Részletesebben

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés) Operációkutatás NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok 1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

SzA II. gyakorlat, szeptember 18.

SzA II. gyakorlat, szeptember 18. SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,

Részletesebben

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton. lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,

Részletesebben

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit

Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

S Z Á L L Í T Á S I F E L A D A T

S Z Á L L Í T Á S I F E L A D A T Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből

Részletesebben

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás Gráfelmélet/Diszkrét Matematika MSc hallgatók számára 3. Előadás Előadó: Hajnal Péter Jegyzetelő: Pék Máté 2009. szeptember 21. 1. Folyamok 1.1. Definíció. G = (V, E, K, B) irányított gráf, ha e! v : ekv

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék További forgalomirányítási és szervezési játékok 1. Nematomi forgalomirányítási játék A forgalomirányítási játékban adott egy hálózat, ami egy irányított G = (V, E) gráf. A gráfban megengedjük, hogy két

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

HÁLÓZAT Maximális folyam, minimális vágás

HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő

Részletesebben

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga B csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás

Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,

Részletesebben

Alapfogalmak a Diszkrét matematika II. tárgyból

Alapfogalmak a Diszkrét matematika II. tárgyból Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben