Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka"

Átírás

1 MAGYARÁZAT Az ajánlott Mértan 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában elsajátított tudés szintjének meghatározása algebrából. A gyűjteményben 0 változat van algebrából. Minden változat tesztes kérdésből áll, melyek alakjukban és nehézségükben is különböznek. A feladatok megfelelnek az általános iskolák 7-9 osztályos tanulóira érvényes követélményeknek algebrából. A kidolgozásra 45 perc van előirányozva (a szervezésen kívül). Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0

2 TÁJÉKOZTATÓ A TANÁRNAK Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka Зміст тестових завдань охоплює навчальний матеріал курсу геометрії основної школи. Розподіл тестових завдань за навчальними темами наведено в таблиці.. táblázat A tananyag tartalma Fele letválasztás Feladatok száma Megfeleltetés Rövid nyílt válasz A feladat sorszáma Párhuzamos egyenesek a síkon A háromszögek tulajdonságai A négyszögek tulajdonságai Körvonal 4 Síkbeli koordináták 5 Szinusz és koszinusztétel 6 Síkbeli vektorok 7, 0 Trigonometria a derékszögű háromszögben 8 Feladatok megoldása a síkidomok tulajdonságira 9 Mértani feladatok megoldása algebrai módszerrel Feladatok síkidomok kombinációira Összesen 6 4 Együtt завдань A teszt feladat három szintre bonthatók nehézségük szerint: I szint az -6 feladatok, melyek alap ás elégséges szintűek, tehát a matematikai fogalmak közvetlen alkalmazására (meghatározások, képletek, összefüggések, átalakítások és így tovább) II szint 7-0 feladatok a tanult matematikai tudás alkalmazása ismert (standart) környezetben, ami a tanulók közepes tudásszintjének felel meg. A feladatok megoldásához a tanulónak logikus összefüggést kell találnia a feladat feltétele, kérdése és a megoldáshoz szükséges matematikai fogalmak között, meghatározni és kivitelezni a megoldáshoz vezető logikus lépések sorát. III szint a - feladat, melyek megoldásához a tanulónak a tanultakat számára ismeretlen helyzetben kell alkalmaznia, gondolkodásának változatosságáról és a racionális megoldás kiválasztásáról kell számot adnia. A III szint feladatai a magas tudás szintnek felel meg. A feladatok feltételeit nem kell átírni. A tanulóknak a helyes válasz betűjelét egy x-szel kell jelölni a kiadott füzetben, majd a kódlapon is, melyet minden tanuló a piszkozattal együtt kap meg. Minden számítást, átalakítást a tanulónak a kiadott piszkozatban kell elvégeznie. Minden tanuló eredménye egy osztályzat (a pontok összege). Maximális pontszám 0 (lásd a.táblázatot).

3 . táblázat A feladat sorszáma Összesen A pontok száma pont pont pont Összesen 6 pont 6 pont 8 pont 0 pont Az összegyűjtött pontok alapján kell meghatározni a tanuló tudásszintjét (lásd. táblázat). A pontok száma A tudásszint alap közép megfelelő magas Az eredményeket a javító tanár feltünteti a tanuló kódlapján. A kódlap a feladatlap közepén található.. táblázat Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0

4 TÁJÉKOZTATÓ A TANULÓNAK Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka Minden változatban tesztfeladat van. Az első 6 kérdés (-6) egyszeri választás. Minden feladathoz adtunk 4 választ, melyek közül csak egy a helyes. A válasz akkor helyes ha kódlapra csak egy betű van írva, a helyes válasz betűjele. Ebben az estben nincs szükség semmilyen indoklásra, ami a igazolná a választást. A kódlapon az általad helyesnek vélt válasz betűjelét a mintának megfelelően jelöld meg. Az -6 feladatnál minden helyes válasz pontot ér. Ha rossz választ jelöltél meg, vagy nem jelöltél semmit, esetleg két betűt írtál be, akkor a válaszra o pont adható. A következő két feladat (7-8) megfeleltetés. A számokkal jelölt sorok mindegyikéhez válassz egy betűvel jelöltek. Az ábrán látható módon a helyes választ -szel jelöld. Például, ha az első sorhoz a helyes válasz betűjele a C, a másodikhoz a D, a harmadikhoz pedig az A. A megfeleltetéseket az ábrán látható módon kell jelölni. 7 Minden helyes válaszért pont jár. Maximálisan ezért a feladatért pont adható. Négy feladat (9-) nyílt rövid választ igényel. Mindegyik akkor, helyes ha válaszlapra a helyes megoldás van írva (például szám, intervallum, kifejezés, az egyenlet gyökei) Minden helyes válasz a 9- feladatért - pont. Ha a beírt válasz nem helyes, vagy a feladat nincsen megoldva, akkor 0 pontot ér. Jó tanácsok. Mielőtt hozzá kezdenél a feladatok megoldásához figyelmesen olvasd el az útmutatót!. Figyelmesen olvasd el a feladatot. Csak akkor válaszolj, ha megértetted a feltételeket és a megoldást!. A feltételeket ne írd át! Rögtön kezdj hozzá a kidolgozáshoz! Minden szükséges számítást, átalakítást, ábrázolást a piszkozatban végezz! Az általad helyesnek vélt válasz betűjelét írd be a munkafüzetbe, majd jelöld be a kódlapon is. 4. Minden feladatot nyugodtan, figyelmesen végezz el. Próbálj megoldani minden tesztes kérdést! 5. Ha valamelyik feladatot nem értetted meg, hagyd ki és kezdj hozzá egy következő feladathoz. Ha még marad időd, térj vissza a kihagyott feladathoz! 6. Ne feledkezz meg a leellenőrizni a kapott eredmény helyességét! Sok sikert kívánunk! 4

5 Tisztelt Szülők! Az 5-es tanulók tudásának, készségeinek és képességeinek összukrajnai monitoring vizsgálata abból a célból történik, hogy értékelni lehessen a jelenlegi általános középiskolai oktatásszerkezet állapotát és objektív adatokhoz lehessen jutni a tanulók tudásszintjéről. Az említett intézkedés célja a tanulók tanulmányi eredményeinek a kimutatása és néhány fontos oktatási kérdés megvilágítása, mégpedig: Milyen tudásra tettek szert az ötödikesek az ilyen vagy olyan tantárgyból, milyen szintet érnek el általános műveltségi képességeik. Milyen a tanulók érdeklődési szintje a tanulás iránt? Mely tantárgyak iránt nagy, és melyek iránt elégtelen az érdeklődés? Tudják-e a tanulók elemezni az olvasott szövegeket, tudnak-e következtetést levonni és hangot adni az olvasottakkal kapcsolatos személyes véleményüknek? Képesek-e egyedi döntést hozni az oktatási feladatok megoldása során, önállóan dolgozni a tankönyvből, megoldani a feladatokat, többletinformáció bevitelére a problémás feladatok megoldásakor? Hatékony-e az energia- és időfelhasználásuk az oktatási feladat megoldása során? A legfontosabb kérdés, hogy megtanulták-e a gyerekeik alkalmazni a megszerzett tudást nemcsak az órán, de a mindennapi életben is? A gyerek részvétele a monitoring vizsgálaton segíti a pedagógusokat és Önöket abban, hogy objektív információt kapjanak tanulmányi eredményeiről, tudásszintjéről, rávilágít, mely tantárgyakat kedveli leginkább, mely tananyag elsajátítása nem igényel tőle nagy szellemi, fizikai és akarati erőfeszítést, és kiderül az is, miben igényli gyerekük tanárai és az Önök segítségét. Ha kívánják, összehasonlító elemzésnek lehet alávetni a gyerekük tanulmányi eredményét az osztálytársaiéval, és segítséget kaphatnak annak eldöntéséhez, milyen módon lehetne eredményesebbé tenni további iskolai tanulmányait. Az iskolában elért tudásszinttől függ az Önök gyerekének tanulása a felső osztályokban valamint általános fejlődése. A monitorozás objektív eredményei növelik az iskolások tanulási kedvét, elősegítik az egyéni tehetségek kibontakozását, ösztönzőleg hatnak szülőkre és tanárokra egyaránt, hogy keressék az oktatási tevékenység színvonalának emeléséhez vezető utat. Az Önök érdeklődése és baráti segítsége a monitoring során ösztönzőleg hat és magabiztosságot nyújt a gyerekeknek a tanulási folyamatban. Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 5

6 Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 6

7 . változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek a különböző oldalakon fekvő belső szögek értékei. А 40 és 50 B 70 és 70 C 50 és 0 D 40 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Ez a háromszög hasonló az ABC háromszöggel, amelynek legkisebb oldala cm-rel egyenlő. Határozd meg az ABC háromszög kerületét. А 7 cm B 6 cm C 54 cm D 8 cm. A trapéz alapjai úgy aránylanak egymáshoz, mint :. Határozd meg a trapéz nagyobbik alapját, ha a középvonala 5 cm. А 8 cm B cm C 5 cm D 9 cm 4. A körbeírt ABC háromszög csúcsai a körvonalat olyan ívekre osztják, amelyek hossza úgy aránylik egymáshoz mint ::4. Határozd meg az ABC háromszög legnagyobb szögének fokmértékét. А 0 B 80 C 70 D Válaszd ki azt az A pontot, amely szimmetrikus az A( ;) ponttal az abszcissza tengelyhez viszonyítva. А А ( ; ) Б А (; ) В А (; ) Г А ( ; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. A paralelogramma két oldalának hossza 4 cm és 8 cm, és hegyesszöge 60. Határozd meg a paralelogramma kisebbik átlójának hosszát. А 48 cm Б cm В cm Г cm 7

8 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А a vektorok közötti szög hegyes és B a vektorok merőlegesek és C skaláris szorzatuk negatív D egyirányú vektorok 8. Az ABC egyenlőszárú háromszög AC alapja 8 cm, és a BD magassága, amely az alaphoz van húzva, cm. A háromszögben meghúzták az AM súlyvonalat. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B 4 C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög súlyvonalai egy M pontban metszik egymást. Határozd meg az ABC háromszög területét, ha az AMC háromszög területe 5 cm. 0. Az (; х) és ( ; 6) vektorok a rombusz átlóin fekszenek. Határozd meg az x értékét.. A körön kívűl fekvő M ponton keresztül egy szelő egyenest húztak, amely a körvonalat egy K és L pontban metszi úgy, hogy a K pont az L és M pont között helyezkedik el. Tudjuk, hogy MK:KL=4:5. Számítsd ki az ML hosszát, ha az M ponton húzott érintő MN szakaszának hossza cm.. A 6 cm sugarú körbe egy szabályos háromszög van írva. Ebbe a háromszögbe egy kört írtak, és a körbe négyzetet. Határozd meg a négyzet területét. 8

9 . változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek a váltószögek értékei. А 40 és 50 B 0 és 70 C 0 és 0 D 40 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Ez a háromszög hasonló az ABC háromszöggel, amelynek kerülete 8 cm-rel egyenlő. Határozd meg az ABC háromszög legkisebb oldalát. А 6 cm B 4 cm C 8 cm D 9 cm. A trapéz oldalai úgy aránylanak egymáshoz, mint :::. Határozd meg a trapéz nagyobbik alapját, ha a kerülete 66 cm. А 8 cm B cm C 5 cm D cm 4. A körbeírt ABCD téglalap, három egymást követő csúcsa, a körvonalból két olyan ívet metsz ki, amelyek hossza úgy aránylik egymáshoz mint 4:5. Határozd meg a téglalap átlói által bezárt szögek közül a nagyobbik fokmértékét. А 0 B 0 C 00 D Válaszd ki azt az А pontot, amely szimmetrikus az А( ; ) ponttal az ordináta tengelyhez viszonyítva. А А ( ; ) B А ( ; ) C А (; ) D А (; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. A rombusz tompaszöge 0. Határozd meg a nagyobbik átló hosszát, ha az oldala 6 cm. А 08 cm B 6 cm C 6 cm D cm 9

10 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А egyirányú vektorok és B a vektorok közötti szög tompa és C skaláris szorzatuk pozitív D kolineáris vektorok 8. Az ABCD egyenlőszárú trapéz AD alapja 5 cm, BC alapja 9 cm, és BK magassága 4 cm. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög AK és BP súlyvonalai egy M pontban metszik egymást. Határozd meg az ABC háromszög területét, ha az AMP háromszög területe 5 cm. 0. Az (; х) és ( ; 6) vektorok a trapéz alapjain fekszenek. Határozd meg az x értékét.. A körvonal két, MK és LN húrja egy O pontban metszi egymást. Tudjuk, hogy MO:OK=:. Számítsd ki az MK hosszát, ha NO=6 cm és OL=6 cm.. A cm oldalú négyszöghöz körvonalat írtak. Ebbe a körvonalba szabályos háromszöget írtak, és a háromszögbe körvonalat. Határozd meg a kisebb körvonal sugarát. 0

11 . változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek az egyoldalon fekvő belső szögek értékei. А 5 és 45 B 80 és 0 C 50 és 50 D 40 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Az ABC háromszög legkisebb szöge egyenlő a KLM háromszög legkisebb szögével, és a szög melletti oldalak nagysága cm és 6 cm. Határozd meg az ABC háromszög kerületét. А 7 cm B 6 cm C 54 cm D 8 cm. Az egyenlőszárú trapéz oldalai úgy aránylanak egymáshoz, mint :5:7:5. Határozd meg a trapéz nagyobbik alapját, ha a kerülete 57 cm. А 6 cm B 7 cm C 5 cm D cm 4. A körbeírt ABC háromszög csúcsai a körvonalat olyan ívekre osztják, amelyek hossza úgy aránylik egymáshoz mint ::4. Határozd meg a legkisebb ív fokmértékét. А 0 B 80 C 40 D 0 5. Válaszd ki azt az А pontot, amely szimmetrikus az A(-;) ponttal a koordináta-rendszer kezdőpontjához viszonyítva. А А (; ) B А (; ) C А (; ) D А ( ; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. Az ABC háromszögben cm,,. Határozd meg az AB oldal hosszát. А cm B cm C cm D cm

12 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А a vektorok közötti szög hegyes és B merőleges vektorok és C skaláris szorzatuk negatív D egyirányú vektorok 8. Az ABCD rombusz AC átlója 8 cm, BD átlója 6 cm. A K pont a BC oldal felezőpontja. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B 4 C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög AK és BP súlyvonalai egy M pontban metszik egymást. Határozd meg az AKC háromszög területét, ha az AMP háromszög területe 5 cm. 0. Az ( ; х) és ( ; 4) vektorok a négyzet szomszédos oldalain fekszenek. Határozd meg az x értékét.. A körön kívűl fekvő M ponton keresztül két szelő egyenest húztak, az egyik egy K és L pontban metszi a körvonalat úgy, hogy a K pont az M és L között fekszik, a másik egy N és P pontban metszi úgy, hogy az N pont fekszik az M és P pont között. Tudjuk, hogy KL:PN=5:9. Számítsd ki az MK hosszát, ha MN=6 cm és ML=8 cm.. A 6 cm sugarú körbe négyzet van írva. Ebbe a négyzetbe körvonalat írtak, és a körvonalba szabályos háromszöget. Határozd meg a háromszög kerületét.

13 4. változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek a különböző oldalakon fekvő belső szögek értékei. А 50 és 50 B 0 és 70 C 50 és 0 D 40 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Az ABC háromszög legkisebb szöge egyenlő a KLM háromszög legkisebb szögével, és a szög melletti oldalak nagysága 5 cm és 0 cm. Határozd meg az ABC háromszög harmadik oldalát. А 5 cm B 5 cm C 0 cm D 9 cm. A trapéz alapjai úgy aránylanak egymáshoz, mint :. Határozd meg a trapéz középvonalának hosszát, ha a nagyobbik alapja 4 cm. А 6 cm B 0 cm C cm D 8 cm 4. A körbeírt ABCD téglalap, három egymást követő csúcsa, a körvonalból két olyan ívet metsz ki, amelyek hossza úgy aránylik egymáshoz mint 4:5. Határozd meg az átló és a kisebbik oldal által bezárt szög fokmértékét. А 60 B 50 C 40 D 0 5. Válaszd ki azt az А pontot, amely szimmetrikus az А( ; ) ponttal az y=x egyeneshez viszonyítva. А А ( ; ) B А (; ) C А (; ) D А ( ; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. Az ABC háromszögben cm,. Határozd meg az ABC háromszög köré írt körvonal sugarát. А cm B cm C cm D cm

14 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А egyirányú vektorok és B a vektorok közötti szög hegyes és C skaláris szorzatuk negatív D skaláris szorzatuk 0 8. Az ABC egyenlőszárú háromszög AC alapja 6 cm, és a BD magassága, amely az alaphoz van húzva, 5 cm. A háromszögben meghúzták az AM súlyvonalat. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B C A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög AK és BP súlyvonalai egy M pontban metszik egymást. Határozd meg az ABC háromszög területét, ha az PMKC négyszög területe cm. 0. Az (6; х) és ( ; ) vektorok a paralelogramma szembenfekvő oldalain fekszenek. Határozd meg az x értékét.. A körön kívűl fekvő M ponton keresztül egy szelő egyenest húztak, amely a körvonalat egy K és L pontban metszi úgy, hogy a K pont az L és M pont között helyezkedik el. Tudjuk, hogy MK:ML=4:9. Számítsd ki az KL hosszát, ha az M ponton húzott érintő MN szakaszának hossza 6 cm. D. A cm oldalú szabályos háromszögbe körvonal van írva. Ebbe a körvonalba négyzetet írtak, és a négyzetbe körvonalat. Határozd meg a kisebb körvonal hoszzát. 4

15 VÁLASZOK RLAPJA mértanból Vezetéknév Keresztnév Apai név (az oktatási intézmény teljes neve). KÉRD ÍV 0- osztályos tanuló számára Kérünk, hogy válaszolj néhány kérdésre, amelyek lehet vé teszik az iskolai oktatás problémáinak feltárását az oktatás min ségének javítása érdekében. (Válaszaidat jelöld -szel, vagy írd le):. Mennyi id t töltesz általában a házi feladat elkészítésével ebb l a tantárgyból? kevesebb mint 5 percet kb. 0 percet kb. órát több mint órát. Mennyi id t töltesz általában a házi feladatok elkészítésével az összes tantárgyból? közel órát kb. órát kb. órát több mint órát. Tetszettek-e neked a mértan tankönyvek, amelyekb l 7-9 osztályokban tanultál? Igen Nem 4. Mely tantárgyból készült tankönyv tetszett neked a legjobban? Ukrán nyelv Mértan Világtörténelem Ukrán irodalom Biológia Ukrajna történelme Irodalom Földrajz Munka Idegen nyelv Fizika A felsoroltak közül egyik sem Algebra Kémia 5. Melyik a kedvenc tantárgyad? (Összesen kett t jelölhetsz meg.) Ukrán nyelv Mértan Világtörténelem Ukrán irodalom Biológia Ukrajna történelme Irodalom Földrajz Munka 88 Геометрія е О.І. Глобін, О.П. Вашуленко, А.В. Козаківська 0 Idegen nyelv Fizika A felsoroltak közül egyik sem Algebra Kémia 6. Jelöld meg (írd le) milyen fajta könyvek, segédanyagok hiányoznak az órákhoz való felkészüléshez. tudományos ismeretterjeszt kiadványok feladatgy jtemények munkafüzetek egyéb

16 . VÁLASZOK RLAPJA Геометрія е 0 О.І. Глобін, О.П. Вашуленко, А.В. Козаківська Jelöld jellel a saját Változatodat! Jelöld jellel a 9. osztályban kapott év végi jegyedet ebb l a tantárgyból: Az -6. feladat helyes válaszait jelöljétek jellel B C D A 7-8. feladat helyes párosítását jelöljétek jellel 7 B C D 8 B C D A feladatokra adható pontszám (az a tanító tölti ki, aki javította) Összpontszám A tanuló tudásszintje (a tanító jellel jelöli meg) alap közép megfelel magas matematikatanár. (aláírás) (teljes név)

17 A 9- feladatok megoldásait írd be a megfelel cellába. 9 0 Piszkozat Геометрія е О.І. Глобін, О.П. Вашуленко, А.В. Козаківська 0

18 Геометрія е 0 О.І. Глобін, О.П. Вашуленко, А.В. Козаківська A feladatokra adható pontszám (az a tanító tölti ki, aki javította) Fel. Pont Fel. Pont Összpontszám: A tanuló tudásszintje (a tanító jellel jelöli meg) alap közép megfelel magas matematikatanár. (aláírás) (teljes név)

19 5. változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek a váltószögek értékei. А 40 és 40 B 70 és 0 C 50 és 50 D 40 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Az ABC háromszög legkisebb szöge egyenlő a KLM háromszög legkisebb szögével, és a szög melletti oldalak nagysága cm és 6 cm. Határozd meg az ABC háromszög kerületét. А 6 cm B 6 cm C 54 cm D 8 cm. A trapéz oldalai úgy aránylanak egymáshoz, mint :::. Határozd meg a trapéz szárának hosszát, ha kerülete 66 cm. А 8 cm B cm C 5 cm D 9 cm 4. A körbeírt ABC háromszög csúcsai a körvonalat olyan ívekre osztják, amelyek hossza úgy aránylik egymáshoz mint ::4. Határozd meg az ABC háromszög legkisebb szögének fokmértékét. А 60 B 80 C 40 D 0 5. Válaszd ki azt az A pontot, amely szimmetrikus az A(0;) ponttal az y= x egyeneshez viszonyítva. А А (0; ) Б А (; 0) В А (0; ) Г А ( ; 0) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. Az ABC háromszögben cm,,. Határozd meg az BC oldal hosszát. А сm B cm C cm D cm 5

20 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А kolineáris vektorok és B a vektorok közötti szög tompa és C skaláris szorzatuk pozitív D skaláris szorzatuk 0 8. Az ABCD egyenlőszárú trapéz AD alapja 75 cm, BC alapja 45 cm, és BK magassága 8 cm. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög súlyvonalai egy M pontban metszik egymást. Határozd meg az ABC háromszög területét, ha az AMB háromszög területe 9 cm. 0. Az (6; х) és ( ; 6) vektorok a négyzet átlóin fekszenek. Határozd meg az x értékét.. A körvonal két, MK és LN húrja egy O pontban metszi egymást. Tudjuk, hogy MO:OK=8:. Számítsd ki az MK hosszát, ha NO= cm és OL=8 cm.. A 6 cm sugarú körbe egy szabályos háromszög van írva. Ebbe a háromszögbe egy kört írtak, és a körbe négyzetet. Határozd meg a négyzet oldalát. 6

21 6. változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek az egyoldalon fekvő belső szögek értékei. А 40 és 50 B 70 és 70 C 0 és 0 D 60 és 0. Az ABC háromszög AC oldala 6 cm és a ráhúzott BD magasság, 4 cm-rel egyenlő. A KLM háromszög hasonló az ABC háromszöggel. Ha tározd meg a KLM háromszög területét, ha a KM oldalra húzott LN magasság 4 cm-rel egyenlő. А 6 cm B 4 cm C 9 cm D 7 cm. ДAz egyenlőszárú trapéz oldalai úgy aránylanak egymáshoz, mint :5:7:5. Határozd meg a trapéz szárát, ha a középvonalának hossza 8 cm. А 0 cm B 5 cm C 5 cm D 0 cm 4. A körbeírt ABC háromszög csúcsai a körvonalat olyan ívekre osztják, amelyek hossza úgy aránylik egymáshoz mint ::4. Határozd meg az ABC háromszög legnagyobb szögének fokmértékét. А 40 B 60 C 80 D 0 5. Válaszd ki azt az А pontot, amely szimmetrikus az А(; ) ponttal az y=x egyeneshez viszonyítva. А А ( ; ) B А ( ; ) C А (; ) D А ( ; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. Az ABC háromszögben cm,. Határozd meg az ABC háromszög köré írt korvonal sugarát. А cm B cm C 4 cm D cm 7

22 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А merőleges vektorok és B egyirényú vektorok és C skaláris szorzatuk pozitív D a vektorok közötti szög tompa 8. Az ABCD rombusz AC átlója 8 cm, BD átlója 6 cm. A K pont a BC oldal felezőpontja. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B 4 C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög AK és BP súlyvonalai egy M pontban metszik egymást. Határozd meg az AKC háromszög területét, ha az AMP háromszög területe 4 cm. 0. Az (; х) és ( ; ) vektorok a rombusz átlóin fekszenek. Határozd meg az x értékét.. A körön kívűl fekvő M ponton keresztül két szelő egyenest húztak, az egyik egy K és L pontban metszi a körvonalat úgy, hogy a K pont az M és L között fekszik, a másik egy N és P pontban metszi úgy, hogy az N pont fekszik az M és P pont között. Tudjuk, hogy MK:MN=4:. Számítsd ki az MP hosszát, ha KL=0 cm és PN=8 cm.. A 6 cm sugarú körbe egy szabályos háromszög van írva. Ebbe a háromszögbe egy kört írtak, és a körbe négyzetet. Határozd meg a négyzet kerületét. 8

23 7. változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek a különböző oldalakon fekvő belső szögek értékei. А 40 és 50 B 0 és 70 C 0 és 0 D 40 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Az ABC háromszög legkisebb szöge egyenlő a KLM háromszög legkisebb szögével, és a szög melletti oldalak nagysága cm és 6 cm. Határozd meg az ABC háromszög harmadik oldalát. А 4 cm B 9 cm C cm D 8 cm. A trapéz alapjai úgy aránylanak egymáshoz, mint :. Határozd meg a trapéz középvonalát, ha a kisebbik alapja 6 cm. А 4 cm B 0 cm C 5 cm D 8 cm 4. A körbeírt ABC háromszög csúcsai a körvonalat olyan ívekre osztják, amelyek hossza úgy aránylik egymáshoz mint ::4. Határozd meg a legnagyobb ív fokmértékét. А 60 B 0 C 00 D Válaszd ki azt az А pontot, amely szimmetrikus az А( ; ) ponttal az ordináta tengelyhez viszonyítva. А А ( ; ) B А (; ) C А (; ) D А ( ; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. A 8 cm oldalú rombusz hegyesszöge 60. Határozd meg a rombusz kisebbik átlójának hosszát. А 8 cm Б cm В 64 cm Г cm 9

24 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és. vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А egyirányú vektorok és B skaláris szorzatuk 0 és C a vektorok közötti szög hegyes D skaláris szorzatuk negatív 8. Az ABC egyenlőszárú háromszög AC alapja 6 cm, és a BD magassága, amely az alaphoz van húzva, 5 cm. A háromszögben meghúzták az AM súlyvonalat. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög AK és BP súlyvonalai egy M pontban metszik egymást. Határozd meg az AMP háromszög területét, ha az AKC háromszög területe 4 cm. 0. Az ( ; х) és ( ; 4) vektorok a téglalap szomszédos oldalain fekszenek. Határozd meg az x értékét.. A körön kívűl fekvő M ponton keresztül egy szelő egyenest húztak, amely a körvonalat egy K és L pontban metszi úgy, hogy a K pont az L és M pont között helyezkedik el. Az M ponttól a körvonalig egy MN éríntő van húzva. Tudjuk, hogy MK:MN=:. Számítsd ki az MN hosszát, ha ML=0 cm.. A cm sugarú körbe négyzet van írva. Ebbe a négyzetbe körvonalat írtak, és a körvonalba szabályos háromszöget. Határozd meg a háromszög területét. 0

25 8. változat Az -6 feladatoknál válaszd ki az egyetlen általad helyesnek vélt válasz betűjelét és jelöld a válaszlapon jellel!. Két párhuzamos egyenest elmetszünk egy harmadik egyenessel. Válaszd ki azokat az értékeket, amelyek lehetnek a váltószögek értékei. А 40 és 50 B 90 és 70 C 0 és 0 D 60 és 0. A KLM háromszög oldalai cm, cm és 4 cm. Az ABC háromszög legkisebb szöge egyenlő a KLM háromszög legkisebb szögével, és a szög melletti oldalak nagysága 8 cm és 4 cm. Határozd meg az ABC háromszög kerületét. А 7 cm B 6 cm C 54 cm D cm. A trapéz oldalai úgy aránylanak egymáshoz, mint :::. Határozd meg a trapéz középvonalát, ha a kerülete 66 cm. А 8 cm Б 5 cm В cm Г 9 cm 4. A körbeírt ABCD téglalap, három egymást követő csúcsa, a körvonalból két olyan ívet metsz ki, amelyek hossza úgy aránylik egymáshoz mint 4:5. Határozd meg az átlók által bezárt szögek közül a kisebbik fokmértékét. А 40 B 50 C 60 D Válaszd ki azt az А pontot, amely szimmetrikus az А( ; ) ponttal a koordináta-rendszer kezdőpontjához viszonyítva. А А (; ) B А (; ) C А (; ) D А ( ; ) Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 0 6. Az ABC háromszögben АС = 4 cm,,. Határozd meg az AB oldal hosszát. А cm B cm C 4 cm D cm

26 A 7-8 feladatoknál minden számjeggyel jelölt sorban válasszd ki a betűvel jelölt megfelelő párját. A válaszlapon a helyes párosításokat így kell bejelölni:. Mértan 0 O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka 7. A rajzon látható az,, és vektorok. Határozd meg a vektorpárok (-) és az állítások (A-D) közötti helyes összefüggést. és А a vektorok közötti szög tompa és B skaláris szorzatuk 0 és C skaláris szorzatuk pozitív D kolineáris vektorok 8. Az ABCD egyenlőszárú trapéz AD alapja 5 cm, BC alapja 9 cm, és BK magassága 4 cm. Határozd meg a szögek trigonometrikus függvényei (-) és a számértékei (A-D) közötti összefüggést. А B C D A 9- feladatokat piszkozaton oldd meg, a feleletet írd be a válaszlapra. 9. Az ABC háromszög AK és BP súlyvonalai egy M pontban metszik egymást. Határozd meg az ABC háromszög területét, ha az PMKC háromszög területe cm. 0. Az (; х) és ( 6; 4) vektorok a téglalap szembenfekvő oldalain fekszenek. Határozd meg az x értékét.. A körvonal két, MK és LN húrja egy O pontban metszi egymást. Tudjuk, hogy MO:KO:NO=4:6:. Számítsd ki az MK hosszát, ha OL=6 cm.. A cm oldalú szabályos háromszögbe körvonal van írva. Ebbe a körvonalba négyzetet írtak, és a négyzetbe körvonalat. Határozd meg a kisebb körvonal hoszzát.

Algebra MAGYARÁZAT. ОO.I. Globin, O.I. Bukovszka

Algebra MAGYARÁZAT. ОO.I. Globin, O.I. Bukovszka MAGYARÁZAT Az ajánlott Algebra 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

MATEMATIKA 5M A T E M A T I K A ÚTMUTATÓ A TANÁRNAK

MATEMATIKA 5M A T E M A T I K A ÚTMUTATÓ A TANÁRNAK ÚTMUTATÓ A TANÁRNAK A teszt az. osztályos tanulók elemi osztályokban tanult matematika tudásának felmérésére készült. A tartalma Az állami alapkövetelményeknek alsó tagozatos Matematika részterületének

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

1. változat. 1.5 Hány személyautó állt a parkolóban, ha a 36 fehér színű autó az összes autó 9

1. változat. 1.5 Hány személyautó állt a parkolóban, ha a 36 fehér színű autó az összes autó 9 1. változat Első rész Az 1.1 1.1 feladatokhoz 4 válasz lehetőség van, amelyek közül CSAK EGY HELYES. Válassza ki az Ön által helyesnek vélt feleletet és jelölje meg a feleletlapon! 1.1 Melyik egytaggal

Részletesebben

Síkgeometria. Ponthalmazok

Síkgeometria.  Ponthalmazok Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen

Részletesebben

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat 1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

Feladatok 7. osztály

Feladatok 7. osztály Feladatok 7. osztály 1. Egy ruha árának ötöde a kereskedő haszna. Ha megemelné az árat 200 Ft-tal, akkor már csak az ár harmada lenne a haszna? Mennyi a ruha ára? 2. Egy iskolában kémiát, angolt, franciát,

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 11. évfolyam 2. félév ESZKÖZÖK Matematika A 11. évfolyam 6. modul 6.1 kártyakészlet 6.1 kártyakészlet leírása A kártyákon pontok koordinátáit találjuk. A tanulók

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22. osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

Ismételjük a geometriát egy feladaton keresztül!

Ismételjük a geometriát egy feladaton keresztül! Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! 1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,

Részletesebben

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z 146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

8. Geometria = =

8. Geometria = = 8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2? Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben