Statisztika érettségi vizsgára készülőknek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Statisztika érettségi vizsgára készülőknek"

Átírás

1 Statisztika érettségi vizsgára készülőknek 1. Egy csoport matematika röpdolgozatainak eredményét táblázatba foglaltuk: Érdemjegy jeles (5) jó (4) közepes (3) elégséges (2) elégtelen (1) Gyakoriság Számítsa ki a csoport átlagát! Határozza meg az adatok szórását! 2. Állapítsa meg a diagramról, hogy melyik áruházlánc növelte hálózatát 2 év alatt a legtöbb üzlettel! Mennyivel? 3. Az egyik 12. osztály 26 tanulója átlagosan 48,5 pontot szerzett az írásbeli érettségi vizsgán. Mennyi volt a 26 tanuló összpontszáma? 4. A diagramról olvassa le a filmek nézőszámait (10000-es pontossággal), és számolja ki az átlagos nézőszámot! 5. Egy nagyvárosi középiskola 672 tanulójából 168 kollégista, 396 helybeli, 12 albérletben lakik, a többi a környékbeli településekről bejáró". Készítse el a gyakorisági táblázatot a fenti adatokból, és számítsa ki a %-os megoszlást! Szemléltesse feladat adatait sávdiagramon!

2 6. Az ábra alapján számítsa ki, hogy a) 10 év alatt hányszorosára növekedett a nettó, illetve a bruttó átlagkereset? b) a bruttó átlagkereseteknek a nettó hány %-a az adott években? c) nőtt-e a nettó keresetek bruttó keresetekhez viszonyított aránya? 7. Egy beteg gyerek lázát négyóránként mérve a következő adatokat kaptuk: időpont (h) hőmérséklet ( C) 39, ,8 38,3 38,5 39 a) Mennyi az adatsor terjedelme? b) Ábrázolja vonaldiagramon (lázgörbén) a mért hőmérsékleti értékeket! 8. Egy lánytársaságban mindenki őszintén bevallotta, hogy hányas cipőt hord. A nyilatkozatokból" a következő adatsor született: 38, 37, 40, 41, 39, 37, 37, 38, 40, 37, 39, 38, 38, 40, 38, 39, 39, 41. Adja meg a cipőméretek móduszát és mediánját! A feladat adataiból készítsen gyakorisági táblázatot és ábrázolja a gyakoriságot oszlopdiagramon! 9. A KSH 2006-os adata szerint a magyarországi háztartások 57,7%-a nem rendelkezik internetkapcsolattal. A mi utcánkban 26 család lakik, közülük 10-nek van internetkapcsolata. Internet-ellátottság szempontjából jobb vagy rosszabb a helyzet az országosnál? gyerek átlagosan 18 kg papírt vitt az iskolai papírgyűjtési akcióra. Öt gyerek papírját külön-külön lemérve 13,5 kg, 43 kg, 17,5 kg, 10 kg, 11 kg lett a mérések eredménye. Hány kg papírt vitt a hatodik gyerek? Mekkora az adatok terjedelme? 11. Hány milliárd euróval részesedik Norvégia az európai hajógyártás összértékéből? Az adatokat a diagramon találja meg.

3 12. Nagymama polcán mosolyognak a nyáron eltett befőttek. Időrendi sor-rendben meggybefőttet 18 üveggel tett el, ribizli-málna vegyes lekvár 10, őszibarackbefőtt 10, sárgabaracklekvár 24, ecetes uborka 11, zöldbab 14, lecsó 12, paradicsomlé 20, ecetes almapaprika 9, vegyes savanyúság 7, szilvabefőtt 6, szilvalekvár 15, birsalmabefőtt 8, körtekompót 8, cékla 8 üveggel lett. Csoportosítsa a befőtteket lekvár, gyümölcsbefőtt (kompót), savanyúság, zöldség kategóriákba, foglalja a fentiek szerint táblázatba! Számítsa ki a 4 csoport relatív gyakoriságát az összes befőtthöz viszonyítva! 13. Határozza meg a diagramon szereplő városok metróvonalainak átlagos hosszúságát! Mennyivel tér el a budapesti metró hossza ettől az átlagtól? Melyik város vonalhossza van legközelebb" az átlaghoz! Mekkora az adatsor terjedelme! 14. A hajdúszoboszlói kézilabdacsapat játékosainak évekre kerekített életkor szerinti megoszlását mutatja a következő táblázat: Életkor (év) Játékosok száma Számolja ki a játékosok átlagéletkorát! Állapítsa meg a feladat adatsorának móduszát és mediánját! A játékosokat három csoportban foglalkoztatják: a 22 év alattiak tartoznak az utánpótlás" kategóriába, a 25 év felettiek a rangidősöket" alkotják, míg a többiek a húzóemberek" csoportját képezik. Ábrázolja e három kategóriába tartozó játékosok számát oszlopdiagramon! 15. Milyen típusú balesetek száma növekedett legnagyobb arányban? Hány százalékkal? Számolja ki az egy balesetre jutó sérültek számát 2006-ban és 2007-ben is az előző feladat adatai alapján! Keressen magyarázatot a kapott eredményre!

4 16. Egy 11. osztály tanulói megállapodtak, hogy az egészséges táplálkozás jegyében a tízóraihoz gyümölcsöt is hoznak. Egyikük a nagyszünetben felmérést készített, ennek eredménye: almát 12, banánt 6, körtét 4, narancsot 9, nektarint 5 tanuló hozott. Készítsen kördiagramot a gyümölcsök eloszlásáról! 17. Találjon legalább két érvet arra, hogy ennek az újságban megjelent grafikának nincs értelme! 18. A diagram adatainak segítségével állapítsa meg, hogy a Magyarországon évente felhasznált villamosenergiának hány százalékát adja a paksi atom-erőmű, és hány % alapul megújuló energiahordozókra?

5 19. A diagram adatainak segítségével határozza meg a teljes munkaidőben foglalkoztatottak havi nettó átlagkeresetét egész számra kerekítve! Mennyi az adatsor mediánja? Hány forint a médián és az átlagkereset eltérése? 20. Foglalja táblázatba a nemzeti parkok éves összes támogatását! Adja meg az évenkénti összes támogatások értékét a évi támogatás százalékában! 21. Az alábbi adatok a KSH kiadványából valók és Magyarországra vonatkoznak a) Ábrázolja közös koordináta-rendszerben, vonaldiagramon az adatokat! b)milyen tendenciákat figyelhetünk meg? 22. Magyarországon az egy főre jutó élelmi szerfogyasztás, illetve azon belül az állati termékek fogyasztásáról tájékoztat az alábbi táblázat. Ábrázolja az elfogyasztott termékek arányát kördiagramon! Élelmiszer év (kg) Hús 63,6 Hal 3.6 Tej és tejtermék 166,8 Tojás 16,0 23. Egy januári nap hóadatait tartalmazza az alábbi táblázat. a) Helyettesítse az adatsor tól-ig értékeit az átlagukkal! b) Határozza meg az így nyert adatok móduszát, mediánját és terjedelmét! Lomnici-csúcs Lomnici-nyereg Csorba-tó Chopok-csúcs Chopok-Észak Chopok-Dél Stary-Smokovec Zdiar 151 cm 110 cm 37 cm 76 cm cm 25 cm cm cm Certovica cm Donovaly 40 cm Vratna cm Martínske Hole 45 cm Javorina 60 cm Krompach 60 cm Mlynky Skalka 70

Érettségi feladatok: Statisztika

Érettségi feladatok: Statisztika Érettségi feladatok: Statisztika 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A 4.m osztálynak gyakorlásra a statisztika felmérőre

A 4.m osztálynak gyakorlásra a statisztika felmérőre A 4.m osztálynak gyakorlásra a statisztika felmérőre 4. 2005. május, 8. feladat a), b) és c) része Az alábbi táblázat egy ország munkaképes lakosságának foglalkoztatottság szerinti megoszlását mutatja.

Részletesebben

Érettségi feladatok: Statisztika 1/13

Érettségi feladatok: Statisztika 1/13 Érettségi feladatok: Statisztika 1/13 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Statisztika 1) Egy dolgozatnál az elérhető legmagasabb pontszám 100 volt. 15 tanuló eredményeit tartalmazza a következő táblázat: Elért pontszám 100 95 91

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk?

3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk? Valószínűségszámítás, gráfok, statisztika 1. Egy 660 fős iskola tanulóinak 60%-a lány. A lány tanulók 25%-a a 12. évfolyamra jár. Egy tetszőleges tanulót választva az iskola tanulói közül, mennyi a valószínűsége,

Részletesebben

TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika

TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

2 pont. 3 pont. 3 pont

2 pont. 3 pont. 3 pont 1. Egy nagyvárosban élő, egyetemet vagy főiskolát végzett személyek számának alakulását mutatja az alábbi grafikon. Hány diplomás lakója lesz a városnak 2010-ben, ha számuk ugyanolyan mértékben nő, mint

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

Statisztika a hétköznapokban

Statisztika a hétköznapokban Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Statisztika

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

. Próba érettségi feladatsor 2015. április 17. I. RÉSZ

. Próba érettségi feladatsor 2015. április 17. I. RÉSZ Név: Osztály: Próba érettségi feladatsor 2015 április 17 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

Statisztika feladatok (középszint)

Statisztika feladatok (középszint) Statisztika feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/6) Adott a következő kilenc szám: 1; 2; 2; 2; 3; 3; 4; 5; 6. Válassza ki a helyes állítást az alábbiak közül! a) Az adatsor átlaga 2. b)

Részletesebben

22. Statisztika. I. Elméleti összefoglaló. Statisztikai sokaság, minta. Gyakoriság, gyakorisági eloszlás, osztályokba sorolás

22. Statisztika. I. Elméleti összefoglaló. Statisztikai sokaság, minta. Gyakoriság, gyakorisági eloszlás, osztályokba sorolás 22. Statisztika I. Elméleti összefoglaló Statisztikai sokaság, minta A statisztika tömegjelenségekben érvényesülő tapasztalati törvényeket tár fel a sokaság részhalmazain (mintákon) elvégzett mérésekre

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

ÖSSZEFOGLALÓ TÁJÉKOZTATÓ I. NEGYEDÉVES ADATOK AZ EGÉSZSÉGÜGYBEN DOLGOZÓK LÉTSZÁM ÉS BÉRHELYZETÉRŐL

ÖSSZEFOGLALÓ TÁJÉKOZTATÓ I. NEGYEDÉVES ADATOK AZ EGÉSZSÉGÜGYBEN DOLGOZÓK LÉTSZÁM ÉS BÉRHELYZETÉRŐL ÖSSZEFOGLALÓ TÁJÉKOZTATÓ AZ EGÉSZSÉGÜGYBEN DOLGOZÓK LÉTSZÁM ÉS BÉRHELYZETÉRŐL 2015. I. NEGYEDÉVES ADATOK A feldolgozás mintája: azon intézmények létszám és béradatai, amelyek bérszámfejtését 2015. I. negyedévben

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

STATISZTIKA. Gyakorló feladatok az első zh-ra

STATISZTIKA. Gyakorló feladatok az első zh-ra STATISZTIKA Gyakorló feladatok az első zh-ra A változás átlagos üteme év Kenyér Ft/ kg bázisindex % 2002 151 100,0 2003 156 103,3 2004 178 117,9 2005 173 114,6 2006 179 118,5 2007 215 142,4 I = n 1 l i

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

SZOCIÁLIS ÉS MUNKAERŐPIACI POLITIKÁK MAGYARORSZÁGON

SZOCIÁLIS ÉS MUNKAERŐPIACI POLITIKÁK MAGYARORSZÁGON ÁTMENETI GAZDASÁGOKKAL FOGLALKOZÓ EGYÜTTMŰKÖDÉSI KÖZPONT MUNKAÜGYI MINISZTÉRIUM NÉPJÓLÉTI MINISZTÉRIUM ORSZÁGOS MŰSZAKI INFORMÁCIÓS KÖZPONT ÉS KÖNYVTÁR SZOCIÁLIS ÉS MUNKAERŐPIACI POLITIKÁK MAGYARORSZÁGON

Részletesebben

MATEMATIKA KISÉRETTSÉGI 2012. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29. Pontszám

MATEMATIKA KISÉRETTSÉGI 2012. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29. Pontszám MATEMATIKA KISÉRETTSÉGI 2012. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR

STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR STATISZTIKA KÉSZÍTETTE: TAKÁCS SÁNDOR ALAPFOGALMAK Statisztika: latin status szóból ered: állapot Mindig egy állapotot tükröz Véletlen tömegjelenségek tanulmányozásával foglakozik Adatok megfigyelés, kísérlet

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága:

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága: MATEMATIKA KISÉRETTSÉGI 2010. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

ÉVKÖZI MINTA AZ EGÉSZSÉGÜGYI BÉR- ÉS LÉTSZÁMSTATISZTIKÁBÓL. (2006. II. negyedév) Budapest, 2006. augusztus

ÉVKÖZI MINTA AZ EGÉSZSÉGÜGYI BÉR- ÉS LÉTSZÁMSTATISZTIKÁBÓL. (2006. II. negyedév) Budapest, 2006. augusztus ÉVKÖZI MINTA AZ EGÉSZSÉGÜGYI BÉR- ÉS LÉTSZÁMSTATISZTIKÁBÓL (2006. II. negyedév) Budapest, 2006. augusztus Évközi minta az egészségügyi bér- és létszámstatisztikából Vezetői összefoglaló TARTALOM Módszertan

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA

Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA Országos Szakiskolai Közismereti Tanulmányi Verseny 2008/2009 MATEMATIKA FIZIKA III. (országos) forduló 2009. április 17. Kecskeméti Humán Középiskola, Szakiskola és Kollégium Széchenyi István Idegenforgalmi

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Feladatok. Az adatokat tartalmazó munkafüzetet mentsük le saját számítógépünkre, majd onnan nyissuk meg az Excel programmal!

Feladatok. Az adatokat tartalmazó munkafüzetet mentsük le saját számítógépünkre, majd onnan nyissuk meg az Excel programmal! 1. Feladat A táblázatunk négy légitársaság jegyeladását tartalmazza, negyedéves bontásban. Válaszoljunk a táblázat alatt lévő kérdésekre! Az eredmény IGAZ, vagy HAMIS legyen. Készítette: SZÁMALK Zrt, Szakképzési

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

kedvező adottságok, de csökkenő termelés kemény korlátok között: időjárás, import, botrányok, feketegazdaság, A zöldség- és gyümölcsszektor - Termelés

kedvező adottságok, de csökkenő termelés kemény korlátok között: időjárás, import, botrányok, feketegazdaság, A zöldség- és gyümölcsszektor - Termelés GfK Custom Research A friss zöldség, gyümölcs vásárlások GfK Hungária / Sánta Zoltán OMÉK 2011 A zöldség- és gyümölcsszektor - Termelés kedvező adottságok, de csökkenő termelés 2 kemény korlátok között:

Részletesebben

Diagramok elemzése. egy kozmetikai termékcsalád hatóanyagösszetételét

Diagramok elemzése. egy kozmetikai termékcsalád hatóanyagösszetételét Diagramok elemzése 1. Egy cég közös grafikonban ábrázolja a teljesítményét és az alkalmazottak létszámát. Le tudná-e olvasni, mekkora volt a cég teljesítménye és a dolgozók létszáma 2000-ben, ha csak az

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,

Részletesebben

Fókuszban a tejtermékek!

Fókuszban a tejtermékek! Fókuszban a tejtermékek! Fogyasztói igények és szokások változása napjainkban V. Tejágazati Konferencia 2015. november 26 Csillag-Vella Rita GfK 1 Magyarország vásárlóerejének Európa átlagához viszonyított,

Részletesebben

A gazdasági növekedés mérése

A gazdasági növekedés mérése A gazdasági növekedés mérése Érték-, volumen- és árindexek 25.) Az alábbi táblázat két egymást követő év termelési mennyiségeit és egységárait mutatja egy olyan gazdaságban, ahol csupán három terméket

Részletesebben

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2 Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

A nettó havi kereset alakulása

A nettó havi kereset alakulása 2 010 2 011 75 000 75 000 1 093 3 140 2 048 61 158 59 110 96,7% -2 048 93,4% 80 000 80 000 2 172 4 156 1 984 64 228 62 244 96,9% -1 984 93,6% 85 000 85 000 3 252 5 172 1 921 67 299 65 378 97,1% -1 921

Részletesebben

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. május 9. KÖZÉPSZINT I. 1) Egy háromszög belső szögeinek aránya :5:11. Hány fokos a legkisebb szög? A legkisebb szög o 0. Összesen: pont ) Egy számtani sorozat első eleme 8, differenciája.

Részletesebben

Személyügyi gazdálkodó és fejlesztő. Személyügyi gazdálkodó és fejlesztő T 1/6

Személyügyi gazdálkodó és fejlesztő. Személyügyi gazdálkodó és fejlesztő T 1/6 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon!

I. RÉSZ. 1. Írja fel annak az egyenesnek az egyenletét, amelyik áthalad az A(5;-3) és B(7;4) pontokon! Név: Osztály: Próba érettségi feladatsor 2013 április 16 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

Alapvizsga MATEMATIKA 10.A. Megoldókulcs

Alapvizsga MATEMATIKA 10.A. Megoldókulcs Alapvizsga 014. MATEMATIKA 10.A Megoldókulcs I. rész A megoldásra 5 perc áll rendelkezésre 1. Adja meg az ábrán látható függvény hozzárendelési szabályát! Határozza meg a szélsőértékét és helyét! Adja

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika

Részletesebben

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő

1. Egy Kft dolgozóit a havi bruttó kereseteik alapján csoportosítottuk: Havi bruttó bér, ezer Ft/fő Figyelem! A példasor nem tartalmazza valamennyi típuspéldát. A dolgozatban az órán leadott feladatok közül bármely típusú előfordulhat. A példasor már a második dolgozat anyagát gyakorló feladatokat is

Részletesebben

Gyöngyössolymosi Nagy Gyula Katolikus Általános Iskola és AMI

Gyöngyössolymosi Nagy Gyula Katolikus Általános Iskola és AMI 2015. évi OKM Gyöngyössolymosi Nagy Gyula Katolikus Általános Iskola és AMI Intézményi összefoglaló jelentés 2015. évi Országos Kompetenciamérés eredményeiről Gyöngyössolymos, 2016. április 2015. évi OKM

Részletesebben

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY

KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 12. évfolyam I. forduló Pótlapok száma db Matematika 12. évfolyam 1. forduló 1. Az alábbiakban számtani sorozatokat adtunk

Részletesebben

Írásbeli szorzás. a) b) c)

Írásbeli szorzás. a) b) c) Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2

Részletesebben

1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő

1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő 1. 1. a. Vegye fel az alábbi táblázatban szereplő adatokat! Ügyeljen a táblázatban szereplő formátumokra is! Sorszám Betét napja Kamatláb Bet. össz. (Ft) Kamat (Ft) Kifiz (Ft) 1. 1997. 08. 14. 12% 100

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A telephely létszámadatai:

A telephely létszámadatai: Országos kompetenciamérés értékelése - matematika 2011. 2011. tavaszán kilencedik alkalommal került sor az Országos kompetenciamérésre. A kompetenciamérés mind anyagát, mind a mérés körülményeit tekintve

Részletesebben

Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor

Szakközépiskola 9. évfolyam. I/1 gyakorló feladatsor Szakközépiskola 9. évfolyam I/1 gyakorló feladatsor 1. Adott az A={1,,3,4,5,6} és a B={1,3,5,7,9} halmaz. Adjuk meg elemeinek felsorolásával az AUB és az A\B halmazokat!. Számítsuk ki a 40 és 560 legnagyobb

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA

Részletesebben

Érettségi vizsga 2014.

Érettségi vizsga 2014. Érettségi vizsga 2014. ÁLTALÁNOS TUDNIVALÓK 4 kötelező és egy választható vizsgatárgy összesen tehát legalább 5 (lehet több is): Magyar nyelv és irodalom, történelem, matematika, idegen nyelv, és egy választható.

Részletesebben

Statisztika példatár

Statisztika példatár Statisztika példatár v0.02 A példatár folyamatosan b vül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthet példatárak közt. Országh Tamás Budapest, 2006 Mottó: Ki kéne vágni minden

Részletesebben

FELADATLAP. Kőrösy Közgazdászpalánta Verseny 2013/ forduló A gazdaságról számokban

FELADATLAP. Kőrösy Közgazdászpalánta Verseny 2013/ forduló A gazdaságról számokban FELADATLAP Kőrösy Közgazdászpalánta Verseny 2013/2014 2. forduló A gazdaságról számokban 1. Az infláció az árak általános, minden termékre kiterjedő és folyamatos változását jelenti. A középtávú célkitűzés

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Statisztika feladatok (emelt szint)

Statisztika feladatok (emelt szint) Statisztika feladatok (emelt szint) (ESZÉV Minta (1) 2004.05/8) Tekintse az alábbi magyarországi házassági adatokat tartalmazó statisztikai táblázatot! a) Készítsen diagramot, amely szemlélteti a házasságkötések

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

ALKALMAZOTTI LÉTSZÁM AZ ERDŐGAZDÁLKODÁSBAN, A FA- ÉS BÚ-

ALKALMAZOTTI LÉTSZÁM AZ ERDŐGAZDÁLKODÁSBAN, A FA- ÉS BÚ- ALKALMAZOTTI LÉTSZÁM AZ ERDŐGAZDÁLKODÁSBAN, A FA- ÉS BÚ- TORIPARBAN LÉTSZÁM-KATEGÓRIÁNKÉNT Az új osztályozási rendszer bevezetésével a létszám adatokban is változás következett be. A 0-9 fő közötti kategória

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 811 02 Vendéglátó-üzletvezető Tájékoztató A vizsgázó az első lapra írja fel a

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

angol Egységes követelmények

angol Egységes követelmények angol A többi érdemjegynél 3 tizedig a rosszabb, 7 tizedtől a jobb érdemjegyet kapja a tanuló, Írásbeli és szóbeli számonkérés az egész éves anyagból. Ha az írásbeli eredménye nem éri el a kapható pontszám

Részletesebben

Érettségi feladatok: Szöveges feladatok

Érettségi feladatok: Szöveges feladatok Érettségi feladatok: Szöveges feladatok 2005. május 10. 17. Anna és Zsuzsi is szeretné megvenni az újságosnál az egyik magazint, de egyik lánynak sincs elegendő pénze. Anna pénzéből hiányzik a magazin

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.

MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc. a feladat sorszáma elért összesen maximális II./A rész 13. 12 14. 12 15. 12 II./ B rész m nem választott feladat 17 17 ÖSSZESEN 70 maximáli s elért I. rész 30 II. rész 70 MINDÖSSZESEN 100 dátum javító

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

VEZETŐI ÖSSZEFOGLALÓ. Vezetői összefoglaló

VEZETŐI ÖSSZEFOGLALÓ. Vezetői összefoglaló VEZETŐI ÖSSZEFOGLALÓ AZ EGÉSZSÉGÜGYI MINISZTÉRIUM OSAP 1626/06 NYILVÁNTARTÁSI SZÁMÚ ADATGYŰJTÉSE, EGÉSZSÉGÜGYI ÁGAZAT LÉTSZÁM ÉS BÉRSTATISZTIKA, 2009. ÉV Adatszolgáltatói kör: Az egészségügyi ágazat létszám-

Részletesebben

5. Előadás. Grafikus ábrázolás Koncentráció elemzése

5. Előadás. Grafikus ábrázolás Koncentráció elemzése 5. Előadás Grafikus ábrázolás Koncentráció elemzése Grafikus ábrázolás fontossága Grafikus ábrázolás során elkövethető hibák: Mondanivaló szempontjából nem megfelelő ábratípus kiválasztása Tárgynak megfelelő

Részletesebben

ÖSSZEFOGLALÓ TÁJÉKOZTATÓ az egészségügyben dolgozók létszám- és bérhelyzetéről III. negyedév

ÖSSZEFOGLALÓ TÁJÉKOZTATÓ az egészségügyben dolgozók létszám- és bérhelyzetéről III. negyedév ÖSSZEFOGLALÓ TÁJÉKOZTATÓ az egészségügyben dolgozók létszám- és bérhelyzetéről 2010. III. negyedév A feldolgozás mintája: Azon egészségügyi intézmények létszám és béradatai, amelyek bérszámfejtését 2010.

Részletesebben

Sikeres megoldást és jó munkát kívánunk!

Sikeres megoldást és jó munkát kívánunk! A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

2. MINTAFELADATSOR KÖZÉPSZINT

2. MINTAFELADATSOR KÖZÉPSZINT Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 2. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc I. rész II. rész a feladat sorszáma maximális 1. 10 2. 14 3. 13 4. 14 16 elért 16 16 16 8 nem választott feladat maximális 51 64 Az írásbeli vizsgarész a 115 elért dátum javító tanár elért programba beírt

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

HÚSKÉSZÍTMÉNYEK, TŐKEHÚSOK A HAZAI VÁSÁRLÁSOKBAN. Sánta Zoltán, GfK Hungária Magyar Húsiparosok Szövetsége Húsvéti sajtótájékozató, 2012. március 27.

HÚSKÉSZÍTMÉNYEK, TŐKEHÚSOK A HAZAI VÁSÁRLÁSOKBAN. Sánta Zoltán, GfK Hungária Magyar Húsiparosok Szövetsége Húsvéti sajtótájékozató, 2012. március 27. HÚSKÉSZÍTMÉNYEK, TŐKEHÚSOK A HAZAI VÁSÁRLÁSOKBAN Sánta Zoltán, GfK Hungária Magyar Húsiparosok Szövetsége Húsvéti sajtótájékozató, 2012. március 27. 1 Nézzük először globálisan. Jól teljesítők Magyarország

Részletesebben

10. A mai magyar társadalom helyzete. Kovács Ibolya szociálpolitikus

10. A mai magyar társadalom helyzete. Kovács Ibolya szociálpolitikus 10. A mai magyar társadalom helyzete Kovács Ibolya szociálpolitikus Népességi adatok Magyarország népessége 2014. január 1-jén 9 877 365 fő volt, amely 1981 óta a születések alacsony, és a halálozások

Részletesebben

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor

Kereső függvények és használatuk a Microsoft Excel programban. dr. Nyári Tibor Kereső függvények és használatuk a Microsoft Excel programban dr. Nyári Tibor FKERES, VKERES melyik táblában kell keresni az értéket a tábla azon oszlopának táblán belüli sorszáma, amelyből az eredményt

Részletesebben

I. RÉSZ. 1. Adjon meg két olyan halmazt (A és B), amelyekre igaz: A B 1;4;5!

I. RÉSZ. 1. Adjon meg két olyan halmazt (A és B), amelyekre igaz: A B 1;4;5! Próba érettségi feladatsor 014 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű keretbe írja!

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I. ) Az a n sorozat tagját! MATEMATIKA ÉRETTSÉGI 0 október KÖZÉPSZINT I számtani sorozat első tagja és differenciája is 4 Adja meg a a 04 ) Az A és B halmazokról tudjuk, hogy AB ; ; ; 4; ;, A\ ; AB ; A ;

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben