Biogáz hasznosítás Magyarországon

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Biogáz hasznosítás Magyarországon"

Átírás

1 Biogáz hasznosítás Magyarországon Levegő és vízvédelem c. tárgy kiselőadás 2013 Készítette: Kordisz Virág

2 Tartalomjegyzék 1. Bevezetés A biogáz áttekintése - fogalma, anaerob biodegradáció története, felhasználása, környezeti hatás 2. A biogáz szerepe Környezetvédelem, szerves hulladékkezelés 3. Biogáz termelés technológiája, erőművek Legfontosabb részek, üzemeltetés 4. Biogáz erőművek Magyarország egész területén, a nyírbátori Bátortrade Kft. biogáz erőmű bemutatása 5. Engedélyezéssel, környezetvédelemmel kapcsolatos jogszabályok, határértékek 6. Felhasznált irodalom 2

3 1. Bevezetés A biogáz áttekintése - fogalma, anaerob biodegradáció története, felhasználása, környezeti hatás A levegő és vizek szennyezése a világ minden táján folyamatosan növekszik. A fő szennyező források az ipar, a mezőgazdaság, valamint a városi tevékenység. A különböző országok kormányai, ipari üzemek vezetői egyre inkább tudatában vannak ezen problémának, így támogatják olyan új technológiák kifejlesztését melyek segítségével hatékonyan és gazdaságosan lehet eltávolítani a káros anyagokat környezetünkből. Az egyik kiváló technológia, mellyel sikeresen lehet kezelni a szennyezések szerves frakcióját az anaerob kezelés. Ezen eljárás arra nem alkalmas, hogy a szennyeződések kialakulását, környezetbe kerülését megakadályozza, de annak eltávolítására kiválóan használható, lehetőséget nyújt zöld energia előállítására. Ily módon a környezetre káros anyag felhasználásával számunkra fontos produktum - energia - nyerhető. Az anaerob kezelés ezáltal kulcseljárás lehet a szennyezések eltávolításában, lebontásában, újrafelhasználásában, megújuló energia előállításában, egyéb technológiákkal kombinálva pedig további értékes melléktermékek nyerhetőek. Biogáz főként baktériumok aktivitása során keletkezik, habár néhány gomba illetve alacsonyabb rendű állati szervezet is részt vesz a szerves anyagok lebontásában. A mikrobák szaporodása és a biogáz képződése a természetben igen lassan megy végbe. A folyamat spontán beindul olyan területeken, ahol nagy koncentrációban, oxigénmentes környezetben van jelen nedves szerves anyag. Ezen feltételek adottak például tavak üledékében, mocsarakban, tőzeges területeken, állatok bélrendszerében. A lebontási folyamat igen bonyolult, számos baktérium törzs szimbiotikus kapcsolatán keresztül történik. Hidrolitikus baktériumok bontják a nagy molekulájú szerves vegyületeket extracelluláris enzimeikkel, mely eredményeként rövid szénláncú zsírsavak, szén-dioxid és hidrogén gáz keletkezik. A baktériumok második csoportja ezt követően a rövid szénláncú zsírsavakat alakítja át szerves savakká, többnyire ecetsavvá. A folyamat során újabb széndioxid és hidrogén gáz keletkezik. Végül a metanogének állítják elő a biogázt ecetsavból és hidrogénből. A biogáz metán, szén-dioxid és számos más vegyület keveréke. A biogáz képződés szempontjából igen fontos, hogy az egyes lépések számára megfelelőek legyenek a körülmények, valamint igen fontos paraméter a hidrogén termelés illetve felhasználás aránya, ugyanis ez a lebontási folyamat egyik fő sebesség-meghatározó komponense. Szulfátredukáló baktériumok is megtalálhatóak a rendszerben, melyek szulfátból és egyéb különböző kén vegyületekből hidrogén-szulfidot állítanak elő. A hidrogén-szulfid reakcióba lép a vas és egyéb nehézfém sókkal, azokkal oldhatatlan szulfidokat képez, mindezek ellenére állandóan megtalálható egy kevés hidrogén-szulfid a biogázban. A metanogén mikroorganizmusoknak igen sok törzse létezik, ezáltal lehetségessé válik, hogy az anaerob biodegradáció széles hőmérsékleti tartományban létrejöjjön, 15 C-tól 55 C-ig, 60-99% víztartalom esetében is. 3

4 (Forrás: Hajdú, 2009) Az anaerob biodegradáció alacsony hőmérsékleten, pszikrofil körülmények között is végbemegy (25 C alatt), mindezek ellenére a hagyományos anaerob fermentorok, melyek később részletesen is be lesznek mutatva a legtöbb esetben mezofil hőmérsékleten (30-35 C) illetve termofil hőmérsékleten (50-55 C) működnek. Ezen ténynek két fő oka van: Magasabb hőmérsékleten a reakciók gyorsabban játszódnak le, ezáltal adott idő alatt nagyobb mennyiségű szerves anyag betáplálásra van lehetőség, tehát csökken a retenciós idő, végeredményben növelhető a fermentor kapacitása. A másik ok pedig az, hogy magasabb hőmérsékleten a patogén mikroorganizmusok túlélési esélye jelentősen csökken. A biogáz csoportosítás a legegyszerűbb a termelés helye szerint. Ezek alapján három nagy csoportot tudunk megkülönböztetni: depóniagáz (szeméttelepi gáz, a kommunális hulladékban lévő szerves anyag lebomlásából képződik) szennyvíztelepi gáz (a szennyvíztelepeken képződő biogáz) biogáz mezőgazdasági mellék/termékekből és egyéb szerves anyagokból (a biogáz szó alatt általában ezt értik) 4

5 Az anaerob biodegradáció rövid története Írásos emlékek találhatóak arról, hogy biogázt használtak fürdővíz melegítésére Asszíriában időszámításunk előtt a 10. században és Perzsiában a 16. században. Van Helmont a 17. században felfedezte, hogy gyúlékony gáz nyerhető bomló szerves anyagokból. Alessandro Volta 1776-ban kimondta, hogy összefüggés van a bomlásban lévő szerves anyag mennyisége és a keletkezett gáz mennyisége között ban Sir Humphry Davy meghatározta, hogy metán tartalmú az a gáz, mely állati trágya bomlása során keletkezik. Az első biogáz fermentor 1859-ben épült Bombay-ban egy lepratelepen. A mikrobiológia fejlődése lehetővé tette Buswell és mások számára, hogy 1930-ban meghatározzák az anaerob baktériumokat és a körülményeket, melyek szükségesek a metán képződéshez. Ma a legelterjedtebbek a kis, egyes farmergazdaságokat ellátó biogáz reaktorok; 6-8 millió ilyen családi méretű, alacsony technológiai színvonalú fermentor működik világszerte. Az itt keletkező biogázt főként főzésre, világításra használják változó sikerrel. Európában igen jó eredményeket sikerült elérni az anaerob biodegradációval az ipari, városi, mezőgazdasági hulladékok kezelése területén. Európában az első fermentor 1895-ben épült meg Angliában, Exeterben, ahol a biogázt egy szennyvízkezelő üzemben állították elő, és az utcai lámpákban használták világításra. A rendszer egyre szélesebb körben terjedt el a II. Világháborút követően, mikor a hagyományos energiahordozók nehezen voltak hozzáférhetőek. Dánia rendelkezik a legnagyobb tapasztalattal a nagy léptékű biogáz fermentáció terén. Az országban 18 centralizált telep működik, mely annak vonzáskörzetében keletkező szerves hulladékokat dolgozza fel. Sok esetben úgynevezett kofermentáció zajlik, mely azt jelenti, hogy az állati trágya ipari és kommunális szennyvízzel együtt kerül felhasználásra. Dánia a kilencvenes években komoly célokat tűzött ki maga elé, egy megállapodás született, mely eredményeként 2000-re megduplázták az ország biogáz produkcióját, 2005-re pedig további jelentős növekedést szeretnének elérni. A növekedés azért lehetett ilyen gyors ütemű, mert bevezették az úgynevezett green pricing rendszert, mely azt jelenti, hogy megújuló energiaforrásból előállított zöld áramot a helyi áramszolgáltató a szokásos árnál magasabb összegért veszi meg. Ipari szennyvizek kezelésére kidolgozott anaerob fermentáló rendszerek a 90-as években fejlődtek a legütemesebben. Ma világszerte több mint 1000 ilyen rendszer működik, vagy van építés alatt. Becslések vannak arra vonatkozóan, hogy Európában a teljes biogáz produkció 44%-át ipari szennyvizekből állítják elő. Észak-Amerikában a telepített anaerob fermentáló rendszerek mindössze tizennégy százaléka ilyen üzem, ott többnyire a farmergazdaságokban működő kisméretű rendszerek dominálnak. Számos példa ismert arra vonatkozóan, hogy anaerob fermentort használnak igen sokféle szerves szennyeződés (rostos anyagok, ételmaradék, hús, tej) előkezelésére, ily módon a végső kezelés költségeit jelentősen csökkenteni lehet. Hazánkban elsőként a Hőtechnikai Kutató Intézet (HŐKI) 1950-ben kezdte meg kísérleteit és elméleti felkészülését a trágyahasznosítás anaerob formájára. Ezzel egy időben a Mélyépterv a nagyüzemi sertésállattartás szennyvizeinek anaerob erjesztéses kezelési kísérleteivel foglalkozott a szennyvíztisztításnál bevált iszapstabilizálási módszerrel. A HŐKI 1954-ben állította üzembe a Pécsi Állami Gazdaság Danicz-pusztai 872 m³-es félszáraz eljárással működő erjesztőberendezését, mely 3 évig kifogástalanul működött. 5

6 Biogáz összetétel Szerves biomasszából valóban nyerhető metán mennyisége nagyban függ a környezeti feltételektől. A végső biogáz hozam számos körülménytől függ, melyek közül említhetjük a felhasznált biomassza összetételét, lebonthatóságát, a fermentációban szerepet játszó mikroba populáció összetételét, a fermentációs hőmérsékletet. A fermenetáció során keletkező gáz jelentősen eltérő összetétellel rendelkezik, mint a természetes gáz, melyet a földgáz kutakból nyerünk. Ezen gáz számos szénhidrogén tartalmaz a metánon kívül, pl.: etán, propán, bután, így nagyobb kalorikus értékkel rendelkezik, mint a tiszta metán. Metán % Széndioxid % Oxigén 0 2 % Hidrogén 0 1 % Nitrogén 0-7 % Kénhidrogén 0-1 % Mely anyagokat lehet biogáz-termelésre használni? Biogáz minden a baktériumok által könnyen bontható szerves anyagból képződhet. A mezőgazdasági biogáz üzemekben többnyire a hígtrágyát és almos trágyát használják, mint alapanyagot (szubsztrátumot). A szarvasmarha hígtrágyája nagy pufferkapacitása miatt a biológiai folyamatokat optimális körülmények (ph) között tudja tartani. Ezért a németországi biogázüzemek több mint ⅔-a ezt a trágyaféleséget használja. Emellett más anyagokat is felhasználhatunk a biogáz-termelés növelésére. Így a mezőgazdaságból származó termékeket, mint például a kukoricát, gabonaféléket vagy a gyepet. Lehetőség nyílik az ugaroltatott területeken energianövények termesztésére, amit szintén a biogáz üzem tud hasznosítani. Az élelmiszeriparból származó melléktermékek is feldolgozásra kerülhetnek (pl. vágóhídi hulladék, zsírleválasztó maradék, törköly, cukorrépaszelet, stb.). A területgondozásból származó zöld vágási hulladék, a válogatott kommunális hulladékok szerves része, az éttermi hulladék és a szennyvíziszap (ld. 2. ábra ) is alkalmas biogáz-termelésre. Érdemes a tisztítószerek, fertőtlenítőszerek és egyes gyógyszerek (főleg antibiotikumok) biogáz üzembe történő kerülését megakadályozni, mert azok a lebontási folyamatokat zavarják. A túlzottan magas ammónium koncentrációt is meg kell előzni, mert az a metánképződést károsan befolyásolja. Ezért a baromfi és sertés trágyát csak hígítva szabad felhasználni. Ha a bejuttatott anyagok szárazanyag tartalma a 15-20%-ot meghaladja, szintén hígítani kell azokat, mert szivattyúzhatóságukat elveszítik. A hígtrágya mellett tehát a következő szerves anyagok dolgozhatók fel jó eredménnyel a biogáz üzemekben: gyümölcs és zöldség feldolgozási hulladékok (pl. krumpli héj, gyümölcslé gyártás maradéka, kukorica és egyéb keményítő tartalmú zöldség feldolgozás maradéka, szennyvize, stb.), vágóhídi és húsfeldolgozási hulladékok (pl. bendőtartalom, gyomortartalom, béltartalom, nyesedék, lejárt szavatossági idejű hústermékek, stb.), 6

7 konyhai és éttermi szerves hulladékok (pl. használt étolaj és zsír, leválasztott zsiradék, ételmaradékok, lejárt felhasználási idejű termékek stb.), nagybani piacok zöldséghulladéka, növénytermesztés hulladékai (pl. répalevél, krumpli zöld része, stb.), levágott fű, szilárd kommunális szerves hulladék, szennyvíziszap, erre a célra termesztett energianövények (pl. silókukorica, szudáni fű, csicsóka, stb.). A fontosabb biogáz alapanyagok (szubsztrátok) és a belőlük nyerhető biogáz, ill. metán mennyisége (Forrás: Hajdú, 2009) A táblázatból létszik, hogy a legfontosabb szubsztrát összetevők az állati hígtrágyák, a gáztermelésük azonban alacsony (30-70 m3/t), a belőlük keletkezett biogáz metántartalma (CH4) viszonylag magas %. Magas gázkihozatalt biztosítanak a növényi eredetű (kukorica, cukorcirok, teljes gabonanövény, cukorrépa) szubsztrát komponensek ( m3/t), a metántartalom pedig %. Ugyancsak magas gázképződés érhető el különböző élelmiszeripari törkölyökből és vágóhídi zsíros melléktermékekből ( m3/t), amelyeknek a metántartalma is kedvező %. 7

8 Felhasználás A metán a legegyszerűbb szénhidrogén, kiválóan felhasználható számos területen. Alkalmazható mindazon energiatermelő rendszerekben, melyek természetes gáz alkalmaznak. Azt a tényt azonban figyelembe kell vennünk, hogy a biogáz energia tartalma csekélyebb, valamint olyan összetevőket is tartalmaz, melyet a természetes gáz nem, így a legtöbb alkalommal a rendszer kisebb módosításra szorul. Ma leggyakrabban gázmotorban égetik el a biogázt, mely eredményeként elektromos áramot állítanak elő. A biogázt épületek, mezőgazdasági létesítmények (üvegházak) fűtésére is fel lehet használni, közvetlen elégetéssel. A biogázt szintén sikeresen alkalmazzák mint alternatív üzemanyagot személyautókban, teherautókban, buszokban egyaránt. A felhasználás előtt azonban meg kell tisztítani a benne található hidrogén-szulfidtól, szén-dioxidtól és a vízgőztől. Indiában és Kínában több tízezer családi biogáz termelő rendszer működik, a keletkezett gázt fűtésre és világításra használják. A nagyobb berendezésekben keletkező biogázt (elsősorban Európában, Amerikában és Japánban) kezdetben melegvíz előállítására kazánokban égették el. Az utóbbi években azonban már túlsúlyba került a kogenerációs (egyidejűleg elektromos áramot és hőt termelő) berendezésekben történő elégetés. A modern kogenerációs berendezések energiaátalakítási hatásfoka eléri a 85%-ot, ezen belül mintegy 40%-ban elektromos áramot, 60%-ban hőenergiát termelnek Lehetséges a biogáz betáplálása a földgázvezeték rendszerekbe is, ehhez azonban először meg kell tisztítani. A biogáz viszonylag kis mennyisége, a tisztítás és nyomásfokozás magas költségei következtében az ilyen felhasználás ritkán gazdaságos. Svédországban előnyben létesítik a biogáz motorhajtó anyagként történő felhasználását, ami megfelelő tisztítás után műszakilag megoldható, azonban ártámogatás nélkül ma még nem versenyképes. A biogáz felhasználásának ígéretes távlati lehetősége az üzemanyagcellák fűtőanyagaként várható. Bizonyos típusú üzemanyagcellák a széndioxidot is hasznosítani tudják, ezek nem igénylik a széndioxid eltávolítását. A világ számos országában folynak intenzív kutatások a biogáz üzemanyagcellában történő hasznosítása területén, ahol a gáz energiatartalmát kiváló hatásfokkal elektromos árammá alakítják. (Forrás: Dr. Szunyog István, 2010) 8

9 Környezet Az állattartó telepen számának növekedése világszerte környezetvédelmi problémákat vet fel, ily módon szükségessé válik olyan alkalmas technológiák bevezetése, melyekkel a marha, sertés és baromfitelepeken keletkező nagy mennyiségű trágya eltávolíthatóvá válik. A potenciális szennyező faktorok a szerves nitrogén, az ammónia, a metán, és ne feledkezzünk meg a patogénekről sem. Ezen anyagok egyaránt veszélyt jelentenek a felszínen, a talajvízben, a bomlás során keletkező ammónia káros vegyület, a szaghatás igen kellemetlen lehet. Szintén gondot jelent a metán légkörbe kerülése, mivel erősen üvegházhatást fokozó gáznak tekinthető. Mindezek figyelembevételével elmondhatjuk, hogy igen fontos ezen szennyeződések eltávolítása, lebontása, tehát az ezt lehetővé tevő technológiák vonzóvá válhatnak a jövőben. 9

10 2. A biogáz szerepe Környezetvédelem, szerves hulladékkezelés A biogáz-termelés környezetünkre, gazdaságunkra, valamint társadalmunkra is jelentős hatásokat gyakorol. Ezen tényezőket figyelembe véve különböző csoportosítások léteznek. A következőkben a csoportosítás a környezetvédelmi hatások, a szerves hulladék-kezelés, valamit a megújuló energiaforrás-kiváltás témakör szerint történik. Környezetvédelmi hatások A biogáz-termelésnek hatalmas előnye, hogy ez egy környezetbarát energianyerési forma, melynek végeredménye tiszta energia. Így ennek előállítása kevésbé terheli a környezetet, amellett, hogy széles felhasználási körrel rendelkezik. Sokkal kedvezőbb tulajdonságokkal rendelkezik (CO2 semleges, kevesebb ózonkárosító anyag, pozitív járulékos hatások), mint más fosszilis eredetű energiaforrás. A biogáz-termelés legfontosabb ökológiai előnyei a következők: Csökkenti az üvegházhatást okozó gázok (metán, nitrogénoxid, szén-dioxid) kibocsátását a levegőbe. A biogázból történő energiatermelés CO2 semleges, mert csak annyi szén-dioxid kerül vissza a levegőbe, amennyit korábban a növények életfolyamataik során szervezetük felépítéséhez megkötöttek belőle. A metán légkörbe történő kikerülése is megszűnik (pl. a trágya érése során). Fosszilis erőforrások hatékony kiváltó eszköze azzal, hogy a szerves anyagok lebomlása során keletkező fermentációs maradékok műtrágyát váltanak ki. Ezáltal pedig közvetetten csökken a szükséges műtrágyamennyiség, így a műtrágyagyártáshoz szükséges fosszilis energiahordozók használata is (egy kg nitrogén műtrágya előállításához 1 liter fűtőolajra van szükség). Segít a vidékfejlesztésben, mert általa növekszik a vidék gazdasági tevékenysége. A biogáz üzem és az energiacélú biomassza-termesztés bevételi forrásnövekedést eredményez, helyi munkaerőigényt generál a termeléshez, az előkészítéshez, sőt a tároláshoz és a szállításhoz kapcsolódva is. Ezáltal növelheti az adott térségben az ott lakók önértékelését, javíthatja a vidék attraktivitását, csökkentheti az elvándorlást, ösztönözheti új kisüzemek létrehozását. Javítja a mezőgazdaság összképét. Új feladatok megjelenésével, korszerű technológiákkal való szoros kapcsolattal a mezőgazdaság új megvilágításba kerülhet. Általa ez az ágazat az élelmiszertermelés mellett energiaszállító feladatokkal is bővülhet. Hatást gyakorol a tájra. Azon területeken, amelyeken energianövényt termesztenek, a parlagon hagyáshoz képest előnyösen változik a tájképi érték. Jelentős gazdasági impulzust adhat. Lokális energiaforrásként az energiaellátás biztonságát, az energiahatékonyság javítását szolgálja. 10

11 Szerves hulladék-kezelés A biogáz termelés szerepe a szerves hulladék-ártalmatlanítás területén Ma világszerte több tízezer 'háztáji' és több ezer ipari méretű szerves hulladék feldolgozó telep üzemel. Újrahasznosítható szerves hulladék az emberi tevékenység velejárójaként sok helyen keletkezik, kezelésük, eltakarításuk az emberi társadalomban fontos környezetvédelmi és közegészségügyi feladatként jelentkezik. Táplálékaink előállításakor ilyen hulladék keletkezik az állattartó telepeken óriási tömegben felhalmozódó trágya formájában, az élelmiszer feldolgozóiparban a vágóhídi és a növényi termékeket feldolgozó konzervgyárakban, az ipari és kommunális szennyvíztisztító telepeken és a szilárd kommunális hulladéklerakókban. Minden szerves hulladék, legyen az növényi vagy állati eredetű, veszélyes hulladék, elbomlásakor talajvíz és levegőszennyezés lép fel. Ezen kívül a szerves hulladékok szaporító helyei a betegséget terjesztő szúnyogoknak és legyeknek. Ezeknek a hulladékoknak az eltakarítása, ártalmatlanítása óriási erőfeszítéseket igényel világszerte és rengeteg költséggel jár. A nagy költségeket és energiát felemésztő fizikai megsemmisítés (égetés) mellett gyakorlatilag az egyedüli lehetőség a mikrobák segítségének, a biotechnológiai eljárásoknak az igénybe vétele. A mikrobákból álló konzorciumok tápanyag és energia forrásként használják az ember által 'hulladéknak' tekintett, valójában értékes és újrahasznosítható másodlagos szerves anyagot. A hasznosítás nélkül veszélyes hulladékként kezelendő anyagokból a mikrobiológiai közösségek megújuló energiát (biogáz, hő) és műtrágyát kiváltó, értékes biohumuszt állítanak elő, ellentétben az aerob rothasztással, mikor a fehérjék bomlásából keletkező kénhidrogén és ammónia a levegőbe távozik és büdös. A biogáz üzem azért az egyik leghatékonyabb környezetvédelmi beruházás, mert anaerob környezetben végzi el a rothasztást talajvíz és levegőszennyezés nélkül úgy, hogy a metántermelő baktériumok tüzelőanyagot állítanak elő. Az erjedés után visszamaradt hígtrágya a bomló anyagtól mentes, könnyen felvehető tápanyagként kerül vissza a talajba. Anaerob rothasztásnál a kénhidrogén az iszapban visszamarad, és oldott vasszulfidot képez. A metán baktériumok mérgező hatású antibiotikus hatással rendelkeznek és a biomasszában megtalálható gyommagokat, lárvákat elpusztítják. Megújuló erőforrások A földi élőlények kialakulásától, az emberiség fejlődése során az egyre nagyobb és magasabb szintű igények kielégítésére a technikai és technológiai fejlődés (különösen az utóbbi ötven évben) gyors ütemben, olyan utat tett meg, amelynek mérlegelése során rá kell döbbenni, hogy ezzel együtt az emberiség és a környezet pusztulását idéztük elő. A világ természeti erőforrásainak jelentős részét használja, formálja az emberiség az ipari termelés vagy az energiatermelés kapcsán. A megújuló energiaforrások a következőképp foglalhatóak rendszerbe: 11

12 (Forrás: biogas.hu) A megújuló energiaforrások főképp a biomassza energia - felhasználásának tekintetében Magyarországra vezető szerep vár. A mezőgazdasági terményekre, hulladékokra és kommunális melléktermékekre alapozott biogáz termeléssel, a főképp gabona és keményítő alapú benzint kiváltó bioetanol előállítással, és a leginkább repcetermesztésre alapozható biodízel gyártással kiváló lehetőség kínálkozik hazánk gazdasági pozíciójának erősítéséhez. Európa keleti régiójának éghajlata és mezőgazdasági potenciálja kiváló alapot ad a széles körű energiacélú biomassza termeléshez, egyúttal az ország folyamatosan egyre függetlenebbé válhat a nemzetközi fosszilis energiahordozó piactól. A környezetszennyezés, és az üvegházhatású gáz kibocsátása csökkenthető. Nem utolsó sorban pedig az energetikai célú termelés kitörési pont lehet hazánk mezőgazdaság és a vidék fejlesztésében. 12

13 Magyarország EU s vállalásai és teljesítései a megújuló energiák hasznosításában: (Forrás: biogas.hu) 13

14 3. Biogáz termelés technológiája, erőművek Legfontosabb részek, üzemeltetés A biogáz átlagos fűtőértéke 6 kwh/m³ (21,6 MJ/m³), 1 m³ biogáz 0,6 liter fűtőolajat képes helyettesíteni, az összetétele viszonylag állandó. A metánképződés időtartama a mezofil fázisban lassabban folyik le, mint termofil fázisban. Cellulóz alapú anyagok lebomlási ideje nagyon hosszú, nap, míg az állati eredetű anyagoké 8-20 nap. A gáztermelés is hasonló. A gyorsan lebomló arányos idő alatt nagyobb mennyiségű gázt termel. A biogáztermelésre többféle technológiai eljárás terjedt el a világban. Legelterjedtebbek a nedves fermentációs eljárások, ahol a szubsztrátok szárazanyag-tartalma 8-12 %, kevésbé elterjedtek a félszáraz (15-25 %) és a száraz (30-40 %) fermentációs technológiák. A szubsztrátumok áramlása alapján két nagy típusát különböztetjük meg az erőműveknek. 14

15 A folyamatos eljárás során a híg konzisztenciájú alapanyagot (hígtrágya, szennyvíziszap) folyamatosan vezetik az erjesztőtérbe, ahonnan egy túlfolyón keresztül azonos mennyiségű, de már kierjedt biotrágya távozik a rendszerből. Az előállított biogáz mennyisége állandó összetételű alapanyag esetén nem változik. Előnye az eljárásnak, hogy az alapanyag jól keverhető, könnyen üríthető, jól automatizálható. Hátránya, hogy kierjedt végtermék nehezebben kezelhető, nagyobb tárolóteret, ill. szeparálást igényel. A Batch-eljárás jellegzetessége az alapanyag egyszeri betáplálása az erjesztő tartályba. Elsősorban nagy szárazanyag-tartalmú alapanyagok (almos trágya, növényi maradványok) elgázosítására alkalmas. A biogáz reaktort feltöltése után lezárják és a fermentáció végén nyitják csak ki a kierjedt anyag kivétele és az újbóli feltöltés céljából. A biotrágya kitárolása után annak egy meghatározott részét, mint alapanyagot, illetve oltóanyagot a következő lebontási fázishoz megtartják. Az ebben az anyagban lévő baktériumkultúra adja az alapot a következő fermentációs ciklushoz az előzetesen összegyűjtött csurgaléklében található baktériumokkal együtt. Az eljárás előnye, hogy a nagy szárazanyag-tartalom miatt térfogategységre vetítve jóval nagyobb a biogáz-hozam és a szilárd konzisztenciájú biotrágya könnyebben felhasználható a hígtrágyánál. A fermentáció során a biogázreaktor tápanyaggal történő napi utánpótlása nem jelenik meg a feladatok között, ezért az üzem működtetésére fordítandó idő igen kevés. A betáplálás rövid időn belül megtörténik (kb. 5-6 óra 300 m3 anyag esetén), s ezután a teljes folyamatot számítógép irányítja. Ugyanakkor a biogáz-előállítás hatékonysága csökkenő, hiszen változik a fermentált végtermék összetétele is, ezért általában hosszabb érlelési idő szükséges a megfelelő gázkihozatalhoz, ami azonban az alapanyag jobb higienizálását is eredményezi (Bai, 2007). A rendszer hátránya, hogy a biogáztermelés nem folyamatos. A 28 napos ciklusok közötti minimum 3 napon nincs elektromos áram termelés, ami a gazdaságosságot befolyásolhatja. Az ingadozások kiküszöbölése végett egyszerre több fermentort is telepítenek, aminek köszönhetően a termelés kisebb kapacitással, de kvázi folyamatosan történik a friss anyagok betáplálása után is. A nedves biogáz-termelő eljárások lehetnek folyamatosak vagy szakaszosak, félszáraz és a száraz eljárások csak szakaszos technológiákkal valósíthatók meg. A gáztermelő fermentorok is többfélék lehetnek: a nedves esetében nagy átmérőjű tartályos, magasabb tornyos vagy csőfermentorok, a száraz eljárásnál kamrás vagy cellás megoldásúak. Alacsony fermentor 15

16 Tornyos fermentor A biogáz erőmű fontosabb részei Az előtárolóban a fermentorokba bekerülő hígtrágyát, szilárd szerves anyagokat keverik el egymással, itt megtörténhet az aprítás is. A biológiai folyamatok közül a hidrolízis itt már elkezdődik, melynek következtében a fermentorokban a biogázképződés folyamata felgyorsulhat. Ez a keverék a biogáz-reaktorba jut. Újabb rendszerekben a szubsztrátumokat közvetlenül a fermentorba juttatják be, s az egyes anyagok elegyítése itt történik meg. Ez a biogáz reaktor az erőmű egyik fő része. Készülhet betonból vagy fémből, lehet álló vagy fekvő típusú, téglatest vagy hengeres formájú. Meghatározó, hogy a bioreaktor jól tömített, víz és gázálló legyen. Egy keverő-berendezés segítségével a szubsztrátumok jól elegyíthetők, valamint a kiindulási anyagoktól függően nem képződik úszó- vagy ülepedő réteg. A fermentorban a folyadék felületén képződő úszó kéreg a biológiai folyamatok stabilitását veszélyezteti. Abban az esetben, ha sok szilárd anyag ülepszik le a fermentor aljára, azt onnan el kell távolítani. A fermentor fűtése gondoskodik a biológiai folyamatok megfelelő lefolyásához szükséges hőmérsékletről. A biogázképzésben résztvevő baktériumokat a számukra optimális hőmérséklettartományok alapján három csoportba osztjuk: a pszichrofil baktériumok kb. 25 C -ig működnek, a biogáztermelésük igen alacsony. A mezofil tartomány 32 és 42 C között helyezkedik el. Ebben a tartományban a baktériumok igen aktívak, képesek a nagyobb hőmérséklet-ingadozásokat is elviselni a gáztermelés csökkenése nélkül. A termofil tartományban, optimum C, a baktériumok gáztermelése nagyobb, mint a mezofilben, de az érzékenységük is a hőmérsékletváltozásra igen nagy. Az átlagos fermentorméret 100 számosállat esetén m 3 között alakul. 16

17 A kierjesztett anyagok az utótárolóba kerülnek. Abban az esetben, ha az utótároló fedett és fűtött, utóerjesztőről beszélünk. A még képződő biogáz felfogásra kerül, és az energiatermelés folyamatában vesz részt. Ennek előnye, hogy a még lebontható maradék szerves anyagok egy része hasznosításra kerül, hátránya, hogy a tároló fűtését meg kell oldani. Az utótároló méretét úgy kell kialakítani, hogy az a legalább 4 hónap alatt keletkező erjesztési maradék mennyiségét képes legyen befogadni (49/2001. Kormányrendelet). Biogáz üzem sematikus felépítése: ET Előtároló, EK Előkészítőtér, FT Folyadéktároló, KT Keverőtároló, MF Mezofil fermentor, TF Termofil fermentor, ÚT Utótároló, BF Blokkfűtőmű, Bi Biztonsági rendszer, GT Gáztároló, TR Transzformátor, V Vezérlő központ, VT Víztározó, D Depónia (szervesanyag) A reaktorokban képződött biogázt a termelés kiegyenlítetlensége miatt gáztárolóban ideiglenesen raktározzák. A gáztárolók a gázmotorok folyamatos gázellátását hivatottak biztosítani. Anyaguk gázt át nem eresztő fólia, amit zsákszerűen a fermentorok feletti tetőtérben vagy egy könnyűszerkezetes fémtoronyban helyeznek el, egyre több esetben a fermentorok légterét kettős fóliakupolával zárják le hermetikusan. 17

18 Mielőtt a gázt a motorokban elégetjük, a szennyező részecskéktől és anyagoktól meg kell azt tisztítanunk. A blokk fűtőerőművek jó állapotának megőrzése érdekében a gázból a kénhidrogént el kell távolítani. Ez a gáz a motorok korróziójához járul hozzá, a motorok alkalmazási ideje és hatásfoka a magas kénhidrogén tartalomtól nagymértékben romlik. A mezőgazdasági erőművekben gyakran alkalmazott technológia, hogy a fermentorok légterébe 3-5% levegőt juttatnak, aminek köszönhetően az ott élő baktériumok a kénhidrogént kénné alakítják, s a gáz megfelelő minőségű lesz a felhasználásra. A biogáz-reaktorokon kívül elhelyezett kéntelenítőkben is baktériumok segítségével történik a gázelőkészítés. Ezekkel a technológiákkal a kénhidrogén 95%-a is eltávolítható a biogázból. A biológiai folyamatok helyett még alkalmaznak gázmosásos és aktív szenes szűrési rendszereket is. A gáz nedvességtartalmának csökkentése érdekében a talajba lefektetett gázvezetékeken keresztül a gázt lehűtik, a víz kicsapódik belőle. A motorba juttatás előtt ismét felmelegítve megfelelően szárazzá válik a gáz és nem rongálja a motort. A biogáz termelési folyamat biztonsága érdekében bizonyos paraméterek mérése fontos a biogáz erőműben. Így a fermentorokban uralkodó hőmérséklet, ph, a képződött gáz mennyisége, metán és kénhidrogén tartalmának ismerete elengedhetetlenül fontos. Ezen értékek mérése elektromos eszközökkel folyamatosan és nagy pontossággal megoldható, kiértékelhető. További paraméterek mérése, mint például a felhasznált alapanyagok, a megtermelt elektromos áram pontos mennyisége és bizonyos laboratóriumi vizsgálatok rendszeres elvégzése, az előbbiekben felsorolt alapadatokon felül, a biztos termelés változását előre jelezhetik. A megtermelt, de fel nem használható és már nem is tárolható gáz elégetésére gázfáklya van felszerelve a biogáz erőművekre a környezet védelme érdekében. Az üzemek biztonsága miatt fontos, hogy a fermentortérbe juttatott levegő mennyisége ne legyen 10%-nál több, mert az robbanást okozhat. Egyéb alapvető biztonsági előírások betartása esetén a biogáz erőművek nem jelentenek a környezetükre veszélyt. A fermentorokban keveréssel meg lehet akadályozni, hogy felülúszó réteg, vagy alsó rétegződés alakuljon ki, amikor is a mikroorganizmusok a rothasztó alján koncentrálódnak és így a felsőbb rétegekben lévő szervesanyagok nem hozzáférhetőek számukra. Azonkívül a bomlás és anyagcseretermékek is feldúsulnak, amelyek gátolják a mikroorganizmusok életműködését. A felszíni szilárd kéreg kialakulása is rontja a reaktor működését, a zsírban gazdag réteg gátolja a rothasztó térben lévő iszap gázképződését és nem vesz részt a mikrobiális lebontásban, pedig pont a zsírszerű anyagokból képződik a legtöbb és a legnagyobb metántartalmú biogáz. A keverés típusa alapján három eljárást lehet megkülönböztetni mechanikus, hidraulikus és pneumatikus keverést. 18

19 (Kuhn, 1995) A biogáz üzem maradéka, amelyet általában biotrágyának neveznek homogén, patogénektől mentes, gyakorlatilag szagtalan szerves trágya, amelynek számos kedvező tulajdonsága van az eredeti trágyával szemben: - a szerves vegyületekben lekötött nitrogén egy része szervetlen vegyületekbe megy át, következésképpen a biotrágya a növények számára hatékonyabb tápanyag, - a szárazanyag tartalom csökkenése következtében a biotrágya folyékonyabb, egyenletesebb szerkezetű, gyorsabban felszívódik a talajban, így lényegesen csökken a szag- és savártalom, amely a hagyományos trágyázás velejárója, - a biotrágya felhasználása révén csökkenteni lehet a nitrogéntartalmú műtrágya kiszórást, ami jelentős költség megtakarítást jelent, - a biotrágya kiválóan alkalmazható biokertészeti termények termesztésére, - a biotrágya felhasználók védik a környezetet az energiaigényes és környezetszennyező műtrágyák kiváltásával 19

20 A maradékanyag hasznosításának számos módja van: - talajtrágyázás, - talaj-kiegészítés, - talajjavítás, - erózióvédelem, - zajvédelem. Az ipari biogáz üzemek mérete többféle paraméterrel is jellemezhető. A gyakorlatban legáltalánosabb a beépített elektromos teljesítmény megadása. Ebből a szempontból jellemző adat Németországból: a 2000-ben beindított biogáz üzemek átlagos mérete 70 kw, a 2002-ben átadott üzemeké 330 kw volt. A biogáz üzemek mérete jól érzékelhető a fermentorek térfogatának megadásával is m3 összes fermentor térfogat alatt kisebb méretű üzemről beszélünk, a 3000 m3-nél nagyobb össztérfogatú üzemek a nagy méretűek közé számítanak. A Bátorcoop nyírbátori biogáz üzeme Európa legnagyobb fermentor össsztérfogatával rendelkezik (9000 m3). A modern biogáz üzemek méretének alsó határát a biogázt elégető berendezések minimális mérete (10-15 kw elektromos teljesítmény) határozza meg. Ennek alapján az mondható, hogy GVE (szarvasmarha egység) alatti méretű gazdaságokban nem célszerű a trágya feldolgozására biogáz üzemet létesíteni akkor, ha nincs jelentős mennyiségű egyéb szerves hulladék. (Forrás: biogas.hu) 20

A biogáz-termelés és -felhasználás alakulása Magyarországon és az EU tagállamaiban

A biogáz-termelés és -felhasználás alakulása Magyarországon és az EU tagállamaiban MISKOLCI EGYETEM Műszaki Földtudományi Kar Kőolaj és Földgáz Intézet A biogáz-termelés és -felhasználás alakulása Magyarországon és az EU tagállamaiban Szakdolgozat Szerző: Kabdebon Balázs Konzulensek:

Részletesebben

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, 2007. Augusztus 30.

energiaforrása Kőrösi Viktor Energetikai Osztály KUTIK, Summer School, Miskolc, 2007. Augusztus 30. Biogáz z a jövőj energiaforrása Kőrösi Viktor Energetikai Osztály Biogáz jelentősége Energiatermelés és a hulladékok környezetbarát megsemmisítése (21CH 4 =1CO 2, állati trágya, szennyvíziszap, hulladéklerakók),

Részletesebben

B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS

B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS B I O M A S S Z A H A S Z N O S Í T Á S és RÉGIÓK KÖZÖTTI EGYÜTM KÖDÉS Dr. Petis Mihály : MezDgazdasági melléktermékekre épüld biogáz termelés technológiai bemutatása Nyíregyházi FDiskola 2007. szeptember

Részletesebben

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató Lehetséges alapanyagok Mezőgazdasági melléktermékek Állattenyésztési

Részletesebben

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!!

Biogáz és Biofinomító Klaszter szakmai tevékenysége. Kép!!! Biogáz és Biofinomító Klaszter szakmai tevékenysége Kép!!! Decentralizált bioenergia központok energiaforrásai Nap Szél Növényzet Napelem Napkollektor Szélerőgépek Biomassza Szilárd Erjeszthető Fagáz Tüzelés

Részletesebben

Hulladékfogadás, együttes rothasztás, biogáz hasznosítás hatékonyságának növelése a DÉL-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN

Hulladékfogadás, együttes rothasztás, biogáz hasznosítás hatékonyságának növelése a DÉL-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN Hulladékfogadás, együttes rothasztás, biogáz hasznosítás hatékonyságának növelése a DÉL-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN SZERVES HULLADÉK FELDOLGOZÁS Az EU-s jogszabályok nem teszik lehetővé bizonyos magas

Részletesebben

A biogáz jelentősége és felhasználási lehetősége

A biogáz jelentősége és felhasználási lehetősége A biogáz jelentősége és felhasználási lehetősége Biogáz Unió Zrt. - a természettel egységben A XXI. század egyik legnagyobb kihívása véleményünk szerint a környezettudatos életmód fontosságának felismertetése,

Részletesebben

ÜHG kibocsátáscsökkentés-értékesítési rendszer

ÜHG kibocsátáscsökkentés-értékesítési rendszer ÜHG kibocsátáscsökkentés-értékesítési rendszer Renexpo 2011.-Biogáz Konferencia Elő őadó: Pongrácz Péter, Biogáz Unió Zrt. Miért trágya? A trágya, mint biogáz-alapanyag előnyei: gazdaságos alapanyagár

Részletesebben

A biometán előállítása és betáplálása a földgázhálózatba

A biometán előállítása és betáplálása a földgázhálózatba A biometán előállítása és betáplálása a földgázhálózatba Dr. Kovács Attila - Fuchsz Máté Első Magyar Biogáz Kft. 2011. 1. április 13. XIX. Dunagáz Szakmai Napok, Visegrád Mottó: Amikor kivágjátok az utolsó

Részletesebben

Információtartalom vázlata: Mezőgazdasági hulladékok definíciója. Folyékony, szilárd, iszapszerű mezőgazdasági hulladékok ismertetése

Információtartalom vázlata: Mezőgazdasági hulladékok definíciója. Folyékony, szilárd, iszapszerű mezőgazdasági hulladékok ismertetése 1. Jellemezze és csoportosítsa a mezőgazdasági hulladékokat és melléktermékeket eredet és hasznosítási lehetőségek szempontjából, illetve vázolja fel talajra, felszíni-, felszín alatti vizekre és levegőre

Részletesebben

és/vagy INWATECH Környezetvédelmi Kft. 2010.

és/vagy INWATECH Környezetvédelmi Kft. 2010. ÖNKORMÁNYZATOK ÉS BIOGÁZÜZEMEK INWATECH Környezetvédelmi Kft. 2010. INWATECHKörnyezetvédelmi Kft. Budapest, XI. kerület, Serleg u 3. AKTÍV ÖNKORMÁNYZATOK NYZATOK MEGJELENÉSE MINT: - kistérségi összefogója

Részletesebben

Fenntartható biomassza termelés-biofinomításbiometán

Fenntartható biomassza termelés-biofinomításbiometán CO 2 BIO-FER Biogáz és Fermentációs Termékklaszter Fenntartható biomassza termelés-biofinomításbiometán előállítás Pécsi Tudományegyetem Közgazdaságtudományi Kar Enyingi Tibor Mérnök biológus Klaszterigazgató

Részletesebben

A hígtrágya tárolásának és kezelésének hatósági háttere

A hígtrágya tárolásának és kezelésének hatósági háttere Előadó: Hoffmann György tanácsos Észak-dunántúli Környezetvédelmi, Természetvédelmi és Vízügyi Felügyelőség 2007. szeptember 5. Budapest Az engedélyeztetés jogszabályi háttere A vizek mezőgazdasági eredetű

Részletesebben

Mikrobiális folyamatok energetikai hasznosítása a depóniagáz formájában

Mikrobiális folyamatok energetikai hasznosítása a depóniagáz formájában Mikrobiális folyamatok energetikai hasznosítása a depóniagáz formájában Készítette: Pálur Szabina Gruiz Katalin Környezeti mikrobiológia és biotechnológia c. tárgyához A Hulladékgazdálkodás helyzete Magyarországon

Részletesebben

SZAKMAI SZIMPÓZIUM BERUHÁZÁSOK A MEGÚJULÓ ENERGIÁK TERÉN

SZAKMAI SZIMPÓZIUM BERUHÁZÁSOK A MEGÚJULÓ ENERGIÁK TERÉN SZAKMAI SZIMPÓZIUM BERUHÁZÁSOK A MEGÚJULÓ ENERGIÁK TERÉN 2012.09.25. Biogáz Németországban (2010) : Működő üzemek: 5.905 (45) Épített kapacitás: 2.291 MW Termelt energia: 14,8 M MWh Összes energiatermelés:

Részletesebben

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc A mezőgazdasági eredetű hulladékok égetése. 133.lecke Mezőgazdasági hulladékok, melléktermékek energetikai

Részletesebben

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag ? A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag Tartalom MAGYAR KAPCSOLT ENERGIA TÁRSASÁG A biogáz és a fosszilis energiahordozók A biogáz felhasználásának

Részletesebben

Ambrus László Székelyudvarhely, 2011.02.23.

Ambrus László Székelyudvarhely, 2011.02.23. Családi méretű biogáz üzemek létesítése Ambrus László Székelyudvarhely, 2011.02.23. AGORA Fenntartható Fejlesztési Munkacsoport www.green-agora.ro Egyesületünk 2001 áprilisában alakult Küldetésünknek tekintjük

Részletesebben

INFORMATÍV ÁRAJÁNLAT. Ajánlatkérő: Schilsong János ATIKÖVIZIG, Szeged. Elektromos teljesítmény: 2009. április 9. Budapest

INFORMATÍV ÁRAJÁNLAT. Ajánlatkérő: Schilsong János ATIKÖVIZIG, Szeged. Elektromos teljesítmény: 2009. április 9. Budapest INFORMATÍV ÁRAJÁNLAT Ajánlatkérő: Elektromos teljesítmény: Feldolgozott alapanyagok: Schilsong János ATIKÖVIZIG, Szeged 30 kw Energianövény és trágya 2009. április 9. Budapest Technológiai leírás A biogáz

Részletesebben

Biogáz konferencia Renexpo

Biogáz konferencia Renexpo Biogáz konferencia Renexpo A nyírbátori biogáz üzem üzemeltetésének tapasztalatai Helyszín: Hungexpo F-G pavilon 1. em. Időpont: 2012.05.10. Előadó: Dr. Petis Mihály Helyzet és célok Hiányos és bizonytalan

Részletesebben

Biogáz hasznosítás. SEE-REUSE Az európai megújuló energia oktatás megerősítése a fenntartható gazdaságért. Vajdahunyadvár, 2014. december 10.

Biogáz hasznosítás. SEE-REUSE Az európai megújuló energia oktatás megerősítése a fenntartható gazdaságért. Vajdahunyadvár, 2014. december 10. Az európai megújuló energia oktatás megerősítése a fenntartható gazdaságért Biogáz hasznosítás Vajdahunyadvár, 2014. december 10. Alaphelyzet A magyar birtokos szegényebb, mint birtokához képest lennie

Részletesebben

Bio Energy System Technics Europe Ltd

Bio Energy System Technics Europe Ltd Europe Ltd Kommunális szennyviziszap 1. Dr. F. J. Gergely 2006.02.07. Mi legyen a kommunális iszappal!??? A kommunális szennyvíziszap (Derítőiszap) a kommunális szennyvíz tisztításánál keletkezik. A szennyvíziszap

Részletesebben

EGYMÁSRA ÉPÜLŐ ÉLELMISZER ÉS ENERGIA ELŐÁLLÍTÁS

EGYMÁSRA ÉPÜLŐ ÉLELMISZER ÉS ENERGIA ELŐÁLLÍTÁS EGYMÁSRA ÉPÜLŐ ÉLELMISZER ÉS ENERGIA ELŐÁLLÍTÁS EGYMÁSRA ÉPÜLŐ ÉLELMISZER ÉS ENERGIA ELŐÁLLÍTÁS A kétpólusú mezőgazdaság lényege, hogy olyan gazdasági ösztönző és támogatási rendszert kell kialakítani,

Részletesebben

SZENNYVÍZ ISZAP KELETKEZÉSE,

SZENNYVÍZ ISZAP KELETKEZÉSE, SZENNYVÍZ ISZAP KELETKEZÉSE, ÖSSZETÉTELE, MEZŐGAZDASÁGI FELHASZNÁLÁSRA TÖRTÉNŐ ÁTADÁSA Magyar Károly E.R.Ö.V. Víziközmű Zrt. SZENNYVÍZ ÖSSZETEVŐI Szennyvíz: olyan emberi használatból származó hulladékvíz,

Részletesebben

Települési szennyvíz tisztítás alapsémája

Települési szennyvíz tisztítás alapsémája Iszapkezelés Települési szennyvíz tisztítás alapsémája Eleveniszapos szennyvíztisztítás Elvi kapcsolás A szennyvíziszap általános összetétele 1. Hasznosítható anyagok Iszapvíz Ásványi anyagok Szerves anyagok

Részletesebben

BIOGÁZÜZEMEK MŰKÖDÉSE ÉS BIOGÁZ ÜZEMI TECHNOLÓGIÁK OBEKK TUDOMÁNYOS SZAKMAI KIADVÁNYOK. Szerző: DR. HAJDÚ JÓZSEF

BIOGÁZÜZEMEK MŰKÖDÉSE ÉS BIOGÁZ ÜZEMI TECHNOLÓGIÁK OBEKK TUDOMÁNYOS SZAKMAI KIADVÁNYOK. Szerző: DR. HAJDÚ JÓZSEF BIOGÁZÜZEMEK MŰKÖDÉSE ÉS BIOGÁZ ÜZEMI TECHNOLÓGIÁK OBEKK TUDOMÁNYOS SZAKMAI KIADVÁNYOK Szerző: DR. HAJDÚ JÓZSEF 2009 1 OBEKK Zrt. TUDOMÁNYOS SZAKMAI KIADVÁNYOK SOROZATA (11/12) BIOGÁZÜZEMEK MŰKÖDÉSE ÉS

Részletesebben

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6

TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 TARTALOMJEGYZÉK 1. KÖTET I. FEJLESZTÉSI STRATÉGIA... 6 II. HÓDMEZŐVÁSÁRHELY ÉS TÉRKÖRNYEZETE (NÖVÉNYI ÉS ÁLLATI BIOMASSZA)... 8 1. Jogszabályi háttér ismertetése... 8 1.1. Bevezetés... 8 1.2. Nemzetközi

Részletesebben

Hulladékok szerepe az energiatermelésben; mintaprojekt kezdeményezése a Kárpát-medencében

Hulladékok szerepe az energiatermelésben; mintaprojekt kezdeményezése a Kárpát-medencében Hulladékok szerepe az energiatermelésben; mintaprojekt kezdeményezése a Kárpát-medencében 2012.09.20. A legnagyobb mennyiségű égetésre alkalmas anyagot a Mechanika-i Biológia-i Hulladék tartalmazza (rövidítve

Részletesebben

Konferencia A bioenergia hasznosítási lehetőségei AHK Budapest

Konferencia A bioenergia hasznosítási lehetőségei AHK Budapest Konferencia A bioenergia hasznosítási lehetőségei AHK Budapest 2010.11.08. Energie Germany GmbH PPM = Peter Paul Münzberg Diplomás fizikus 1996 óta foglalkozik biogáz és biodízel üzemek építésével, illetve

Részletesebben

Küzdi Gyöngyi Ágnes ELTE TTK Környezettudomány, földtudományi szakirány 2010. Témavezető: Dr. Munkácsy Béla

Küzdi Gyöngyi Ágnes ELTE TTK Környezettudomány, földtudományi szakirány 2010. Témavezető: Dr. Munkácsy Béla BIOGÁZ MINT MEGÚJULÓ ALTERNATÍV ENERGIAFORRÁS LEHETŐSÉGE A MAGYAR MEZŐGAZDASÁGBAN ÉS AZ ENERGIAGAZDÁLKODÁSBAN A PÁLHALMAI BIOGÁZÜZEM PÉLDÁJÁN SZEMLÉLTETVE Küzdi Gyöngyi Ágnes ELTE TTK Környezettudomány,

Részletesebben

Iszapkezelés, biogáz előállítás és tisztítás

Iszapkezelés, biogáz előállítás és tisztítás Iszapkezelés, biogáz előállítás és tisztítás Települési szennyvíz tisztítás alapsémája A szennyvíziszap általános összetétele 1. Hasznosítható anyagok Iszapvíz Ásványi anyagok Szerves anyagok Tápanyagok

Részletesebben

Újrahasznosítási logisztika. 1. Bevezetés az újrahasznosításba

Újrahasznosítási logisztika. 1. Bevezetés az újrahasznosításba Újrahasznosítási logisztika 1. Bevezetés az újrahasznosításba Nyílt láncú gazdaság Termelési szektor Természeti erőforrások Fogyasztók Zárt láncú gazdaság Termelési szektor Természeti erőforrások Fogyasztók

Részletesebben

Depóniagáz hasznosítás működő telepek Magyarországon Sári Tamás, üzemeltetés vezető ENER-G Natural Power Kft.

Depóniagáz hasznosítás működő telepek Magyarországon Sári Tamás, üzemeltetés vezető ENER-G Natural Power Kft. Depóniagáz hasznosítás működő telepek Magyarországon Sári Tamás, üzemeltetés vezető ENER-G Natural Power Kft. XXI. Nemzetközi Köztisztasági Szakmai Fórum és Kiállítás Szombathely, 2011 Tartalom 1. 2. 3.

Részletesebben

Települési szennyvíz tisztítás alapsémája

Települési szennyvíz tisztítás alapsémája Iszapkezelés Települési szennyvíz tisztítás alapsémája Eleveniszapos szennyvíztisztítás Elvi kapcsolás A szennyvíziszap általános összetétele 1. Hasznosítható anyagok Iszapvíz Ásványi anyagok Szerves anyagok

Részletesebben

Jegyzőkönyv Arundo biogáz termelő képességének vizsgálata Biobyte Kft.

Jegyzőkönyv Arundo biogáz termelő képességének vizsgálata Biobyte Kft. Jegyzőkönyv Arundo biogáz termelő képességének vizsgálata Biobyte Kft. 2013.10.25. 2013.11.26. 1 Megrendelő 1. A vizsgálat célja Előzetes egyeztetés alapján az Arundo Cellulóz Farming Kft. megbízásából

Részletesebben

HULLADÉKHASZNOSÍTÁS AZ ÉSZAK-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN Román Pál - Fővárosi Csatornázási Művek Zrt.

HULLADÉKHASZNOSÍTÁS AZ ÉSZAK-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN Román Pál - Fővárosi Csatornázási Művek Zrt. HULLADÉKHASZNOSÍTÁS AZ ÉSZAK-PESTI SZENNYVÍZTISZTÍTÓ TELEPEN Román Pál - Fővárosi Csatornázási Művek Zrt. ÉSZAK-PESTI SZENNYVÍZTISZTÍTÓ TELEP Kapacitás: 200 000 m 3 /d Átlagos terhelés: 150 000 m 3 /d

Részletesebben

A hulladék, mint megújuló energiaforrás

A hulladék, mint megújuló energiaforrás A hulladék, mint megújuló energiaforrás Dr. Hornyák Margit környezetvédelmi és hulladékgazdálkodási szakértő c. egyetemi docens Budapest, 2011. december 8. Megújuló energiamennyiség előrejelzés Forrás:

Részletesebben

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2014/1. ütem -

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2014/1. ütem - KUTATÁS + FEJLESZTÉS PROGRAM - AKF2014/1. ütem - AGROWATT biogáz kutató központ Kecskemét, 2014. január - március Készítette: AGROWATT Nonprofit KFT. 1 Előzmények: Az Agrowatt Kft. biogáz kutató központ

Részletesebben

Innovációs leírás. Hulladék-átalakító energiatermelő reaktor

Innovációs leírás. Hulladék-átalakító energiatermelő reaktor Innovációs leírás Hulladék-átalakító energiatermelő reaktor 0 Hulladék-átalakító energiatermelő reaktor Innováció kategóriája Az innováció rövid leírása Elérhető megtakarítás %-ban Technológia költsége

Részletesebben

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Agrár-környezetvédelem, agrotechnológia KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Mezőgazdaságból származó anyagok biogáz célú hasznosítása. 131.lecke

Részletesebben

A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK

A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA Készítette: Szlavov Krisztián Geográfus, ELTE-TTK I. Bevezetés Ha a mai módon és ütemben folytatjuk az energiafelhasználást, 30-40 éven belül visszafordíthatatlanul

Részletesebben

Biogáz betáplálása az együttműködő földgázrendszerbe

Biogáz betáplálása az együttműködő földgázrendszerbe Biogáz betáplálása az együttműködő földgázrendszerbe Köteles Tünde, Ph. D. hallgató Miskolci Egyetem, Műszaki Földtudományi Kar Kőolaj és Földgáz Intézet, Gázmérnöki Intézeti Tanszék FGSZ Zrt., Kapacitásgazdálkodás

Részletesebben

A ko-fermentáció technológiai bemutatása

A ko-fermentáció technológiai bemutatása A ko-fermentáció technológiai bemutatása Flávy Kft. Készítette: Kereszturi Péter, projekt manager (k.ny.sz:13-9158) Forgács Attila, energetikus mérnök Tuba Dániel, technológus mérnök Flávy Kft. bemutatása

Részletesebben

MAGYARORSZÁGI HULLADÉKLERAKÓKBAN KELETKEZŐ DEPÓNIAGÁZOK MENNYISÉGE, ENERGIATARTALMA ÉS A KIBOCSÁTOTT GÁZOK ÜVEGHÁZ HATÁSA

MAGYARORSZÁGI HULLADÉKLERAKÓKBAN KELETKEZŐ DEPÓNIAGÁZOK MENNYISÉGE, ENERGIATARTALMA ÉS A KIBOCSÁTOTT GÁZOK ÜVEGHÁZ HATÁSA MAGYARORSZÁGI HULLADÉKLERAKÓKBAN KELETKEZŐ DEPÓNIAGÁZOK MENNYISÉGE, ENERGIATARTALMA ÉS A KIBOCSÁTOTT GÁZOK ÜVEGHÁZ HATÁSA Barta István Ügyvezető Igazgató, Bio-Genezis Környezetvédelmi Kft. www.bio-genezis.hu

Részletesebben

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2012/3. ütem -

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2012/3. ütem - KUTATÁS + FEJLESZTÉS PROGRAM - AKF2012/3. ütem - AGROWATT biogáz kutató központ Kecskemét, 2012. augusztus - szeptember Készítette: AGROWATT Nonprofit KFT. 1 Előzmények: Az Agrowatt Kft. biogáz kutató

Részletesebben

BORSOD-ABAÚJ-ZEMPLÉN MEGYE

BORSOD-ABAÚJ-ZEMPLÉN MEGYE BORSOD-ABAÚJ-ZEMPLÉN MEGYE BIOGÁZ-POTENCIÁLJA ÉS ANNAK ENERGETIKAI HASZNOSÍTÁSI LEHETŐSÉGEI Papp Luca Geográfus mesterszak Táj- és környezetkutató szakirány Energiaföldrajz c. kurzus 2019. 04. 01. Témaválasztás

Részletesebben

CELLULÓZTARTALMÚ HULLADÉKOK ÉS SZENNYVÍZISZAP KÖZÖS ROTHASZTÁSA

CELLULÓZTARTALMÚ HULLADÉKOK ÉS SZENNYVÍZISZAP KÖZÖS ROTHASZTÁSA CELLULÓZTARTALMÚ HULLADÉKOK ÉS SZENNYVÍZISZAP KÖZÖS ROTHASZTÁSA Fővárosi Csatornázási Művek Zrt. Szalay Gergely technológus mérnök Észak-pesti Szennyvíztisztító Telep Kapacitás: 200 000 m 3 /nap Vízgyűjtő

Részletesebben

A megújuló energiahordozók szerepe

A megújuló energiahordozók szerepe Magyar Energia Szimpózium MESZ 2013 Budapest A megújuló energiahordozók szerepe dr Szilágyi Zsombor okl. gázmérnök c. egyetemi docens Az ország energia felhasználása 2008 2009 2010 2011 2012 PJ 1126,4

Részletesebben

Szerves hulladék. TSZH 30-60%-a!! Lerakón való elhelyezés korlátozása

Szerves hulladék. TSZH 30-60%-a!! Lerakón való elhelyezés korlátozása Földgáz: CH4-97% Szerves hulladék TSZH 30-60%-a!! Lerakón való elhelyezés korlátozása 2007. 07. 01: 50%-ra 2014. 07. 01: 35%-ra Nedvességtartalom 50% alatt: Aerob lebontás - korhadás komposzt + CO 2 50%

Részletesebben

Energiatudatos épülettervezés Biogáz üzem

Energiatudatos épülettervezés Biogáz üzem Energiatudatos épülettervezés Biogáz üzem TÖRTÉNELMI ÁTTEKINTÉS Több évszádos múlt Shirley 1677-ben fedezte fel a mocsárigázt. Volta 1776-ban megállapította, hogy ez éghető anyag, Daltonnak pedig 1804-ben

Részletesebben

Biogáz alkalmazása a miskolci távhőszolgáltatásban

Biogáz alkalmazása a miskolci távhőszolgáltatásban Biogáz alkalmazása a miskolci távhőszolgáltatásban Kovács Tamás műszaki csoportvezető 23. Távhő Vándorgyűlés Pécs, 2010. szeptember 13. Előzmények Bongáncs utcai hulladéklerakó 1973-2006 között üzemelt

Részletesebben

A biomassza rövid története:

A biomassza rövid története: A biomassza A biomassza rövid története: A biomassza volt az emberiség leginkább használt energiaforrása egészen az ipari forradalomig. Még ma sem egyértelmű, hogy a növekvő jólét miatt indult be drámaian

Részletesebben

EEA Grants Norway Grants

EEA Grants Norway Grants Élelmiszeripari zöld innovációs program megvalósítása EEA Grants Norway Grants Dr. Mézes Lili, University of Debrecen, Institute of Water and Environmental Management 28 October 2014 HU09-0015-A1-2013

Részletesebben

A SZENNYVÍZISZAPRA VONATKOZÓ HAZAI SZABÁLYOZÁS TERVEZETT VÁLTOZTATÁSAI. Domahidy László György főosztályvezető-helyettes Budapest, 2013. május 30.

A SZENNYVÍZISZAPRA VONATKOZÓ HAZAI SZABÁLYOZÁS TERVEZETT VÁLTOZTATÁSAI. Domahidy László György főosztályvezető-helyettes Budapest, 2013. május 30. A SZENNYVÍZISZAPRA VONATKOZÓ HAZAI SZABÁLYOZÁS TERVEZETT VÁLTOZTATÁSAI Domahidy László György főosztályvezető-helyettes Budapest, 2013. május 30. BKSZT Tartalom Előzmények, új körülmények Tervezett jogszabály

Részletesebben

Természet és környezetvédelem. Hulladékok környezet gyakorolt hatása, hulladékgazdálkodás, -kezelés Szennyvízkezelés

Természet és környezetvédelem. Hulladékok környezet gyakorolt hatása, hulladékgazdálkodás, -kezelés Szennyvízkezelés Természet és környezetvédelem Hulladékok környezet gyakorolt hatása, hulladékgazdálkodás, -kezelés Szennyvízkezelés Hulladék-kérdés Globális, regionális, lokális probléma A probléma árnyalása Mennyisége

Részletesebben

Anaerob fermentált szennyvíziszap jellemzése enzimaktivitás-mérésekkel

Anaerob fermentált szennyvíziszap jellemzése enzimaktivitás-mérésekkel Eötvös Loránd Tudományegyetem Természettudományi Kar Környezettudományi Centrum Anaerob fermentált szennyvíziszap jellemzése enzimaktivitás-mérésekkel készítette: Felföldi Edit környezettudomány szakos

Részletesebben

Európa szintű Hulladékgazdálkodás

Európa szintű Hulladékgazdálkodás Európa szintű Hulladékgazdálkodás Víg András Környezetvédelmi üzletág igazgató Transelektro Rt. Fenntartható Jövő Nyitókonferencia 2005.02.17. urópa színtű hulladékgazdálkodás A kommunális hulladék, mint

Részletesebben

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2014/2. ütem -

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2014/2. ütem - KUTATÁS + FEJLESZTÉS PROGRAM - AKF2014/2. ütem - AGROWATT biogáz kutató központ Kecskemét, 2014. április - június Készítette: AGROWATT Nonprofit KFT. 1 Előzmények: Az Agrowatt Kft. biogáz kutató központ

Részletesebben

Egy energia farm példája

Egy energia farm példája Egy energia farm példája LSÁG G HATÁSA A SZERVEZETEK ŐKÖDÉSÉRE I. Innovatív szervezetek II. Vertikális integráció LSÁG G HATÁSA A SZERVEZETEK ŐKÖDÉSÉRE szervezeti struktúra szervezet értékrendjei szervezet

Részletesebben

A HULLADÉK HULLADÉKOK. Fogyasztásban keletkező hulladékok. Termelésben keletkező. Fogyasztásban keletkező. Hulladékok. Folyékony települési hulladék

A HULLADÉK HULLADÉKOK. Fogyasztásban keletkező hulladékok. Termelésben keletkező. Fogyasztásban keletkező. Hulladékok. Folyékony települési hulladék HULLADÉKOK A HULLADÉK Hulladékok: azok az anyagok és energiák, melyek eredeti használati értéküket elvesztették és a termelési vagy fogyasztási folyamatból kiváltak. Csoportosítás: Halmazállapot (szilárd,

Részletesebben

PiAndTECH FluidKAT katalitikus izzóterek

PiAndTECH FluidKAT katalitikus izzóterek PiAndTECH FluidKAT katalitikus izzóterek Hő felszabadítás katalitikus izzótéren, (ULE) ultra alacsony káros anyag kibocsátáson és alacsony széndioxid kibocsátással. XIV. TÁVHŐSZOLGÁLTATÁSI KONFERENCIÁT

Részletesebben

Völgy Hangja Fejlesztési Társaság Közhasznú Egyesület SEE-REUSE. Somogydöröcske Nyugati utca 122. FELNŐTTKÉPZÉSI PROGRAM

Völgy Hangja Fejlesztési Társaság Közhasznú Egyesület SEE-REUSE. Somogydöröcske Nyugati utca 122. FELNŐTTKÉPZÉSI PROGRAM Völgy Hangja Fejlesztési Társaság Közhasznú Egyesület Somogydöröcske Nyugati utca 122. FELNŐTTKÉPZÉSI PROGRAM Biogáz telep kezelője (óraszám: 64 óra) A képzés nyilvántartásba vételi száma:.. 2014. KÉPZÉSI

Részletesebben

Tüzeléstan előadás Dr. Palotás Árpád Bence

Tüzeléstan előadás Dr. Palotás Árpád Bence Égéselméleti számítások Tüzeléstan előadás Dr. Palotás Árpád Bence Miskolci Egyetem - Tüzeléstani és Hőenergia Tanszék 2 Tüzelőanyagok Definíció Energiaforrás, melyből oxidálószer jelenlétében, exoterm

Részletesebben

Kapcsolt energia termelés, megújulók és a KÁT a távhőben

Kapcsolt energia termelés, megújulók és a KÁT a távhőben Kapcsolt energia termelés, megújulók és a KÁT a távhőben A múlt EU Távlatok, lehetőségek, feladatok A múlt Kapcsolt energia termelés előnyei, hátrányai 2 30-45 % -al kevesebb primerenergia felhasználás

Részletesebben

Milyen biológiai okai vannak a biológiai fölösiszap csökkentésnek? Horváth Gábor Szennyvíztechnológus

Milyen biológiai okai vannak a biológiai fölösiszap csökkentésnek? Horváth Gábor Szennyvíztechnológus Milyen biológiai okai vannak a biológiai fölösiszap csökkentésnek? Horváth Gábor Szennyvíztechnológus Fő problémák: Nagy mennyiségű fölösiszap keletkezik a szennyvíztisztító telepeken. Nem hatékony a nitrifikáció

Részletesebben

Kommunális hulladéklerakón keletkező gázok hasznosítása

Kommunális hulladéklerakón keletkező gázok hasznosítása Kommunális hulladéklerakón keletkező gázok hasznosítása Előadó: Barna László hulladékgazdálkodási üzletágvezető A.K.S.D. Kft. (4031 Debrecen, István út 136.) Best Western Hotel Lido, 2007. szeptember 5.

Részletesebben

Energiagazdálkodás és környezetvédelem 4. Előadás

Energiagazdálkodás és környezetvédelem 4. Előadás Energiagazdálkodás és környezetvédelem 4. Előadás Termikus hulladékkezelési eljárások Kapcsolódó államvizsga tételek: 15. Települési hulladéklerakók Hulladéklerakó helyek fajtái kialakítási lehetőségei,

Részletesebben

Hagyományos és modern energiaforrások

Hagyományos és modern energiaforrások Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk

Részletesebben

Éves energetikai szakreferensi jelentés év

Éves energetikai szakreferensi jelentés év Éves energetikai szakreferensi jelentés 2017. év Tartalomjegyzék Tartalomjegyzék... 1 Vezetői összefoglaló... 2 Energiafelhasználás... 4 Villamosenergia-felhasználás... 4 Gázfelhasználás... 5 Távhőfelhasználás...

Részletesebben

Stratégia és fejlesztési lehetőségek a biológiailag lebomló hulladékok energetikai hasznosításában

Stratégia és fejlesztési lehetőségek a biológiailag lebomló hulladékok energetikai hasznosításában Stratégia és fejlesztési lehetőségek a biológiailag lebomló hulladékok energetikai hasznosításában Bocskay Balázs tanácsadó Magyar Cementipari Szövetség 2011.11.23. A stratégia alkotás lépései Helyzetfelmérés

Részletesebben

Proline Prosonic Flow B 200

Proline Prosonic Flow B 200 Proline Prosonic Flow B 200 Ultrahangos biogázmérés Slide 1 Mi is a biogáz? A biogáz tipikusan egy olyan gáz ami biológiai lebomlás útján keletkezik oxigén mentes környezetben. A biogáz előállítható biomasszából,

Részletesebben

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2011/1. ütem -

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2011/1. ütem - KUTATÁS + FEJLESZTÉS PROGRAM - AKF2011/1. ütem - AGROWATT biogáz kutató központ Kecskemét, 2011. szeptember október Készítette: AGROWATT KFT. 1 Előzmények: Az Agrowatt Kft. biogáz kutató központ építkezési

Részletesebben

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek? Körny. Fiz. 201. november 28. Név: TTK BSc, AKORN16 1 K-II-2.9. Mik egy fűtőrendszer tagjai? Mi az energetikai hatásfoka? 2 KF-II-6.. Mit nevezünk égésnek és milyen gázok keletkezhetnek? 4 KF-II-6.8. Mit

Részletesebben

Ko-szubsztrát rothasztás tapasztalatai az Észak-pesti Szennyvíztisztító Telepen Román Pál és Szalay Gergely - Fővárosi Csatornázási Művek Zrt.

Ko-szubsztrát rothasztás tapasztalatai az Észak-pesti Szennyvíztisztító Telepen Román Pál és Szalay Gergely - Fővárosi Csatornázási Művek Zrt. Ko-szubsztrát rothasztás tapasztalatai az Észak-pesti Szennyvíztisztító Telepen Román Pál és Szalay Gergely - Fővárosi Csatornázási Művek Zrt. Ko-szubsztrát rothasztás definíciója, előnyei A társított

Részletesebben

A tejelő tehenészet szerepe a. fenntartható (klímabarát) fejlődésben

A tejelő tehenészet szerepe a. fenntartható (klímabarát) fejlődésben A tejelő tehenészet szerepe a fenntartható (klímabarát) fejlődésben Dr. habil. Póti Péter tanszékvezető, egyetemi docens Szent István Egyetem (Gödöllő), Álletenyésztés-tudományi Intézet Probléma felvetése

Részletesebben

Hulladék-e a szennyvíziszap? ISZAPHASZNOSÍTÁS EGY ÚJSZERŰ ELJÁRÁSSAL

Hulladék-e a szennyvíziszap? ISZAPHASZNOSÍTÁS EGY ÚJSZERŰ ELJÁRÁSSAL Hulladék-e a szennyvíziszap? ISZAPHASZNOSÍTÁS EGY ÚJSZERŰ ELJÁRÁSSAL Iszapelhelyezési módok az EU-ban (2012) Égetés 15% Egyéb 4% MAGYARORSZÁG Mezőgazdasági felhasználás 9% Hulladék-lerakás 16% Komposzt

Részletesebben

A biogáz előállítás,mint a trágya hasznosítás egy lehetséges formája. Megvalósitás a gyakorlatban.

A biogáz előállítás,mint a trágya hasznosítás egy lehetséges formája. Megvalósitás a gyakorlatban. A biogáz előállítás,mint a trágya hasznosítás egy lehetséges formája. Megvalósitás a gyakorlatban. Előadás helye és időpontjai: Dunaharaszti 14.09.09. Debrecen 14.09.16. Kaposvár 14.09.26. Előadó: Dr Petis

Részletesebben

Hulladékból Energia Helyszín: Csíksomlyó Előadó: Major László Klaszter Elnök

Hulladékból Energia Helyszín: Csíksomlyó Előadó: Major László Klaszter Elnök Hulladékból Energia 2012.10.26. Helyszín: Csíksomlyó Előadó: Major László Klaszter Elnök Hulladékok szerepe az energiatermelésben; mintaprojekt kezdeményezése a Kárpát-medencében. A legnagyobb mennyiségű

Részletesebben

Éves energetikai szakreferensi jelentés év

Éves energetikai szakreferensi jelentés év Éves energetikai szakreferensi jelentés 2018. év Készítette: Terbete Consulting Kft. szakreferensi névjegyzéki jelölés: ESZSZ-56/2019 Tartalomjegyzék Tartalomjegyzék... 1 Vezetői összefoglaló... 2 Energiafelhasználás...

Részletesebben

Energianövények, biomassza energetikai felhasználásának lehetőségei

Energianövények, biomassza energetikai felhasználásának lehetőségei Környezetvédelmi Szolgáltatók és Gyártók Szövetsége Hulladékból Tüzelőanyag Előállítás Gyakorlata Budapest 2016 Energianövények, biomassza energetikai felhasználásának lehetőségei Dr. Lengyel Antal főiskolai

Részletesebben

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2013/3. ütem -

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2013/3. ütem - KUTATÁS + FEJLESZTÉS PROGRAM - AKF2013/3. ütem - AGROWATT biogáz kutató központ Kecskemét, 2013. július - szeptember Készítette: AGROWATT Nonprofit KFT. 1 Előzmények: Az Agrowatt Kft. biogáz kutató központ

Részletesebben

Hazánkban alkalmazható csúcstechnológiák a bioenergiák hasznosítása terén a bio-akkumulátor

Hazánkban alkalmazható csúcstechnológiák a bioenergiák hasznosítása terén a bio-akkumulátor CO 2 BIO-FER Biogáz és Fermentációs Termékklaszter Hazánkban alkalmazható csúcstechnológiák a bioenergiák hasznosítása terén a bio-akkumulátor A megújuló energiaforrások alkalmazása az EU-ban nemzetközi

Részletesebben

Biogáztermelés szennyvízből

Biogáztermelés szennyvízből Biogáztermelés szennyvízből MEGÚJULÓ ENERGIA ÉS KÖRNYEZETVÉDELEM A XXI. század legnagyobb kihívása bolygónk élhetôségének megtartása, javítása, és az emberi szükségletek összehangolása. Az emberiség életében

Részletesebben

A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens

A Fenntartható fejlődés fizikai korlátai. Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens A Fenntartható fejlődés fizikai korlátai Késíztette: Rosta Zoltán Témavezető: Dr. Martinás Katalin Egyetemi Docens Fenntartható fejlődés 1987-ben adja ki az ENSZ Környezet és Fejlődés Világbizottsága a

Részletesebben

TECHNOLÓGIA SZENNYVÍZISZAPOK TPH TARTALMÁNAK CSÖKKENTÉSÉRE

TECHNOLÓGIA SZENNYVÍZISZAPOK TPH TARTALMÁNAK CSÖKKENTÉSÉRE TECHNOLÓGIA SZENNYVÍZISZAPOK TPH TARTALMÁNAK CSÖKKENTÉSÉRE NAGY IMRE VEZÉRIGAZGATÓ CORAX-BIONER ZRT. 2018. JANUÁR 26. A probléma: a hazai szennyvízkezelőkben alkalmazott szennyvízkezelési technológiák

Részletesebben

Szennyvíziszapból trágya előállítása. sewage sludge becomes fertiliser

Szennyvíziszapból trágya előállítása. sewage sludge becomes fertiliser Szennyvíziszapból trágya előállítása. sewage sludge becomes fertiliser Szennyvíziszapból trágyát! A jelenlegi szennyvízkezelési eljárás terheli a környezetet! A mai szennyvíztisztítók kizárólag a szennyvíz

Részletesebben

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13.

Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése. Kódszám: KMOP-3.3.3-13. Közép-Magyarországi Operatív Program Megújuló energiahordozó-felhasználás növelése Kódszám: KMOP-3.3.3-13. Támogatható tevékenységek köre I. Megújuló energia alapú villamosenergia-, kapcsolt hő- és villamosenergia-,

Részletesebben

Fenntartható kistelepülések KOMPOSZTÁLÁSI ALAPISMERETEK

Fenntartható kistelepülések KOMPOSZTÁLÁSI ALAPISMERETEK Fenntartható kistelepülések KOMPOSZTÁLÁSI ALAPISMERETEK Táltoskert Biokertészet Életfa Környezetvédő Szövetség Csathó Tibor - 2014 Fenntarthatóság EU stratégiák A Földet unokáinktól kaptuk kölcsön! Körfolyamatok

Részletesebben

Energiagazdálkodás és környezetvédelem 3. Előadás

Energiagazdálkodás és környezetvédelem 3. Előadás Energiagazdálkodás és környezetvédelem 3. Előadás Tüzeléstechnika Kapcsolódó államvizsga tételek: 15. Települési hulladéklerakók Hulladéklerakó helyek fajtái kialakítási lehetőségei, helykiválasztás szempontjai.

Részletesebben

Depóniagáz kinyerése és energetikai hasznosítása a dél-alföldi régióban

Depóniagáz kinyerése és energetikai hasznosítása a dél-alföldi régióban Szegedi Energiagazdálkodási Konferencia SZENERG 2017 Depóniagáz kinyerése és energetikai hasznosítása a dél-alföldi régióban Dr. Molnár Tamás Géza Ph.D főiskolai docens SZTE Mérnöki Kar Műszaki Intézet

Részletesebben

Heinz és Helene Töpker, Haren, Németország. Tervezés Kivitelezés Szerviz

Heinz és Helene Töpker, Haren, Németország. Tervezés Kivitelezés Szerviz Heinz és Helene Töpker, Haren, Németország Tervezés Kivitelezés Szerviz 2 BIOGÁZ, TERMÉSZETESEN. BIOGÁZ. A JÖVŐ ENERGIAFORRÁSA. Mi a közös a tehénlepény és hatórányi kerékpározásban? Mindkettő ugyanakkora

Részletesebben

Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások

Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások Élelmiszerhulladék-csökkentés a Jövő Élelmiszeripari Gyárában Igények és megoldások Jasper Anita Campden BRI Magyarország Nonprofit Kft. Élelmiszerhulladékok kezelésének és újrahasznosításának jelentősége

Részletesebben

Új biomassza erőmű - és kiszolgáló ültetvények - helyének meghatározása térinformatikai módszerekkel az Inno Energy KIC keretében

Új biomassza erőmű - és kiszolgáló ültetvények - helyének meghatározása térinformatikai módszerekkel az Inno Energy KIC keretében Új biomassza erőmű - és kiszolgáló ültetvények - helyének meghatározása térinformatikai módszerekkel az Inno Energy KIC keretében Dr. Ladányi Richard - Chrabák Péter - Kiss Levente Bay Zoltán Alkalmazott

Részletesebben

Létesített vizes élőhelyek szerepe a mezőgazdasági eredetű elfolyóvizek kezelésében

Létesített vizes élőhelyek szerepe a mezőgazdasági eredetű elfolyóvizek kezelésében Létesített vizes élőhelyek szerepe a mezőgazdasági eredetű elfolyóvizek kezelésében Kerepeczki Éva és Tóth Flórián NAIK Halászati Kutatóintézet, Szarvas 2017. december 7. A rendszer bemutatása Létesítés:

Részletesebben

A kisméretű szennyvíztisztító továbbfejlesztése a megújuló energiaforrás előállítása és hasznosítása révén

A kisméretű szennyvíztisztító továbbfejlesztése a megújuló energiaforrás előállítása és hasznosítása révén A kisméretű szennyvíztisztító továbbfejlesztése a megújuló energiaforrás előállítása és hasznosítása révén TET 08 RC SHEN Projekt Varga Terézia junior kutató Dr. Bokányi Ljudmilla egyetemi docens Miskolci

Részletesebben

Szennyvíziszap hasznosítás Ausztriában napjainkban. ING. Mag. Wolfgang Spindelberger

Szennyvíziszap hasznosítás Ausztriában napjainkban. ING. Mag. Wolfgang Spindelberger SZENNYVÍZISZAP 2013 HALADUNK, DE MERRE? Szennyvíziszap hasznosítás Ausztriában napjainkban. ING. Mag. Wolfgang Spindelberger 1 Ami összeköt a közös múltunk Ami hasonló: Területe: 83 870 km2, lakossága:

Részletesebben

Tárgy: H A T Á R O Z A T

Tárgy: H A T Á R O Z A T Ügyszám: Ügyintéző: mellék: 226/154 589-23/2015. Székelyhidi Ferenc/dr. Szeifert László Tárgy: Melléklet: A Nyírbátor, 0207/5 hrsz. alatt lévő regionális biogáz üzem egységes környezethasználati engedélye

Részletesebben

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás

BETON A fenntartható építés alapja. Hatékony energiagazdálkodás BETON A fenntartható építés alapja Hatékony energiagazdálkodás 1 / Hogyan segít a beton a hatékony energiagazdálkodásban? A fenntartható fejlődés eszméjének fontosságával a társadalom felelősen gondolkodó

Részletesebben

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2013/1. ütem -

KUTATÁS + FEJLESZTÉS PROGRAM. - AKF2013/1. ütem - KUTATÁS + FEJLESZTÉS PROGRAM - AKF2013/1. ütem - AGROWATT biogáz kutató központ Kecskemét, 2013. január - március Készítette: AGROWATT Nonprofit KFT. 1 Előzmények: Az Agrowatt Kft. biogáz kutató központ

Részletesebben

BIOLÓGIAI PRODUKCIÓ. Az ökológiai rendszerekben végbemenő szervesanyag-termelés. A növények >fotoszintézissel történő szervesanyagelőállítása

BIOLÓGIAI PRODUKCIÓ. Az ökológiai rendszerekben végbemenő szervesanyag-termelés. A növények >fotoszintézissel történő szervesanyagelőállítása BIOLÓGIAI PRODUKCIÓ Az ökológiai rendszerekben végbemenő szervesanyag-termelés. A növények >fotoszintézissel történő szervesanyagelőállítása az elsődleges v. primer produkció; A fogyasztók és a lebontók

Részletesebben