EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL"

Átírás

1 EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL Stagl Ádám I. évfolyam, pénzügy és számvitel szak Kaposvári Egyetem Gazdaságtudományi Kar, Kaposvár Matematika és Fizika Tanszék Konzulens: Dr. Kövér György egyetemi docens ÖSSZEFOGLALÓ A dolgozat célja a Ramsey féle növekedési modell vizsgálata. A modell optimalitási kritériuma egy véges időszakon elért diszkontált értékének maximalizálása. A modellt három egymástól eltérő feladat elemzésére alkalmaztam. A évenkénti relatív változásának elemzésével hosszú távú nyolc éves periódust és két egymást követő rövidebb négy éves periódus modelljét készítettem el. Létrehoztam egy alacsony induló tőkeállományú modellt, majd elemeztem az értékcsökkenés bevezetésének hatását a modellbe. Rámutattam, hogy megteremthető a Ramsey és Solow féle modellek közötti kapcsolat az egyensúlyi tőkeállomány nagyságának meghatározásán keresztül. Az elemzés kitér a technológiai fejlettség és az induló befektetett tőke változásának hatásaira, valamint a évenkénti változására tett kritériumok modellt befolyásoló hatásaira. A modell matematikai eszköze az MS Excel Solver modulja, melynek a korlátaira is rámutattam. BEVEZETÉS A közgazdaságtan szakirodalma bőséges kínálatot nyújt matematikai modellek alkalmazásában. DEDÁK (2006) összefoglalja a növekedéssel foglalkozó modelleket. A legtöbb modell nem oldható meg analitikusan, ezért ezek numerikus vizsgálata szükséges. Viszont ha analitikusan megoldható a modell, akkor is érdemes kiszámítani numerikusan ellenőrzésképp. Összességében a numerikus eljárás elfogadott összetettebb modelleknél, melyek esetében analitikusan már nem jutunk eredményre. A dolgozat témájául szolgáló Ramsey féle növekedési modell változatosan használható fel közelmúltunk és napjaink makrogazdasági eseményeinek modellezésére ezért különösen aktuális a téma. ANYAG ÉS MÓDSZER TAYLOR és UHLIG(1990) által módosított Ramsey féle növekedési modell vizsgálata áll a dolgozat középpontjában. A modell ismertetése és a számításokra felhasznált első változata megtalálható KENDRICK, MERCADO és AMMAN (2006) munkájában. 1

2 A növekedési modell A kibocsátást tekintsük a tőkeállomány és a technikai haladás függvényének(1). Ez termelési függvény a széles körben használt Cobb-Douglas-féle alakja. Rendszerint szerepel a függvényben mind a tőke- mind a munkaerő-állomány. Az egyszerűség kedvéért a termelési függvény ebben a modellben csak a tőkeállományt tartalmazza. Y t = Θ K t α (1) ahol Y t = kibocsátás t időszakban Θ = a technológiai fejlettség paramétere K t = befektetett tőke nagysága t időszakban α = tőke kitevője a termelési függvényben A modell egyik jellegzetessége, hogy hosszabb, de véges időtartományra vonatkozik, melyet a vizsgálataink során nyolc véges időszakra osztunk. A tőkefelhalmozás képlete a következő: ahol C t = a a t időszakban. K t+1 = K t + Y t - C t (2) Vagyis a befektetett tőke a következő időszakban megegyezik a jelenlegi periódus és a termelés és különbségének összegével (2), mely megtakarításként vagy befektetésként jelentkezik. A megtakarítást ebben a modellben nem megtakarítási ráta segítségével fejezzük ki, mivel hosszabb időszakot vizsgálunk és közben a megtakarítási ráta értéke változhat. Az elértéktelenedést a modell első változatában figyelmen kívül hagytam. Ezek után a termelési függvény (1) behelyettesíthető a tőkefelhalmozás képletébe (2). K t+1 = K t + Θ K t α - C t (3) Hozzá kell tenni, hogy a modellben kezdeti feltételként meg kell határozni a befektetett tőkét mellyel a kezdeti periódusban rendelkezünk. K 0 adott. (4) A modell ezen felül tartalmaz egy végső feltételt is, mely tartalmaz egy fix tőkeösszeget, amit el kell érni, hogy a következő generáció is versenyképes maradjon a vizsgált időszak végeztével. K N K * (5) ahol K * = alsó korlát a szükséges tőke nagysághoz a végső időszakban, N. 2

3 Végül a modellnek van egy optimalizálási feladata. A vizsgálati időtartam során az egyes időszakokban történt hasznossági értékeit diszkontálja, a jelenértékek összegét maximalizálja. U(C t ) = C t (1-τ) (6) ahol U(C t ) = a hasznosság, amely a t időszak alatti függvénye τ = a hasznossági függvény paramétere A diszkontált hasznosságok összege pedig J = t U(C t ) (7) ahol J = a hasznosságok jelenértékének összege β = diszkontálási tényező. BARTUS és munkatársai (2005) összefoglalták a társadalmi diszkontráta meghatározásának módszertanát. Ezek után behelyettesítve a hasznossági függvényt (6) a (7) képletbe kapjuk J = t C t (1-τ) (8) Összességében, a modell tartalmaz egy maximalizálandó kritérium függvényt(8), a tőkefelhalmozási egyenletet(3) és a kezdő- és vég feltételeket (4), (5). A feladat az, hogy úgy válasszuk meg az egyes időszakok i értékeit, (C 0,C 1,,C N-1 )-t, hogy kritérium függvény(8) maximális értéket vegyen fel. Tehát a legfőbb probléma az egyes időszakok szintjének megválasztása, vagyis az egyensúly megtalálása a és befektetés között. Adott időszakban kisebb kisebb hasznossággal kecsegtet, viszont nagyobb megtakarítást és később magasabb tőkét, ami magasabb termelést eredményez. A modell nem tartalmazza külső erőforrás bevonását, sem az inflációt nem veszi figyelembe. Az MS Excel Solver A jól ismert táblázatkezelő program, az MS Excel, tartalmaz egy hatékony lineáris és nemlineáris problémamegoldó eljárást. Mivel az Excel felülete nagyon ismert és az optimalizálandó problémák megfogalmazása a kisebb feladatok esetében viszonylag egyszerű, ezért néha az Excel jobbnak bizonyul az optimalizálási feladatok megoldására mint más, nagyobb felkészültséget igénylő matematikai programok. Sőt, ha a modellünk elég egyszerű, nincs semmi előnye az Excel-lel szemben például a GAMS-nak, vagy MATLAB-nak, stb. 3

4 EREDMÉNYEK ÉS ÉRTÉKELÉSEK KENDRICK, MERCADO és AMMAN (2006) munkájában található növekedési modellt, melyet MS Excel környezetben valósítottak meg három különféle esetben alkalmaztuk. Az egyes esetekben a modell szükség szerinti módosítására is sor került. 1. Eset. A modell -centrikus elemzése 1.1 Az eredeti modell KENDRICK és munkatársai (2006) rámutattak a modell által szolgáltatott i adatok és a diszkonttényező kapcsolatára. A i értékek ugyanakkor további vizsgálatokra is lehetőséget kínálnak. Az 1. táblázatban megtalálhatjuk az eredeti modell induló és számított értékeit. A számítások induló értékei egyfelől a paraméterek (tau, bet, alpha, theta) melyek számértékei szakirodalmi becslésekre alapozva adhatunk meg, másfelől az induló tőkeállomány (7 egység) és az a tőkefeltétel (9,1 egység) melyet a vizsgálati időszak után a következő generációra kell hagynunk. Az 1. táblázatban a i értékek már azt a megoldást tükrözik, amely maximalizálja a diszkontált hasznosságok összegét. A leolvasható maximális érték 9,97 egység. David Kendric és Ruben Mercado által kidolgozott eredeti növekedési modell 1. táblázat Időszak Fogyasztás 0,347 0,351 0,355 0,358 0,361 0,364 0,366 0,368 0,370 Kibocsátás 0,570 0,576 0,582 0,588 0,594 0,599 0,605 0,611 0,616 Tőkeállomány 7,000 7,223 7,448 7,676 7,906 8,138 8,373 8,612 8,854 9,100 Hasznosság 1,178 1,161 1,144 1,126 1,108 1,090 1,072 1,054 1,035 Számítási paraméterek Tőkefeltétel: 9,100 Tau 0,5 Beta 0,98 Alpha 0,33 Theta 0,3 Összes hasznosság: 9, táblázat Az eredeti növekedési modell i adataiból számított relatív változás Időszak Relatív változás 1,012 1,011 1,010 1,008 1,008 1,007 1,006 1,005 4

5 A és relatív változása 0,375 0,370 0,365 0,360 0,355 0,350 0,345 0,340 0, időszak 1,014 1,012 1,01 1,008 1,006 1,004 1,002 1 relatív változás relatív változás Forrás: a 2. táblázat alapján, saját munka, ábra: Az eredeti növekedési modell i adatai és a relatív változások. Az eredeti modell i adataiból rajzolt görbe növekvő, ami a lakosság szempontjából tekintve kedvező, ugyanakkor konkáv. Azt jelenti számunkra, hogy növekszik ugyan a, de a növekedés mértéke egyre szerényebb. SÁGI (2005) kifejti, hogy a társadalmi stabilitás feltétele, hogy az állampolgárok észleljék a társadalmi-gazdasági trendeket és ezekkel elégedettek legyenek. Az észlelt relatív változásokat és a viszonyítási csoportokat is egyaránt fontosnak tartja az elégedettség szempontjából. Az 1. ábrán bemutatjuk, hogy a relatív változása a teljes vizsgálati idő alatt csökkenő. A i görbe alakját a matematikai modell optimális megoldása amely maximalizálta az összes hasznosságot alakította konvexre. KORNAI (1995) tanulmányában részletes történelmi elemzését adja annak, hogy Magyarországon a politikai szférában bekövetkezett rendszerváltást követően is folyamatosan jellemezte az elmúlt harminc év fejlődését a lakosság anyagi jólétének a prioritása, erős paternalista jóléti állam. Ez a folyamat Kornai tanulmányát követően is folytatódott. Vizsgáljuk meg tehát azt, hogy modell hogyan módosítható. 1.2 Módosított modell: A relatív változása ne csökkenjen A modell úgy módosítjuk, hogy a relatív változása ne csökkenjen. A MS Excel Solver korlátozó feltételei közé megadjuk azt, hogy az egymást követő időszakok i adataiból számítható relatív növekedés legyen nagyobb, vagy egyenlő 1,02, majd ezt követően 1,04. A módosított modell optimalizálása után kapott i adatokat a 2. ábrán találjuk. A modell továbbra is az előzőleg adott induló tőkeállománnyal és záró tőkefeltétellel optimalizálta a i adatokat. Megfigyelhető, hogy azon az áron érte el a relatív változás szinten tartását, hogy az első néhány periódus i adatát jelentősen le kellett csökkenteni. Ezzel egy időben a második félidőben a i adatok magasabbak lettek. A modell eredményezett egy olyan i görbét, amely hosszú távú társadalmi előrelátást, megegyezést igényel. 5

6 A három modell alapján 0,440 0,420 0,400 0,380 0,360 0,340 0,320 0, időszak Eredeti modell Relatív változás=1,02 Relatív változás=1,04 Forrás: a 2. táblázat alapján, saját munka, ábra: Módosított növekedési modell. Fogyasztási adatok előírt relatív változások esetén. KORNAI (1995) tanulmányából és az azóta eltelt időszak tapasztalataiból ugyanakkor az derül ki, hogy ilyen hosszú távú gondolkodásmódra nem feltétlenül lehet számítani. A vizsgált időtartomány nyolc időszak, oszthatjuk két négyes intervallumra, mint két kormányzati időszak, félidőben egy politikai választás. Tapasztalataink szerint az első félidő kormánya nem vállalja, hogy kormányzása alatt olyan alacsony legyen a, mint amit a 2. ábra 1.04 relatív változású egyenese ábrázol. Bár lendületes a növekedése, jóval alacsonyabb, mint amit az eredeti modell konkáv görbéje lehetővé tesz. A félidőben bekövetkező választást elvesztené, viszont az utódja átvenne egy olyan gazdasági pályát, ahol a nem csak erősen növekszik, de már abszolút értékben is magas. Arra számíthatunk tehát, hogy a gondolatkísérletben szereplő első félidei kormány inkább a konkáv görbét választja, amely a második félidőre a pangás korszakát jelenti. Érdemes itt felhívni arra a figyelmet, hogy az összhasznosság maximuma csökkenhet, ha az eredeti modellt további korlátozó feltételekkel egészítjük ki, mint ahogyan ezt tettük a 2. ábra adatainak kiszámításakor. A 3. táblázatban láthatjuk, hogy valóban, minél inkább eltér a i görbe az eredeti modell által szolgáltatott konvex görbétől, annál kisebb a számított összhasznosság. 3. táblázat Az összes hasznosság értéke csökkenhet, ha a modellt további korlátozó feltételekkel egészítjük ki. Modell Összes hasznosság: Eredeti modell Relatív változás=1,02 Relatív változás=1,04 9,970 9,968 9,962 6

7 1.3 Módosított modell: A pangás elkerülése a második félidőben Az előzőekben láttuk, hogy a rövid távú, választó-centrikus kormányzati politika számára nem elfogadható a alacsony szintről való indítása, mert a lakosság csak a második kormány alatt él át valódi prosperitást. A modellt úgy módosítottam, hogy a kezdeti időszakban ne legyen károsan alacsony a, de a második kormányzati periódusban legyen elérhető erőteljesebb növekedés. Az eredeti modell konkáv görbéje az utolsó (nyolcadik) időszakban már csak fél százaléknyi növekedést mutat. Az MS Excel Solver korlátozó feltételét úgy adtam meg, hogy csak a hatodik, hetedik, nyolcadik időszakban legyen a növekedés előre megadott mértékű. Az első öt időszakra ilyen korlátozó feltételt most nem írtam elő. A 3. ábrán látható az eredeti konkáv i görbe mellett annak a modellnek az eredménye, ahol az utolsó három időszakra korlátozó feltétel volt az, hogy a relatív növekedés legyen legalább akkora, mint a legelső időszakban. A második kormányzati ciklusban módosított görbe alakja jól mutatja, hogy egy későbbi dinamikusan növekvő ért a jelenben fizetni kell. A második kormányzati ciklus első időszaka a visszaesését szemlélteti. A három modell alapján 0,380 0,375 0,370 0,365 0,360 0,355 0,350 0,345 0, időszak Eredeti modell Két ciklusú modell Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell. Fogyasztási adatok előírt relatív változások esetén. 2. Eset. Alacsony induló tőkeállomány, fejlett technológia A modell induló adatait és korlátozó feltételeit úgy adtam meg, hogy egy szélsőséges esetet is megvizsgálhassak. Az induló tőkeállományt alacsonyra (2 egység), a technológiai fejlettséget reprezentáló Θ értékét magasra (1 egység) választottam. Megnöveltem a tőke kitevőjét is. A záró tőkeállomány értékét nem változtattam meg. 7

8 A modell optimalizálása során az MS Excel Solver nem talált megoldást. Mivel a hasznosságmaximalizálás, mint kritérium változatlanul szerepel a modellben, olyan megoldásra tett kísérletet a Solver, amelyben a meghaladta a kibocsátást. A számítások elvégzését a negatív értékek megjelenése lehetetlenné tette. Azt a kiegészítő korlátozó feltételt adtam meg, hogy: a ne haladja meg a kibocsátást. A 4. táblázatban találhatjuk az optimalizált modellt. A 4.ábrán pedig láthatjuk a és a relatív változás görbéjét. A görbék értékelésekor megállapíthatjuk, hogy a céltőke elérhető a 9. időszak előtt a gyors növekedésnek köszönhetően, ugyanakkor a relatív változása ilyen látványos növekedés esetén is csökkenő lehet. 4. táblázat Alacsony induló tőkeállomány, fejlett technológia. Időszak Fogyasztás 0,335 0,531 0,785 1,107 1,508 2,008 2,634 3,017 3,017 Kibocsátás 1,414 1,755 2,074 2,365 2,617 2,821 2,962 3,017 3,017 Tőkeállomány 2,000 3,079 4,303 5,592 6,850 7,959 8,772 9,100 9,100 9,100 Hasznosság 1,157 1,428 1,702 1,981 2,266 2,561 2,875 3,016 2,955 Számítási paraméterek Tőkefeltétel: 9,100 tau 0,5 beta 0,98 alpha 0,5 theta 1 Összes hasznosság: 19,942 A és relatív változása 3,500 3,000 2,500 2,000 1,500 1,000 0,500 0, ,800 1,600 1,400 1,200 1,000 0,800 0,600 0,400 0,200 0,000 relatív változás időszak relatív változás Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell: Alacsony induló tőkeállomány, fejlett technológia. Fogyasztási adatok előírt relatív változások esetén. 8

9 3. Eset. A modell kiegészítése az értékcsökkenés figyelembevételével KENDRICK, MERCADO és AMMAN (2006) munkájában található növekedési modell nem tartalmaz értékcsökkenést. A tradicionális Solow modell az értékcsökkenés figyelembevételével határozza meg a tőkeállomány egyensúlyi értékét (MANKIW, 2005). Bár a Ramsey és Solow modell eltér egymástól, az értékcsökkenés bevezetését érdemes a modellünkben elvégezni.. Az értékcsökkenés a tőkeállomány felhalmozódási ütemét csökkenti, a kibocsátásból nagyobb arányban kell megtakarítani, kevesebb ra van lehetőség, ha a befejező időszakra előírt tőkefeltételt teljesíteni kívánjuk. Az értékcsökkenés három különböző értékével optimalizáltam a módosított modellt. 10%, 5% és 3% mértékét vettem számításba. Az induló (7 egység) és záró tőkeállomány (9,1 egység) azonos az eredeti modell adataival. A technikai fejlettséget reprezentáló Θ értékét 0,5-re növeltem, mivel csak nagyon alacsony értékcsökkenési adatok mellett vált elérhetővé a záró tőkeállomány feltétele. A i adatok számított értékeit az 5. táblázat tartalmazza. Az 5. ábrán nyomon követhetjük a alakulását a három optimalizált modell esetén. Megfigyelhető, hogy a záró időszak tőkefeltételének teljesítési kényszere azt eredményezi, hogy a legmagasabb értékcsökkenés esetén csak csökkenő, alacsony mellett teljesíthető. 5. táblázat Az optimalizált modellek i adatai értékcsökkenés esetén Időszak Ért. Csökkenés 0,478 0,453 0,429 0,405 0,381 0,357 0,335 0,312 0,291 10% Ért. Csökkenés 0,674 0,703 0,732 0,759 0,785 0,810 0,834 0,857 0,880 5% Ért. Csökkenés 0,705 0,763 0,824 0,884 0,947 1,012 1,081 1,152 1,225 3% A három értékcsökkenési százalék esetén 1,400 1,200 1,000 0,800 0,600 0,400 0,200 0, időszak Ért. Csökkenés 10% Ért. Csökkenés 5% Ért. Csökkenés 3% Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell: Az értékcsökkenés bevezetése. A i adatok három különböző értékcsökkenés esetén 9

10 A tőkeállomány számított értékeit a 6. táblázat tartalmazza. A 6. ábrán a tőkeállomány alakulását követhetjük nyomon a három optimalizált modell esetén. Megfigyelhető, hogy a záró időszak tőkefeltételét mind a három értékcsökkenés esetén teljesíteni lehet, ugyanakkor a görbék jellege teljesen eltérő. Konvex és konkáv eset is megfigyelhető. Az optimalizált modellek i adatai értékcsökkenés esetén 6. táblázat Időszak Értékcsökkenés 10% 7,000 7,145 7,314 7,506 7,721 7,957 8,214 8,491 8,787 9,100 Értékcsökkenés 5% Értékcsökkenés 3% 7,000 7,299 7,582 7,848 8,098 8,331 8,547 8,748 8,932 9,100 7,000 7,408 7,783 8,121 8,418 8,669 8,869 9,011 9,090 9,100 A tőkeállomány három értékcsökkenési százalék esetén 9,500 9,000 8,500 tőkeállomány 8,000 7,500 7,000 6,500 6, időszak Ért. Csökkenés 10% Ért. Csökkenés 5% Ért. Csökkenés 3% Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell: Az értékcsökkenés bevezetése. A tőkeállomány számított adatai három különböző értékcsökkenés esetén 10

11 A Ramsey és Solow modell eltéréseinek ellenére tehetünk egy kísérletet arra, hogy a Solow féle egyensúlyi tőkeállomány mértékét meghatározzuk. MANKIW (2005) alapján az egyensúlyi tőkeállományra felírható * k = f ( k ) ahol k * = az egyensúlyi tőkeállomány s = megtakarítási ráta δ = értékcsökkenés s δ A meghatározható egyensúlyi tőkeállomány értékcsökkenés esetén (9) 7. táblázat Minimális megtakarítási ráta Átlagos megtakarítási ráta Ért. Csökkenés 10% Ért. Csökkenés 5% Ért. Csökkenés 3% 8,44 181,46 552,58 14,61 244, ,82 A három értékcsökkenést tartalmazó modell megtakarítási rátája az optimalizálást követően meghatározható. Azonban az a Ramsey modellnek megfelelően minden egyes időszakra (0-8) más-más. A megtakarítási ráták közül kiválasztható a minimális érték, ennek a felhasználásával adódik a legkisebb egyensúlyi tőkeállomány (7. táblázat). Mivel a megtakarítási ráta folyamatosan változik, az átlagos értékét is figyelembe vettem az egyensúlyi tőkeállomány meghatározásához. A 7. táblázatból megállapítható, hogy az értékcsökkenést tartalmazó modellek egyensúlyi tőkeállománya csak akkor nem éri el a 9,1 egységnyi értéket, amely a záró tőkefeltétel, ha az értékcsökkenés 10% és az időszak minimális megtakarítási rátájával számolunk. Minden más esetben eléri. KÖVETKEZTETÉSEK ÉS JAVASLATOK A vizsgált növekedési modell tanulmányozása alapján megállapítható, hogy a modell alkalmas arra, hogy megfelelő módosításokkal, korlátozó feltételekkel úgy alakítsuk, hogy valós tapasztalatokkal egybevethető eredményeket szolgáltassanak. Alkalmasnak bizonyult a modell arra, hogy két politikai cikluson keresztül ívelő, hosszú távú, tartós növekedést tükrözzön, illetve sikeresen modelleztük a rövid távú, választó-centrikus szemléleten alapuló politikát. Az értékcsökkenés bevezetésével lehetővé vált a Ramsey és Solow modellek együttes vizsgálata. Az MS Excel Solver használatában nehézségek mutatkoztak mind az alacsony induló tőkeállomány adattal indított, mind az értékcsökkenéssel kiegészített modellek optimalizálása esetén. Kiderült, hogy rendkívül fontos az optimalizálás végeredményeként meghatározásra kerülő i adatok induló értékének megválasztása. A Solver erre nagyon érzékeny, az optimalizálás folyamata optimum érték meghatározása nélkül fejeződhet be. 11

12 IRODALOMJEGYZÉK (1) Kendrick, D. A., Mercado, P., R., Amman, H., M.: Computational economics Princeton University Press (2) Mankiw, N., G.: Makroökonómia, Osiris Kiadó, Budapest, (3) Sági, M.:A lakossági elégedettség alakulása. TÁRKI monitor jelentések Budapest 2006, szerk Szivós, P., Tóth, I., Gy (4) Bartus, G., Monostori K., Szabó K.: A fejlesztéspolitikai intézkedések teljes társadalmi költségének becslése. TÁRKI, Budapest, (5) Kornai J.: Négy jellegzetesség. Közgazdasági szemle, XLII évf., sz (6) Taylor J. B., Uhlig H.: "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods", Journal of Business and Economic Statistics, , 1-17 (7) Dedák I.:A megtakarítások és a növekedés kapcsolata egy kis nyitott gazdaságban, a globalizálódó világban. Gazdasági növekedés Magyarországon (szerk.: Dombi Ákos) Műegyetemi Kiadó

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

FELVÉTELI DOLGOZAT MEGOLDÓKULCS KÖZGAZDASÁGI ELEMZŐ MESTERSZAK NEMZETKÖZI GAZDASÁG ÉS GAZDÁLKODÁS MESTERSZAK. 2012. május 22.

FELVÉTELI DOLGOZAT MEGOLDÓKULCS KÖZGAZDASÁGI ELEMZŐ MESTERSZAK NEMZETKÖZI GAZDASÁG ÉS GAZDÁLKODÁS MESTERSZAK. 2012. május 22. FELVÉTELI DOLGOZAT MEGOLDÓKULCS KÖZGAZDASÁGI ELEMZŐ MESTERSZAK NEMZETKÖZI GAZDASÁG ÉS GAZDÁLKODÁS MESTERSZAK 2012. május 22. Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

Gazdasági Információs Rendszerek

Gazdasági Információs Rendszerek Gazdasági Információs Rendszerek 1. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 A pénz időértéke Mit jelent a pénz időértéke? Egy forint (dollár, euró, stb.) ma

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 0611 ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM MIKROÖKONÓMIA I. FELELETVÁLASZTÓS KÉRDÉSEK

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

A vállalati pénzügyi döntések fajtái

A vállalati pénzügyi döntések fajtái A vállalati pénzügyi döntések fajtái Hosszú távú finanszírozási döntések Befektetett eszközök Forgóeszközök Törzsrészvények Elsőbbségi részvények Hosszú lejáratú kötelezettségek Rövid lejáratú kötelezettségek

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium E Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő 2. szemináriumi feladatok Fogyasztás/ megtakarítás Több időszak Több szereplő 1. feladat Egy olyan gazdaságot vizsgálunk, ahol a fogyasztó exogén jövedelemfolyam és exogén kamat mellett hoz fogyasztási/megtakarítási

Részletesebben

1 Energetikai számítások bemutatása, anyag- és energiamérlegek

1 Energetikai számítások bemutatása, anyag- és energiamérlegek 1 Energetikai számítások bemutatása, anyag- és energiamérlegek Előzőleg a következőkkel foglalkozunk: Fizikai paraméterek o a bemutatott rendszer és modell alapján számítást készítünk az éves energiatermelésre

Részletesebben

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata Borsa Béla FVM Mezőgazdasági Gépesítési Intézet 2100 Gödöllő, Tessedik S.u.4. Tel.: (28) 511 611 E.posta: borsa@fvmmi.hu A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport)

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport) Tisztelt hallgatók! E-LEARNING KÉZÉS Az alábbiakban a Gazdálkodási szakos, e-learning rendszerben mûködõ képzés tananyagához készült hibalistát olvashatja. A visszajelzések és az anyag folyamatos gondozása

Részletesebben

Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan

Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan VEZETŐI ÖSSZEFOGLALÓ 2015. MÁJUS 14. 1 Vezetői Összefoglaló A dokumentum háttere és célja 1.1 A Deloitte Üzletviteli

Részletesebben

A termelés technológiai feltételei rövid és hosszú távon

A termelés technológiai feltételei rövid és hosszú távon 1 /12 A termelés technológiai feltételei rövid és hosszú távon Varian 18. Rgisztrált gazdasági szervezetek száma 2009.12.31 (SH) Társas vállalkozás 579 821 Ebbıl: gazdasági társaság: 533 232 Egyéni vállalkozás

Részletesebben

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV Teljesítményprognosztizáló FELHASZNÁLÓI KÉZIKÖNYV Tartalomjegyzék 1. A szoftver feladata...3 2. Rendszerigény...3 3. A szoftver telepítése...3 4. A szoftver használata...3 4.1. Beállítások...3 4.1.1. Elszámolási

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 2007. május 25. 8:00 KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén Közgazdaságtan II. Mikroökonómia SGYMMEN202XXX Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd Tantárgyi leírás építőmérnök

Részletesebben

Érettségi feladatok: Függvények 1/9

Érettségi feladatok: Függvények 1/9 Érettségi feladatok: Függvények 1/9 2003. Próba 1. Állapítsa meg a valós számok halmazán értelmezett x x 2-2x - 8 függvény zérushelyeit! 2004. Próba 3. Határozza meg a valós számok halmazán értelmezett

Részletesebben

Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat. Modern vállalati pénzügyek tárgyból

Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat. Modern vállalati pénzügyek tárgyból Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet Beadandó feladat Modern vállalati pénzügyek tárgyból az alap levelező képzés Gazdasági agrármérnök V. évf. Pénzügy-számvitel

Részletesebben

Növekedés és fenntarthatóság. NFFT műhelykonferencia 2014. június 4. Bessenyei István

Növekedés és fenntarthatóság. NFFT műhelykonferencia 2014. június 4. Bessenyei István Növekedés és fenntarthatóság NFFT műhelykonferencia 2014. június 4. Bessenyei István Egy példa Rókák a Nyulak Szigetén Hová vezet ez: Falánk rókák és kevéssé szapora nyulak esetén mindkét populáció kihal.

Részletesebben

szemináriumi A csoport Név: NEPTUN-kód: Szabó-Bakos Eszter

szemináriumi A csoport Név: NEPTUN-kód: Szabó-Bakos Eszter 3. szemináriumi ZH A csoport Név: NEPTUN-kód: A feladatlapra írja rá a nevét és a NEPTUN kódját! A dolgozat feladatainak megoldására maximálisan 90 perc áll rendelkezésre. A helyesnek vált válaszokat a

Részletesebben

Add Your Company Slogan Beruházási döntések a nettó jelenérték szabály alapján

Add Your Company Slogan Beruházási döntések a nettó jelenérték szabály alapján Add Your Company Slogan Beruházási döntések a nettó jelenérték szabály alapján Készítette: Vona Máté 2010-11-17 Felhasznált irodalom: Brealy-Myers: Modern vállalati pénzügyek 6. fejezet Előadás tartalma

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Bakony és Balaton Keleti Kapuja Közhasznú Egyesület Kiegészítő melléklete a 2012. évi beszámolóhoz /Adatok: ezer Ft -ban/

Bakony és Balaton Keleti Kapuja Közhasznú Egyesület Kiegészítő melléklete a 2012. évi beszámolóhoz /Adatok: ezer Ft -ban/ 1. oldal Bakony és Balaton Keleti Kapuja Közhasznú Egyesület Kiegészítő melléklete a 2012. évi beszámolóhoz /Adatok: ezer Ft -ban/ I. Általános rész 1./ Általános háttérinformációk Bakony és Balaton Keleti

Részletesebben

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) 0801 ÉRETTSÉGI VIZSGA 2009. május 22. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM JAVÍTÁSI ÚTMUTATÓ

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4..-08//A/KMR-009-004pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények A mikroökonómia és makroökonómia eltérése: Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények Makroökonómia:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 0804 ÉRETTSÉGI VIZSGA 2010. május 25. GAZASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A javítás

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

Társaságok pénzügyei kollokvium

Társaságok pénzügyei kollokvium udapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar udapesti Intézet Továbbképzési Osztály Társaságok pénzügyei kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 55 60 pont

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 33. o. 1. feladat 65.) Keynesi

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

Populáció A populációk szerkezete

Populáció A populációk szerkezete Populáció A populációk szerkezete Az azonos fajhoz tartozó élőlények egyedei, amelyek adott helyen és időben együtt élnek és egymás között szaporodnak, a faj folytonosságát fenntartó szaporodásközösséget,

Részletesebben

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata.

A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. A dokumentum egy feladatgyűjtemény harmadik fejezetének előzetes változata. Amennyiben a következő oldalakon bármilyen hibát talál, legyen az szakmai probléma, vagy helyesírási hiba, esetleg ötlete, vagy

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

KÖZGAZDASÁGTAN ÉRETTSÉGI VIZSGA FELADATOK

KÖZGAZDASÁGTAN ÉRETTSÉGI VIZSGA FELADATOK KÖZGAZDASÁGTAN ÉRETTSÉGI VIZSGA FELADATOK I. TÉTEL A. Olvassa el figyelmesen a következő kijelentéseket. a) Az első öt (1-től 5-ig) kijelentésre vonatkozóan jelölje a kijelentésnek megfelelő számot, és

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Felépítettünk egy modellt, amely dinamikus, megfelel a Lucas kritikának képes reprodukálni bizonyos makro aggregátumok alakulásában megfigyelhető szabályszerűségeket (üzleti ciklus, a fogyasztás simítottab

Részletesebben

A lecke célja... Korábbról ismert és új alapfogalmak, értelmezések. 10. hét Költségek és költségfüggvények rövid távon

A lecke célja... Korábbról ismert és új alapfogalmak, értelmezések. 10. hét Költségek és költségfüggvények rövid távon 10. hét Költségek és költségfüggvények rövid távon Számviteli és közgazdasági költségkategóriák. A költségek csoportosítása a termeléssel való viszony alapján. Rövid távú költség-függvények. Határköltség

Részletesebben

Fenntartható fejlődés és fenntartható gazdasági növekedés. Gyulai Iván 2013. november 20. Budapest

Fenntartható fejlődés és fenntartható gazdasági növekedés. Gyulai Iván 2013. november 20. Budapest Fenntartható fejlődés és fenntartható gazdasági növekedés Gyulai Iván 2013. november 20. Budapest A fenntartható fejlődés mítosza A jelen szükségleteinek kielégítése a jövő sérelme nélkül. A jelen szükségleteinek

Részletesebben

Környezetelemzés módszerei

Környezetelemzés módszerei MISKOLCI EGYETEM Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Számvitel Intézeti Tanszék Környezetelemzés módszerei Dr. Musinszki Zoltán A vállalkozás és környezete Közgazdasági

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

A ország B ország A ország B ország A ország B ország Külföldi fizetőeszköz hazai fizetőeszközben kifejezett ára. Mi befolyásolja a külföldi fizetőeszköz hazai fizetőeszközben kifejezett árát? Mit befolyásol

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem

Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem modellje az adós büntetésével Gazdaságpolitika Tanszék Budapesti Corvinus Egyetem Nyitott gazdaságok makroökonómiája 1. Bevezetés modellje az adós büntetésével Teljes piacok, Arrow-Debreu-értékpapírok

Részletesebben

KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK. Elérhetőség

KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK. Elérhetőség KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK Oktatók Csongrádi Gyöngyi Kiss Gabriella Dr. Nagy András Elérhetőség Hivatalos honlap http://www.bgf.hu/pszk /szervezetiegysegeink/oktatasiszervezetiegysegek

Részletesebben

«A» Energetikai gazdaságtan 1. nagy zárthelyi Sajátkezű névaláírás:

«A» Energetikai gazdaságtan 1. nagy zárthelyi Sajátkezű névaláírás: «A» Energetikai gazdaságtan Név: 1. nagy zárthelyi Sajátkezű névaláírás: Munkaidő: 90 perc Azonosító: Gyakorlatvezető: Vass Bálint Lipcsei Gábor Buzea Klaudia Zárthelyi hallgatói értékelése Mennyiség 1:kevés

Részletesebben

Ingatlanpiac és elemzése. 15-16. óra Ingatlanpiaci előrejelzés

Ingatlanpiac és elemzése. 15-16. óra Ingatlanpiaci előrejelzés Ingatlanpiac és elemzése 15-16. óra Ingatlanpiaci előrejelzés Horváth Áron ELTEcon Ingatlanpiaci Kutatóközpont eltinga.hu Ingatlanpiaci előrejelzés 1. Egyváltozós elemzés trend + ciklus + szezonalitás

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdálkodási és Menedzsment Intézet Vállalkozási finanszírozás kollokvium G Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes

Részletesebben

Növekedés válságban. Halpern László MTA KRTK Közgazdaság-tudományi Intézet. Növekedés 2013, Pivátbankár.hu Budapest, 2013. szeptember 18.

Növekedés válságban. Halpern László MTA KRTK Közgazdaság-tudományi Intézet. Növekedés 2013, Pivátbankár.hu Budapest, 2013. szeptember 18. Növekedés válságban Halpern László MTA KRTK Közgazdaság-tudományi Intézet Növekedés 2013, Pivátbankár.hu Budapest, 2013. szeptember 18. Válságok Gazdaságpolitika Növekedés 2 Válságok Adósság bank valuta

Részletesebben

Hírlevél 2012. szeptember

Hírlevél 2012. szeptember Hírlevél 1. szeptember 1 Hírlevél 1. szeptember START Tőkegarancia Zrt. Hírlevél 1. szeptember BELEHÚZTAK A JEREMIE KOCKÁZATI TŐKEALAPOK 37,5 %- ON A START ZRT. JEREMIE KOCKÁZATI TŐKEINDEXE A Start Zrt.

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)

HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés

Részletesebben

Közgazdaságtan - 5. elıadás

Közgazdaságtan - 5. elıadás Közgazdaságtan - 5. elıadás A termelés rövid távú költségei Bacsi, 5. ea. 1 A TERMELÉS KÖLTSÉGEI - RÖVID TÁV A termelés összes költsége: TC (Total cost) Két csoportra osztható: Állandó (fix) költségek:

Részletesebben

7. Hét. feladatok. Kis nyitott gazdaság: vám.

7. Hét. feladatok. Kis nyitott gazdaság: vám. 7. Hét feladatok Kis nyitott gazdaság: vám. Kidolgozott feladat Az általunk vizsgált kis nyitott gazdaságban az X termék iránti keresleti függvényt, valamint a termék kínálati függvényét 1. Mekkora lenne

Részletesebben

4. ábra: A GERD/GDP alakulása egyes EU tagállamokban 2000 és 2010 között (%) 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 2000 2001 2002 2003 Észtország Portugália 2004 2005 2006 2007 Magyarország Románia 2008

Részletesebben

Kiegészítő melléklet az Egyszerűsített éves beszámolóhoz 2010.01.01.-2010.12.31.

Kiegészítő melléklet az Egyszerűsített éves beszámolóhoz 2010.01.01.-2010.12.31. Adószám: 18617450-1-11 Bírósági bejegyzés száma: PK.65050/2008 Ister-Granum Korlátolt Felelősségű Európai Területi Együttműködési Csoportosulás 2500 Esztergom, Széchenyi tér 1. Kiegészítő melléklet az

Részletesebben

A vám gazdasági hatásai NEMZETKZÖI GAZDASÁGTAN

A vám gazdasági hatásai NEMZETKZÖI GAZDASÁGTAN A vám gazdasági hatásai NEMZETKZÖI GAZDASÁGTAN Forrás: Krugman-Obstfeld-Melitz: International Economics Theory & Policy, 9th ed., Addison-Wesley, 2012 A vám típusai A vám az importált termékre kivetett

Részletesebben

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Közgazdaságtan. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Közgazdaságtan. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc A termelési tényezők piaca 8. lecke A gazdasági szereplők piaci kapcsolatai

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. február 20. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. február 20. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

A pénz időértéke. Kifejezi a pénz hozamát ill. lehetővé teszi a különböző időpontokban rendelkezésre álló pénzek összeadhatóságát.

A pénz időértéke. Kifejezi a pénz hozamát ill. lehetővé teszi a különböző időpontokban rendelkezésre álló pénzek összeadhatóságát. A pénzeszközökben bekövetkezett változás kimutatása a változást előidéző vállalati tevékenység szerinti bontásban cash flow (PÉNZÁRAMLÁS) kimutatás A tényleges pénzmozgások figyelembe vétele 1. Szokásos

Részletesebben

KIEGÉSZÍTŐ MELLÉKLET 2014. december 31.

KIEGÉSZÍTŐ MELLÉKLET 2014. december 31. Marcali Mentők Közalapítvány 8700 Marcali, Kossuth L. u. 41. KIEGÉSZÍTŐ MELLÉKLET 2014. december 31. Marcali, 2015. március 26. képviselő A közzétett adatok könyvvizsgálattal nincsenek alátámasztva. I.

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

A logisztikai teljesítményelvárások kijelölése - Vevıszegmentálás ÚTMUTATÓ 1

A logisztikai teljesítményelvárások kijelölése - Vevıszegmentálás ÚTMUTATÓ 1 A logisztikai teljesítményelvárások kijelölése - Vevıszegmentálás ÚTMUTATÓ 1 A programozást elvégezték és a hozzá tartozó útmutatót készítették: dr. Gelei Andrea és dr. Dobos Imre, egyetemi docensek, Budapesti

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 2. hét KERESLET, KÍNÁLAT, EGYENSÚLY KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. KERESLET, KÍNÁLAT, EGYENSÚLY Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat 1

Részletesebben

A közlekedési projektek és programok költség-haszon vizsgálati módszerei az EU elvárásaival összhangban

A közlekedési projektek és programok költség-haszon vizsgálati módszerei az EU elvárásaival összhangban 31. Útügyi Napok Magyarország közútjai és az EU követelmények A közlekedési projektek és programok költség-haszon vizsgálati módszerei az EU elvárásaival összhangban Dr. MONIGL János egyetemi magántanár

Részletesebben

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) VÁLLALATI PÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) Összeállította: Naár János okl. üzemgazdász, okl. közgazdász-tanár Részvény: olyan lejárat nélküli értékpapír, amely a társasági tagnak: 1) az alaptőke

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

FEJLŐDÉSGAZDASÁGTAN. Készítette: Szilágyi Katalin. Szakmai felelős: Szilágyi Katalin. 2011. január

FEJLŐDÉSGAZDASÁGTAN. Készítette: Szilágyi Katalin. Szakmai felelős: Szilágyi Katalin. 2011. január FEJLŐDÉSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Pénzügy menedzsment. Hosszú távú pénzügyi tervezés

Pénzügy menedzsment. Hosszú távú pénzügyi tervezés Pénzügy menedzsment Hosszú távú pénzügyi tervezés Egy vállalat egyszerűsített mérlege és eredménykimutatása 2007-ben és 2008-ban a következőképpen alakult: Egyszerűsített eredménykimutatás (2008) Értékesítés

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

A BEFEKTETŐ-VÉDELMI ALAP IGAZGATÓSÁGÁNAK

A BEFEKTETŐ-VÉDELMI ALAP IGAZGATÓSÁGÁNAK Nyilvános A BEFEKTETŐ-VÉDELMI ALAP IGAZGATÓSÁGÁNAK 24/2010. (XI. 4.) számú határozata A Beva igazgatósága megvitatta a kockázatarányos díjrendszer bevezetésére vonatkozó döntés nyomán elkészített előterjesztést,

Részletesebben

1. gyakorlat. Oktatási segédlet hallgatók számára

1. gyakorlat. Oktatási segédlet hallgatók számára másik termék mennisége. gakorlat Transzformációs görbe, mikroökonómiai optimumfeladatok megoldásának alapmódszere Oktatási segédlet hallgatók számára Eg fontos közgazdasági alapmodell TLH, alternatív költség,

Részletesebben

Miért készítünk modellt Hogyan készítünk modellt. Dolgozat Házi feladatok Esettanulmányok MATLAB. Kétidőszakos modell. Kétidőszakos modell

Miért készítünk modellt Hogyan készítünk modellt. Dolgozat Házi feladatok Esettanulmányok MATLAB. Kétidőszakos modell. Kétidőszakos modell Követelmények Dolgozat Házi feladatok Esettanulmányok MATLAB Kétidőszakos modell Miért készítünk modellt Hogyan készítünk modellt Kétidőszakos modell Tematika a honlapon, www.makrokurzusok.wordpress.com

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben