EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL"

Átírás

1 EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL Stagl Ádám I. évfolyam, pénzügy és számvitel szak Kaposvári Egyetem Gazdaságtudományi Kar, Kaposvár Matematika és Fizika Tanszék Konzulens: Dr. Kövér György egyetemi docens ÖSSZEFOGLALÓ A dolgozat célja a Ramsey féle növekedési modell vizsgálata. A modell optimalitási kritériuma egy véges időszakon elért diszkontált értékének maximalizálása. A modellt három egymástól eltérő feladat elemzésére alkalmaztam. A évenkénti relatív változásának elemzésével hosszú távú nyolc éves periódust és két egymást követő rövidebb négy éves periódus modelljét készítettem el. Létrehoztam egy alacsony induló tőkeállományú modellt, majd elemeztem az értékcsökkenés bevezetésének hatását a modellbe. Rámutattam, hogy megteremthető a Ramsey és Solow féle modellek közötti kapcsolat az egyensúlyi tőkeállomány nagyságának meghatározásán keresztül. Az elemzés kitér a technológiai fejlettség és az induló befektetett tőke változásának hatásaira, valamint a évenkénti változására tett kritériumok modellt befolyásoló hatásaira. A modell matematikai eszköze az MS Excel Solver modulja, melynek a korlátaira is rámutattam. BEVEZETÉS A közgazdaságtan szakirodalma bőséges kínálatot nyújt matematikai modellek alkalmazásában. DEDÁK (2006) összefoglalja a növekedéssel foglalkozó modelleket. A legtöbb modell nem oldható meg analitikusan, ezért ezek numerikus vizsgálata szükséges. Viszont ha analitikusan megoldható a modell, akkor is érdemes kiszámítani numerikusan ellenőrzésképp. Összességében a numerikus eljárás elfogadott összetettebb modelleknél, melyek esetében analitikusan már nem jutunk eredményre. A dolgozat témájául szolgáló Ramsey féle növekedési modell változatosan használható fel közelmúltunk és napjaink makrogazdasági eseményeinek modellezésére ezért különösen aktuális a téma. ANYAG ÉS MÓDSZER TAYLOR és UHLIG(1990) által módosított Ramsey féle növekedési modell vizsgálata áll a dolgozat középpontjában. A modell ismertetése és a számításokra felhasznált első változata megtalálható KENDRICK, MERCADO és AMMAN (2006) munkájában. 1

2 A növekedési modell A kibocsátást tekintsük a tőkeállomány és a technikai haladás függvényének(1). Ez termelési függvény a széles körben használt Cobb-Douglas-féle alakja. Rendszerint szerepel a függvényben mind a tőke- mind a munkaerő-állomány. Az egyszerűség kedvéért a termelési függvény ebben a modellben csak a tőkeállományt tartalmazza. Y t = Θ K t α (1) ahol Y t = kibocsátás t időszakban Θ = a technológiai fejlettség paramétere K t = befektetett tőke nagysága t időszakban α = tőke kitevője a termelési függvényben A modell egyik jellegzetessége, hogy hosszabb, de véges időtartományra vonatkozik, melyet a vizsgálataink során nyolc véges időszakra osztunk. A tőkefelhalmozás képlete a következő: ahol C t = a a t időszakban. K t+1 = K t + Y t - C t (2) Vagyis a befektetett tőke a következő időszakban megegyezik a jelenlegi periódus és a termelés és különbségének összegével (2), mely megtakarításként vagy befektetésként jelentkezik. A megtakarítást ebben a modellben nem megtakarítási ráta segítségével fejezzük ki, mivel hosszabb időszakot vizsgálunk és közben a megtakarítási ráta értéke változhat. Az elértéktelenedést a modell első változatában figyelmen kívül hagytam. Ezek után a termelési függvény (1) behelyettesíthető a tőkefelhalmozás képletébe (2). K t+1 = K t + Θ K t α - C t (3) Hozzá kell tenni, hogy a modellben kezdeti feltételként meg kell határozni a befektetett tőkét mellyel a kezdeti periódusban rendelkezünk. K 0 adott. (4) A modell ezen felül tartalmaz egy végső feltételt is, mely tartalmaz egy fix tőkeösszeget, amit el kell érni, hogy a következő generáció is versenyképes maradjon a vizsgált időszak végeztével. K N K * (5) ahol K * = alsó korlát a szükséges tőke nagysághoz a végső időszakban, N. 2

3 Végül a modellnek van egy optimalizálási feladata. A vizsgálati időtartam során az egyes időszakokban történt hasznossági értékeit diszkontálja, a jelenértékek összegét maximalizálja. U(C t ) = C t (1-τ) (6) ahol U(C t ) = a hasznosság, amely a t időszak alatti függvénye τ = a hasznossági függvény paramétere A diszkontált hasznosságok összege pedig J = t U(C t ) (7) ahol J = a hasznosságok jelenértékének összege β = diszkontálási tényező. BARTUS és munkatársai (2005) összefoglalták a társadalmi diszkontráta meghatározásának módszertanát. Ezek után behelyettesítve a hasznossági függvényt (6) a (7) képletbe kapjuk J = t C t (1-τ) (8) Összességében, a modell tartalmaz egy maximalizálandó kritérium függvényt(8), a tőkefelhalmozási egyenletet(3) és a kezdő- és vég feltételeket (4), (5). A feladat az, hogy úgy válasszuk meg az egyes időszakok i értékeit, (C 0,C 1,,C N-1 )-t, hogy kritérium függvény(8) maximális értéket vegyen fel. Tehát a legfőbb probléma az egyes időszakok szintjének megválasztása, vagyis az egyensúly megtalálása a és befektetés között. Adott időszakban kisebb kisebb hasznossággal kecsegtet, viszont nagyobb megtakarítást és később magasabb tőkét, ami magasabb termelést eredményez. A modell nem tartalmazza külső erőforrás bevonását, sem az inflációt nem veszi figyelembe. Az MS Excel Solver A jól ismert táblázatkezelő program, az MS Excel, tartalmaz egy hatékony lineáris és nemlineáris problémamegoldó eljárást. Mivel az Excel felülete nagyon ismert és az optimalizálandó problémák megfogalmazása a kisebb feladatok esetében viszonylag egyszerű, ezért néha az Excel jobbnak bizonyul az optimalizálási feladatok megoldására mint más, nagyobb felkészültséget igénylő matematikai programok. Sőt, ha a modellünk elég egyszerű, nincs semmi előnye az Excel-lel szemben például a GAMS-nak, vagy MATLAB-nak, stb. 3

4 EREDMÉNYEK ÉS ÉRTÉKELÉSEK KENDRICK, MERCADO és AMMAN (2006) munkájában található növekedési modellt, melyet MS Excel környezetben valósítottak meg három különféle esetben alkalmaztuk. Az egyes esetekben a modell szükség szerinti módosítására is sor került. 1. Eset. A modell -centrikus elemzése 1.1 Az eredeti modell KENDRICK és munkatársai (2006) rámutattak a modell által szolgáltatott i adatok és a diszkonttényező kapcsolatára. A i értékek ugyanakkor további vizsgálatokra is lehetőséget kínálnak. Az 1. táblázatban megtalálhatjuk az eredeti modell induló és számított értékeit. A számítások induló értékei egyfelől a paraméterek (tau, bet, alpha, theta) melyek számértékei szakirodalmi becslésekre alapozva adhatunk meg, másfelől az induló tőkeállomány (7 egység) és az a tőkefeltétel (9,1 egység) melyet a vizsgálati időszak után a következő generációra kell hagynunk. Az 1. táblázatban a i értékek már azt a megoldást tükrözik, amely maximalizálja a diszkontált hasznosságok összegét. A leolvasható maximális érték 9,97 egység. David Kendric és Ruben Mercado által kidolgozott eredeti növekedési modell 1. táblázat Időszak Fogyasztás 0,347 0,351 0,355 0,358 0,361 0,364 0,366 0,368 0,370 Kibocsátás 0,570 0,576 0,582 0,588 0,594 0,599 0,605 0,611 0,616 Tőkeállomány 7,000 7,223 7,448 7,676 7,906 8,138 8,373 8,612 8,854 9,100 Hasznosság 1,178 1,161 1,144 1,126 1,108 1,090 1,072 1,054 1,035 Számítási paraméterek Tőkefeltétel: 9,100 Tau 0,5 Beta 0,98 Alpha 0,33 Theta 0,3 Összes hasznosság: 9, táblázat Az eredeti növekedési modell i adataiból számított relatív változás Időszak Relatív változás 1,012 1,011 1,010 1,008 1,008 1,007 1,006 1,005 4

5 A és relatív változása 0,375 0,370 0,365 0,360 0,355 0,350 0,345 0,340 0, időszak 1,014 1,012 1,01 1,008 1,006 1,004 1,002 1 relatív változás relatív változás Forrás: a 2. táblázat alapján, saját munka, ábra: Az eredeti növekedési modell i adatai és a relatív változások. Az eredeti modell i adataiból rajzolt görbe növekvő, ami a lakosság szempontjából tekintve kedvező, ugyanakkor konkáv. Azt jelenti számunkra, hogy növekszik ugyan a, de a növekedés mértéke egyre szerényebb. SÁGI (2005) kifejti, hogy a társadalmi stabilitás feltétele, hogy az állampolgárok észleljék a társadalmi-gazdasági trendeket és ezekkel elégedettek legyenek. Az észlelt relatív változásokat és a viszonyítási csoportokat is egyaránt fontosnak tartja az elégedettség szempontjából. Az 1. ábrán bemutatjuk, hogy a relatív változása a teljes vizsgálati idő alatt csökkenő. A i görbe alakját a matematikai modell optimális megoldása amely maximalizálta az összes hasznosságot alakította konvexre. KORNAI (1995) tanulmányában részletes történelmi elemzését adja annak, hogy Magyarországon a politikai szférában bekövetkezett rendszerváltást követően is folyamatosan jellemezte az elmúlt harminc év fejlődését a lakosság anyagi jólétének a prioritása, erős paternalista jóléti állam. Ez a folyamat Kornai tanulmányát követően is folytatódott. Vizsgáljuk meg tehát azt, hogy modell hogyan módosítható. 1.2 Módosított modell: A relatív változása ne csökkenjen A modell úgy módosítjuk, hogy a relatív változása ne csökkenjen. A MS Excel Solver korlátozó feltételei közé megadjuk azt, hogy az egymást követő időszakok i adataiból számítható relatív növekedés legyen nagyobb, vagy egyenlő 1,02, majd ezt követően 1,04. A módosított modell optimalizálása után kapott i adatokat a 2. ábrán találjuk. A modell továbbra is az előzőleg adott induló tőkeállománnyal és záró tőkefeltétellel optimalizálta a i adatokat. Megfigyelhető, hogy azon az áron érte el a relatív változás szinten tartását, hogy az első néhány periódus i adatát jelentősen le kellett csökkenteni. Ezzel egy időben a második félidőben a i adatok magasabbak lettek. A modell eredményezett egy olyan i görbét, amely hosszú távú társadalmi előrelátást, megegyezést igényel. 5

6 A három modell alapján 0,440 0,420 0,400 0,380 0,360 0,340 0,320 0, időszak Eredeti modell Relatív változás=1,02 Relatív változás=1,04 Forrás: a 2. táblázat alapján, saját munka, ábra: Módosított növekedési modell. Fogyasztási adatok előírt relatív változások esetén. KORNAI (1995) tanulmányából és az azóta eltelt időszak tapasztalataiból ugyanakkor az derül ki, hogy ilyen hosszú távú gondolkodásmódra nem feltétlenül lehet számítani. A vizsgált időtartomány nyolc időszak, oszthatjuk két négyes intervallumra, mint két kormányzati időszak, félidőben egy politikai választás. Tapasztalataink szerint az első félidő kormánya nem vállalja, hogy kormányzása alatt olyan alacsony legyen a, mint amit a 2. ábra 1.04 relatív változású egyenese ábrázol. Bár lendületes a növekedése, jóval alacsonyabb, mint amit az eredeti modell konkáv görbéje lehetővé tesz. A félidőben bekövetkező választást elvesztené, viszont az utódja átvenne egy olyan gazdasági pályát, ahol a nem csak erősen növekszik, de már abszolút értékben is magas. Arra számíthatunk tehát, hogy a gondolatkísérletben szereplő első félidei kormány inkább a konkáv görbét választja, amely a második félidőre a pangás korszakát jelenti. Érdemes itt felhívni arra a figyelmet, hogy az összhasznosság maximuma csökkenhet, ha az eredeti modellt további korlátozó feltételekkel egészítjük ki, mint ahogyan ezt tettük a 2. ábra adatainak kiszámításakor. A 3. táblázatban láthatjuk, hogy valóban, minél inkább eltér a i görbe az eredeti modell által szolgáltatott konvex görbétől, annál kisebb a számított összhasznosság. 3. táblázat Az összes hasznosság értéke csökkenhet, ha a modellt további korlátozó feltételekkel egészítjük ki. Modell Összes hasznosság: Eredeti modell Relatív változás=1,02 Relatív változás=1,04 9,970 9,968 9,962 6

7 1.3 Módosított modell: A pangás elkerülése a második félidőben Az előzőekben láttuk, hogy a rövid távú, választó-centrikus kormányzati politika számára nem elfogadható a alacsony szintről való indítása, mert a lakosság csak a második kormány alatt él át valódi prosperitást. A modellt úgy módosítottam, hogy a kezdeti időszakban ne legyen károsan alacsony a, de a második kormányzati periódusban legyen elérhető erőteljesebb növekedés. Az eredeti modell konkáv görbéje az utolsó (nyolcadik) időszakban már csak fél százaléknyi növekedést mutat. Az MS Excel Solver korlátozó feltételét úgy adtam meg, hogy csak a hatodik, hetedik, nyolcadik időszakban legyen a növekedés előre megadott mértékű. Az első öt időszakra ilyen korlátozó feltételt most nem írtam elő. A 3. ábrán látható az eredeti konkáv i görbe mellett annak a modellnek az eredménye, ahol az utolsó három időszakra korlátozó feltétel volt az, hogy a relatív növekedés legyen legalább akkora, mint a legelső időszakban. A második kormányzati ciklusban módosított görbe alakja jól mutatja, hogy egy későbbi dinamikusan növekvő ért a jelenben fizetni kell. A második kormányzati ciklus első időszaka a visszaesését szemlélteti. A három modell alapján 0,380 0,375 0,370 0,365 0,360 0,355 0,350 0,345 0, időszak Eredeti modell Két ciklusú modell Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell. Fogyasztási adatok előírt relatív változások esetén. 2. Eset. Alacsony induló tőkeállomány, fejlett technológia A modell induló adatait és korlátozó feltételeit úgy adtam meg, hogy egy szélsőséges esetet is megvizsgálhassak. Az induló tőkeállományt alacsonyra (2 egység), a technológiai fejlettséget reprezentáló Θ értékét magasra (1 egység) választottam. Megnöveltem a tőke kitevőjét is. A záró tőkeállomány értékét nem változtattam meg. 7

8 A modell optimalizálása során az MS Excel Solver nem talált megoldást. Mivel a hasznosságmaximalizálás, mint kritérium változatlanul szerepel a modellben, olyan megoldásra tett kísérletet a Solver, amelyben a meghaladta a kibocsátást. A számítások elvégzését a negatív értékek megjelenése lehetetlenné tette. Azt a kiegészítő korlátozó feltételt adtam meg, hogy: a ne haladja meg a kibocsátást. A 4. táblázatban találhatjuk az optimalizált modellt. A 4.ábrán pedig láthatjuk a és a relatív változás görbéjét. A görbék értékelésekor megállapíthatjuk, hogy a céltőke elérhető a 9. időszak előtt a gyors növekedésnek köszönhetően, ugyanakkor a relatív változása ilyen látványos növekedés esetén is csökkenő lehet. 4. táblázat Alacsony induló tőkeállomány, fejlett technológia. Időszak Fogyasztás 0,335 0,531 0,785 1,107 1,508 2,008 2,634 3,017 3,017 Kibocsátás 1,414 1,755 2,074 2,365 2,617 2,821 2,962 3,017 3,017 Tőkeállomány 2,000 3,079 4,303 5,592 6,850 7,959 8,772 9,100 9,100 9,100 Hasznosság 1,157 1,428 1,702 1,981 2,266 2,561 2,875 3,016 2,955 Számítási paraméterek Tőkefeltétel: 9,100 tau 0,5 beta 0,98 alpha 0,5 theta 1 Összes hasznosság: 19,942 A és relatív változása 3,500 3,000 2,500 2,000 1,500 1,000 0,500 0, ,800 1,600 1,400 1,200 1,000 0,800 0,600 0,400 0,200 0,000 relatív változás időszak relatív változás Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell: Alacsony induló tőkeállomány, fejlett technológia. Fogyasztási adatok előírt relatív változások esetén. 8

9 3. Eset. A modell kiegészítése az értékcsökkenés figyelembevételével KENDRICK, MERCADO és AMMAN (2006) munkájában található növekedési modell nem tartalmaz értékcsökkenést. A tradicionális Solow modell az értékcsökkenés figyelembevételével határozza meg a tőkeállomány egyensúlyi értékét (MANKIW, 2005). Bár a Ramsey és Solow modell eltér egymástól, az értékcsökkenés bevezetését érdemes a modellünkben elvégezni.. Az értékcsökkenés a tőkeállomány felhalmozódási ütemét csökkenti, a kibocsátásból nagyobb arányban kell megtakarítani, kevesebb ra van lehetőség, ha a befejező időszakra előírt tőkefeltételt teljesíteni kívánjuk. Az értékcsökkenés három különböző értékével optimalizáltam a módosított modellt. 10%, 5% és 3% mértékét vettem számításba. Az induló (7 egység) és záró tőkeállomány (9,1 egység) azonos az eredeti modell adataival. A technikai fejlettséget reprezentáló Θ értékét 0,5-re növeltem, mivel csak nagyon alacsony értékcsökkenési adatok mellett vált elérhetővé a záró tőkeállomány feltétele. A i adatok számított értékeit az 5. táblázat tartalmazza. Az 5. ábrán nyomon követhetjük a alakulását a három optimalizált modell esetén. Megfigyelhető, hogy a záró időszak tőkefeltételének teljesítési kényszere azt eredményezi, hogy a legmagasabb értékcsökkenés esetén csak csökkenő, alacsony mellett teljesíthető. 5. táblázat Az optimalizált modellek i adatai értékcsökkenés esetén Időszak Ért. Csökkenés 0,478 0,453 0,429 0,405 0,381 0,357 0,335 0,312 0,291 10% Ért. Csökkenés 0,674 0,703 0,732 0,759 0,785 0,810 0,834 0,857 0,880 5% Ért. Csökkenés 0,705 0,763 0,824 0,884 0,947 1,012 1,081 1,152 1,225 3% A három értékcsökkenési százalék esetén 1,400 1,200 1,000 0,800 0,600 0,400 0,200 0, időszak Ért. Csökkenés 10% Ért. Csökkenés 5% Ért. Csökkenés 3% Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell: Az értékcsökkenés bevezetése. A i adatok három különböző értékcsökkenés esetén 9

10 A tőkeállomány számított értékeit a 6. táblázat tartalmazza. A 6. ábrán a tőkeállomány alakulását követhetjük nyomon a három optimalizált modell esetén. Megfigyelhető, hogy a záró időszak tőkefeltételét mind a három értékcsökkenés esetén teljesíteni lehet, ugyanakkor a görbék jellege teljesen eltérő. Konvex és konkáv eset is megfigyelhető. Az optimalizált modellek i adatai értékcsökkenés esetén 6. táblázat Időszak Értékcsökkenés 10% 7,000 7,145 7,314 7,506 7,721 7,957 8,214 8,491 8,787 9,100 Értékcsökkenés 5% Értékcsökkenés 3% 7,000 7,299 7,582 7,848 8,098 8,331 8,547 8,748 8,932 9,100 7,000 7,408 7,783 8,121 8,418 8,669 8,869 9,011 9,090 9,100 A tőkeállomány három értékcsökkenési százalék esetén 9,500 9,000 8,500 tőkeállomány 8,000 7,500 7,000 6,500 6, időszak Ért. Csökkenés 10% Ért. Csökkenés 5% Ért. Csökkenés 3% Forrás: modell optimalizálás alapján, saját munka, ábra: Módosított növekedési modell: Az értékcsökkenés bevezetése. A tőkeállomány számított adatai három különböző értékcsökkenés esetén 10

11 A Ramsey és Solow modell eltéréseinek ellenére tehetünk egy kísérletet arra, hogy a Solow féle egyensúlyi tőkeállomány mértékét meghatározzuk. MANKIW (2005) alapján az egyensúlyi tőkeállományra felírható * k = f ( k ) ahol k * = az egyensúlyi tőkeállomány s = megtakarítási ráta δ = értékcsökkenés s δ A meghatározható egyensúlyi tőkeállomány értékcsökkenés esetén (9) 7. táblázat Minimális megtakarítási ráta Átlagos megtakarítási ráta Ért. Csökkenés 10% Ért. Csökkenés 5% Ért. Csökkenés 3% 8,44 181,46 552,58 14,61 244, ,82 A három értékcsökkenést tartalmazó modell megtakarítási rátája az optimalizálást követően meghatározható. Azonban az a Ramsey modellnek megfelelően minden egyes időszakra (0-8) más-más. A megtakarítási ráták közül kiválasztható a minimális érték, ennek a felhasználásával adódik a legkisebb egyensúlyi tőkeállomány (7. táblázat). Mivel a megtakarítási ráta folyamatosan változik, az átlagos értékét is figyelembe vettem az egyensúlyi tőkeállomány meghatározásához. A 7. táblázatból megállapítható, hogy az értékcsökkenést tartalmazó modellek egyensúlyi tőkeállománya csak akkor nem éri el a 9,1 egységnyi értéket, amely a záró tőkefeltétel, ha az értékcsökkenés 10% és az időszak minimális megtakarítási rátájával számolunk. Minden más esetben eléri. KÖVETKEZTETÉSEK ÉS JAVASLATOK A vizsgált növekedési modell tanulmányozása alapján megállapítható, hogy a modell alkalmas arra, hogy megfelelő módosításokkal, korlátozó feltételekkel úgy alakítsuk, hogy valós tapasztalatokkal egybevethető eredményeket szolgáltassanak. Alkalmasnak bizonyult a modell arra, hogy két politikai cikluson keresztül ívelő, hosszú távú, tartós növekedést tükrözzön, illetve sikeresen modelleztük a rövid távú, választó-centrikus szemléleten alapuló politikát. Az értékcsökkenés bevezetésével lehetővé vált a Ramsey és Solow modellek együttes vizsgálata. Az MS Excel Solver használatában nehézségek mutatkoztak mind az alacsony induló tőkeállomány adattal indított, mind az értékcsökkenéssel kiegészített modellek optimalizálása esetén. Kiderült, hogy rendkívül fontos az optimalizálás végeredményeként meghatározásra kerülő i adatok induló értékének megválasztása. A Solver erre nagyon érzékeny, az optimalizálás folyamata optimum érték meghatározása nélkül fejeződhet be. 11

12 IRODALOMJEGYZÉK (1) Kendrick, D. A., Mercado, P., R., Amman, H., M.: Computational economics Princeton University Press (2) Mankiw, N., G.: Makroökonómia, Osiris Kiadó, Budapest, (3) Sági, M.:A lakossági elégedettség alakulása. TÁRKI monitor jelentések Budapest 2006, szerk Szivós, P., Tóth, I., Gy (4) Bartus, G., Monostori K., Szabó K.: A fejlesztéspolitikai intézkedések teljes társadalmi költségének becslése. TÁRKI, Budapest, (5) Kornai J.: Négy jellegzetesség. Közgazdasági szemle, XLII évf., sz (6) Taylor J. B., Uhlig H.: "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods", Journal of Business and Economic Statistics, , 1-17 (7) Dedák I.:A megtakarítások és a növekedés kapcsolata egy kis nyitott gazdaságban, a globalizálódó világban. Gazdasági növekedés Magyarországon (szerk.: Dombi Ákos) Műegyetemi Kiadó

5. el adás. Solow-modell I. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem

5. el adás. Solow-modell I. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem I. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? Hogyan hat a skális politika a gazdaságra? Mi a pénz? Milyen költségei vannak az inációnak? Hogyan hat a monetáris politika

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az

Részletesebben

5. szeminárium Solowl I.

5. szeminárium Solowl I. Makroökonómia szeminárium 5. szeminárium Solowl I. Révész Sándor Makroökonómia Tanszék BCE 2013. március 2. Alapegyenletek Termelési függvény: Állandó mérethozadék: Y = F (K, L) zy = F (zk, zl) Y /L =

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

GAZDASÁGI NÖVEKEDÉS I.

GAZDASÁGI NÖVEKEDÉS I. Gazdasági növekedés I. 1 IGAZ-HAMIS ÁLLÍTÁSOK GAZDASÁGI NÖVEKEDÉS I. 1. Ha a gazdaság az aranyszabály szerinti tőkénél nagyobb tőkemennyiséggel indul, a megtakarítási ráta nőni fog minden más tényező változatlansága

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Solow-modell II. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Jöv héten dolgozat!!! Reál GDP növekedési üteme (forrás: World Bank) Reál GDP növekedési üteme (forrás: World Bank) Mit tudunk

Részletesebben

MAKROÖKONÓMIA 4. szemináriurm Solow I.

MAKROÖKONÓMIA 4. szemináriurm Solow I. MAKROÖKONÓMIA 4. szemináriurm Solow I. Révész Sándor Tanszék 2012. március 18. Alapegyenletek Termelési függvény: Állandó mérethozadék: Y = F (K, L) zy = F (zk, zl) Egy munkásra jutó termelés: Y /L = F

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián   Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián e-mail: k.krisztian@efp.hu Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Irodalom Tankönyv: Jack Hirshleifer Amihai Glazer David Hirshleifer:

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA február 14. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS

PRÓBAÉRETTSÉGI VIZSGA február 14. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINT PRÓBAÉRETTSÉGI VIZSGA MEGOLDÓKULCS 2015. február 14. STUDIUM GENERALE KÖZGAZDASÁGTAN SZEKCIÓ I. Választásos,

Részletesebben

Szabó-bakoseszter. Makroökonómia. Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe

Szabó-bakoseszter. Makroökonómia. Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe Szabó-bakoseszter Makroökonómia Árupiacrövidtávon,kiadásimultiplikátor, adómultiplikátor,isgörbe Számítási és geometriai feladatok 1. feladat Tételezzük fel, hogy az általunk vizsgált gazdaságban a gazdasági

Részletesebben

FELVÉTELI DOLGOZAT MEGOLDÓKULCS KÖZGAZDASÁGI ELEMZŐ MESTERSZAK NEMZETKÖZI GAZDASÁG ÉS GAZDÁLKODÁS MESTERSZAK. 2012. május 22.

FELVÉTELI DOLGOZAT MEGOLDÓKULCS KÖZGAZDASÁGI ELEMZŐ MESTERSZAK NEMZETKÖZI GAZDASÁG ÉS GAZDÁLKODÁS MESTERSZAK. 2012. május 22. FELVÉTELI DOLGOZAT MEGOLDÓKULCS KÖZGAZDASÁGI ELEMZŐ MESTERSZAK NEMZETKÖZI GAZDASÁG ÉS GAZDÁLKODÁS MESTERSZAK 2012. május 22. Budapesti Műszaki és Gazdaságtudományi Egyetem Gazdaság- és Társadalomtudományi

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens

Mikroökonómia előadás. Dr. Kertész Krisztián főiskolai docens Mikroökonómia előadás Dr. Kertész Krisztián főiskolai docens k.krisztian@efp.hu Árrugalmasság A kereslet árrugalmassága = megmutatja, hogy ha egy százalékkal változik a termék ára, akkor a piacon hány

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Költségvetési egyenes Költségvetési egyenes = költségvetési korlát: azon X és Y jószágkombinációk

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Üzemtan

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Üzemtan Gazdálkodási modul Gazdaságtudományi ismeretek I. Üzemtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Döntést megalapozó eljárások A döntéshozatal eszközei 29. lecke Döntéshozatal eszközei

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Gyakorló feladatok a 2. zh-ra MM hallgatók számára

Gyakorló feladatok a 2. zh-ra MM hallgatók számára Gyakorló feladatok a. zh-ra MM hallgatók számára 1. Egy vállalat termelésének technológiai feltételeit a Q L K függvény írja le. Rövid távon a vállalat 8 egységnyi tőkét használ fel. A tőke ára 000, a

Részletesebben

A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük:

A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük: 1 feladat A belföldi és a külföldi gazdasági szereplőket az alábbi adatokkal jellemezhetjük: U i = D X,i D Y,i, ahol i = belföld,külföld Q X,belföld = K X,belföld Q X,külföld = K X,külföld Q Y,i = K 0,5,

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK 0611 ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM MIKROÖKONÓMIA I. FELELETVÁLASZTÓS KÉRDÉSEK

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút

Részletesebben

Gazdasági Információs Rendszerek

Gazdasági Információs Rendszerek Gazdasági Információs Rendszerek 1. előadás Bánhelyi Balázs Alkalmazott Informatika Tanszék, Szegedi Tudományegyetem 2009 A pénz időértéke Mit jelent a pénz időértéke? Egy forint (dollár, euró, stb.) ma

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter. 2011. február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

NEMZETKÖZI KÖZGAZDASÁGTAN Specifikus termelési tényezők, standard modell

NEMZETKÖZI KÖZGAZDASÁGTAN Specifikus termelési tényezők, standard modell NEMZETKÖZI KÖZGAZDASÁGTAN Specifikus termelési tényezők, standard modell Kiss Olivér Budapesti Corvinus Egyetem Makroökonómia Tanszék Van tankönyv, amit már a szeminárium előtt érdemes elolvasni! Érdemes

Részletesebben

MAKROÖKONÓMIA 2. konzultáció

MAKROÖKONÓMIA 2. konzultáció MAKROÖKONÓMIA 2. konzultáció Révész Sándor Makroökonómia Tanszék 2012. március 3. Révész Sándor (Makroökonómia Tanszék) Klasszikus modell - gyakorlat 2012. március 3. 1 / 14 1) Egy országban a rövid távú

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1211 ÉRETTSÉGI VIZSGA 2012. május 24. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM I. TESZTFELADATOK

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

Piaci szerkezet és erõ

Piaci szerkezet és erõ . Elõadás Piaci szerkezet és erõ Kovács Norbert SZE KGYK, GT A vállalati árbevétel megoszlása Gazdasági költség + gazdasági profit Számviteli költségek + számviteli profit Explicit költségek + elszámolható

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

1. A vállalat. 1.1 Termelés

1. A vállalat. 1.1 Termelés II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg

Részletesebben

a beruházások hatása Makroökonómia Gazdasági folyamatok időbeli alakulás. Az infláció, a kibocsátási rés és a munkanélküliség

a beruházások hatása Makroökonómia Gazdasági folyamatok időbeli alakulás. Az infláció, a kibocsátási rés és a munkanélküliség Makroökonómia Gazdasági folyamatok időbeli alakulás. Az infláció, a kibocsátási rés és a munkanélküliség 8. előadás 2010. 04.15. Az elemzés kiterjesztése több időszakra az eddigi keynesi modell és a neoklasszikus

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Elméleti gazdaságtan 11. évfolyam (Mikroökonómia) tematika

Elméleti gazdaságtan 11. évfolyam (Mikroökonómia) tematika Elméleti gazdaságtan 11. évfolyam (Mikroökonómia) tematika I. Bevezető ismeretek 1. Alapfogalmak 1.1 Mi a közgazdaságtan? 1.2 Javak, szükségletek 1.3 Termelés, termelési tényezők 1.4 Az erőforrások szűkössége

Részletesebben

NEMZETKÖZI KÖZGAZDASÁGTAN Kereskedelem

NEMZETKÖZI KÖZGAZDASÁGTAN Kereskedelem NEMZETKÖZI KÖZGAZDASÁGTAN Kereskedelem Kiss Olivér Budapesti Corvinus Egyetem Makroökonómia Tanszék Az alternetívaköltség Az alternatívaköltség megadja, hogy egy adott termék hány egységéről kell lemondanunk

Részletesebben

Tantárgyi program. II. évfolyam, Pénzügy számvitel szak levelezı képzés MAKROÖKONÓMIA (KÖZGAZDASÁGTAN II.) tantárgy 2012/2013. tanév, 1.

Tantárgyi program. II. évfolyam, Pénzügy számvitel szak levelezı képzés MAKROÖKONÓMIA (KÖZGAZDASÁGTAN II.) tantárgy 2012/2013. tanév, 1. Tantárgyi program II. évfolyam, Pénzügy számvitel szak levelezı képzés MAKROÖKONÓMIA (KÖZGAZDASÁGTAN II.) tantárgy 2012/2013. tanév, 1. félév 1. A tantárgy neve (csoportja): Makroökonómia (Közgazdaságtan

Részletesebben

Definíciószerűen az átlagidő a kötvény hátralévő pénzáramlásainak, a pénzáramlás jelenértékével súlyozott átlagos futamideje. A duration képlete:

Definíciószerűen az átlagidő a kötvény hátralévő pénzáramlásainak, a pénzáramlás jelenértékével súlyozott átlagos futamideje. A duration képlete: meg tudjuk mondani, hogy mennyit ér ez a futamidő elején. Az évi 1% különbségeket jelenértékre átszámolva ez kb. 7.4% veszteség, a kötvényünk ára 92,64 lesz. Látható, hogy a hosszabb futamidejű kötvényre

Részletesebben

A pénz időértéke. Vállalati pénzügyek III.-IV. előadások. A pénz időértéke (Time Value of Money)

A pénz időértéke. Vállalati pénzügyek III.-IV. előadások. A pénz időértéke (Time Value of Money) Vállalati pénzügyek III.-IV. előadások A pénz időértéke A pénz időértéke (Time Value of Money) Egységnyi mai pénz értékesebb, mint egységnyi jövőbeli pénz. A mai pénz befektethető, kamatot eredményez A

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

1. dolgozatra gyakorló feladatlap tavasz. Egy nemzetgazdaság főbb makroadatait tartalmazza az alábbi táblázat (milliárd dollárban):

1. dolgozatra gyakorló feladatlap tavasz. Egy nemzetgazdaság főbb makroadatait tartalmazza az alábbi táblázat (milliárd dollárban): Makroökonómia 1. dolgozatra gyakorló feladatlap 2013. tavasz 1. feladat. Egy nemzetgazdaság főbb makroadatait tartalmazza az alábbi táblázat (milliárd dollárban): Összes kibocsátás 10000 Folyó termelőfelhasználás

Részletesebben

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat

Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Szent István Egyetem Gazdaság- és Társadalomtudományi Kar Statisztika I. Matematika érettségi feladatok vizsgálata egyéni elemző dolgozat Boros Daniella OIPGB9 Kereskedelem és marketing I. évfolyam BA,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens

Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA. Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Közgazdaságtan műszaki menedzsereknek II. SGYMMEN227XXX SGYMMEN2073XA Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd

Részletesebben

Előadó: Dr. Kertész Krisztián

Előadó: Dr. Kertész Krisztián Előadó: Dr. Kertész Krisztián E-mail: k.krisztian@efp.hu A termelés költségei függenek a technológiától, az inputtényezők árától és a termelés mennyiségétől, de a továbbiakban a technológiának és az inputtényezők

Részletesebben

A fogyasztási kereslet elméletei

A fogyasztási kereslet elméletei 6. lecke A fogyasztási kereslet elméletei A GDP, a rendelkezésre álló jövedelem, a fogyasztás és a megtakarítás kapcsolata. Az abszolút jövedelem hipotézis és a keynesi fogyasztáselmélet. A permanens jövedelem

Részletesebben

1. feladat megoldásokkal

1. feladat megoldásokkal 1. feladat megoldásokkal Az általunk vizsgált gazdaságban két iparág állít elő termékeket, az és az. A termelés során mindekét iparág reprezentatív vállalata két termelési tényező típust használ egy iparágspecifikusat,

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium E Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv

Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv Képletek és összefüggések a 4. zárthelyi dolgozatra Solow-modell II., rövid táv 1. Solow-modell II. 1.1. Munkakiterjeszt tényez munkaer min ségét, képességeit is gyelembe vesszük E - munkakiterjeszt tényez

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1212 ÉRETTSÉGI VIZSGA 2013. május 27. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA I. TESZTFELADATOK

Részletesebben

1 Energetikai számítások bemutatása, anyag- és energiamérlegek

1 Energetikai számítások bemutatása, anyag- és energiamérlegek 1 Energetikai számítások bemutatása, anyag- és energiamérlegek Előzőleg a következőkkel foglalkozunk: Fizikai paraméterek o a bemutatott rendszer és modell alapján számítást készítünk az éves energiatermelésre

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén

Levelező hallgatóknak pótzh lehetőség: a félév rendje szerinti pótlási napok egyikén Közgazdaságtan II. Mikroökonómia SGYMMEN202XXX Tantárgyfelelős: dr. Paget Gertrúd főiskolai docens Tárgyelőadó: dr. Paget Gertrúd főiskolai docens Gyakorlatvezető: dr. Paget Gertrúd Tantárgyi leírás építőmérnök

Részletesebben

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő 2. szemináriumi feladatok Fogyasztás/ megtakarítás Több időszak Több szereplő 1. feladat Egy olyan gazdaságot vizsgálunk, ahol a fogyasztó exogén jövedelemfolyam és exogén kamat mellett hoz fogyasztási/megtakarítási

Részletesebben

Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdaságtan alapjai. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdaságtan alapjai Dr. Karajz Sándor Gazdaságelméleti 12. Előadás A gazdasági növekedés Gazdasági növekedés A gazdasági növekedés méréséhez a közgazdászok a bruttó nemzeti termék mutatóját használják.

Részletesebben

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata Borsa Béla FVM Mezőgazdasági Gépesítési Intézet 2100 Gödöllő, Tessedik S.u.4. Tel.: (28) 511 611 E.posta: borsa@fvmmi.hu A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

Részletesebben

Solow modell levezetések

Solow modell levezetések Solow modell levezetések Szabó-Bakos Eszter 25. 7. hét, Makroökonómia. Aranyszabály A azdasá működését az alábbi eyenletek határozzák me: = ak α t L α t C t = MP C S t = C t = ( MP C) = MP S I t = + (

Részletesebben

Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan

Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan Szabályozói tőkeköltség-számítás a távközlési piacon 2014. december 31-re vonatkozóan VEZETŐI ÖSSZEFOGLALÓ 2015. MÁJUS 14. 1 Vezetői Összefoglaló A dokumentum háttere és célja 1.1 A Deloitte Üzletviteli

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián

Mikroökonómia előadás. Dr. Kertész Krisztián Mikroökonómia előadás Dr. Kertész Krisztián k.krisztian@efp.hu A TERMELÉS KÖLTSÉGEI ÁRBEVÉTEL A termelés gazdasági költsége Gazdasági Explicit költség profit Gazdasági profit Számviteli költség Implicit

Részletesebben

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV

Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV Teljesítményprognosztizáló FELHASZNÁLÓI KÉZIKÖNYV Tartalomjegyzék 1. A szoftver feladata...3 2. Rendszerigény...3 3. A szoftver telepítése...3 4. A szoftver használata...3 4.1. Beállítások...3 4.1.1. Elszámolási

Részletesebben

Gyakorlófeladatok a neoklasszikus modellhez

Gyakorlófeladatok a neoklasszikus modellhez Gyakorlófeladatok a neoklasszikus modellhez Egy gazdaság a neoklasszikus modell leírása szerint működik. A megtakarítási függvény: S(i)=300+1000i, a beruházási függvény: I(i)=1800-500i. Egységnyi forgalomban

Részletesebben

A gazdasági növekedés és a relatív gazdasági fejlettség empíriája

A gazdasági növekedés és a relatív gazdasági fejlettség empíriája A gazdasági növekedés és a relatív gazdasági fejlettség empíriája Dr. Dombi Ákos (dombi@finance.bme.hu) Jövedelmi diszparitások a világban Stilizált tények: 1. Már a 20. század közepén is jelentős jövedelmi

Részletesebben

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek

Andó Mátyás Felületi érdesség matyi.misi.eu. Felületi érdesség. 1. ábra. Felületi érdességi jelek 1. Felületi érdesség használata Felületi érdesség A műszaki rajzokon a geometria méretek tűrése mellett a felületeket is jellemzik. A felületek jellemzésére leginkább a felületi érdességet használják.

Részletesebben

Debreceni Egyetem AGTC

Debreceni Egyetem AGTC Debreceni Egyetem AGTC GAZDÁLKODÁSTUDOMÁNYI ÉS VIDÉKFEJLESZTÉSI KAR Gazdaságelméleti Intézet Közgazdaságtan és Környezetgazdaságtan Tanszék 4032 DEBRECEN, Böszörményi út 138., 4015 DEBRECEN Pf.36. : (52)

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdálkodási és Menedzsment Intézet Vállalkozási finanszírozás kollokvium H Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes

Részletesebben

A vállalati pénzügyi döntések fajtái

A vállalati pénzügyi döntések fajtái A vállalati pénzügyi döntések fajtái Hosszú távú finanszírozási döntések Befektetett eszközök Forgóeszközök Törzsrészvények Elsőbbségi részvények Hosszú lejáratú kötelezettségek Rövid lejáratú kötelezettségek

Részletesebben

AZ EGÉSZSÉGESEN ÉS A FOGYATÉKOSSÁG NÉLKÜL LEÉLT ÉVEK VÁRHATÓ SZÁMA MAGYARORSZÁGON

AZ EGÉSZSÉGESEN ÉS A FOGYATÉKOSSÁG NÉLKÜL LEÉLT ÉVEK VÁRHATÓ SZÁMA MAGYARORSZÁGON AZ EGÉSZSÉGESEN ÉS A FOGYATÉKOSSÁG NÉLKÜL LEÉLT ÉVEK VÁRHATÓ SZÁMA MAGYARORSZÁGON DR. PAKSY ANDRÁS A lakosság egészségi állapotát jellemző morbiditási és mortalitási mutatók közül a halandósági tábla alapján

Részletesebben

Fejezet. Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások

Fejezet. Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Fejezet 2 Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Növekedés és fenntarthatóság. NFFT műhelykonferencia 2014. június 4. Bessenyei István

Növekedés és fenntarthatóság. NFFT műhelykonferencia 2014. június 4. Bessenyei István Növekedés és fenntarthatóság NFFT műhelykonferencia 2014. június 4. Bessenyei István Egy példa Rókák a Nyulak Szigetén Hová vezet ez: Falánk rókák és kevéssé szapora nyulak esetén mindkét populáció kihal.

Részletesebben

Terminológia. Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség, kereslet, kínálat, piac, munkanélküliség

Terminológia. Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség, kereslet, kínálat, piac, munkanélküliség Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Fejezet Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,

Részletesebben

Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások

Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Fejezet 2 Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,

Részletesebben

Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Intézet

Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Intézet Közgazdaságtan alapjai I. Dr. Karajz Sándor Gazdaságelméleti Elérhetőség e-mail: karajz.sandor@uni-miskolc.hu tel.:46-565111/1899 Kötelező irodalom Szilágyi Dezsőné dr. szerk: Közgazdaságtan alapja I.

Részletesebben

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: Kőhegyi Gergely, Horn Dániel. Szakmai felelős: Kőhegyi Gergely. 2010. június MIKROÖKONÓMIA I. B Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati

Részletesebben

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 0622 ÉRETTSÉGI VIZSGA 2007. május 24. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A javítás

Részletesebben

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

GAZDASÁGI ISMERETEK JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Gazdasági ismeretek emelt szint 1011 ÉRETTSÉGI VIZSGA 2011. május 23. GAZDASÁGI ISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A javítás során

Részletesebben

Vállalati pénzügyek előadás Beruházási döntések

Vállalati pénzügyek előadás Beruházási döntések Vállalati pénzügyek 1 5-6. előadás Beruházási döntések Beruházás Tárgyi eszközök beszerzésére, létesítésére fordított tőkekiadás Hosszú élettartamú eszközök keletkezése A beruházások jellemzői A beruházások

Részletesebben

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények

Bevezetés s a piacgazdaságba. gba. Alapprobléma. Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények A mikroökonómia és makroökonómia eltérése: Bevezetés s a piacgazdaságba gba Alapfogalmak, piaci egyensúly Mikroökonómia: elkülönült piaci szereplık, egyéni érdekek alapvetı piaci törvények Makroökonómia:

Részletesebben

Növényvédő szerek A B C D

Növényvédő szerek A B C D A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

NEMZETI JÖVEDELEM: TERMELÉS, ELOSZTÁS, FELHASZNÁLÁS

NEMZETI JÖVEDELEM: TERMELÉS, ELOSZTÁS, FELHASZNÁLÁS NEMZETI JÖVEDELEM: TERMELÉS, ELOSZTÁS, ELHASZNÁLÁS 0, 7 0,. Egy gazdaságban a termelési függvény: Y K L. A felhasznált tőkeállomány: S K, az árszínvonal:. A munkakínálat: L 409. Mekkora a a) a munkabér,

Részletesebben

A gazdasági növekedés mérése

A gazdasági növekedés mérése 3. lecke A gazdasági növekedés mérése Nominális és reál GDP, érték-, volumen- és árindex. Gazdasági növekedés és üzleti ciklusok. Hogyan mérjük a gazdasági növekedést? dinamikus elemzés: hány százalékkal

Részletesebben

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter február

MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter február MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Rariga Judit Globális külkereskedelem átmeneti lassulás vagy normalizálódás?

Rariga Judit Globális külkereskedelem átmeneti lassulás vagy normalizálódás? Rariga Judit Globális külkereskedelem átmeneti lassulás vagy normalizálódás? 2012 óta a világ külkereskedelme rendkívül lassú ütemben bővül, tartósan elmaradva az elmúlt évtizedek átlagától. A GDP növekedés

Részletesebben

Add Your Company Slogan Beruházási döntések a nettó jelenérték szabály alapján

Add Your Company Slogan Beruházási döntések a nettó jelenérték szabály alapján Add Your Company Slogan Beruházási döntések a nettó jelenérték szabály alapján Készítette: Vona Máté 2010-11-17 Felhasznált irodalom: Brealy-Myers: Modern vállalati pénzügyek 6. fejezet Előadás tartalma

Részletesebben