Dinamika inhomogén közegben:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dinamika inhomogén közegben:"

Átírás

1 Dinamika inhomogén közegben: A diffúziótól a járványterjedésig Juhász Róbert MTA Wigner FK, SZFI Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.1/28

2 Dinamika inhomogén közegben 1. Diffúzió Juhász R.; Competition between quenched disorder and long-range connections: A numerical study of diffusion; Phys. Rev. E 85, (2012) Juhász R.; The effect of asymmetric disorder on the diffusion in arbitrary networks; Europhys. Lett. 98, (2012) 2. Kontakt-folyamat Ódor G., Juhász R., Castellano C., Muñoz M. A.; Griffiths phases in the contact process on complex networks; AIP. Conf. Proc (2012) Juhász R., Ódor G., Castellano C., Muñoz M. A.; Rare region effects in the contact process on networks Phys. Rev. E (2012) Juhász R.; Disordered contact process with asymmetric spreading; Phys. Rev. E 87, (2013) Juhász R., Kovács I.; Infinite randomness critical behavior of the contact process on networks with long-range connections; preprint, 2013 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.2/28

3 Dinamika inhomogén környezetben 3. Kizárási folyamat Juhász R.; Mean field treatment of exclusion processes with random-force disorder; J. Stat. Mech. P11010 (2011) Juhász R., Ódor G.; Anomalous coarsening in disordered exclusion processes; J. Stat. Mech. P08004 (2012) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.3/28

4 Inhomogén rendszerek fizikája térbeli inhomogenitás, helyről-helyre változó, de időben állandó lokális paraméterek a homogén rendszerétől eltérő viselkedés lehet; lelassulás transzport-folyamatok fázisátalakulások a) átalakulás eltűnhet b) rendje megváltozhat c) kritikus exponensei megváltozhatnak d) hatványtörvények helyett logaritmikus dinamika (rendezetlen kvantummágnesek) Griffiths-effektus: paramágneses mintában ferromágneses domének; anomális időbeli korrelációk Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.4/28

5 Diffúzió inhomogén közegben elméleti leírás: inhomogén modellek; általában nem oldható meg egzaktul; numerikus vizsgálat nehéz egyik legegyszerűbb folyamat, ahol az inhomogenitás hatása vizsgálható: véletlen bolyongás dinamikai (sztochasztikus) folyamatok: véletlen bolyongás a konfigurációs térben közvetlen alkalmazás: diszlokációk mozgása szennyezett kristályokban mágneses doménfal mozgása rendezetlen anyagokban ionos vezetők heteropolimer átfűződése membrán-póruson hélix-gombolyag átmenet Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.5/28

6 Véletlen bolyongás véletlen környezetben folytonos idejű véletlen bolyongás, p ij átmeneti ráták reguláris rácson, homogén környezetben (p ij = p =áll.) normális diffúzió: x 2 (t) Dt helyfüggő, időben állandó, független, P n n 1 P n n+1 n 2 n 1 n n+1 n+2 véletlen átmeneti ráták Solomon; Kesten, Kozlov, Spitzer, 1975 egy dimenzióban potenciál értelmezhető: U n U n 1 ln(p nn 1 /p n 1n ) U n U l l t l e U l e konst l l ~ l 1/2 n x 2 (t) (ln t) 4 Sinai-féle diffúziós törvény (1982) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.6/28

7 d>1 d > 1, nem értelmezhető potenciál d-dimenziós, reguláris rács sorfejtés a rendezetlenség erőssége szerint Derrida&Luck 1983 perturbatív RG Luck 1983, Fisher 1984 a) d > d c = 2: normális diffúzió b) d = 2: logaritmikus korrekció, x 2 (t) Dt(1 + 4/ ln t) c) d < 2: szubdiffúzió Fraktálok, hálózatok (átmeneti gráf) a) homogén ráták esetén anomális diffúzió : x 2 (t) t 2/d w d w 2 b) rendezetlen ráták MC szimuláció 3d perkoláció: x 2 (t) (ln t) 2/ψ Pandey 1987 Sierpinski-szőnyeg: véges, nemuniverzális d w Majhofer&Cieplak 1988 Relevancia-kritérium? x 2 (t) =? Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.7/28

8 Rekurziós (renormálási) módszer (A) x(t) helyett: véges rendszer, τ i τ(l) végesméret-függés x(t) X i p ji τ (A) i X i átjutási idő i-ből A-ba p ji τ (A) j = K i i = 1,2,..., N határfeltétel: τ (A) i = 0, i A K i = 1 τ (A) 1 számítása: közbenső rácshelyek eliminálása p ij p ij K i K i Monthus&Garel 2010 τ (A) 1 = K 1 / P i A p 1i Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.8/28

9 Renormálási szabályok j i k p 0 ij = p ik p kj / P i p ki p ij = p ij + p 0 ij generálás összeadás K i = K i + p ik K k / P i p ki d = 1: csak generálás, analitikusan kezelhető végtelenül erős rendezetlenségi fixpont vonzó akármilyen gyenge rendezetlenség esetén is logaritmikus dinamikát tükrözi a ráták skálázása: ln( p 1L ) L 1/2 aszimmetria-paraméter is: ln( p 1L / p L1 ) L 1/2 d > 1: összeadás is; analitikusan nem kezelhető Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.9/28

10 Gyengén aszimmetrikus modell renormálása egyszerűsítések: 1. relevancia kérdéséhez elég gyenge rendezetlenséget tekinteni 2. τ helyett a ráták (aszimmetria-paraméter) nyomon követése szimmetrikus rendszer + aszimmetrikus, véletlen perturbáció: ǫ ij infinitezimálisan kicsi v.v., ǫ ij = 0 transzformációs szabályok: p ij /p ji 1 + ǫ ij generálás: ǫ 0 ij = ǫ ik + ǫ kj p 0 ij = p ikp kj / P i p ki összeadás: p ij ǫ ij = p ij ǫ ij + p 0 ij ǫ0 ij p ij = p ij + p 0 ij vezető rendben pij = p ji ekvivalens ellenállás-hálózat rij 1/p ij ellenállásokkal pij r ij Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.10/28

11 . Speciális hálózatok Sokaság: rögített, véges hálózat, rij = 1 f(ǫ ij ), ǫ ij = 0, ǫ 2 ij = α (infinitezimálisan kicsi állandó) a hálózat redukálása két (a és b) vertexre; ǫab = 0, ǫ 2 ab =? a b a b speciális hálózat-osztály: redukálható 2-es fokszámú csúcsok egymás utáni eliminációjával a) generálás: r = r 1 + r 2 ǫ = ǫ 1 + ǫ 2 soros b) összeadás: r 1 = r r 1 2 r 1 ǫ = r 1 1 ǫ 1 + r 1 2 ǫ 2 párhuzamos ǫ1 és ǫ 2 mindig függetlenek: ǫ 1 ǫ 2 = 0 ǫ 2 ij = α r ij Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.11/28

12 Általános hálózat n > 2 fokszámú csúcs eliminálása: n(n 1)/2 él rátái korrelálttá válnak ǫ 2 ij α r ij lokálisan két vertexre redukálva teljesül tetszőleges hálózatban! bizonyítás: ǫ 2 ab = α r ab 1) teljes gráf tetszőleges gráf (p ij = 0) 2) teljes indukció: N méretű hálózat kibővítése: N N + 1 új vertex eliminációja: N + 1 N JR, Europhys. Lett. 98, (2012) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.12/28

13 Következmények ǫ 2 ab = α r ab Az effektív aszimmetria (rendezetlenség) gyengül, ha a kétpont-ellenállás az l távolság csökkenő függvénye. Stabilitás az aszimmetrikus perturbációval szemben. Megváltozott dinamikai viselkedés, ha a kétpont-ellenállás l-lel növekszik. rab (l) l ζ ζ: ellenállás-exponens ζ < 0: gyenge rendezetlenség irreleváns ζ > 0: releváns ln( p ab / p ba ) = ǫ ab r ab l ζ/2 logaritmikus dinamika, ψ 0 = ζ/2 véges erősségű rendezetlenség: ψ 0 ψ reguláris d-dimenziós rács: rab (l) l ζ + const a) d > 2: ζ = 2 d < 0 b) d = 2: ζ = 0 ( r ab (l) ln l) c) d = 1: ζ = 1 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.13/28

14 Numerikus vizsgálat fraktálok: ζ = dw d f átjutási idő numerikusan számítható Sierpinski-háromszög: ζ = ln(5/3) ln 2 ln{ρ[ln(τ/τ 0 )]L ψ } ln[ρ(lnτ)] lnτ 250 L=2049 L=4097 L=8193 L=16385 L=32769 L=65537 ψ a ráták eloszlásától független csak a fraktálra jellemző ln(τ/τ 0 )L -ψ 10 Sierpinski (2) ln τ L ψ 2d perkoláció 0.46(2) 3d perkoláció 0.63(1) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.14/28

15 Numerikus vizsgálat hierarchikus rombusz-rács: ζ = L d w /τtyp (1+5.28/lnτ typ ) 0.1 1/lnτ typ 0.2 logaritmikus korrekció: L d w Dτ typ (1 + a/ ln τ typ ) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.15/28

16 Relevancia-kritérium ζ < 0: rendezetlenség irreleváns ζ = 0: logaritmikus korrekció ζ > 0: releváns (ln τ l ψ ) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.16/28

17 A kontakt-folyamat egyszerű járványterjedési modell (Harris, 1974) rács, hálózat; vertexek két állapota: aktív/inaktív (fertőzött/egészséges) folytonos idejű Markov-folyamat a következő átmenetekkel: 1. aktív rácshelyek aktiválják szomszédaikat λ rátával λ λ 2. aktív rácshelyek µ rátával inaktívvá válnak (µ = 1) µ Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.17/28

18 Fázisok fázisátalakulás kontroll-paraméter: λ rendparaméter: az aktív rácshelyek hányada az állandósult állapotban (ρ) λ < λc : inaktív fázis, ρ = 0 (abszorbeáló állapot) λ > λ c : aktív fázis, ρ = ρ(λ) > 0 λ = λc pontban folytonos fázisátalakulás ρ(λ) (λ λ c ) β (λ λ c ) irányított perkoláció univerzalitási osztálya Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.18/28

19 Dinamikai viselkedés Teljesen aktív kezdeti állapot (ρ(0) = 1) ρ(t) sűrűség időfüggése: λ λc λ = λc ρ(t) ρ( ) e t/τ ρ(t) t α Aktív-mag kezdeti állapot túlélési valószínűség: P(t) Prob( P i n i(t) > 0) aktív rácshelyek átlagos száma: N(t) = P i n i(t) kiterjedés: R(t) = p P r r2 n r (t) /N(t) Kritikus pont P(t) t δ N(t) t η R(t) t 1/z Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.19/28

20 A rendezetlen kontakt-folyamat helytől függő, véletlen ráták: λi, µ i ρ λ λ Griffiths-fázis (λ < λc ): hatványfüggvények, λ-függő exponensek Noest, 1986 kritikus pontban logaritmikus dinamika: P(t) (ln t) δ z Moreira&Dickman, t Vojta& Dickison, 2005 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.20/28

21 A Griffiths-fázis fenomenologikus leírása binér rendezetlenség: erős kötés: λ i = λ gyenge kötés: λ i = rλ (r < 1) Az erős kötéseket tartalmazó klaszterek lokálisan szuperkritikusak. Szubkritikus háttérbe ágyazott, egymástól elszigetelt, lokálisan szuperkritikus klaszterek. A teljesen aktív állapotból indítva, ezek a klaszterek hosszú ideig aktívak maradnak. anomális dinamika Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.21/28

22 Dinamika Griffiths-fázis (λ < λ c ) s rácshelyből álló lokálisan szuperkritikus klaszter valószínűsége: w e Bs jellemző élettartama: τ(s) e A(λ)s t időben már csak az s > 1 ln t méretű A klaszterek aktívak az átlagos sűrűség időfüggése: ρ(t) 1 R s (ln t)/a se Bs ds t B/A ln t α(λ) = B/A(λ) Kritikus pont erős rendezetlenségi RG: logaritmikus dinamika P(t) [ln(t)] δ N(t) [ln(t)] η R(t) (ln t) 1/ψ 1d: δ = η = ψ = 1/2 Hooyberghs, Iglói, Vanderzande, 2002 véletlen, merőleges terű Ising-modell univerzalitási osztálya Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.22/28

23 Kontakt-folyamat komplex hálózatokon véletlen hálózaton a koordinációs szám, lokális környezet helyfüggő topológiai rendezetlenség van-e Griffiths-fázis és logaritmikus kritikus dinamika? szuperkritikus domének: átlagosnál több belső él kisvilág-hálózatok (Erdős-Rényi gráf, Watts-Strogatz gráf), skálamentes hálózatok (Barabási-Albert hálózat) nincs logaritmikus dinamika,átlagtér kritikus exponensek; nincs Griffiths-fázis Pastor-Satorras&Vespignani, 2001; Castellano&Pastor-Satorras, 2006 magyarázat: kisvilág-tulajdonság (D(N) ln N), végtelen gráf-dimenzió; szuperkritikus régiók nem szigetelődnek el egymástól. Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.23/28

24 Általánosított kisvilág-hálózatok 1d rács + hosszú élek p l βl s valószínűséggel átmenet a reguláris rács (s = ) és a kisvilág-hálózatok (s = 0) között polimer vezetőképessége Sen&Chakrabarti 2001 hígított spinüveg modell Leuzzi et al. 2008; Katzgraber et al Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.24/28

25 Geometria Átmérő összekötési valószínűség: p l βl s a) s > 2: D(N) N d g = 1 (kvázi-egydimenziós) b) s < 2: D(N) (log N) c d g = c) s = 2: D(N) N 1/d g d g (β) függ β-tól Benjamini&Berger d g (β) β Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.25/28

26 Griffiths-fázis Monte Carlo szimuláció véges gráf-dimenzió kritikus pont alatt Griffiths-fázis P(t) t δ(λ) ln[p(t)] kiterjedése d g -vel csökken végtelen gráf-dimenzió: nincs Griffiths-fázis -10 δ eff (t) ln(t) 5 15 ln(t) Muñoz, JR, Castellano,Ódor, PRL 2010 JR, Ódor, Castellano, Muñoz PRE ln[n(t)] 0-5 η eff (t) ln(t) 15 0 ln(t) 15 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.26/28

27 Kritikus viselkedés véges dg a) homogén ráták 0.8 b) véletlen ráták erős rendezetlenségi renormálás + Monte Carlo szimuláció logaritmikus dinamika P(t) (ln t) δ N(t) (ln t) η R(t) (ln t) 1/ψ dg -vel változó kritikus exponensek x,, ψ, 1/ν, x, (SDRG) x, (MC) ψ(sdrg) ψ(mc) 1/ν, (SDRG) 2 d g η/δ = (1 2x )/x 3 ráták rendezetlensége nem változtatja meg az exponenseket topológiai rendezetlenség a renormált modellben paraméterrendezetlenséget indukál JR, Kovács I Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.27/28

28 Összefoglalás Véletlen bolyongás hálózaton: rendezetlenség relevanciáját az ellenállás-exponens előjele szabja meg. Relevancia esetén logaritmikus skálázás. A kontakt-folyamatban, ha a gráf-dimenzió véges, a topológiai rendezetlenség Griffiths-effektusokat és logaritmikus kritikus dinamikát eredményez. Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.28/28

VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont

VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont Elôzmények A fázisátalakulások és kritikus jelenségek a mindennapi életben is gyakran elôforduló

Részletesebben

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró 12. előadás Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet új állapotba megy át kóla

Részletesebben

AMEDDIG A JAVA EL NEM KÉSZÜL: A SZÖVEGEK FORDÍTÁSA A MEGJELENÉS SORRENDJÉBEN self-driven-particle-model_for_pdf

AMEDDIG A JAVA EL NEM KÉSZÜL: A SZÖVEGEK FORDÍTÁSA A MEGJELENÉS SORRENDJÉBEN self-driven-particle-model_for_pdf Önjáró részecskék: dinamikai modell Interaktív tananyag Sam & Nate Reidtől Kezdés Névjegy... Megrendelő...2005 ősze Hangteszt 1. rész (bevezetés). Ez a tananyag interaktív: egy-egy pontról csak bizonyos

Részletesebben

Dimenzióváltás becsapódásos fragmentációban

Dimenzióváltás becsapódásos fragmentációban Dimenzióváltás becsapódásos fragmentációban Pál Gergő Témavezető: Dr. Kun Ferenc Debreceni Egyetem Döffi 2013, Balatonfenyves Heterogén anyagok fragmentációja Próbatest töredezési folyamata - nagy mennyiségű

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Ortvay-kollokvium, Budapest, 2011. szeptember 22. SZFKI szeminárium,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Nyírási lokalizáció és rendeződés szemcsés anyagokban (munkabeszámoló) Szabó Balázs

Nyírási lokalizáció és rendeződés szemcsés anyagokban (munkabeszámoló) Szabó Balázs Nyírási lokalizáció és rendeződés szemcsés anyagokban (munkabeszámoló) Szabó Balázs fiatal kutató, MTA Wigner FK, SZFI Komplex Folyadékok Osztály, Részben Rendezett Rendszerek Csoport 2010. szeptember

Részletesebben

Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából

Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából Vukics András MTA Wigner FK, SzFI, Kvantumoptikai és Kvantuminformatikai Osztály SzFI szeminárium, 2014. február 25. Tartalom Az A 2

Részletesebben

Pelletek térfogatának meghatározása Bayes-i analízissel

Pelletek térfogatának meghatározása Bayes-i analízissel Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Nyírási lokalizáció kialakulása szemcsés anyagokban (munkabeszámoló) Szabó Balázs

Nyírási lokalizáció kialakulása szemcsés anyagokban (munkabeszámoló) Szabó Balázs Nyírási lokalizáció kialakulása szemcsés anyagokban (munkabeszámoló) Szabó Balázs tudományos segédmunkatárs, MTA Wigner FK, SZFI Komplex Folyadékok Osztály, Részben Rendezett Rendszerek Csoport 2013. júniustól

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Heterogén anyagok károsodása és törése

Heterogén anyagok károsodása és törése Debreceni Egyetem Fizikai Tudományok Doktori Iskola Heterogén anyagok károsodása és törése Halász Zoltán Doktori értekezés védése Témavezető: Dr. Kun Ferenc A prezentáció elkészítését a TÁMOP-4.2.2/B-10/1-2010-0024

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen:

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Virág Bálint Véletlen Gráfok/1 Véletlen gráfok Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Mind az olaj, mind a víz bekerül egy rendszerbe, mely makroszinten

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Törés és fragmentáció statisztikus fizikája

Törés és fragmentáció statisztikus fizikája Törés és fragmentáció statisztikus fizikája A projekt keretében a rendezetlen szerkezetű szilárdtestek törésének és fragmentációs folyamatainak elméleti leírására végeztünk kutatómunkát három fő területen:

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Frusztrált hálózatok klasztereződése

Frusztrált hálózatok klasztereződése Babeş-Bolyai Tudományegyetem, Fizika Kar Frusztrált hálózatok klasztereződése XI. ETDK Varga Melinda Molnár Botond Témavezetők: Dr. Prof. Néda Zoltán Drd. Ercsey-Ravasz Mária 2008 Absztrakt A politikában,

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

3. Jelöljük meg a numerikus gyökkereső módszerekre vonatkozó egyedüli helyes kijelentést:

3. Jelöljük meg a numerikus gyökkereső módszerekre vonatkozó egyedüli helyes kijelentést: INFORMATICĂ PENTRU FIZICIENI 1. Egy mechanikai rendszerre vonatkozó Newtoni-mozgástörvényben megjelenő valamely paraméter nem pontos. Milyen típusú hibát eredményez az említett bizonytalanság az egyenlet

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor

Részletesebben

Összefoglaló OTKA F67729 pályázat: 2007-2011

Összefoglaló OTKA F67729 pályázat: 2007-2011 Összefoglaló OTKA F67729 pályázat: 2007-2011 Anomális áramfluktuációk 2006-ban sikerült társszerzőimmel, Eric Catorral és Timo Seppäläinennel megmutatnunk [4], hogy a last passage perkolációra is kiterjeszthető

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre

Részletesebben

2. Az alacsony feszültségű elektroporátor (LVEP) fenomenologikus modellje

2. Az alacsony feszültségű elektroporátor (LVEP) fenomenologikus modellje 1 Sugár István Sejt- és lipid membrán struktúrák. Az elektromos-, termális-, és kémiai kölcsönhatások szerepe című nagydoktori értekezésének véleményezése Sugár István nagydoktori értekezésének középpontjában

Részletesebben

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága @ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Deutérium pelletekkel keltett zavarok mágnesesen összetartott plazmában

Deutérium pelletekkel keltett zavarok mágnesesen összetartott plazmában Deutérium pelletekkel keltett zavarok mágnesesen összetartott plazmában 1. Motiváció ELM-keltés folyamatának vizsgálata 2. Kísérleti elrendezés Diagnosztika Szepesi Tamás MTA KFKI RMKI Kálvin S., Kocsis

Részletesebben

Párhuzamos programozási feladatok

Párhuzamos programozási feladatok Párhuzamos programozási feladatok BMF NIK 2008. tavasz B. Wilkinson és M. Allen oktatási anyaga alapján készült Gravitációs N-test probléma Fizikai törvények alapján testek helyzetének, mozgásjellemzőinek

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

Markov modellek 2015.03.19.

Markov modellek 2015.03.19. Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést

Részletesebben

Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére

Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció

Részletesebben

A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal

A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal A szigetközi MODFLOW modellezés verifikálása, paraméter optimalizálás izotóp-adatokkal Deák József Maginecz János Szalai József Dervaderits Borbála Földtani felépítés Áramlási viszonyok Vízföldtani kérdések

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Diszlokációrendszerek és a szubmikronos plaszticitás statisztikus tulajdonságai

Diszlokációrendszerek és a szubmikronos plaszticitás statisztikus tulajdonságai Diszlokációrendszerek és a szubmikronos plaszticitás statisztikus tulajdonságai Ispánovity Péter Dusán ELTE, Anyagfizikai Tanszék SZFKI kollokvium, 2012. február 14. Tartalom Bevezetés 2D diszlokációrendszerek

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Mágneses rend vékonyrétegekben

Mágneses rend vékonyrétegekben Erdélyi Tudományos Diákköri Konferencia 2010 Kolozsvár Mágneses rend vékonyrétegekben Tyukodi Botond Ioan-Augustin Chioar Babeș-Bolyai Tudományegyetem, Fizika kar, 3. év Témavezető: dr. Néda Zoltán egyetemi

Részletesebben

Mágnesség és elektromos vezetés kétdimenziós

Mágnesség és elektromos vezetés kétdimenziós Mágnesség és elektromos vezetés kétdimenziós molekulakristályokban Jánossy András Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikai Intézet, Fizika Tanszék Kondenzált Anyagok MTA-BME Kutatócsoport

Részletesebben

Gravitáció mint entropikus erő

Gravitáció mint entropikus erő Gravitáció mint entropikus erő Takács Gábor MTA-BME Lendület Statisztikus Térelméleti Kutatócsoport ELFT Elméleti Fizikai Iskola Szeged, Fizikai Intézet 2012. augusztus 28. Vázlat 1. Entropikus erő: elemi

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

II. rész Anyagok fénytechnikai tulajdonságai; fényeloszlás, Lambert törvény fénysűrűségi tényező; belsőtéri világítás méretezése manuális

II. rész Anyagok fénytechnikai tulajdonságai; fényeloszlás, Lambert törvény fénysűrűségi tényező; belsőtéri világítás méretezése manuális II. rész Anyagok fénytechnikai tulajdonságai; fényeloszlás, Lambert törvény fénysűrűségi tényező; belsőtéri világítás méretezése manuális számításokkal, a LiTG hatásfok módszerével. Visszaverés, reflexió

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

Kondenzált anyagok csoportosítása

Kondenzált anyagok csoportosítása Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben

Gránásy László. Szül.: 1955. febr. 15. Budapest ELTE TTK fizikus szak 1979 MTA Doktora (2004) Választott tag: Academia Europaea (London, 2014 )

Gránásy László. Szül.: 1955. febr. 15. Budapest ELTE TTK fizikus szak 1979 MTA Doktora (2004) Választott tag: Academia Europaea (London, 2014 ) 1p Gránásy László Szül.: 1955. febr. 15. Budapest ELTE TTK fizikus szak 1979 MTA Doktora (2004) Választott tag: Academia Europaea (London, 2014 ) Jelenleg: Tud. Tanácsadó az MTA Wigner Fizikai Kutatóközpont,

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1

Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő 1 Építési projektek ütemtervi bizonytalanságainak, kockázatainak figyelembe vétele a pénzügyi tervezésnél Balogh János gépészmérnök, műszaki menedzser MSc., vezető programkoordinációs szakértő, MVM Paks

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ Referencia útmutató laboratórium és műhely részére Magyar KIADÁS lr i = kiértékelési hossz Profilok és szűrők (EN ISO 4287 és EN ISO 16610-21) 01 A tényleges

Részletesebben

MITISZK Miskolc-Térségi Integrált Szakképző Központ

MITISZK Miskolc-Térségi Integrált Szakképző Központ MITISZK Miskolc-Térségi Integrált Szakképző Központ VALÓSZÍNŰSÉG-SZÁMÍTÁS ÉS MATEMATIKAI STATISZTIKA FEGYVERNEKI SÁNDOR Miskolci Egyetem Gépészmérnöki és Informatikai Kar Készült a HEFOP-3.2.2-P.-2004-10-0011-/1.0

Részletesebben

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.? FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z

Részletesebben

Erdélyi Barna geofizikus mérnök, geotermikus szakmérnök és Kiss László gépészmérnök, geotermikus szakmérnök

Erdélyi Barna geofizikus mérnök, geotermikus szakmérnök és Kiss László gépészmérnök, geotermikus szakmérnök Lanna Kft. 2525 Máriahalom, Petőfi u. 23. Fax: 33/481-910, Mobil: 30/325-4437 Web: www.zoldho.hu E-mail: lannakft@gmail.com Thermal Response Test - Földhőszondás hőszivattyús rendszerek földtanilag megalapozott

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

Némethné Vidovszky Ágens 1 és Schanda János 2

Némethné Vidovszky Ágens 1 és Schanda János 2 Némethné Vidovszky Ágens 1 és Schanda János 2 1.Budapesti Műszaki Egyetem; 2 Pannon Egyetem 1 Áttekintés A fotometria két rendszere: Vizuális teljesítmény alapú Világosság egyenértékű fénysűrűség alapú

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Alapja a véletlen minták kiértékelése. Sok szabadság fokú csatolt rendszerek

Alapja a véletlen minták kiértékelése. Sok szabadság fokú csatolt rendszerek Alapja a véletlen minták kiértékelése Matematikai rendszerek Fizikai szimuláció Sok szabadság fokú csatolt rendszerek Folyadékok, sejt struktúrák, kapcsolt szilárd rendszerek Nagy bizonytalanságú rendszerek

Részletesebben