Dinamika inhomogén közegben:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dinamika inhomogén közegben:"

Átírás

1 Dinamika inhomogén közegben: A diffúziótól a járványterjedésig Juhász Róbert MTA Wigner FK, SZFI Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.1/28

2 Dinamika inhomogén közegben 1. Diffúzió Juhász R.; Competition between quenched disorder and long-range connections: A numerical study of diffusion; Phys. Rev. E 85, (2012) Juhász R.; The effect of asymmetric disorder on the diffusion in arbitrary networks; Europhys. Lett. 98, (2012) 2. Kontakt-folyamat Ódor G., Juhász R., Castellano C., Muñoz M. A.; Griffiths phases in the contact process on complex networks; AIP. Conf. Proc (2012) Juhász R., Ódor G., Castellano C., Muñoz M. A.; Rare region effects in the contact process on networks Phys. Rev. E (2012) Juhász R.; Disordered contact process with asymmetric spreading; Phys. Rev. E 87, (2013) Juhász R., Kovács I.; Infinite randomness critical behavior of the contact process on networks with long-range connections; preprint, 2013 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.2/28

3 Dinamika inhomogén környezetben 3. Kizárási folyamat Juhász R.; Mean field treatment of exclusion processes with random-force disorder; J. Stat. Mech. P11010 (2011) Juhász R., Ódor G.; Anomalous coarsening in disordered exclusion processes; J. Stat. Mech. P08004 (2012) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.3/28

4 Inhomogén rendszerek fizikája térbeli inhomogenitás, helyről-helyre változó, de időben állandó lokális paraméterek a homogén rendszerétől eltérő viselkedés lehet; lelassulás transzport-folyamatok fázisátalakulások a) átalakulás eltűnhet b) rendje megváltozhat c) kritikus exponensei megváltozhatnak d) hatványtörvények helyett logaritmikus dinamika (rendezetlen kvantummágnesek) Griffiths-effektus: paramágneses mintában ferromágneses domének; anomális időbeli korrelációk Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.4/28

5 Diffúzió inhomogén közegben elméleti leírás: inhomogén modellek; általában nem oldható meg egzaktul; numerikus vizsgálat nehéz egyik legegyszerűbb folyamat, ahol az inhomogenitás hatása vizsgálható: véletlen bolyongás dinamikai (sztochasztikus) folyamatok: véletlen bolyongás a konfigurációs térben közvetlen alkalmazás: diszlokációk mozgása szennyezett kristályokban mágneses doménfal mozgása rendezetlen anyagokban ionos vezetők heteropolimer átfűződése membrán-póruson hélix-gombolyag átmenet Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.5/28

6 Véletlen bolyongás véletlen környezetben folytonos idejű véletlen bolyongás, p ij átmeneti ráták reguláris rácson, homogén környezetben (p ij = p =áll.) normális diffúzió: x 2 (t) Dt helyfüggő, időben állandó, független, P n n 1 P n n+1 n 2 n 1 n n+1 n+2 véletlen átmeneti ráták Solomon; Kesten, Kozlov, Spitzer, 1975 egy dimenzióban potenciál értelmezhető: U n U n 1 ln(p nn 1 /p n 1n ) U n U l l t l e U l e konst l l ~ l 1/2 n x 2 (t) (ln t) 4 Sinai-féle diffúziós törvény (1982) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.6/28

7 d>1 d > 1, nem értelmezhető potenciál d-dimenziós, reguláris rács sorfejtés a rendezetlenség erőssége szerint Derrida&Luck 1983 perturbatív RG Luck 1983, Fisher 1984 a) d > d c = 2: normális diffúzió b) d = 2: logaritmikus korrekció, x 2 (t) Dt(1 + 4/ ln t) c) d < 2: szubdiffúzió Fraktálok, hálózatok (átmeneti gráf) a) homogén ráták esetén anomális diffúzió : x 2 (t) t 2/d w d w 2 b) rendezetlen ráták MC szimuláció 3d perkoláció: x 2 (t) (ln t) 2/ψ Pandey 1987 Sierpinski-szőnyeg: véges, nemuniverzális d w Majhofer&Cieplak 1988 Relevancia-kritérium? x 2 (t) =? Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.7/28

8 Rekurziós (renormálási) módszer (A) x(t) helyett: véges rendszer, τ i τ(l) végesméret-függés x(t) X i p ji τ (A) i X i átjutási idő i-ből A-ba p ji τ (A) j = K i i = 1,2,..., N határfeltétel: τ (A) i = 0, i A K i = 1 τ (A) 1 számítása: közbenső rácshelyek eliminálása p ij p ij K i K i Monthus&Garel 2010 τ (A) 1 = K 1 / P i A p 1i Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.8/28

9 Renormálási szabályok j i k p 0 ij = p ik p kj / P i p ki p ij = p ij + p 0 ij generálás összeadás K i = K i + p ik K k / P i p ki d = 1: csak generálás, analitikusan kezelhető végtelenül erős rendezetlenségi fixpont vonzó akármilyen gyenge rendezetlenség esetén is logaritmikus dinamikát tükrözi a ráták skálázása: ln( p 1L ) L 1/2 aszimmetria-paraméter is: ln( p 1L / p L1 ) L 1/2 d > 1: összeadás is; analitikusan nem kezelhető Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.9/28

10 Gyengén aszimmetrikus modell renormálása egyszerűsítések: 1. relevancia kérdéséhez elég gyenge rendezetlenséget tekinteni 2. τ helyett a ráták (aszimmetria-paraméter) nyomon követése szimmetrikus rendszer + aszimmetrikus, véletlen perturbáció: ǫ ij infinitezimálisan kicsi v.v., ǫ ij = 0 transzformációs szabályok: p ij /p ji 1 + ǫ ij generálás: ǫ 0 ij = ǫ ik + ǫ kj p 0 ij = p ikp kj / P i p ki összeadás: p ij ǫ ij = p ij ǫ ij + p 0 ij ǫ0 ij p ij = p ij + p 0 ij vezető rendben pij = p ji ekvivalens ellenállás-hálózat rij 1/p ij ellenállásokkal pij r ij Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.10/28

11 . Speciális hálózatok Sokaság: rögített, véges hálózat, rij = 1 f(ǫ ij ), ǫ ij = 0, ǫ 2 ij = α (infinitezimálisan kicsi állandó) a hálózat redukálása két (a és b) vertexre; ǫab = 0, ǫ 2 ab =? a b a b speciális hálózat-osztály: redukálható 2-es fokszámú csúcsok egymás utáni eliminációjával a) generálás: r = r 1 + r 2 ǫ = ǫ 1 + ǫ 2 soros b) összeadás: r 1 = r r 1 2 r 1 ǫ = r 1 1 ǫ 1 + r 1 2 ǫ 2 párhuzamos ǫ1 és ǫ 2 mindig függetlenek: ǫ 1 ǫ 2 = 0 ǫ 2 ij = α r ij Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.11/28

12 Általános hálózat n > 2 fokszámú csúcs eliminálása: n(n 1)/2 él rátái korrelálttá válnak ǫ 2 ij α r ij lokálisan két vertexre redukálva teljesül tetszőleges hálózatban! bizonyítás: ǫ 2 ab = α r ab 1) teljes gráf tetszőleges gráf (p ij = 0) 2) teljes indukció: N méretű hálózat kibővítése: N N + 1 új vertex eliminációja: N + 1 N JR, Europhys. Lett. 98, (2012) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.12/28

13 Következmények ǫ 2 ab = α r ab Az effektív aszimmetria (rendezetlenség) gyengül, ha a kétpont-ellenállás az l távolság csökkenő függvénye. Stabilitás az aszimmetrikus perturbációval szemben. Megváltozott dinamikai viselkedés, ha a kétpont-ellenállás l-lel növekszik. rab (l) l ζ ζ: ellenállás-exponens ζ < 0: gyenge rendezetlenség irreleváns ζ > 0: releváns ln( p ab / p ba ) = ǫ ab r ab l ζ/2 logaritmikus dinamika, ψ 0 = ζ/2 véges erősségű rendezetlenség: ψ 0 ψ reguláris d-dimenziós rács: rab (l) l ζ + const a) d > 2: ζ = 2 d < 0 b) d = 2: ζ = 0 ( r ab (l) ln l) c) d = 1: ζ = 1 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.13/28

14 Numerikus vizsgálat fraktálok: ζ = dw d f átjutási idő numerikusan számítható Sierpinski-háromszög: ζ = ln(5/3) ln 2 ln{ρ[ln(τ/τ 0 )]L ψ } ln[ρ(lnτ)] lnτ 250 L=2049 L=4097 L=8193 L=16385 L=32769 L=65537 ψ a ráták eloszlásától független csak a fraktálra jellemző ln(τ/τ 0 )L -ψ 10 Sierpinski (2) ln τ L ψ 2d perkoláció 0.46(2) 3d perkoláció 0.63(1) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.14/28

15 Numerikus vizsgálat hierarchikus rombusz-rács: ζ = L d w /τtyp (1+5.28/lnτ typ ) 0.1 1/lnτ typ 0.2 logaritmikus korrekció: L d w Dτ typ (1 + a/ ln τ typ ) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.15/28

16 Relevancia-kritérium ζ < 0: rendezetlenség irreleváns ζ = 0: logaritmikus korrekció ζ > 0: releváns (ln τ l ψ ) Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.16/28

17 A kontakt-folyamat egyszerű járványterjedési modell (Harris, 1974) rács, hálózat; vertexek két állapota: aktív/inaktív (fertőzött/egészséges) folytonos idejű Markov-folyamat a következő átmenetekkel: 1. aktív rácshelyek aktiválják szomszédaikat λ rátával λ λ 2. aktív rácshelyek µ rátával inaktívvá válnak (µ = 1) µ Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.17/28

18 Fázisok fázisátalakulás kontroll-paraméter: λ rendparaméter: az aktív rácshelyek hányada az állandósult állapotban (ρ) λ < λc : inaktív fázis, ρ = 0 (abszorbeáló állapot) λ > λ c : aktív fázis, ρ = ρ(λ) > 0 λ = λc pontban folytonos fázisátalakulás ρ(λ) (λ λ c ) β (λ λ c ) irányított perkoláció univerzalitási osztálya Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.18/28

19 Dinamikai viselkedés Teljesen aktív kezdeti állapot (ρ(0) = 1) ρ(t) sűrűség időfüggése: λ λc λ = λc ρ(t) ρ( ) e t/τ ρ(t) t α Aktív-mag kezdeti állapot túlélési valószínűség: P(t) Prob( P i n i(t) > 0) aktív rácshelyek átlagos száma: N(t) = P i n i(t) kiterjedés: R(t) = p P r r2 n r (t) /N(t) Kritikus pont P(t) t δ N(t) t η R(t) t 1/z Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.19/28

20 A rendezetlen kontakt-folyamat helytől függő, véletlen ráták: λi, µ i ρ λ λ Griffiths-fázis (λ < λc ): hatványfüggvények, λ-függő exponensek Noest, 1986 kritikus pontban logaritmikus dinamika: P(t) (ln t) δ z Moreira&Dickman, t Vojta& Dickison, 2005 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.20/28

21 A Griffiths-fázis fenomenologikus leírása binér rendezetlenség: erős kötés: λ i = λ gyenge kötés: λ i = rλ (r < 1) Az erős kötéseket tartalmazó klaszterek lokálisan szuperkritikusak. Szubkritikus háttérbe ágyazott, egymástól elszigetelt, lokálisan szuperkritikus klaszterek. A teljesen aktív állapotból indítva, ezek a klaszterek hosszú ideig aktívak maradnak. anomális dinamika Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.21/28

22 Dinamika Griffiths-fázis (λ < λ c ) s rácshelyből álló lokálisan szuperkritikus klaszter valószínűsége: w e Bs jellemző élettartama: τ(s) e A(λ)s t időben már csak az s > 1 ln t méretű A klaszterek aktívak az átlagos sűrűség időfüggése: ρ(t) 1 R s (ln t)/a se Bs ds t B/A ln t α(λ) = B/A(λ) Kritikus pont erős rendezetlenségi RG: logaritmikus dinamika P(t) [ln(t)] δ N(t) [ln(t)] η R(t) (ln t) 1/ψ 1d: δ = η = ψ = 1/2 Hooyberghs, Iglói, Vanderzande, 2002 véletlen, merőleges terű Ising-modell univerzalitási osztálya Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.22/28

23 Kontakt-folyamat komplex hálózatokon véletlen hálózaton a koordinációs szám, lokális környezet helyfüggő topológiai rendezetlenség van-e Griffiths-fázis és logaritmikus kritikus dinamika? szuperkritikus domének: átlagosnál több belső él kisvilág-hálózatok (Erdős-Rényi gráf, Watts-Strogatz gráf), skálamentes hálózatok (Barabási-Albert hálózat) nincs logaritmikus dinamika,átlagtér kritikus exponensek; nincs Griffiths-fázis Pastor-Satorras&Vespignani, 2001; Castellano&Pastor-Satorras, 2006 magyarázat: kisvilág-tulajdonság (D(N) ln N), végtelen gráf-dimenzió; szuperkritikus régiók nem szigetelődnek el egymástól. Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.23/28

24 Általánosított kisvilág-hálózatok 1d rács + hosszú élek p l βl s valószínűséggel átmenet a reguláris rács (s = ) és a kisvilág-hálózatok (s = 0) között polimer vezetőképessége Sen&Chakrabarti 2001 hígított spinüveg modell Leuzzi et al. 2008; Katzgraber et al Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.24/28

25 Geometria Átmérő összekötési valószínűség: p l βl s a) s > 2: D(N) N d g = 1 (kvázi-egydimenziós) b) s < 2: D(N) (log N) c d g = c) s = 2: D(N) N 1/d g d g (β) függ β-tól Benjamini&Berger d g (β) β Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.25/28

26 Griffiths-fázis Monte Carlo szimuláció véges gráf-dimenzió kritikus pont alatt Griffiths-fázis P(t) t δ(λ) ln[p(t)] kiterjedése d g -vel csökken végtelen gráf-dimenzió: nincs Griffiths-fázis -10 δ eff (t) ln(t) 5 15 ln(t) Muñoz, JR, Castellano,Ódor, PRL 2010 JR, Ódor, Castellano, Muñoz PRE ln[n(t)] 0-5 η eff (t) ln(t) 15 0 ln(t) 15 Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.26/28

27 Kritikus viselkedés véges dg a) homogén ráták 0.8 b) véletlen ráták erős rendezetlenségi renormálás + Monte Carlo szimuláció logaritmikus dinamika P(t) (ln t) δ N(t) (ln t) η R(t) (ln t) 1/ψ dg -vel változó kritikus exponensek x,, ψ, 1/ν, x, (SDRG) x, (MC) ψ(sdrg) ψ(mc) 1/ν, (SDRG) 2 d g η/δ = (1 2x )/x 3 ráták rendezetlensége nem változtatja meg az exponenseket topológiai rendezetlenség a renormált modellben paraméterrendezetlenséget indukál JR, Kovács I Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.27/28

28 Összefoglalás Véletlen bolyongás hálózaton: rendezetlenség relevanciáját az ellenállás-exponens előjele szabja meg. Relevancia esetén logaritmikus skálázás. A kontakt-folyamatban, ha a gráf-dimenzió véges, a topológiai rendezetlenség Griffiths-effektusokat és logaritmikus kritikus dinamikát eredményez. Dinamika inhomogén közegben:a diffúziótól a járványterjedésig p.28/28

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont

VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont VÉGTELENÜL RENDEZETLEN KRITIKUS VISELKEDÉS Iglói Ferenc, Kovács István MTA Wigner Fizikai Kutatóközpont Elôzmények A fázisátalakulások és kritikus jelenségek a mindennapi életben is gyakran elôforduló

Részletesebben

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró

Automaták. bemenet: pénz, kiválasztó gombok stb. állapot: standby, pénz van behelyezve stb. kimenet: cola, sprite, visszajáró 12. előadás Automaták egyszerű eszközök tulajdonságok: véges számú állapota van átmenet egyik állapotból a másikba érzékeli a környezetet esetleg megváltoztatja a környezetet új állapotba megy át kóla

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Evolúciós fogolydilemma játék különböző gráfokon

Evolúciós fogolydilemma játék különböző gráfokon Evolúciós fogolydilemma játék különböző gráfokon A doktori értekezés tézisei Vukov Jeromos Pál Fizika doktori iskola A doktori iskola vezetője: Prof. Horváth Zalán, akadémikus Statisztikus fizika, biológiai

Részletesebben

A Barabási-Albert-féle gráfmodell

A Barabási-Albert-féle gráfmodell A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.

Részletesebben

AMEDDIG A JAVA EL NEM KÉSZÜL: A SZÖVEGEK FORDÍTÁSA A MEGJELENÉS SORRENDJÉBEN self-driven-particle-model_for_pdf

AMEDDIG A JAVA EL NEM KÉSZÜL: A SZÖVEGEK FORDÍTÁSA A MEGJELENÉS SORRENDJÉBEN self-driven-particle-model_for_pdf Önjáró részecskék: dinamikai modell Interaktív tananyag Sam & Nate Reidtől Kezdés Névjegy... Megrendelő...2005 ősze Hangteszt 1. rész (bevezetés). Ez a tananyag interaktív: egy-egy pontról csak bizonyos

Részletesebben

Dimenzióváltás becsapódásos fragmentációban

Dimenzióváltás becsapódásos fragmentációban Dimenzióváltás becsapódásos fragmentációban Pál Gergő Témavezető: Dr. Kun Ferenc Debreceni Egyetem Döffi 2013, Balatonfenyves Heterogén anyagok fragmentációja Próbatest töredezési folyamata - nagy mennyiségű

Részletesebben

Válasz ÓDOR GÉZANAK. Hőmérsékleti egyensúlytól távoli statisztikus fizikai rendszerek numerikus modellezése. című MTA doktori értekezésem bírálatára

Válasz ÓDOR GÉZANAK. Hőmérsékleti egyensúlytól távoli statisztikus fizikai rendszerek numerikus modellezése. című MTA doktori értekezésem bírálatára Válasz ÓDOR GÉZANAK Hőmérsékleti egyensúlytól távoli statisztikus fizikai rendszerek numerikus modellezése című MTA doktori értekezésem bírálatára Mindenek előtt nagyon köszönöm Ódor Gézának az értekezésem

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

Kvázisztatikus határeset Kritikus állapot Couette-teszt

Kvázisztatikus határeset Kritikus állapot Couette-teszt Wacha András Kvázisztatikus határeset Kritikus állapot Couette-teszt 2006. november 9. Kvázisztatikus határeset GDR_MiDi. On dense granular flows. Eur. Phys. J. E 14. pp 341-365 (2004). Dimenziótlan paraméterek

Részletesebben

Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán

Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán Perturbációk elméleti és kísérleti vizsgálata a BME Oktatóreaktorán Horváth András, Kis Dániel Péter, Szatmáry Zoltán XV. Nukleáris Technikai Szimpózium 2016. december 8-9. Paks, Erzsébet Nagyszálloda

Részletesebben

Középfeszültségű gázszigetelésű kapcsolóberendezések villamos szilárdsági méretezése. Madarász Gy. - Márkus I.- Novák B.

Középfeszültségű gázszigetelésű kapcsolóberendezések villamos szilárdsági méretezése. Madarász Gy. - Márkus I.- Novák B. Magyar Elektrotechnikai Egyesület Villamos Kapcsolókész szakmai nap 2012 április 26 Középfeszültségű gázszigetelésű kapcsolóberendezések villamos szilárdsági méretezése. Madarász Gy. - Márkus I.- Novák

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Numerikus módszerek. 9. előadás

Numerikus módszerek. 9. előadás Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE

Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Normális, szimmetriasértő és szimmetriát nem sértő, mégsem normális elektronrendszerek szilárd testekben Sólyom Jenő MTA Wigner FK és ELTE Ortvay-kollokvium, Budapest, 2011. szeptember 22. SZFKI szeminárium,

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.

Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J. Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Nagy Péter: Fortuna szekerén...

Nagy Péter: Fortuna szekerén... Nagy Péter: Fortuna szekerén... tudni: az ész rövid, az akarat gyenge, hogy rá vagyok bízva a vak véletlenre. És makacs reménnyel mégis, mégis hinni, hogy amit csinálok, az nem lehet semmi. (Teller Ede)

Részletesebben

Nyírási lokalizáció és rendeződés szemcsés anyagokban (munkabeszámoló) Szabó Balázs

Nyírási lokalizáció és rendeződés szemcsés anyagokban (munkabeszámoló) Szabó Balázs Nyírási lokalizáció és rendeződés szemcsés anyagokban (munkabeszámoló) Szabó Balázs fiatal kutató, MTA Wigner FK, SZFI Komplex Folyadékok Osztály, Részben Rendezett Rendszerek Csoport 2010. szeptember

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

Pelletek térfogatának meghatározása Bayes-i analízissel

Pelletek térfogatának meghatározása Bayes-i analízissel Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés

Részletesebben

Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából

Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából Az A 2 -probléma eliminálása a rezonátoros kvantumelektrodinamikából Vukics András MTA Wigner FK, SzFI, Kvantumoptikai és Kvantuminformatikai Osztály SzFI szeminárium, 2014. február 25. Tartalom Az A 2

Részletesebben

MUNKATERV / BESZÁMOLÓ

MUNKATERV / BESZÁMOLÓ MUNKATERV / BESZÁMOLÓ Werner Miklós Antal, Ph.D. hallgató 3. szemeszter (2014/2015 tanév őszi félév) email cím: wernermiklos@gmail.com állami ösztöndíjas* önköltséges* Témaleírás: Rendezetlen és korrelált

Részletesebben

Önszervezően kritikus rendszerek: Bevezetés, alapfogalmak. Self-organized criticality. Homokdomb Biológiai evolúció. Példák és modellek

Önszervezően kritikus rendszerek: Bevezetés, alapfogalmak. Self-organized criticality. Homokdomb Biológiai evolúció. Példák és modellek : Példák és modellek Bevezetés Alapfogalmak ismétlése Mi a fázisátalakulás? Alapfogalmak ismétlése Mi a fázisátalakulás? A statisztikus fizikában (termodinamikában): Az anyag átalakulása két különböző

Részletesebben

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás

előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Forgalmi modellezés BMEKOKUM209

Forgalmi modellezés BMEKOKUM209 BME Közlekedésüzemi és Közlekedésgazdasági Tanszék Forgalmi modellezés BMEKOKUM209 Szimulációs modellezés Dr. Juhász János A forgalmi modellezés célja A közlekedési igények bővülése és a motorizáció növekedése

Részletesebben

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }.

Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0, 1, 2,..., N}, {0, 1, 2,... }. . Markov-láncok. Definíció és alapvető tulajdonságok Legyen adott egy S diszkrét halmaz. Leggyakrabban S az egész számoknak egy halmaza, például S = {0,,,..., N}, {0,,,... }.. definíció. S értékű valószínűségi

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Monte Carlo módszerek fejlesztése reaktorfizikai szimulációkhoz

Monte Carlo módszerek fejlesztése reaktorfizikai szimulációkhoz Monte Carlo módszerek fejlesztése reaktorfizikai szimulációkhoz Légrády Dávid BME NTI Molnár Balázs, Takács Hajna, Tolnai Gábor 016.1.07 A munka a Nemzeti Kutatási, Fejlesztési és Innovációs Alap által

Részletesebben

Nyírási lokalizáció kialakulása szemcsés anyagokban (munkabeszámoló) Szabó Balázs

Nyírási lokalizáció kialakulása szemcsés anyagokban (munkabeszámoló) Szabó Balázs Nyírási lokalizáció kialakulása szemcsés anyagokban (munkabeszámoló) Szabó Balázs tudományos segédmunkatárs, MTA Wigner FK, SZFI Komplex Folyadékok Osztály, Részben Rendezett Rendszerek Csoport 2013. júniustól

Részletesebben

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* A Miskolci Egyetem Közleménye A sorozat, Bányászat, 66. kötet, (2004) p. 103-108 CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN* Dr.h.c.mult. Dr. Kovács Ferenc az

Részletesebben

Jelgenerátorok ELEKTRONIKA_2

Jelgenerátorok ELEKTRONIKA_2 Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Hajdú Angéla

Hajdú Angéla 2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.

Részletesebben

10. Előadás P[M E ] = H

10. Előadás P[M E ] = H HALMAZRENDSZEREK 10. Előadás Matematika MSc hallgatók számára Előadó: Hajnal Péter Jegyzetelő: Hajnal Péter 2010. április 20. Halmazrendszerek színezése Egy halmazrendszer csúcshalmazának színezése jó

Részletesebben

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola

A hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola A hőterjedés dinamikája vékony szilikon rétegekben Gambár Katalin, Márkus Ferenc Tudomány Napja 2012 Gábor Dénes Főiskola Miről szeretnék beszélni: A kutatás motivációi A fizikai egyenletek (elméleti modellek)

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Ultrahideg atomok topológiai fázisai

Ultrahideg atomok topológiai fázisai Ultrahideg atomok topológiai fázisai Szirmai Gergely MTA SZFKI 2011. június 14. Szirmai Gergely (MTA SZFKI) Ultrahideg atomok topológiai fázisai 2011. június 14. 1 / 1 Kvantum fázisátalakulások I (spontán

Részletesebben

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.

E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható folytonos idejű Markovláncok  segítségével. E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Sztochasztikus temporális logikák

Sztochasztikus temporális logikák Sztochasztikus temporális logikák Teljesítmény és szolgáltatásbiztonság jellemzők formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 9. el adás Bevezetés az ökonozikába El adó: London András 2015. november 2. Motiváció Komplex rendszerek modellezése statisztikus mechanika és elméleti zika

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Rétegződés, domének és atomi mozgás ultravékony rétegszerkezetekben

Rétegződés, domének és atomi mozgás ultravékony rétegszerkezetekben Rétegződés, domének és atomi mozgás ultravékony rétegszerkezetekben Sajti Szilárd NAO, Funkcionális Nanostruktúrák Kutatócsoport MTA Wigner FK Simonyi-nap 2014. október 16. Vékonyréteg rendszerek Félvezető

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Heterogén anyagok károsodása és törése

Heterogén anyagok károsodása és törése Debreceni Egyetem Fizikai Tudományok Doktori Iskola Heterogén anyagok károsodása és törése Halász Zoltán Doktori értekezés védése Témavezető: Dr. Kun Ferenc A prezentáció elkészítését a TÁMOP-4.2.2/B-10/1-2010-0024

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

AliROOT szimulációk GPU alapokon

AliROOT szimulációk GPU alapokon AliROOT szimulációk GPU alapokon Nagy Máté Ferenc & Barnaföldi Gergely Gábor Wigner FK ALICE Bp csoport OTKA: PD73596 és NK77816 TARTALOM 1. Az ALICE csoport és a GRID hálózat 2. Szimulációk és az AliROOT

Részletesebben

Komplex hálózatok: alapfogalmak, modellek, módszerek

Komplex hálózatok: alapfogalmak, modellek, módszerek Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

Kémiai reakciók mechanizmusa számítógépes szimulációval

Kémiai reakciók mechanizmusa számítógépes szimulációval Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.

Részletesebben

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I.

TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. TERMÉKEK MŐSZAKI TERVEZÉSE Megbízhatóságra, élettartamra tervezés I. Dr. Kovács Zsolt egyetemi tanár Megbízhatóság-elméleti alapok A megbízhatóságelmélet az a komplex tudományág, amely a meghibásodási

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar Példák fraktálokra I Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. február 1. Vázlat 1 Mi a fraktál? 2 A konstrukció Egyszerű tulajdonságok Triadikus ábrázolás Transzlációk

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen:

Véletlen gráfok. Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Virág Bálint Véletlen Gráfok/1 Véletlen gráfok Példák: Kávéra vizet öntünk és alul kifolyik a víz: Olaj vagy víz átszívárgása egy kőzetrétegen: Mind az olaj, mind a víz bekerül egy rendszerbe, mely makroszinten

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Törés és fragmentáció statisztikus fizikája

Törés és fragmentáció statisztikus fizikája Törés és fragmentáció statisztikus fizikája A projekt keretében a rendezetlen szerkezetű szilárdtestek törésének és fragmentációs folyamatainak elméleti leírására végeztünk kutatómunkát három fő területen:

Részletesebben

Geometriai modellezés. Szécsi László

Geometriai modellezés. Szécsi László Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

Dinamikai rendszerek, populációdinamika

Dinamikai rendszerek, populációdinamika Dinamikai rendszerek, populációdinamika Számítógépes szimulációk 1n4i11/1 Csabai István ELTE Komplex Rendszerek Fizikája Tanszék 5.102 Email: csabaiθcomplex.elte.hu 2009 tavasz Dierenciálegyenletek a zikán

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Területi statisztikai elemzések

Területi statisztikai elemzések Területi statisztikai elemzések KOTOSZ Balázs, SZTE, kotosz@eco.u-szeged.hu Módszertani dilemmák a statisztikában 2016. november 18. Budapest Apropó Miért különleges a területi adatok elemzése? A számításokhoz

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

3. Jelöljük meg a numerikus gyökkereső módszerekre vonatkozó egyedüli helyes kijelentést:

3. Jelöljük meg a numerikus gyökkereső módszerekre vonatkozó egyedüli helyes kijelentést: INFORMATICĂ PENTRU FIZICIENI 1. Egy mechanikai rendszerre vonatkozó Newtoni-mozgástörvényben megjelenő valamely paraméter nem pontos. Milyen típusú hibát eredményez az említett bizonytalanság az egyenlet

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor

Részletesebben

Véletlen szám generálás

Véletlen szám generálás 2. elıadás Véletlen szám generálás LCG: (0 < m, 0

Részletesebben

Frusztrált hálózatok klasztereződése

Frusztrált hálózatok klasztereződése Babeş-Bolyai Tudományegyetem, Fizika Kar Frusztrált hálózatok klasztereződése XI. ETDK Varga Melinda Molnár Botond Témavezetők: Dr. Prof. Néda Zoltán Drd. Ercsey-Ravasz Mária 2008 Absztrakt A politikában,

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben