14. Molekuláris genetika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "14. Molekuláris genetika"

Átírás

1 14. Molekuláris genetika Bevezetés 1871-ben Miescher - Mendel kortársa - a sejtmagból foszfor tartalmú anyagot izolált. Feltételezte, hogy erre a nuklein -re a sejtosztódáshoz van szükség, és megjósolta, hogy...annak ismerete, hogy a mag anyagai, a proteinek és ezek közvetlen anyagcseretermékei milyen kapcsolatban vannak egymással, fokozatosan fellebbenti majd azt a fátylat, amely jelenleg teljesen eltakarja a sejtnövekedés belső folyamatait. És bár festési reakciók később kimutatták, hogy a kromoszómák egyik fő összetevője nukleinsav, jelentőségét még évtizedekig nem ismerték fel, mivel inkább a bonyolultabbnak mutatkozó kromoszómafehérjékről tételezték fel, hogy felelősek az öröklődésért. Az érdeklődés 1944-ben fordult a dezoxiribonukleinsav (DNS) felé, midőn Avery és munkatársai felfedezték, hogy egy baktérium egyik típusát nem fehérjével, hanem a DNS-sel lehet örökletes módon átalakítani. Watson és Crick 1953-ban közölték a DNS kettős hélix szerkezetét. Arra, hogy a gén voltaképpen hogyan funkcionál, Garrod már sokkal korábban rájött, aki 1909-ben közölte eredményeit négy örökletes betegségről, amelyeket egyértelműen az anyagcsere veleszületett rendellenessége -ként írt le, amelyekben egy specifikus enzim vagy inaktívnak bizonyult vagy éppen hiányzott. Azt az elképzelést, hogy a gének enzimek termelődéséért felelősek, nem vették komolyan és csak később 1940-es években gondoltak rá újra, amikor a D. melanogaster szemszínéért felelős pigment szintézisét ill. a kenyérpenész tápanyagigényét kezdték tanulmányozni. Mindkét rendszerben a gének mutációja a normális körülmények között egy-egy specifikus enzim által katalizált biokémiai reakciót akadályozott. További kutatások alapján e koncepció finomított, bár egyszerűsített változata szerint, egy gén egy polipeptid lánc szintézisét irányítja. Pauling a humán hemoglobinnal, a vörösvértestek fehérjéjével kapcsolatban kutatta a gének hatásmódját. Feltételezte, hogy az örökletes megbetegedésként jól ismert sarlósejtes vérszegénység oka egy abnormális hemoglobin. Ingram meghatározta mind az egészséges, mind a sarlósejtes vérszegénységben szenvedő betegekből származó β-globin lánc polipeptidjének aminosav sorrendjét. A két több mint száz aminosavból álló polipeptid lánc meglepő módon, csupán egyetlen aminosavban tért el egymástól. E megfigyelés bebizonyította, hogy minden gén egymástól különböző allélje legalábbis kismértékben eltérő polipeptidet képez. Világossá vált, hogy a DNS láncot felépítő alapegységek, a nukleotidok sorrendje határozza meg a polipeptid láncban az aminosavak speciális sorrendjét, és egy hiba a DNS láncban hibát eredményez a polipeptid termékben is. Azt, hogy a gén adott nukleotid szekvenciáinak megváltozása aminosav-cseréket okoz a géntermékében, elegáns kísérletekkel bizonyították mikroorganizmusokban is. A genetikai kód megfejtése - azaz annak meghatározása, hogy pontosan melyik nukleotid szekvencia határozza meg az egyes aminosavakat - volt a korai 1960-as évek genetikájának legizgalmasabb vállalkozása. A genetikai kód azonosnak, vagy legalábbis közel azonosnak bizonyult valamennyi élőlény DNS-ében. Az utóbbi évtizedekben a gének működéséről szerzett ismereteinket a vírusokkal, baktériumokkal és más mikroorganizmusokkal végzett kutatások szolgáltatták. Ezek az élőlények valamennyien utódok millióit tudják létrehozni rövid idő alatt. Különösen tanulságosak a vírusok, amelyek képesek békésen együttélni azokkal a sejtekkel, amelyeket megfertőznek; ehhez az szükséges, hogy DNS-üket a gazdaszervezet DNS-ébe beépítsék. A molekuláris biológusok e trükköt sikeresen lemásolták, azaz, megoldották, hogy miképpen

2 lehet pl. baktériumok DNS-ébe más szervezetből származó, akár humán DNS-t is beépíteni. Ez a DNS specifikus, rövid szekvenciáit felismerő és elhasító enzimekkel, a restrikciós endonukleázokkal valósítható meg hatékonyan, melyeket 1975-től kezdve használnak kiterjedten. Innen számíthatjuk a génsebészet kialakulását. Az így elszaporított - klónozott - géneket a kutatásban, az iparban, ill. a mezőgazdaságban is hasznosítják már. Ezek a kifinomult és nagyon hatékony molekuláris technológiák forradalmasították a genetika és molekuláris biológia csaknem valamennyi ágát; pl. lehetővé tették, hogy géneket izoláljanak és tanulmányozzanak, célzott mutációkat hozzanak bennük létre a DNS meghatározott pontjain. Ma már lehetséges, bár óriás feladat, a humán genom teljes bázissorrendjét meghatározni! E kutatási terv hasznosságát illetően még a tudósok között is heves vita támadt: milyen kihatása lesz ennek a humángenetikára és az orvoslásra. A baktériumokkal végzett munkákból következtettek arra is, hogy léteznek szabályozó (regulátor) gének, amelyek más géneket be- és kikapcsolnak. Szerepük tanulmányozása magasabbrendű szervezetekben segíteni fog a biológia egyik legfontosabb kérdésének megértésében, nevezetesen, hogy a sejtek hogyan differenciálódnak, hogyan válnak egymástól eltérővé, pl. megérteni azt, hogy bár génjeik azonosak, mégis milyen nagymértékben tér el egymástól egy ideg- és egy májsejt. Egy jelentős áttörés történt 1984-ben, amikor felfedezték, hogy a Drosophila, az egér és az ember is rendelkezik olyan gén-szakasszal, (amelyet homeobox-nak neveznek) amely az embrionális fejlődés során más géncsoportok kifejeződését szabályozza. A homeoboxok nukleotid szekvenciája nagyon hasonlónak bizonyult egymástól távoli fajokban is. McClintock kukoricán tett megfigyelései nyomán váltak ismertté a mozgékony elemek (transposable elements). Ezek a kromoszóma különböző helyeire beépülhetnek és ott géneket be- vagy kikapcsolhatnak. Később ezt a jelenséget más fajokban is észlelték. Más gének, amelyek a normális sejtnövekedést szabályozzák, ha mutációt szenvednek, rákot indukálhatnak. Ezeket onkogéneknek nevezzük. A rekombináció fizikai alapjai Az 1900-as évek elején számos kutató leírta, hogy egyes génpárok esetén a dihibridek gamétáiban az allélkombinációk gyakoriságai nem felelnek meg a Mendel II. törvényeként ismert független hasadás alapján várható arányoknak (50% új kombináció, 50% szülői). T.H. Morgan (1911) véleménye szerint ezek az esetek az örökítő faktorok kromoszómákon való elhelyezkedésének... egyszerű, mechanikus következményei. Más megfogalmazásban, fel kell tételezni, hogy a gének együtt maradnak, amig az őket hordozó kromoszóma fizikailag ép marad. Ezt elfogadva viszonylag könnyen meg lehetett érteni a teljes kapcsoltságot (=0% rekombináció) és a teljes függetlenséget (=50% új kombináció), de továbbra is gondot okozott a két szélsőség közötti rekombinációs gyakoriság értelmezése. Morgant a kísérletes megfigyelések vezették el a helyes magyarázathoz. Ebben az időben a meiozis I-ben kialakuló tetrádokat (a két homológ 2-2 testvérkromatidjából álló négyeseket) mikroszkóppal tanulmányozva azok kromatidjai között viszonylag gyakran előforduló átkereszteződéseket, u.n. kiazmákat figyeltek meg. A kiazmák jelenlétét a citológusok a legkülönbözőbb fajok meiozis I-ben levő megfestett sejtjeiben kimutatták. Legkönnyebb volt ezek tanulmányozása azokban a fajokban, melyek kromoszómái nagyok. A legtöbb emlős faj kromoszómái túlságosan kicsik ahhoz, hogy kényelmesen lehessen tetrádjaikban a kiazmákat tanulmányozni. Ember esetében a petesejt meiozisa nem hozzáférhető a tetrádok tanulmányozása céljára. Az emberi spermiogenezis vizsgálata tetrádonként 1-4 (néha 5, még ritkábban 6) - átlagosan 2 - kiazma jelenlétét mutatták ki. Az X és Y kromoszómák kromatidjai között nem láttak átkereszteződést. 2

3 Morgan és munkatársai, majd nyomukban más genetikusok is századunk tizes éveitől kezdve használták és használják a crossing overek gyakoriságát géntérképezésre, análkül, hogy pontosan ismerték volna ill. ismernék annak molekuláris mechanizmusát. A kiazmák jelenléte minden élőlény esetében azt jelenti, hogy a tetrádban két nemtestvér kromatida eltört és átkereszteződve újra összekapcsolódott, amint ez a 4.6. ábrán is látható. A nem-testvér kromatidák homológ (de nem teljesen azonos információtartalmú) darabjainak kicserélődését crosssing overnek, átkereszteződésnek nevezik. Az átkereszteződés egy viszonylag gyakran előforduló természetes folyamat. A meiózis I. profázisának pachytén szakaszában játszódik le, amikor a kromoszómák még nem kondenzálódtak annyira, hogy mikroszkópban látható lenne az átkereszteződés, a crossing over. Eukariótákban a DNS-kicserélődés pontos molekuláris mechanizmusát még ma sem ismerjük, az elkövetkezőkben röviden leírjuk eddigi ismereteinket. 1. ábra. Kiazmák mikrofotói. Az első meiotikus osztódás profázisának késői szakaszában láthatóak ezek a képződmények (a nyilak mutatnak egyes kiazmákra), amikor a homológ párok tagjai kezdenek elválni egymástól. (A) Spermiogenezis szalamandrában. (B) Férfi spermiogenezise. A kör a végükkel összekapcsolódott X és Y kromoszómapárt emeli ki. Az általános rekombináció molekuláris mechanizmusa A genetikusok már századunk eleje óta használták a crossing over-ek gyakoriságát géntérképezéshez, anélkül, hogy ismerték volna annak molekuláris mechanizmusát. Két DNS molekula viszonylag hosszú homológ (majdnem teljesen azonos) szekvenciájú szakaszai között lejátszódó DNS-kicserélődést általános rekombinációnak nevezzük. Fontos jellemzője ennek a folyamatnak, hogy az ezt katalizáló enzimek bármilyen eredetű, de homológ szekvenciát tartalmazó DNS molekulát fel tudnak használni szubsztrátként, létrehozva közöttük a homológ szakaszok párosítását és egyes szakaszok kicserélődését. Kb. 800 bázispárnyi homológ DNS szakasz szükséges a folyamat lejátszódásához. Az általános rekombináció nélkül az egyes kromoszómákon a gének lokuszain lévő allélek szinte változtathatatlanul rögzülnének az adott kromoszómára, véglegesítve az alléleknek az adott kromoszómán kialakult kombinációját. A változtatás egyetlen módja a mutáció lenne. Ez esetben a káros mutációk is felhalmozódnának a kromoszómán, ami ahhoz vezetne, hogy az evolúció folyamán elveszne a kromoszóma. Ezzel természetesen eltűnnének a populációból olyan hasznos mutáns allélek is, amelyek ugyanazon a kromoszómán helyezkednének el. A gének cserélgetésével azonban a genetikai rekombináció folyamata lehetővé teszi a káros és hasznos mutációk elválasztását, az új allélkombinációk kialakulását. Ez a genetikai 3

4 mechanizmus biztosítja, hogy ugyanannak a génnek különböző alléljei új és új génekkel kombinálódva fejthessék ki hatásukat a populáció különböző egyedeiben, növelve annak lehetőségét, hogy legalább néhány egyed túléli a környezet változásait. Az általános rekombináció, ami eukarióta sejtekben homológ kromoszómák között következik be, mindig a kromoszómák megfelelő szakaszainak fizikai cseréjével jár. A génkicserélődés citológiai következményei a meiózis I. profázisának végén válnak mikroszkóppal megfigyelhetővé, amikor a kromoszómák már erősen kondenzálódtak. A homológ pár tagjai ekkor már bizonyos pontokon fizikailag is összekapcsolódottaknak látszanak. Minden ilyen átkereszteződés helyét kiazmának nevezzük, amint azt korábban már említettük is. A meiózisnak ebben a fázisában a homológ kromoszómapárokat bivalenseknek nevezzük. Ezeket általában legalább egy kiazma kapcsol össze, de nem ritka a három vagy négy kiazma sem, ami azt jelzi, hogy a többszörös crossing over viszonylag gyakori esemény. A rekombináció csak úgy játszódhat le, ha a rekombinálódó kromoszómák szorosan öszekapcsolódnak. A bivalensek tagjai között a meiózis I. profázisának zigotén szakaszában kezd kialakulni egy több féle fehérjemolekulából felépülő lemezes szerkezetű bonyolult képlet, a szinaptonemális komplex. Az esetek egy részében ez a komplex akár napokon keresztül is összekapcsolva tartja a homológ kromoszómákat, majd a diplotén szakaszban lassan lebomlik, és a szakasz végén láthatóvá válnak a tetrádok és bennük a kiazmák. A szinaptonemális komplex tehát szorosan összekapcsolva tartja a homológokat, a tetrádban a nem-testvér kromatidák párosodása nagyon pontos, mindig azonos lokuszok kerülnek egymás mellé. A szinaptonemális komplex egy hosszú, lapos, három lemezből álló képlet (egy középső és két oldalsó lemez), amelynek két oldalán, az oldalsó lemezekhez kapcsolódnak a homológ pár tagjai. A komplex végigfut a homológ pár teljes hosszában, a testvérkromatidák szorosan egymás mellett fekszenek és a bennük lévő DNS molekulák az azonos oldali oldalsó lemezhez kapcsolódnak hurok domének formájában. A homológ kromoszómák közötti, a gének kicserélődését lehetővé tévő precíz összekapcsolódás mechanizmusa azonban még ma sem ismert teljesen. Maguk a kromoszómák nincsenek teljes hosszukon végig folyamatos kapcsolatban egymással. Már csak azért sem, hiszen elektronmikroszkópban is látható, hogy a szinaptonemális komplex egymástól bizonyos távolságra (~200 nm) tartja a kromoszómákat. A feltételezések szerint a homológ kromoszómák közötti közvetlen érintkezést a homológ DNS szakaszok között komplementer bázispárok kialakulása teszi lehetővé. Ezek a közvetlen kontaktusok valószínűleg még a zigotént megelőzően jönnek létre, amikor a kromoszómák még gyengén kondenzáltak. Az ezt követő kondenzálódással párhuzamosan a szinaptonemális komplex összekapcsolná a kromoszómák többi részét. Feltehetőleg a szinaptonemális komplex maga csak strukturális szerepet játszik a rekombinációban, ő maga nem vesz részt a DNS kicserélődés effektív molekuláris mechanizmusában. A rekombináció molekuláris lépéseit a rekombinációs nodulusnak nevezett molekulakomplex katalizálja, ami egy viszonylag nagy méretű (~90 nm átmérőjű), több fehérjéből álló képlet. Ezek a képletek két kromoszóma között futó szinaptonemális komplex lemezei között helyezkednek el, bizonyos távolságra egymástól. Ezek tekinthetőek azoknak a molekuláris gépezeteknek, amelyek a folyamathoz szükséges enzimeket tartalmazzák, valószínűleg ezek a nodulusok kapcsolják össze a nem-testvér kromatidákat és katalizálják a DNS kicserélődés molekuláris lépéseit. Mindezek igazolására csak indirekt bizonyítékok vannak. A nodulusok száma általában megegyezik a profázis végén látható kiazmák számával, eloszlásuk a kromoszómák mentén megegyezik a kiazmák eloszlásával. A nodulusok is hiányzanak a szinaptonemális komplex heterokromatikus kromoszómarészeket összekapcsoló szakaszairól, ahol nincs crossing over sem és kiazmákat sem látunk. Ismerünk olyan mutációkat a Drosophilákban, amelyek erősen 4

5 lecsökkentik a homológok közötti rekombináció gyakoriságát. Ezekben a mutánsokban nagyon kevés a rekombinációs nodulus is. Az általános vagy más néven homológ rekombináció molekuláris mechanizmusa eukariótákban azért is nehezen tisztázható, mert összekapcsolódik a meiózis lefolyását szabályozó ill. irányító eseményekkel: az egyik elakadása a másik lefolyását is megakadályozza vagy nagyon megzavarja. Ezért nehéz csak eukariótákat tanulmányozva kideríteni, hogy egy-egy fehérje az egyik vagy a másik folyamatban játszik-e szerepet. A homológ rekombináció eseményeit prokarióták (leggyakrabban Escherichia coli) rekombinációs folyamatainak tanulmányozásával lehetett kideríteni. Az egyes lépések természetét, azaz az egyes közreműködő enzimek szerepét itt is in vitro kisérletekben lehetett pontosan megismerni, az aktivitásokra vonatkozó feltételezéseket bizonyítani. E. coli esetében a rekombináció egyes lépéseit és az ebben közreműködő legfontosabb fehérjéket ismerjük. Szerencsénkre az evolúció a legfontosabb közreműködő fehérjéket eukariótákban is felismerhető formában megőrizte. Ez lehetőséget ad szerepüknek in vitro kisérleti rendszerekben történő tanulmányozására. A homológ rekombináció egymást követő lépéseinek modelljét Meselson és Radding írja le. A modell szerint a folyamat két egymással legalább 800 bázispár hosszúságú szakaszon homológ (azaz legfeljebb egy-két bázispár kivételével azonos) DNS molekula között akkor kezdődhet meg, ha a két molekula térben elég közel kerül egymáshoz és az egyik molekula homológ szakasza egyszálas formában van jelen. Az egyszálas forma többféleképpen is létrejöhet: Lehet specifikus rekombinációs endonukleáz általi behasítás, vagy a DNS egy meghibásodott rövid szakaszának a javítása során a hibás szakasz kivágása után a szabad végű szál letekeredésének a következménye. Létrejöhet egy-egy szakasz replikációjának akadályoztatása (pl. UV besugárzás hatására kialakult timindimerek által) következtében. A rekombináció következő lépése már specifikusabb és baktériumokban csak a RecA fehérje közreműködéséval (más fehérjék segítségével) következhet be. Lényege a száláthelyezés. A RecA fehérje kötődik mind az egyszálas, mind a duplaszálas DNS-hez. A kettős-hélixet a sok hozzákötődött RecA fehérje kissé kinyitja és a RecA-val fedett egyszálas szakaszt hozzá hibridizálja a kétszálas forma komplementer szálához kiszorítva helyéből az eredeti szálat. A folyamat energia igényes, a RecA ATP-hasítással fedezi az energia szükségletet. A RecA-nak ezt a működését több más fehérje is segíti (köztük az egyszálas DNS-t kötő ún. SSB fehérje). A bemetszés helyén az áthelyezés után szabadon maradt 3 véghez a DNS-polimeráz I új szálat szintetizál a szabaddá vált templát szálon, ezzel pótolva az áthelyezett szakaszt. Az áthelyezést követően a helyéről kimozdított és a homológ duplaszálas DNS-hez csatlakozó szál az ún. D-hurkot hozza létre amikor helyettesíti a homológ DNS egyik szálát. A helyettesített, kidudorodó szakasz megfelelő endo- és exonukleázok közreműködéséval leemésztődik, azaz a helyéről kimozdított szálon is bemetszések jönnek létre. A bemetszés 3 végét a DNS ligáz kovalensen hozzáköti az áthelyezett szakasz 5 végéhez. A D-hurok bemetszésével keletkezett 5 vég maga is áthelyezésre kerül, arra a molekulára melynek egyik szála korábban áthelyeződött, a DNS ligáz közreműködéséval kovalensen kötődik az újonnan szintetizálódó szál 3 végéhez. Ezekkel a lépésekkel olyan kapcsolódás jön létre a két DNS molekula között, hogy a kettős hélixek egy-egy szála az átkereszteződési pontnál átlép a másikra, így általuk a két molekula összekapcsolódik. Ezt az átkeresztezéssel összekapcsolt formát Hollidayintermediernek (köztiterméknek) nevezik. (Elektronmikroszkópi képen a Hollidayintermedierek kereszt alakú képződményekként láthatóak - in vivo és in vitro körülmények között egyaránt kialakulnak ill. kialakíthatóak.) Ebben a formában a szálak 5

6 átkereszteződésének a helye specifikus (a helikázok családjába tartozó) fehérjék közreműködésével és ATP felhasználásával ide-oda vándorolhat. A Holliday-intermediert külön erre a célra szolgáló endonukleáz hasítja ketté két külön molekulára. A hasítás kétféleképpen következhet be. Egyik esetben visszakapjuk az eredeti molekulákat a rövid szakaszon áthelyezett ill. újonnan szintetizált szállal. A másik esetben a bemetszések olyan molekulákat eredményeznek, melyek egyik szakasza egyik, többi része pedig a másik DNS-ből származik. A bemetszéskor keletkezett szbad végeket a ligáz természetesen összekapcsolja és ezzel befejezetté válik a homológ rekombináció. Ha az áthelyezett egyszálas szakasz szekvenciája egy-két bázisban eltér a kiszorított szál bázissorrendjétől, a komplementaritás a kialakuló kettős hélixben tökéletlen lesz (= heteroduplex keletkezik,) és a javítórendszer az egyik szálhoz javítja a másikat (hogy melyik marad és melyik változik véletlenszerűnek látszik; így változás következhet be a DNS allél összetételében). Ez eltéréseket okozhat az osztódást követően az utódsejtek gén összetételében. Ezt a jelenséget génkonverziónak nevezzük. Társulhat crossing-overhez, vagy lehet a rekombinációs esemény egyetlen következménye. Bár a láncáthelyezést katalizáló RecA fehérje nem válogat a szekvenciák között, mágis vannak ún. rekombinációs forró pontok, azaz olyan DNS szakaszok, ahol sokkal gyakrabban kövtkezik be rekombináció, mint más helyeken. Ennek az a magyarázata, hogy a bemetszést végző endonukleázok nagyobb affinitást mutatnak ezen szekvenciák iránt. A homológ rekombináció mellett számolni kell szekvencia specifikus rekombinációs rendszerek működésével is. Alá kell húzni a rekombinációs és javító rendszerek közötti igen szoros kapcsolatot. A legfontosabb fehérjék egyaránt közreműködnek a kétféle rendszer mindegyikében. Az eukarióták rekombinációs rendszere hasonlít a baktériumokéhoz, csak annál sokkal bonyolultabb. Ahol a baktériumokban egy-egy feladat megoldására egyetlen fajta fehérje szolgál, ott eukariótákban egy-egy fehérje családot találunk, a család tagjai közötti sajátságos faladat megosztással. Az élesztőtől az emberig a RecA fehárje feladatát több fehérje látja el. Közülük a RecA-val homológok is két családba sorolhatók. A Rad51 és a másik három Rad fehérje (Rad54, Rad55 és Rad57) a Rad52-vel kapcsolódva a repair folyamatokban és mitótikus rekombinációban működnek közre a száláthelyezést katalizálva (arad52 fehérje nem homológ a RecA-val, ennek ellenére épúgy képes szabad szál áthelyezést katalizálni mint a RecA homológ Rad51). A Rad51 és Rad52 emellett a meiótokus rekombinációban is nélkülözhetetlenek, míg a Dmc1 nevű RecA-val szintén homológ rekombinációs enzim normális körülmények között csak a meiózisban jelenik meg. (a Rad51 enzimmel együtt mutatható ki az alakuló szinapszisok területén). Azonosítani lehetett élesztőben majd emlősökben is több, rekombinációban közreműködő helikázt és nukleázt is. A meiótikus rekombinációhoz azok a szerkezeti fehérjék is nélkülözhetetlenek, melyek a rekombinációhoz szükséges szerkezetek (szinaptonemális komplex, rekombinációs nodulus) kialakításában működnek közre. Élesztő meiózisában viszonylag gyakoriak egyes rekombinációs fooró pontok területén a DNS molekulák kétszálas törései. Ezek javítása rekombinációval kapcsolódik össze, melynek gyakori kísérője a génkonverzió, de kisebb-nagyobb DNS szakaszok deléciója is bekövetkezhet. A leírtakból az is következik, hogy azonos kromoszómán lévő két lókusz között a csossing-overek gyakorisága általában a távolságukkal arányos. Amennyiben azonban a két lókuszt összekötő DNS-szakaszon rekombinációs forró pont van, a crossing over sokkal gyakoribb, mint ami a távolságuknak megfelelne, azaz ilyenkor távolságukat nagyobbnak becsüljük a géntérképen. Visszatérve a korábbi témánkhoz tehát, a 3. ábra az átkereszteződést és annak genetikai következményeit mutatja be egy olyan olyan nő esetében, aki kétszeresen heterozigóta a 6

7 2. ábra. A homológ rekombináció Meselson-Radding féle modellje. (a) A párosodott DNS duplexek egyikében endonukleázok bevágják az egyik szálat. (b) Az elvágott szál 5 vége áthajlik és összekapcsolódik a másik duplex homológ részével, ott helyettesíti az egyik szálat, és kialakul a D-hurok. (c) A D-hurkot enzimek lebontják és az asszimetrikus heteroduplex a szálvándorlás következtében hosszabbodik. (d) Az áthajlott szálat DNS-ligáz kapcsolja a D-hurok helyén kialakult szabad láncvégekhez. Közben az áthajlott szál hagyta üres egyszálas szakaszon megszintetizálódik a komplementer szál. Kialakul a Holliday átkereszteződés. (e) Újabb szálvándorlással egy szimmetrikus heteroduplex alakul ki a Holliday átkereszteződésnél (e1). A kereszt alakú kapcsolódás elvágásával vagy átkereszteződött DNS molekulák (f ) vagy nem-rekombináns DNS molekulák keletkeznek (g ). vörös-zöld színtévesztés és a hemofilia génjére nézve és a recesszív allélek kapcsoltan helyezkednek el. Az 1. és 2. az egyik homológ kromoszóma testvérkromatidjait, míg a 3. és 4. a másik homológ kromoszóma testvérkromatidjait jelöli. Az egyszerűség kedvéért olyan crossing overt mutat az ábra, ahol az átkereszteződés csak a 2-es és 3-as kromatidák között zajlott le, de ugyanekkora valószínűséggel megtörténhet crossing over az 1-es és 3-as, vagy a 2-es és 4-es kromatidák között is, és ugyanarra az eredményre vezetnének (a valóságban mind a négy kromatida érintkezik, hiszen három dimenzióban kell elképzelnünk őket, nem pedig a síkban kiterítve). 7

8 3. ábra. A zöld színtévesztés és a hemofilia A gének lokuszait elválasztó kromoszóma szakaszon bekövetkező egyszeres crossing over genetikai következményei egy, a két génre nézve kettős heterozigóta nő ivarsejtképződése során. Az ábra a 2-es és a 3-as kromatidák között bekövetkező crossing overt ábrázolja. Ugyanez lenne a genetikai következménye az 1-es és 3-as, vagy a 2-es és 4-es kromatidák közötti átkereszteződésnek is. A crossing over következményeképpen a képződő petesejt X kromoszómáján hordozhatja majd a gének szülői összetételét (gh vagy GH) és hordozhatja ezen gének kombinációit is - a rekombináns X kromoszómán - gh vagy Gh. Az, hogy végül is a négy lehetőség közül melyik kerül a petesejtbe, véletlen kiválasztódás eredménye, a másik három kombináció egy-egy változatával rendelkező X kromoszómák a sarki testekbe kerülnek majd. A crossing over két jellemzőjét kell hangsúlyoznunk. Az első az, hogy a kiazma helye véletlenszerűen alakul ki a homológ pár tetrádjában a nem-testvér kromatidák mentén. Egy adott meiózisban a crossing over és ennek következtében a kiazma nem feltétlenül az általunk tárgyalt, és a 4.7. ábrán bemutatott gének között jön létre. Ha nem a két gén között jön létre a crossing over, akkor a keletkezett összes utódsejtben a fenti két gén (G és H) szülői allélkombinációját találjuk majd. A G lokusztól balra, vagy a H lokusztól jobbra végbemenő átkereszteződés nem rendezi át a két gén alléljeit. A második hangsúlyozandó tény az, hogy a crossing over nem azonos a rekombinációval. Ha a 4.7. ábrán bemutatott folyamat olyan egyén sejtjeiben játszódik le, aki nem heterozigóta a két génre nézve, akkor a közöttük megtörtént átkereszteződés nem hoz létre rekombinációt (természetesen csak az adott génekre nézve). Az átkereszteződés létrejötte független attól, hogy milyen allélek találhatóak egy adott lokuszon, de egy adott átkereszteződés eredménye csak akkor mutatható ki, ha két olyan lokusz között történik amelyek heterozigóta allélkombinációkat tartalmaznak. Könnyű 8

9 belátnunk, hogy semmilyen, a szülői genotípustól eltérő allélkombináció nem keletkezhet, ha egy egyén homozigóta g/g, G/G, H/H vagy h/h genotípusú. Ezért ilyen esetekben teljesen mindegy, hogy hol történik meg az átkereszteződés - crossing over - a kromatidok között. Mutációk Mutáción a gének nukleotid-szekvenciájának a megváltozását értjük. Majdnem minden ilyen változás kedvezőtlen hatással van a gén funkciójára, de ez nem feltétlenül jelentkezik az élőlény szintjén. Egy sor olyan celluláris folyamat van, amelyik a DNS-ben bekövetkezett változásokat kijavítja, mielőtt a DNS-molekula mitózis vagy meiozis során az utódsejtbe kerülne. A változás igen gyakran báziscsere, amikor is egy bázis helyére egy másik épül be. Amennyiben egy purinbázis helyére másik purin, ill. egy pirimidinbázis helyett másik pirimidin épül be, tranzícióról, (transition) amennyiben purin-pirimidin ill. pirimidin-purin csere következik be, transzverzióról (transversion) beszélünk. A mutációk egy következő fajtája a kereteltolódásos mutáció (frameshift mutation), amikor is a leolvasási keret egy bázis kivágódása (deléció, deletion) vagy beékelődése (inszerció, insertion) miatt megváltozik. Mindkét típusú mutációt pontmutációnak (point mutation) nevezzük, mivel csak egyetlen bázist érintenek. Ezek a mutációk a kromoszómák mikroszkópos vizsgálata során természetszerűleg nem láthatóak. Szélesebb értelemben a mutációkhoz szokás sorolni azokat a változásokat is is, amikor mikroszkóposan észlelhető kromoszóma-aberrációk (deléció, duplikáció, inverzió, transzlokáció, aneuploidia és poliploidia) észlelhetők. Általában a mutáció alatt egy gén megváltozását értjük. A mutáció kisebb nagyobb mértékben megváltozott tulajdonságú, mutáns fenotípusú egyedet eredményezhet. A mutáns allélek gyakran hátrányosak, de ez sem mindig nyilvánvaló és nem könnyen belátható. A valóságban a mutáció fenotípusos megjelenése időben elválhat magától a mutáció eseményétől, különösen, ha a mutáció mint sok esetben recesszív. Ezek a mutációk csak akkor jelentkeznek, ha megtermékenyítéskor az ivarsejt egy olyan gamétával egyesül - és hoz létre zigótát - amelyben gén ugyanaz a gén mutált. Ilyen esetben gyakori, hogy az allelomorf génpáron maguk a mutációk különbözőek (egymástól függetlenül keletkeztek). Ez utóbbi esetben nevezzük az utódot compound heterozigótának). Bár a mutáció a sejtben bármikor végbemehet, leggyakrabban mégis a DNS replikációja során jön létre. Ha a mutáció olyan sejtet érint, amelyből ivarsejtek keletkeznek, germinális mutációról beszélünk. A test bármely egyéb sejtjét (máj, tüdő, hám, stb.) érintő mutáció szomatikus mutáció. A szomatikus mutáció csak a mutációt hordozó egyedben jelenik meg, az utódoknak nem adódik át. Ezzel szemben a germinális mutáció általában azt a személyt, akiben a mutáció történt, nem érinti, de az utódaiba továbbadódhat. Ha azonban a mutáció az embrionális fejlődés nagyon korai stádiumában jön létre, még mielőtt az ősivarsejtek kialakulnak, az illető mind a szomatikus, mind a germinális sejtjeiben mutáns lehet. Úgy gondolják, hogy a daganatok kialakulásának egyik korai lépése egy szomatikus mutáció. Ebben a fejezetben azonban elsősorban a germinális mutációkkal foglalkozunk. A báziscserék típusai Az egyes génekben történt mutációk eredményeként az általuk kódolt fehérjék egy vagy több aminosava megváltozik. Ennek klasszikus példája a humán β-globin-génben történt mutáció, amelynek eredményeként a normál hemoglobin helyett az ún. sarlósejtes hemoglobin keletkezik. A mutáció egyetlen aminosav kodonját érinti, amelynek eredményeként glutaminsav helyett valin épül be (4. ábra). Nem teljesen tisztázott, hogy ez a 9

10 mutáció hányszor jött létre az emberi populációkban, de az egyes mutációk általában nagyon ritkán ismétlődnek. 4. ábra. A sarlósejtes mutáció. A normál b -globinban az N-terminális 6. aminosav glutaminsav. A mutáció, ami a glutaminsav (egyik lehetséges) tripletjének egyetlen bázisát érinti, glutaminsav helyett valin beépülését eredményezi. A mutáns gén hatása a fenotípusra a jelentéktelentől a halálosig (letális) változhat. A legártalmatlanabb, a fenotípusban egyáltalán nem jelentkező mutáció, amelyet csak a DNS vagy mrns szekvencia-analízisével észlelhetünk, az olyan mutáció, amelynek során a triplet megváltozása egy másik, de ugyanazt az aminosavat kódoló, szinonim tripletet eredményez. Pl. az AAA triplet megváltozása AAG-re ilyen, hiszen mindkét triplet a fenilalanint kódolja. (A mutáció ezen fajtáját same sense mutációnak nevezik.) Mivel minden egyes bázis három másikra cserélődhet, egyetlen tripleten belüli egyetlen báziscsere összesen kilenc különböző tripletet eredményezhet (5. ábra). Ha egy mutáció aminosavcserét eredményez (missense mutáció), a mutáció következményei attól függnek, hogy az új aminosav-oldallánc hogyan változtatja meg a fehérje tulajdonságait, és annak milyen hatása van az illető egyed fejlődésére. Nagyon sok mutáció lényegtelen fenotípusos változást idéz elő emberben. Ilyen mutáció például az, amelyik megszabja, hogy a fejtetőn a hajtincsek az óra járásával megegyező, vagy azzal ellentétes irányba dőljenek, a szőrös könyök, a puha vagy keményebb fülzsír, vagy egy kis gödröcske megjelenése a fülcimpák szélénél (6. ábra). Az ilyen jelentéktelen fenotípusos változásokat előidéző mutációkkal szemben vannak olyan mutációk, amelyek csecsemő- (Tay-Sachs betegség), ifjú- (Duchenne izomsorvadás, cisztikus fibrózis), vagy felnőtt korban halált okoznak. E két szélsőség között vannak azok a mutációk, melyek kisebb kellemetlenséget, panaszokat, vagy súlyos betegséget jelentenek a hordozók számára (rövidujjúság, kopaszság, albinizmus, törpenövés, diabetes mellitus, hemofília, stb.). Azok a mutációk, amelyek stop kodont hoznak létre (nonsense mutáció), vagy stop kodont szüntetnek meg, olyan polipeptideket eredményeznek, amelyek a normálistól rövidebbek ill. hosszabbak. Egy ilyen mutációt írtak le egy talasszémiás olasz férfi esetében (l. alább), akiben a mutáns génről teljesen funkcióképtelen fehérje keletkezett. DNS-ének analízise azt mutatta, hogy a 39. aminosav kodonja CAG-ről, ami glutamint kódol, UAG stop kodonra változott. Ezért a b -globin szintézise a 38. aminosav után befejeződött. (A normális b -globin 146 aminosavat tartalmaz.) Ez a rövid polipeptid teljesen funkcióképtelen. Olyan mutációt is ismerünk, amely a normálisnál hosszabb polipeptidet eredményez. Az a -globin gén esetében erre vonatkozó példát e fejezetben később írunk le. 10

Génszerkezet és génfunkció

Génszerkezet és génfunkció Általános és Orvosi Genetika jegyzet 4. fejezetének bővítése a bakteriális genetikával 4. fejezet Génszerkezet és génfunkció 1/ Bakteriális genetika Nem szükséges külön hangsúlyoznunk a baktériumok és

Részletesebben

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.

A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot. Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!!

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!! Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció 1859 1865 1869 1952 Hershey & Chase 1953!!! 1879 1903 1951 1950 1944 1928 1911 1 1. DNS szerkezete Mi az örökítő anyag? Friedrich Miescher

Részletesebben

Kromoszómák, Gének centromer

Kromoszómák, Gének centromer Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak

Részletesebben

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az

Részletesebben

A replikáció mechanizmusa

A replikáció mechanizmusa Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,

Részletesebben

Tudománytörténeti visszatekintés

Tudománytörténeti visszatekintés GENETIKA I. AZ ÖRÖKLŐDÉS TÖRVÉNYSZERŰSÉGEI Minek köszönhető a biológiai sokféleség? Hogyan történik a tulajdonságok átörökítése? Tudománytörténeti visszatekintés 1. Keveredés alapú öröklődés: (1761-1766,

Részletesebben

Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes.

Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes. Múlt órán: Lehetséges tesztfeladatok: Kitől származik a variáció-szelekció paradigma, mely szerint az egyéni, javarészt öröklött különbségek között a társadalmi harc válogat? Fromm-Reichmann Mill Gallton

Részletesebben

Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat

Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat 10.2.2010 genmisk1 1 Áttekintés Mendel és a mendeli törvények Mendel előtt és körül A genetika törvényeinek újbóli felfedezése és a kromoszómák Watson és Crick a molekuláris biológoa központi dogmája 10.2.2010

Részletesebben

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll

Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll Többgénes jellegek Többgénes jellegek 1. 1. Klasszikus (poligénes) mennyiségi jellegek Multifaktoriális jellegek: több gén és a környezet által meghatározott jellegek 2.Szinte minden jelleg több gén irányítása

Részletesebben

MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik.

MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. MUTÁCIÓK A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. Pontmutáció: A kromoszóma egy génjében pár nukleotidnál következik be változás.

Részletesebben

A SEJTOSZTÓDÁS Halasy Katalin

A SEJTOSZTÓDÁS Halasy Katalin 1 A SEJTOSZTÓDÁS Halasy Katalin Az élő sejtek anyagcseréjük során növekednek, genetikailag meghatározott élettartamuk van, elhasználódnak, elöregednek, majd elpusztulnak. Az elpusztult sejtek pótlására

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

Genetika. Tartárgyi adatlap: tantárgy adatai

Genetika. Tartárgyi adatlap: tantárgy adatai Genetika Előadás a I. éves Génsebészet szakos hallgatók számára Tartárgyi adatlap: tantárgy adatai 2.1. Tantárgy címe Genetika 2.2. Előadás felelőse Dr. Mara Gyöngyvér, docens 2.3. Egyéb oktatási tevékenységek

Részletesebben

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása.

Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Növények klónozása Klónozás Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Görög szó: klon, jelentése: gally, hajtás, vessző. Ami

Részletesebben

Biológus MSc. Molekuláris biológiai alapismeretek

Biológus MSc. Molekuláris biológiai alapismeretek Biológus MSc Molekuláris biológiai alapismeretek A nukleotidok építőkövei A nukleotidok szerkezete Nukleotid = N-tartalmú szerves bázis + pentóz + foszfát N-glikozidos kötés 5 1 4 2 3 (Foszfát)észter-kötés

Részletesebben

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra

Részletesebben

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak.

Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Evolúció Az evolúció folyamatos változások olyan sorozata, melynek során bizonyos populációk öröklődő jellegei nemzedékről nemzedékre változnak. Latin eredetű szó, jelentése: kibontakozás Időben egymást

Részletesebben

I. A sejttől a génekig

I. A sejttől a génekig Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.

Részletesebben

Populációgenetikai. alapok

Populációgenetikai. alapok Populációgenetikai alapok Populáció = egyedek egy adott csoportja Az egyedek eltérnek egymástól morfológiailag, de viselkedésüket tekintve is = genetikai különbségek Fenotípus = külső jellegek morfológia,

Részletesebben

BIOLÓGIA 11. ÉVFOLYAM I. beszámoló. A genetika alaptörvényei

BIOLÓGIA 11. ÉVFOLYAM I. beszámoló. A genetika alaptörvényei BIOLÓGIA 11. ÉVFOLYAM 2015-2016. I. beszámoló A genetika alaptörvényei Ismétlés: a fehérjék fölépítése Új fogalom: gének: a DNS molekula egységei, melyek meghatározzák egy-egy tulajdonság természetét.

Részletesebben

Az emberi sejtek általános jellemzése

Az emberi sejtek általános jellemzése Sejttan (cytológia) Az emberi sejtek általános jellemzése A sejtek a szervezet alaki és működési egységei Alakjuk: nagyon változó. Meghatározza: Sejtek funkciója Felületi feszültség Sejtplazma sűrűsége

Részletesebben

Evolúcióelmélet és az evolúció mechanizmusai

Evolúcióelmélet és az evolúció mechanizmusai Evolúcióelmélet és az evolúció mechanizmusai Az élet Darwini szemlélete Melyek az evolúció bizonyítékai a világban? EVOLÚCIÓ: VÁLTOZATOSSÁG Mutáció Horizontális géntranszfer Genetikai rekombináció Rekombináció

Részletesebben

A baktériumok genetikája

A baktériumok genetikája 6. előadás A baktériumok genetikája A baktériumoknak fontos szerep jut a genetikai kutatásokban Előny: Haploid genom Rövid generációs idő Olcsón és egyszerűen nagy populációhoz juthatunk A prokarióták

Részletesebben

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti

Részletesebben

A géntechnológia genetikai alapjai (I./3.)

A géntechnológia genetikai alapjai (I./3.) Az I./2. rész (Gének és funkciójuk) rövid összefoglalója A gének a DNS információt hordozó szakaszai, melyekben a 4 betű (ATCG) néhány ezerszer, vagy százezerszer ismétlődik. A gének önálló programcsomagként

Részletesebben

Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013

Szelekció. Szelekció. A szelekció típusai. Az allélgyakoriságok változása 3/4/2013 Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz Szelekció Ok: több egyed születik, mint amennyi túlél és szaporodni képes a sikeresség mérése: fitnesz

Részletesebben

9. előadás: Sejtosztódás és sejtciklus

9. előadás: Sejtosztódás és sejtciklus 9. előadás: Sejtosztódás és sejtciklus Egysejtű organizmusok esetén a sejtosztódás során egy új egyed keletkezik (reprodukció) Többsejtő szervezetek esetén a sejtosztódás részt vesz: a növekedésben és

Részletesebben

Transzgénikus állatok előállítása

Transzgénikus állatok előállítása Transzgénikus állatok előállítása A biotechnológia alapjai Pomázi Andrea Mezőgazdasági biotechnológia A gazdasági állatok és növények nemesítése új biotechnológiai eljárások felhasználásával. Cél: jobb

Részletesebben

A genetikai lelet értelmezése monogénes betegségekben

A genetikai lelet értelmezése monogénes betegségekben A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M

Részletesebben

Domináns-recesszív öröklődésmenet

Domináns-recesszív öröklődésmenet Domináns-recesszív öröklődésmenet Domináns recesszív öröklődés esetén tehát a homozigóta domináns és a heterozigóta egyedek fenotípusa megegyezik, így a három lehetséges genotípushoz (példánkban AA, Aa,

Részletesebben

A molekuláris biológia eszközei

A molekuláris biológia eszközei A molekuláris biológia eszközei I. Nukleinsavak az élő szervezetekben Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje DNS feladata: információ tárolása és a transzkripció

Részletesebben

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi

Részletesebben

Sejtciklus. A nyugalmi szakasz elején a sejt növekszik, tömege, térfogata gyarapodik, mert benne intenzív anyagcserefolyamatok

Sejtciklus. A nyugalmi szakasz elején a sejt növekszik, tömege, térfogata gyarapodik, mert benne intenzív anyagcserefolyamatok Sejtciklus Az osztódóképes eukarióta sejtek élete, a sejtciklus két részre, a nyugalmi szakaszra és az azt követő sejtosztódásra tagolható. A nyugalmi szakasz elején a sejt növekszik, tömege, térfogata

Részletesebben

Baktériumok és fágok genetikája

Baktériumok és fágok genetikája Baktériumok és fágok genetikája (az előadás anyaga) Frederick Griffith 1928-ban a Streptococcus pneumoniae baktériummal folytatott kísérletei során fedezte fel, hogy az elölt baktériumokból kiszabadul

Részletesebben

Genetika 3 ea. Bevezetés

Genetika 3 ea. Bevezetés Genetika 3 ea. Mendel törvényeinek a kiegészítése: Egygénes öröklődés Többtényezős öröklődés Bevezetés Mendel által vizsgált tulajdonságok: diszkrétek, két különböző fenotípus Humán tulajdonságok nagy

Részletesebben

A PKU azért nem hal ki, mert gyógyítják, és ezzel növelik a mutáns allél gyakoriságát a Huntington kór pedig azért marad fenn, mert csak későn derül

A PKU azért nem hal ki, mert gyógyítják, és ezzel növelik a mutáns allél gyakoriságát a Huntington kór pedig azért marad fenn, mert csak későn derül 1 Múlt órán: Genetikai alapelvek, monogénes öröklődés Elgondolkodtató feladat Vajon miért nem halnak ki az olyan mendeli öröklődésű rendellenességek, mint a Phenylketonuria, vagy a Huntington kór? A PKU

Részletesebben

sejt működés jovo.notebook March 13, 2018

sejt működés jovo.notebook March 13, 2018 1 A R É F Z S O I B T S Z E S R V E Z D É S I S E Z I N E T E K M O I B T O V N H C J W W R X S M R F Z Ö R E W T L D L K T E I A D Z W I O S W W E T H Á E J P S E I Z Z T L Y G O A R B Z M L A H E K J

Részletesebben

MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik.

MUTÁCIÓK. A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. MUTÁCIÓK A mutáció az örökítő anyag spontán, maradandó megváltozása, amelynek során új genetikai tulajdonság keletkezik. Pontmutáció: A kromoszóma egy génjében pár nukleotidnál következik be változás.

Részletesebben

A Hardy-Weinberg egyensúly. 2. gyakorlat

A Hardy-Weinberg egyensúly. 2. gyakorlat A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben

Részletesebben

CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI

CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI A GENETIKAI INFORMÁCI CIÓ TÁROLÁSA ÉS S KIFEJEZŐDÉSE A DNS SZERKEZETE Két antiparalel (ellentétes lefutású) polinukleotid láncból álló kettős helix A két lánc egy képzeletbeli közös tengely körül van feltekeredve,

Részletesebben

A SEJTOSZTÓDÁS Halasy Katalin

A SEJTOSZTÓDÁS Halasy Katalin A SEJTOSZTÓDÁS Halasy Katalin Összefoglalás A fejezet tartalmazza a sejtciklus fázisainak (G 1, S, G 2, M, ill.g 0 ) leírását, majd a testi sejtek keletkezési módját, a számtartó mitotikus osztódás lépéseinek

Részletesebben

A T sejt receptor (TCR) heterodimer

A T sejt receptor (TCR) heterodimer Immunbiológia - II A T sejt receptor (TCR) heterodimer 1 kötőhely lánc lánc 14. kromoszóma 7. kromoszóma V V C C EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL lánc: VJ régió lánc: VDJ régió Nincs szomatikus

Részletesebben

A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI

A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI Műszaki menedzser MSc hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: március 06?, április 10?, május 02?. dr. Pécs Miklós egyetemi docens

Részletesebben

A növény inváziójában szerepet játszó bakteriális gének

A növény inváziójában szerepet játszó bakteriális gének A növény inváziójában szerepet játszó bakteriális gének merisztéma korai szimbiotikus zóna késői szimbiotikus zóna öregedési zóna gyökér keresztmetszet NODULÁCIÓ növényi jel Rhizobium meliloti rhizobium

Részletesebben

Az ember összes kromoszómája 23 párt alkot. A 23. pár határozza meg a nemünket. Ha 2 db X kromoszómánk van ezen a helyen, akkor nők, ha 1db X és 1db

Az ember összes kromoszómája 23 párt alkot. A 23. pár határozza meg a nemünket. Ha 2 db X kromoszómánk van ezen a helyen, akkor nők, ha 1db X és 1db Testünk minden sejtjében megtalálhatók a kromoszómák, melyek a tulajdonságok átörökítését végzik. A testi sejtekben 2 x 23 = 46 db kromoszóma van. Az egyik sorozat apánktól, a másik anyánktól származik.

Részletesebben

5. Molekuláris biológiai technikák

5. Molekuláris biológiai technikák 5. Molekuláris biológiai technikák DNS szaporítás kémcsőben és élőben. Klónozás, PCR, cdna, RT-PCR, realtime-rt-pcr, Northern-, Southernblotting, génexpresszió, FISH 5. Molekuláris szintű biológiai technikák

Részletesebben

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α. Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs

Részletesebben

Baktériumok változékonysága, a genom evolúciója

Baktériumok változékonysága, a genom evolúciója Baktériumok változékonysága, a genom evolúciója Baktériumok evolúciója Irányított evolúciós kísérletek Mutációk, reverziók, hibajavító mechanizmusok Genetikai információk átvitele 1. Bevezetés A baktériumok

Részletesebben

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót Az X kromoszóma inaktívációja A kromatin szerkezet befolyásolja a génexpressziót Férfiak: XY Nők: XX X kromoszóma: nagy méretű több mint 1000 gén Y kromoszóma: kis méretű, kevesebb, mint 100 gén Kompenzációs

Részletesebben

HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat

HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat HAPMAP -2010 Nemzetközi HapMap Projekt A Nemzetközi HapMap Project célja az emberi genom haplotípus* térképének(hapmap; haplotype map) megszerkesztése, melynek segítségével katalogizálni tudjuk az ember

Részletesebben

Baktérium- és fággenetika

Baktérium- és fággenetika Baktérium- és fággenetika Baktériumok A prokarióták egysejtű organizmusok haploid, cirkuláris dsdns genom 70 S riboszóma plazmamembrán, citoplazma nincs mag, ER, Golgi, mitokondrium aszexuális szaporodás

Részletesebben

Prof. Dr. Szabad János Tantárgyfelelős beosztása

Prof. Dr. Szabad János Tantárgyfelelős beosztása Tantárgy neve Genetika Tantárgy kódja BIB 1506 Meghírdetés féléve 5 Kreditpont 4 Összóraszám (elmélet + gyakorlat) 3+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) BIB 1411 Tantárgyfelelős

Részletesebben

Tartalom. Javítóvizsga követelmények BIOLÓGIA...2 BIOLÓGIA FAKULTÁCIÓ...5 SPORTEGÉSZSÉGTAN évfolyam évfolyam évfolyam...

Tartalom. Javítóvizsga követelmények BIOLÓGIA...2 BIOLÓGIA FAKULTÁCIÓ...5 SPORTEGÉSZSÉGTAN évfolyam évfolyam évfolyam... Tartalom BIOLÓGIA...2 10. évfolyam...2 11. évfolyam...3 12. évfolyam...4 BIOLÓGIA FAKULTÁCIÓ...5 11. évfolyam...5 12. évfolyam...6 SPORTEGÉSZSÉGTAN...7 1 BIOLÓGIA 10. évfolyam Nappali tagozat Azírásbeli

Részletesebben

BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok)

BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok) BIOLÓGIA ALAPJAI Anyagcsere folyamatok 2. (Felépítő folyamatok) A molekuláris biológiai alapjai DNS replikáció RNS transzkripció Fehérje szintézis (transzláció) (Az ábrák többsége Dr. Lénárd Gábor Biológia

Részletesebben

INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM

INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM INCZÉDY GYÖRGY SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM Szakközépiskola Tesztlapok Biológia - egészségtan tantárgy 12. évfolyam Készítette: Perinecz Anasztázia Név: Osztály: 1. témakör: Az élet kódja.

Részletesebben

Genetika 2. előadás. Bevezető

Genetika 2. előadás. Bevezető Genetika 2. előadás Genetikai alapelvek: hogyan öröklődnek a tulajdonságok Mendeli genetika Bevezető Mi okozza a hasonlóságokat és különbségeket a családtagok között? Gének: biológiai információ alapegysége

Részletesebben

Példák a független öröklődésre

Példák a független öröklődésre GENETIKAI PROBLÉMÁK Példák a független öröklődésre Az amelogenesis imperfecta egy, a fogzománc gyengeségével és elszíneződésével járó öröklődő betegség, a 4-es kromoszómán lévő enam gén recesszív mutációja

Részletesebben

3. Általános egészségügyi ismeretek az egyes témákhoz kapcsolódóan

3. Általános egészségügyi ismeretek az egyes témákhoz kapcsolódóan 11. évfolyam BIOLÓGIA 1. Az emberi test szabályozása Idegi szabályozás Hormonális szabályozás 2. Az érzékelés Szaglás, tapintás, látás, íz érzéklés, 3. Általános egészségügyi ismeretek az egyes témákhoz

Részletesebben

Téma 2: Genetikai alapelvek, a monogénes öröklődés -hez szakirodalom: (Plomin: Viselekedésgenetika 2. fejezet) *

Téma 2: Genetikai alapelvek, a monogénes öröklődés -hez szakirodalom: (Plomin: Viselekedésgenetika 2. fejezet) * Téma 2: Genetikai alapelvek, a monogénes öröklődés -hez szakirodalom: (Plomin: Viselekedésgenetika 2. fejezet) * A mendeli öröklődés törvényei A Huntington-kór (HD) kezdetét személyiségbeli változások,

Részletesebben

Az öröklődés molekuláris alapjai ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára

Az öröklődés molekuláris alapjai ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára z öröklődés molekuláris alapjai 1953-ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára z örökítőanyag keresése: mikor T. H. Morgan csoportja

Részletesebben

A géntechnológiát megalapozó felfedezések

A géntechnológiát megalapozó felfedezések 2010. december BIOTECHNOLÓGIA Rova tvezető: Dr. Heszky László akadémikus A géntechnológia genetikai alapjai c. I. fejezet 1-5. részében azokat a tudományos eredményeket mutattuk be, melyek bizonyítják,

Részletesebben

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) Biokémia és molekuláris biológia I. kurzus (bb5t1301) Tematika 1 TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) 0. Bevezető A (a biokémiáról) (~40 perc: 1. heti előadás) A BIOkémia tárgya

Részletesebben

TARTALOM. Előszó 9 BEVEZETÉS A BIOLÓGIÁBA

TARTALOM. Előszó 9 BEVEZETÉS A BIOLÓGIÁBA Előszó 9 BEVEZETÉS A BIOLÓGIÁBA A biológia tudománya, az élőlények rendszerezése 11 Vizsgálati módszerek, vizsgálati eszközök 12 Az élet jellemzői, az élő rendszerek 13 Szerveződési szintek 14 EGYED ALATTI

Részletesebben

Tematika a genetika Bs szintű oktatásához

Tematika a genetika Bs szintű oktatásához Tematika a genetika Bs szintű oktatásához Az egyes fejezetek tartalmi vázlatához a minimális követelmények tartott legfontosabb gondolatokat kérdés-felelet formájában csatolják. Bevezetés: Hogyan érvényesül

Részletesebben

Molekuláris genetikai vizsgáló. módszerek az immundefektusok. diagnosztikájában

Molekuláris genetikai vizsgáló. módszerek az immundefektusok. diagnosztikájában Molekuláris genetikai vizsgáló módszerek az immundefektusok diagnosztikájában Primer immundefektusok A primer immundeficiencia ritka, veleszületett, monogénes öröklődésű immunhiányos állapot. Családi halmozódást

Részletesebben

MUTÁCIÓ ÉS HIBAJAVÍTÁS

MUTÁCIÓ ÉS HIBAJAVÍTÁS 1 5. A DNS Mutáció Hibajavítás MUTÁCIÓ ÉS HIBAJAVÍTÁS DIA 29 DIA 30 DIA 31 DIA 32 MUTÁCIÓK Definíció: a mutáció a DNS nukleotid sorrendjének megváltozása. Csoportosítás A mutációkat többféleképpen csoportosíthatjuk.

Részletesebben

A baktériumok (Bacteria) egysejtű, többnyire pár mikrométeres mikroorganizmusok. Változatos megjelenésűek: sejtjeik gömb, pálcika, csavart stb.

A baktériumok (Bacteria) egysejtű, többnyire pár mikrométeres mikroorganizmusok. Változatos megjelenésűek: sejtjeik gömb, pálcika, csavart stb. BAKTÉRIUMOK A baktériumok (Bacteria) egysejtű, többnyire pár mikrométeres mikroorganizmusok. Változatos megjelenésűek: sejtjeik gömb, pálcika, csavart stb. alakúak lehetnek. A mikrobiológia egyik ága,

Részletesebben

AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő

AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő AZ EMBERI MIKROBIOM: AZ EGYÉN, MINT SAJÁTOS ÉLETKÖZÖSSÉG Duda Ernő Az NIH, az Egyesült Államok Nemzeti Egészségügyi Hivatala (az orvosi- és biológiai kutatásokat koordináló egyik intézmény) 2007 végén

Részletesebben

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál DNS replikáció DNS RNS Polipeptid Amino terminus Templát szál Karboxi terminus Szuper-csavarodott prokarióta cirkuláris DNS Hisztonok komplexe DNS hisztonokra történő felcsvarodása Hiszton-kötött negatív

Részletesebben

Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje

Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje 1 Az omnipotens kutatónak, Dr. Apáti Ágotának ajánlva, egy hálás ex-őssejtje Írta és rajzolta: Hargitai Zsófia Ágota Munkában részt vett: Dr. Sarkadi Balázs, Dr. Apáti Ágota A szerkesztésben való segítségért

Részletesebben

Prokarióták. A sejtmag tehát csak eukariótákra jellemző. A magok száma

Prokarióták. A sejtmag tehát csak eukariótákra jellemző. A magok száma A sejtmag Szerkesztette: Vizkievicz András A sejtmag (lat. nucleus, gör. karyon) az eukarióta sejtek fő sejtszervecskéje, nélkülözhetetlen alkotórésze. Hiányában a citoplazma egy idő múlva beszünteti a

Részletesebben

Az egysejtű eukarióták teste egyetlen sejtből áll, és az az összes működést elvégzi, amely az élet fenntartásához, valamint megújításához, a

Az egysejtű eukarióták teste egyetlen sejtből áll, és az az összes működést elvégzi, amely az élet fenntartásához, valamint megújításához, a Az egysejtű eukarióták teste egyetlen sejtből áll, és az az összes működést elvégzi, amely az élet fenntartásához, valamint megújításához, a szaporodáshoz szükséges. A sejtplazmától hártyával elhatárolt

Részletesebben

6. Az öröklődés alapjai

6. Az öröklődés alapjai 6. z öröklődés alapjai GENETIK z örökítő anyag szerveződésével és funkciójával, az élőlények tulajdonságinak átöröklődésével foglalkozó tudomány. genesis: : születés, teremtés, keletkezés, származás Elméletek

Részletesebben

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció Ősi

Részletesebben

Gyógyszerrezisztenciát okozó fehérjék vizsgálata

Gyógyszerrezisztenciát okozó fehérjék vizsgálata Gyógyszerrezisztenciát okozó fehérjék vizsgálata AKI kíváncsi kémikus kutatótábor 2017.06.25-07.01. Témavezetők : Telbisz Ágnes, Horváth Tamás Kutatók : Dobolyi Zsófia, Bereczki Kristóf, Horváth Ákos Gyógyszerrezisztencia

Részletesebben

III/3. Gének átvitele vektorokkal

III/3. Gének átvitele vektorokkal III/3. Gének átvitele vektorokkal Vektor: (molekuláris) biológiai rendszer, amely képes új/idegen genetikai információt bejuttatni egy sejtbe. Független szaporodásra képes. Fajtái: Plazmidok (1-10 kb)

Részletesebben

A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor,

A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor, 1 A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor, (Debreceni Egyetem Állattenyésztéstani Tanszék) A bármilyen

Részletesebben

GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ

GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ GÉNKLÓNOZÁS ÉS GÉNMANIPULÁCIÓ Génklónozás Bármilyen klónozási eljárás célja, hogy egy ún. klónt, azaz tökéletesen egyforma szervezetek csoportját állítsák elő. Néhány növény, egyszerűen dugványozással

Részletesebben

Immunológia alapjai. 10. előadás. Komplement rendszer

Immunológia alapjai. 10. előadás. Komplement rendszer Immunológia alapjai 10. előadás Komplement rendszer A gyulladás molekuláris mediátorai: Miért fontos a komplement rendszer? A veleszületett (nem-specifikus) immunválasz része Azonnali válaszreakció A veleszületett

Részletesebben

Génmódosítás: bioszféra

Génmódosítás: bioszféra bioszféra Génmódosítás: Nagy butaság volt politikusaink részérôl az alaptalan GMO-ellenesség alaptörvényben való rögzítése. A témával foglalkozó akadémikusok véleménye külföldön és Magyarországon egészen

Részletesebben

Biológiai feladatbank 12. évfolyam

Biológiai feladatbank 12. évfolyam Biológiai feladatbank 12. évfolyam A pedagógus neve: A pedagógus szakja: Az iskola neve: Műveltségi terület: Tantárgy: A tantárgy cél és feladatrendszere: Tantárgyi kapcsolatok: Osztály: 12. Felhasznált

Részletesebben

Mutációk, mutagének, reverzió, reparáció 1

Mutációk, mutagének, reverzió, reparáció 1 Mutációk, mutagének, reverzió, reparáció 1 11. MUTÁCIÓK, MUTAGÉNEK. REVERZIÓ ÉS REPARÁCIÓ. Spontán és indukált mutációk. A mutációk típusai és következményei. Reparáció. Reverzió és szuppresszió. Kromoszóma-mutációk

Részletesebben

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár. Az endoplazmatikus membránrendszer Részei: DER /durva (szemcsés) endoplazmatikus retikulum/ SER /sima felszínű endoplazmatikus retikulum/ Golgi készülék Lizoszómák Peroxiszómák Szekréciós granulumok (váladékszemcsék)

Részletesebben

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK Dr. Pécs Miklós Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Glikozilálás A rekombináns fehérjék

Részletesebben

Szerk.: Vizkievicz András A DNS örökítő szerepét bizonyító kísérletek

Szerk.: Vizkievicz András A DNS örökítő szerepét bizonyító kísérletek Az öröklődés molekuláris alapjai Szerk.: Vizkievicz András A DNS örökítő szerepét bizonyító kísérletek A DNS-nek addig nem szenteltek különösebb figyelmet, amíg biológiai kísérlettel ki nem mutatták, hogy

Részletesebben

BIOLÓGIA VERSENY 10. osztály 2016. február 20.

BIOLÓGIA VERSENY 10. osztály 2016. február 20. BIOLÓGIA VERSENY 10. osztály 2016. február 20. Kód Elérhető pontszám: 100 Elért pontszám: I. Definíció (2x1 = 2 pont): a) Mikroszkopikus méretű szilárd részecskék aktív bekebelezése b) Molekula, a sejt

Részletesebben

Mendeli genetika, kapcsoltság 26

Mendeli genetika, kapcsoltság 26 Mendeli genetika, kapcsoltság 26 6. MENDELI GENETIKA. KAPCSOLT- SÁG ÉS GÉNTÉRKÉPEK. Mendel szabályai. Az örökl dés típusai. Független kombinálódás. Kapcsoltság, crossing over és géntérképek. egyformák.

Részletesebben

Transzláció. Szintetikus folyamatok Energiájának 90%-a

Transzláció. Szintetikus folyamatok Energiájának 90%-a Transzláció Transzláció Fehérje bioszintézis a genetikai információ kifejeződése Szükséges: mrns: trns: ~40 Riboszóma: 4 rrns + ~ 70 protein 20 Aminosav aktiváló enzim ~12 egyéb enzim Szintetikus folyamatok

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 11. BIOLÓGIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 11. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

3. Sejtalkotó molekulák III.

3. Sejtalkotó molekulák III. 3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció

Részletesebben

Sodródás Evolúció neutrális elmélete

Sodródás Evolúció neutrális elmélete Sodródás Evolúció neutrális elmélete Egy kísérlet Drosophila Drosophila pseudoobscura 8 hím + 8 nőstény/tenyészet 107 darab tenyészet Minden tenyészet csak heterozigóta egyedekkel indul a neutrális szemszín

Részletesebben

3. A w jelű folyamat kémiailag kondenzáció. 4. Ebben az átalakulásban hasonló kémiai reakció zajlik le, mint a zsírok emésztésekor a vékonybélben.

3. A w jelű folyamat kémiailag kondenzáció. 4. Ebben az átalakulásban hasonló kémiai reakció zajlik le, mint a zsírok emésztésekor a vékonybélben. FEHÉRJÉK 1. Fehérjék bioszintézisére csak az autotróf szervezetek képesek. Széndioxidból, vízből és más szervetlen anyagokból csak autotróf élőlények képesek szerves vegyületeket előállítani. Az alábbi

Részletesebben

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert

Mit tud a genetika. Génterápiás lehetőségek MPS-ben. Dr. Varga Norbert Mit tud a genetika Génterápiás lehetőségek MPS-ben Dr. Varga Norbert Oki terápia Terápiás lehetőségek MPS-ben A kiváltó okot gyógyítja meg ERT Enzimpótló kezelés Őssejt transzplantáció Genetikai beavatkozások

Részletesebben

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása

Részletesebben

Bevezetés a biológiába. Környezettan Bsc. Szakos hallgatóknak

Bevezetés a biológiába. Környezettan Bsc. Szakos hallgatóknak Bevezetés a biológiába Környezettan Bsc. Szakos hallgatóknak Mi a biológia? A biológia (az élet{bios} tudománya {logos}) az élőlények eredetének, leszármazási kapcsolatainak, testfelépítésésének, működésének,

Részletesebben

RNS SZINTÉZIS ÉS ÉRÉS

RNS SZINTÉZIS ÉS ÉRÉS RNS SZINTÉZIS ÉS ÉRÉS A genom alapvetõ funkciója, hogy a sejt mûködéséhez esszenciális gépek (fehérjék) elõállí tására vonatkozó információt tartalmazza. A DNS-ben rejlõ információ egy kétlépéses folyamatban

Részletesebben

Az élő szervezetek felépítése I. Biogén elemek biomolekulák alkotóelemei a természetben előforduló elemek közül 22 fordul elő az élővilágban O; N; C; H; P; és S; - élő anyag 99%-a Biogén elemek sajátosságai:

Részletesebben