TANTÁRGYLEÍRÁS. 4. A megszerzett ismeretek értékelése (félévközi jegy, vizsgajegy) Vizsgajegy.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "TANTÁRGYLEÍRÁS. 4. A megszerzett ismeretek értékelése (félévközi jegy, vizsgajegy) Vizsgajegy."

Átírás

1 Analízis III. MTM1001 Meghirdetés féléve 2. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 3+2 Dr. habil Lajkó ároly PhD, főiskolai tanár A hallgatók megismertetése a többváltozós függvények elméletének néhány területével. itekintés a metrikus terek elméletébe. A tantárgy általános célja, hogy megismertesse a hallgatót a matematikai analízis alapvető fogalmaival és eredményeivel. Tegye képessé arra, hogy önállóan gondolkodva tudjon feladatokat megoldani, olyanokat, melyek illeszkednek az előadás anyagához. A tárgy megalapozza a hallgató további matematikai tanulmányait. Általában véve is felkészíti a hallgatót az önálló matematikai, elemző gondolkodásra. Sorozatok R n -ben. Topológiai alapismeretek R n -ben. Többváltozós függvények határértéke és folytonossága, a folytonos függvények alapvető tulajdonságai. Többváltozós függvények differenciálszámítása. Iránymenti és parciális derivált. A differenciálhatóság elegendő feltétele. Többváltozós függvények szélsőértékszámítása. Integrálfogalmak többváltozós függvényekre. Improprius integrálok. Az integrálok kiszámítása. Aktív részvétel a gyakorlatokon, a kijelölt házi feladatok beadása, két gyakorlati zárthelyi dolgozat megírása és legalább 50%-os teljesítése. Vizsgajegy. A vizsgajegy két évközi gyakorlati zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató a gyakorlati zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. Házi példatár. Elérhető: Császár Ákos: Valós analízis I-II, Tankönyvkiadó, Budapest, Lajkó ároly: Analízis III. Egyetemi jegyzet, Debrecen Lajkó ároly: alkulus III példatár. Egyetemi jegyzet, Debrecen, R. Stromberg: An introduction to classical and real analysis. Wadsworth, California, Walter Rudin: A matematikai analízis alapjai. Műszaki önyvkiadó, Budapest, 1978.

2 Algebra II. MTM1002 Meghirdetés féléve 1. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 Dr. urdics János PhD, főiskolai tanár A hallgatók ismerjék meg a modern algebra fogalmait, problémafelvetéseit, legyenek képesek az eredmények alkotó alkalmazására felsőbb matematika más területein is. Sajátítsák el a csoport- és gyűrűelmélet alapvető tételeit, legfontosabb eljárásait. Ismerjék meg a testelmélet alapjait és alkalmazásait. Erősödjön a hallgatókban a matematikai fogalomalkotás készsége és alakuljon ki a bizonyítási rutin. Legyenek képesek ezen a bázison a további kurzusok anyagának mélyebb feldolgozására. Algebrai struktúrák, faktorstruktúrák, homomorfizmusok. A csoportelmélet alapfogalmai, Lagrange-tétel. Permutációcsoportok, Cayley-tétel. Csoportok hatása halmazokon. Csoportkonstrukciók, a véges Abel-csoportok alaptétele. Gyűrűelméleti alapfogalmak. ommutatív gyűrűk ideáljai és oszthatósági kérdései. Integritástartomány hányadosteste. Egyértelmű prímfaktorizáció integritástartományokban. Főideálgyűrűk, euklideszi gyűrűk. Testbővítések. Véges testek és alkalmazásaik: algebrai kódok. Az absztrakt algebra alkalmazásai. Aktív részvétel a gyakorlatokon, a kijelölt házi feladatok beadása, két gyakorlati zárthelyi dolgozat megírása és legalább 50%-os teljesítése. Vizsgajegy. A vizsgajegy két évközi zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató az évközi zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. Bódi Béla: Algebra I. ossuth Egyetemi iadó, Debrecen, Bódi Béla: Algebra II. ossuth Egyetemi iadó, Debrecen, Burris S.-Sankappanavar H.P.: Bevezetés az univerzális algebrába, Tankönyvkiadó, Budapest, Fuchs László: Algebra. Tankönyvkiadó, Budapest, Safarevics, I.R.: Algebra. TypoTeX iadó, Budapest, 2000.

3 Valószínűségszámítás MTM1003 Meghirdetés féléve 3. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 3+2 MTM1001 Dr. Gát György DSc, egyetemi tanár A tantárgy általános célja, hogy megismertesse a hallgatót a valószínűségszámítás alapvető fogalmaival és eredményeivel. Tegye képessé arra, hogy önállóan gondolkodva tudjon feladatokat megoldani, olyanokat, melyek illeszkednek az előadás anyagához. A tárgy megalapozza és továbbmélyíti a hallgató matematikai tanulmányait. Általában véve is felkészíti a hallgatót az önálló matematikai, elemző gondolkodásra. Eseményalgebrák, olmogorov-féle valószínűségi mező. Valószínűségi változók és vektorváltozók eloszlása, eloszlásfüggvénye. Abszolút folytonos eloszlás, sűrűségfüggvény. Függetlenség: események, valószínűségi változók. Függetlenség véges dimenzióban az együttes eloszlásfüggvény, illetve sűrűségfüggvény segítségével. Várható érték egy- és többdimenzióban, tulajdonságai. Szórás, kovarianciamátrix. Medián. 1 valószínűségű, sztochasztikus és Lpkonvergencia, kapcsolatuk, valószínűségi metrikák. Nagy számok gyenge és erős törvényei. A mértékek gyenge konvergenciája, kapcsolata a sztochasztikus konvergenciával. arakterisztikus függvény és alapvető tulajdonságai. Inverziós formulák. Eloszlásbeli konvergencia, folytonossági tétel. A centrális határeloszlás-tétel A feltételes várható érték és feltételes valószínűség általános fogalma. Legegyszerűbb tulajdonságok, konvergencia-tételek. Jensen-egyenlőtlenség. Aktív részvétel a gyakorlatokon, a kijelölt házi feladatok beadása, két gyakorlati zárthelyi dolgozat megírása és legalább 50%-os teljesítése. Vizsgajegy. A vizsgajegy két évközi zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató az évközi zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. Gát György: Valószínűségszámítás. ~ gatgy Fazekas István: Bevezetés a valószínűségszámításba. Egyetemi jegyzet, Debrecen, Prékopa András: Valószínűségelmélet. Műszaki önyvkiadó, Budapest, 1972 Székelyhidi László: Valószínűségszámítás és matematikai statisztika. EF Líceum iadó, Eger, Nagy Márta, Sztrik János, Tar László: Valószínűségszámítás és matematikai statisztika. Feladatgyűjtemény. Egyetemi iadó, Debrecen, 2000.

4 Matematika szakmódszertan I. MTM1004 Meghirdetés féléve 1. reditpont 2 Heti kontakt óraszám (elm.+gyak.) Dr. Czeglédy István PhD, főiskolai tanár : A pedagógia és a pszichológia kutatási eredményeinek alkalmazása a matematikatanításban. ülön kiemelendők azon specifikumok, amelyek elősegítik a matematikai ismeret-elsajátítási folyamatot. : A matematikatanítás cél-, feladat- és követelményrendszere. Nevelési, oktatási, képzési célrendszer a társadalmi elvárások tükrében. Matematikai fogalomalkotás, a matematikai ismeretszerzés folyamata, fázisai. A matematikai ismeretek jellemzői. A matematikatanítás alapelvei. A tanár gondolkodásfejlesztő munkájának és a tanuló gondolkodásának jellemző hibái, illetve ezek kiküszöbölése. A tanulók gondolkodási szintjei, az egyes szintekhez igazított szakdidaktikai modellek kialakítása. Motiválási lehetőségek a matematikaórákon. A matematikatanításban alkalmazható korszerű munkaformák, módszerek, eszközök, kooperatív matematikatanulási technikák. A differenciálás szükségessége és lehetősége a matematikaoktatásban. Tehetséggondozás, felzárkóztatás a nívócsoportok helye a tanítási gyakorlatban. Az ellenőrzés, értékelés, osztályzás pedagógiája és pszichológiája a matematikaoktatásban. : Az előadásokon való aktív részvétel, a kiadott irodalom tanulmányozása, abból beszámoló tartása. : Az előre kiadott témakörök szerint a félév végén vizsgát tesz a hallgató. : Szóbeli számonkérés, melyben a hallgató az adott témáról önállóan beszámol, külön kiemelve az egyes elemek közötti összefüggéseket, elemezve a funkciókat és a gyakorlati megvalósíthatóságot. : önyvtár, multimédiás labor, tanítási programok. : Dr. Czeglédy István: Matematika tantárgypedagógia I., Bessenyei iadó, Nyíregyháza elemen László: Pedagógiai pszichológia, Tankönyvkiadó, Budapest, Richard R. Skemp: A matematikatanulás pszichológiája, Gondolat iadó, Budapest, Dr. Spencer agan: ooperatív tanulás, Önkonet ft. Budapest, 2004.

5 Matematika szakmódszertan II. MTM1005 Meghirdetés féléve 1. reditpont 2 Heti kontakt óraszám (elm.+gyak.) G Dr. Czeglédy István PhD, főiskolai tanár : Megmutatni a hallgatóknak: azért tanítjuk a matematikát, hogy a társadalmi beilleszkedéshez nélkülözhetetlen pszichés tulajdonságokat, kompetenciákat kialakítsuk, fejlesszük a tanulókban. : A tananyag feldolgozása során olyan feladatsorok összeállítására, elemzésére, értékelésére kerül sor, amelyekkel az alább felsorolt kompetenciákat fejleszteni tudjuk: - Algoritmikus gondolkodás - Értelmes, elemző olvasás - Számolási készség - Ítéletalkotás, döntés - Tervezés - Problémamegoldás, ismeretek alkalmazása - onstrukciós képesség - Függvényszerű gondolkodásmód - Helyes következtetésekre való képesség - Motiváltság : Az órai munka alapján házi feladatként olyan feladatsorokat terveznek a hallgatók, amelyekkel a 2. pontban olvasható kompetencia területeket fejleszteni lehet. : A félév során az önálló munkák értékelése félévközi jeggyel, majd félév végén ezek figyelembe vételével gyakorlati jeggyel. : Írásbeli munkák elemzése a használhatóság szempontjából. : Általános- és középiskolai tankönyvek, feladatgyűjtemények, internetes feladatbankok. : Dr. Czeglédy István: Matematika tantárgypedagógia I., Bessenyei iadó, Nyíregyháza, Dr. Csapó Benő: Tudás és iskola, Műszaki önyvkiadó, Budapest, Dr. Hajdu Sándor szerkesztésében: Matematika Tankönyvek, Feladatgyűjtemények Műszaki önyvkiadó, Budapest,

6 Matematika szakmódszertan III. MTM1006 Meghirdetés féléve 1. reditpont 3 Heti kontakt óraszám (elm.+gyak.) Dr. Czeglédy István PhD, főiskolai tanár : Megmutatni az egyes témakörökön belül, hogy hogyan épülnek egymásra a tanegységek, hogyan lehet alkalmazni a feldolgozásban a fokozatosságot, továbbá 5. osztálytól 12. osztályig hogyan tudjuk ezeket közvetíteni a tanulóknak. : A rendszerekről általában, a rendszerek típusai. A tantárgyi rendszerek belső és külső struktúrája, ezek figyelembe vétele a matematika tanításában. onkrét témakörökön belül mutatjuk meg az ismeret piramist és ezeknek az egyes szinteken 5. osztálytól 12. osztályig történő elsajátítási módját. - A számfogalom kialakítása a természetes számoktól a komplex számokig. Hatvány, gyök, logaritmus - Számelmélet, oszthatóság - Relációk, függvények, sorozatok, sorok - Geometriai alakzatok kerület, terület, felszín, térfogat, ívhossz transzformációk vektorok trigonometria koordinátageometria kúpszeletek - Az algebra elemei: klasszikus algebrai ismeretek, modern algebrai ismeretek - ombinatorika, valószínűségszámítás, statisztika - Gondolkodási módszerek matematikai logika - halmazelmélet Minden egyes struktúrában megmutatjuk a külső és belső koncentrációs lehetőségeket. : Az előadásokon való aktív részvétel, a kiadott irodalmak tanulmányozása, két önállóan összeállított ismeretrendszer tematikájának elkészítése a félév során. : iadott témakörök szerint félév végi vizsga, amibe beszámít a 3. pontban említett házi feladat értékelése is. : Szóbeli felelet, előre kiadott tematika alapján. : Általános- és középiskolai tankönyvek, feladatgyűjtemények, internetes feladatbankok. : Dr. Czeglédy István: Matematika tantárgypedagógia I II., Bessenyei iadó, Nyíregyháza, Dr. Hajdu Sándor szerkesztésében: Matematika Tankönyvek, Feladatgyűjtemények, Műszaki önyvkiadó, Budapest,

7 : A technológia és a multimédia alkalmazása a matematika tanításában : MTM1007 Meghirdetés féléve: 2. reditpont: 2 Óraszám: 0+2 Számonkérés: G Előfeltétel: - Tantárgyfelelős: Dr. ovács Zoltán CSc, főiskolai tanár A tantárgyfelelős tanszék kódja: A hallgató ismerkedjen meg a matematikai fogalmak, fogalmi rendszerek kialakítását megalapozó tapasztalatszerzés eszközeivel, a matematika tanítását támogató technológiával. 2. A tantárgyi program: Szemléltetés régen és ma: ábrák, modellek, manipulativ tevékenység, számítógép, korszerű oktatástechnolgiai eszközök alkalmazása különböző korosztályoknál. Dinamikus geometriai szoftverek (DGS) jellemzői és alkalmazásuk. Egy dinamikus geometriai szoftver részletes megismerése. omputeralgebrai rendszerek (CAS) alkalmazási lehetőségei. Esettanulmányok az analízis elemeinek tanításánál. A tantervi követelményekben megjelenő statisztika témakör támogatása táblázatkezelő programmal. Az internet lehetőségei a tanulás támogatásában. 3. Évközi ellenőrzés módja: iselőadás tartása a kijelölt irodalomból. Egy önálló projekt bemutatása. Web oldal fejlesztése a kijelölt témakörök egyikéből. : Gyakorlati jegy. : Minden hallgatónak el kell készítenie egy dolgozatot, amely a technológia alkalmazásának lehetőségeiről szól, a kijelölt irodalom alapján; be kell mutatni egy számítógépes alkalmazást és önálló web oldalt fejleszteni, amely a tananyag valamely témaköréhez internetes támogatást tartalmaz. A csoport a produktumokat közösen értékeli. 6. Az ismeretek, készségek és kompetenciák elsajátításához rendelkezésre álló segédanyagok: Cikkgyűjtemény a technológia alkalmazásának témaköréből. (Szerk. ovács Zoltán, előkészületben. Részben elérhető: zeus.nyf.hu/~kovacsz/pm5401) 7. ötelező illetve ajánlott irodalom: GeoGebra műhelyek és prezentációk (www.geogebra.at). T. Árki, I.. Német: Dynamic methods in teaching geometry at different levels. Teaching Mathematics and Computer Science, 2(1):1-13, Magyarul elérhető: A,,Cseresznyeérési konferencia anyagát tartalmazó multimédiás CD-n, Pécs, lincsik, Maróti: Maple 8 tételben. Novodat, 1995.

8 Matematika az iskolában MTM1020 Meghirdetés féléve 1. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 0+3 G Dr. Szalontai Tibor PhD, főiskolai tanár Azon ismeretek, jártasságok, készségek és kompetenciák elsajátítása, amelyek az öt tantervi tárgykörben (Gondolkodási módszerek; Számok, műveletek, algebra; Összefüggések, függvények, sorozatok; Geometria, mérések; Valószínűség, statisztika) biztosítják, hogy a tanulók az évfolyamuknak, iskolatípusuknak és képességeiknek megfelelő szinten- tartalmukban korrekt matematikai alapfogalmakat, definíciókat kapjanak a tanártól, illetve korrekt matematikai tételeket sajátíthassanak el (bizonyítással vagy anélkül). Ezen cél érdekében a leendő matematikatanár mint szakember- rendelkezzen a tantervek, tankönyvek, segédletek kritikai elemzésének, értékelésének és szükséges korrekciójának képességével mindegyik iskolai korosztály esetén. A hallgató ismerjen és alkalmazzon matematikailag korrekt kifutású, ugyanakkor a szokásosnál elemibb fogalmi megközelítéseket is, lemaradó vagy szerényebb képességű diákok számára. A leendő matematikatanár szerezzen jártasságot az indoklás, érvelés, cáfolat, illetve a (konkrétumhoz kötött majd általános) matematikai bizonyítás tervezésében a különböző témák, illetve a különböző iskolai szintek szerint. Tanári minták (bemutatás, közlés) mellett ismerje és alkalmazza az indoklási, majd precízebb bizonyítási igény felkeltésének módszereit. Az interaktív ismeretszerzési szakaszokban vagy az önálló munkát követő közös megbeszélések során tudja beszámoltatni a tanulókat munkájukról, gondolkodásukról, próbálkozásaikról. Szerezzen jártasságot a rávezetéses, felfedeztető tanításban, hogy a tanulókat tételek, illetve bizonyítási lépések megsejtéséhez segítse. A válogatott témakörök feladatanyaga alapján annak a vizsgálata, hogyan és mit lehet egyegy témakörből továbbadni a gyerekeknek az egyes iskolatípusokban úgy, hogy abban korrekt matematikai tartalom jelenjen meg az életkornak megfelelő formában. Halmaz és elemei. A matematikai logika alapismeretek. A kombinatorika alapfogalmai. Számfogalom, műveletfogalom. Számelméleti definíciók és tételek N-ben, Z-ben. Számrendszerek. Algebrai azonosságok, egyenletek, egyenlőtlenségek, egyenletrendszerek. Relációk, függvények. Az euklideszi geometria megalapozása. Térelemek, párhuzamosság, merőlegesség, távolságuk, szögük. Síkidom, azon belül sokszög. Test, azon belül poliéder. Geometriai transzformációk, speciálisan a sík (tér) nevezetes egybevágóságai, valamint a hasonlóság, középpontos hasonlóság. Euklideszi (és nem-euklideszi) szerkesztések. Mérés, mérték. Vektorfogalom. oordinátageometria. Valószínűség, statisztika: ísérlet, a gyakoriság, relatív gyakoriság fogalma. lasszikus (kombinatorikus) valószínűségi mező, valószínűség itteni fogalma. Geometriai valószínűség konkrét példákon. Elemi statisztikai jellemzők véges mintára: terjedelem, módusz, medián, kvartilisek; közepek; (szórás). Diszkrét problémákban felmerülő további matematikai fogalmak, ismeretek. Az indoklási, bizonyítási tevékenység, mint a matematikai gondolkodás egyik alapvető összetevője. Tankönyvi példák évfolyamonként illetve témakörönként, különböző szintű indoklásokra, bizonyításokra. Értelmező modellek, definíciók indoklása. A bizonyítási apparátus

9 bővülése (indirekt bizonyítás, teljes indukció). A bizonyítási igény felkeltésének módszerei. Indoklás modellel. Egyenletek, egyenlőtlenségek megoldásának ellenőrzése. Tételek megsejtését elősegítő eljárások, szemléletes okoskodások, bizonyítási stratégiák. A gyakorlatokon aktív részvétel, önálló órán kívüli tanulás, a kiadott területeken végzett önálló kutatás, s arról beszámoló tartása. Gyakorlati jegy. ét zárthelyi dolgozat, házi dolgozat. Régi és jelenlegi általános és középiskolai tankönyvek, tantervek: A Nemzeti Alaptanterv, erettanterv, OM, Budapest. Matematika 5-12 (Szerk: Hajdu Sándor), Műszaki önyvkiadó, Budapest. Centre for Innovation in Mathematics Teaching, University of Plymouth, U.. Peller József (más társszerzőkkel): A matematikaoktatás tartalmának és módszerének korszerűsítése I-VIII. (5-8.osztály) ELTE Matematika Módszertani Cs, l977-l98l, Bp Peller József (más társszerzőkkel): A tanulók matematikai tevékenységének tervezése és irányítása a középiskolában I-VI. Tankönyvkiadó, l980-l990, Budapest Pólya György: A gondolkodás iskolája. Gondolat, Pólya György: A problémamegoldás iskolája I-II. Tankönyvkiadó, Lakatos I.: Bizonyítások és cáfolatok. Gondolat, 1981.

10 Versenyfeladatok MTM1010 Meghirdetés féléve 2. reditpont 2 Heti kontakt óraszám (elm.+gyak.) 0+2 G Dr. Blahota István PhD, főiskolai tanár A leendő matematikatanár megismerje a évesek számára kiírt országos versenyek rendszerét, a hazai matematika tehetséggondozás hagyományait, eredményeit. Szerezzen jártasságot a különböző korosztályok versenyszintű feladatainak megoldásában. Válogatott fejezetek az elemi matematikából: A 10-től 18 évesek számára rendezett országos versenyek feladatainak megoldása. Válogatás például az általános iskolások Abacus, almár László (TIT-MB), Zrinyi (teszt-) versenyek anyagából; középiskolák ömal, Arany Dániel, OM- Bolyai tanuló, enguru teszt versenyek anyagából. Ismerkedés más országok tanulmányi versenyeinek feladataival. A gyakorlatokon aktív részvétel, önálló órán kívüli tanulás, a kiadott területeken végzett önálló kutatás, s arról beszámoló tartása. Gyakorlati jegy. ét zárthelyi dolgozat, házi dolgozat. Régebbi és új (verseny-)feladatgyűjtemények (könyvtár), világhálón elérhető források. Róka Sándor: 2000 feladat az elemi matematika köréből, Typotex. Ujvári István: A gondolkodás alapiskolája, Észak-Pest megyei Matematikai Tehetségfejlesztő özpont, Vác, MB, Zrínyi, Arany Dániel, ömal, Gordiusz, Szlovákiai magyar stb. versenyfeladatok.

11 : Iskolai tanítási gyakorlat : MTM9000 Meghirdetés féléve: 3. vagy 4. reditpont: 3 Heti kontakt óraszám (elm.+gyak.): 0+3 : G : MTM1006 : Dr. Szalontai Tibor PhD, főiskolai tanár : T : A megszerzett szaktudományi és szakmódszertani ismeretek gyakorlatban történő alkalmazása. : A csoportos iskolai gyakorlatra heti 1 alkalommal 3 órában 5 fős csoportokban kerül sor. Ez a hármas egység a tanítást, az óraelemzést és a következő órára való felkészülést foglalja magában. A kurzus két szakvezetői bemutató órával kezdődik, amelyet a hallgatókkal közösen elemeznek, majd előkészítik a következő órát. A félév során a szakvezető által meghatározott sorrendben folyamatosan tanítanak a hallgatók. Az óra elemzésében és a következő órára való felkészülésben minden hallgató részt vesz. A tanítás, az elemzés, és az óravázlat a félévi értékelés alapja. Minden csoportnapra minden hallgatónak óravázlatot kell készíteni, amit a szakvezető értékel. A csoportnapokon a tantárgy módszertanosa képviseli a felsőoktatási intézményt. Az önállóan megtartandó 15 órát a csoport tagjai a csoport szakvezetőjénél teljesítik az év elején megállapított sorrendben. Naponta legfeljebb két órát tarthat a hallgató. Minden órára tanítási tervezettel kell a hallgatónak készülnie, és minden megtartott órát elemzés követ, amit a szakvezető irányít. A szakvezetőnek ügyelni kell arra is, hogy lehetőleg sokféle órát tartson a hallgató. (Új ismeret szerzése, gyakorlás, ellenőrzés, ismétlés stb.) Az osztályzás alapja az óratervezet minősége és a tanítási tevékenység. (Szakmai ismeretek, módszerek, munkaformák, tanári attitűdök stb.) Az iskolai gyakorlatokat az egyik szakból általános iskolában (5-8. osztály), a másik szakból középiskolában (9-12. osztály) kell teljesíteni. : A csoportos iskolai gyakorlaton minden hallgatónak minden órára vázlatot, vagy tervezetet kell írnia, amit 3 nappal a tanítás előtt el kell juttatni a szakvezetőhöz. A szakvezető értékeli a beadott munkákat. A csoport tagjainak előre kiadott megfigyelési szempontok alapján fel kell készülni az óraelemzésre, és az elemzésen aktívan részt kell venni. Az egyéni tanítási gyakorlatra óratervezetet kell a hallgatónak készíteni, s azt a tanítás előtt meg kell beszélni a szakvezetővel. 4. A megszerzett ismeretek értékelése: A beadott óravázlatok, óratervezetek, a tanítás, illetve az elemzéseken való aktív részvétel alapján gyakorlati jegyet kap a hallgató. : Írásbeli, szóbeli munkák és tanítási tevékenység alapján. : Az adott tantárgy tankönyvei, tanári kézikönyvei, minta óratervezetek, óraelemzési szempontok, szaktárgyi programok, szemléltető és munkaeszközök. 7. Irodalom: Czeglédy István (2007): Matematika tantárgypedagógia I.- II. Bessenyei iadó, Nyíregyháza Dr, Hajdu Sándor (szerk.): Matematika Tankönyvek, Feladatgyűjtemények Műszaki iadó, Budapest

12 Fejezetek az algebrából MTM2001 Meghirdetés féléve 1. reditpont 3 Heti kontakt óraszám (elm.+gyak) 2+0 Dr. urdics János PhD, főiskolai tanár A hallgatók mélyítsék el és bővítsék ki a modern algebra problémakörében megszerzett ismereteiket, legyenek képesek az elméleti tudásanyag alkotó alkalmazására. Sajátítsák el a szabatos matematikai fogalomalkotás módszerét és szerezzenek bizonyítási rutint. Testbővítések, felbontási test. apcsolat a középiskolai algebrával : bonyolultabb nevezők gyöktelenítése. Testbővítés Galois-csoportja, magasabb fokú egyenletek megoldhatósága gyökjelekkel. Geometriai szerkeszhetőség, nevezetes és hétköznapi szerkeszthetőségi kérdések megoldása. Hálók, hálóazonosságok, Boole-algebrák. apcsolat a tanári munkával: halmazokkal való számolás, a legnagyobb közös osztóra és legkisebb közös többszörösre vonatkozó disztributív azonosság. A nemkommutatív gyűrűelmélet alapjai. Radikál, láncfeltételek, egyszerű, féligegyszerű gyűrűk. A szemináriumok célja főként a tanult algebrai módszerek, eljárások kompjúteralgebrai segédeszközzel történő alkalmazása illetve bemutatása. ét évközi zárthelyi dolgozat legalább 50%-os teljesítése. Vizsgajegy. A vizsgajegy két évközi zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató az évközi zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. 7. A kötelező, ajánlott irodalom (3-5 db) Bódi Béla: Algebra II. ossuth Egyetemi iadó, Debrecen, Fuchs László: Algebra. Tankönyvkiadó, Budapest, Herstein, I.N.: Noncommutative rings. JohnWiley, New York, 1968

13 Fejezetek a számelméletből MTM2002 Meghirdetés féléve 2. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 Dr. Balogh Zsolt PhD, főiskolai docens A tantárgy mélyebb betekintést nyújt a számgyűrűk és számtestek, valamint az algebrai számtestek elméletébe. A mélyebb algebrai tételek segítségével lehetőséget teremt prímszámelméleti kérdések megismerésére, valamint bevezetést nyújt Diofantoszi egyenletek és véges testek fölötti egyenletek megoldhatóságához és megoldási módszereihez. vadratikus reciprocitás tétele. Legendre- és Jacobi szimbólum, magasabb fokú kongruenciák, primitív gyök, diszkrét logaritmus (index). Lánctörtek, diofantikus approximáció. Möbius inverziós formula, Gauss-egészek elmélete, Diofantoszi egyenletek, prímszámok sűrűségének elemi tételei, prímszámtétel, Dirichlet sorozat, Euler szorzatok, a zeta függvény, Riemann sejtés, algebrai számtestek, véges testek fölötti egyenletek, primitív gyökök, elliptikus görbék. Aktív részvétel a gyakorlatokon, a kijelölt házi feladatok beadása, két gyakorlati zárthelyi dolgozat megírása és legalább 50%-os teljesítése. ollokvium A tantárgy értékelését egy év közben megírt írásbeli dolgozat eredménye és a kollokvium együttesen valósítják meg. A komputer algebrai rendszerek (GAP, Maple, MuPAD) kiváló szemléltetési lehetőséget biztosítanak a mélyszámelméleti tételek megértéséhez. Freud, R., Gyarmati, E. Számelmélet. Nemzeti Tankönyvkiadó, Erdős, P., Surányi, J. Válogatott fejezetek a számelméletből. Polygon, Szeged, Ireland,. Rosen, M.A classical introduction to modern number theory. Springer- Verlag, New York, Berlin, Heidelberg, Adams, W.W., Goldstein, L.J. Introduction to number theory. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, Crandall, R., Pomerance, C. Prime numbers. A computational perspective. Springer-Verlag, New York, Berlin, Heidelberg, 2005.

14 Parciális differenciálegyenletek MTM2003 Meghirdetés féléve 4. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 G Dr. habil Lajkó ároly PhD, főiskolai tanár A tantárgy a BSc képzésben A típusú tantárgyként szereplő Differenciálegyenletek folytatása. Ennek következtében a hallgató a félév során alkalmazhatja azokat az ismereteket, megoldási módszereket, amelyek a BSC képzésben Analízis II. és Analízis III. és Differenciálegyenletek tantárgyak tanulása közben elsajátított. Habár a tantárgy neve alapvetően matematikai jellegű, a tartalma elsősorban az alkalmazásokra épül, nevezetesen fizikai és műszaki modellek megszerkesztéséről, megoldásáról és annak elemzéséről szól. Ezen megoldási módszerek megismertetése a tantárgy általános célja. A parciális differenciálegyenletek osztályozása, általános fogalmak. Fizikai példák kezdeti, peremérték és vegyes feladatokra. Másodrendű lineáris egyenletek. kanonikus alakja, általános megoldása. Hiperbolikus típusú egyenletek, a húrrezgések egyenletének levezetése. A D Alembert-módszer. A Fourier-módszer. Inhomogén hullámegyenletek. További a rezgések kapcsolatos problémák. Parabolikus típusú egyenletek, a hővezetés egyenletének levezetése. Hővezetés végtelen és véges rúdban. A diffúzió. Elliptikus típusú egyenletek. A Laplace-egyenletek. Green-formulák. A Neumann-feladat. Aktív részvétel a gyakorlatokon, a kijelölt házi feladatok beadása, két gyakorlati zárthelyi dolgozat megírása és legalább 50%-os teljesítése. Gyakorlati jegy. A gyakorlati jegy két évközi zárthelyi dolgozat alapján kerül megállapításra. N. Tihonov A.A. Szamarszkij : A matematikai fizika differenciálegyenletei. (Akadémiai iadó, Budapest, 1956.) V. Sz. Vlagyimirov.: Bevezetés a parciális differenciálegyenletek elméletébe. (Műszaki önyvkiadó, Budapest, 1979.) V. Sz. Vlagyimirov.: Parciális differenciálegyenletek feladatgyűjtemény. (Műszaki önyvkiadó, Budapest, 1980.) Simon L. - E.A. Baderko: Másodrendű lineáris parciális differenciálegyenletek. (Tankönyvkiadó, Budapest, 1983.)

15 Mérték- és integrálelmélet MTM2004 Meghirdetés féléve 1. vagy 3. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 Dr. Nagy ároly PhD, főiskolai tanár A tantárgy általános célja, hogy megismertesse a hallgatót mérték és integráelmélet alapvető fogalmaival és eredményeivel. Tegye képessé arra, hogy önállóan gondolkodva tudjon feladatokat megoldani, olyanokat, melyek illeszkednek az előadás anyagához. A tárgy kiegészíti a hallgató eddigi matematikai tanulmányait. Általában véve is továbbmélyíti a hallgató felkészültségét az önálló matematikai, elemző gondolkodásra. Mérték, külső mérték, mértéktér. Mértékek kiterjesztése. Lebesgue-féle mérték és regularitása. Nem mérhető halmazok. Mérhető függvények. Az integrál és tulajdonságai. Abszolút folytonos függvények Szorzatterek, Fubini-tétel. A Riemann- és a Lebesgue-integrál kapcsolata. Függvényterek. Valószínűségelméleti vonatkozások. ét évközi zárthelyi dolgozat legalább 50%-os teljesítése. ollokvium. A vizsgajegy két évközi zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató az évközi zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. Cohn, D.L.: Measure theory. (Birkhuser, 1980.) Halmos, P.R.: Mértékelmélet. (Gondolat, Budapest, 1984.) Járai Antal: Mérték és integrálelmélet. (Tankönyvkiadó, Budapest, 1988.) Lajkó-Gilányi: Valós függvénytan. (Egyetemi jegyzet, Debrecen, 2004.) Mikolás Miklós: Valós függvénytan és ortogonális sorok. (Tankönyvkiadó, Budapest, 1978.)

16 omplex függvénytan MTM2005 Meghirdetés féléve 4. reditpont 3 Heti kontakt óraszám (elm.+gyak.) 2+0 Dr. habil Lajkó ároly CSc, főiskolai tanár A hallgatók ismerkedjenek meg az egyváltozós komplex függvénytan alapfogalmaival, nevezetesebb tételeivel és gyakorlati alkalmazásaival. omplex függvények differenciálhatósága. Cauchy-Riemann-egyenletek. Holomorf függvények és tulajdonságaik. Cauchy-féle integráltétel. Reziduum tétel. Nevezetes egész függvények hatványsora. Laurent sor, szinguláris helyek osztályozása, Rouché tétele. ét évközi zárthelyi dolgozat legalább 50%-os teljesítése. ollokvium. A vizsgajegy két évközi zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató az évközi zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. J. Duncan: Bevezetés a komplex függvénytanba, Műszaki önyvkiadó, Budapest, Petruska György: omplex függvénytan, Tankönyvkiadó, Budapest, Szőkefalvi-Nagy Béla: omplex függvénytan, Tankönyvkiadó, Budapest, 1966.

17 Ortogonális sorok MTM2006 Meghirdetés féléve 4. reditpont 3 Heti kontakt óraszám (elm.+gyak.) 2+0 Dr. Gát György DSc, egyetemi tanár A tantárgy általános célja, hogy megismertesse a hallgatót az ortogonális sorok alapvető fogalmaival és eredményeivel. Tegye képessé arra, hogy önállóan gondolkodva tudjon feladatokat megoldani, olyanokat, melyek illeszkednek az előadás anyagához. A tárgy kiegészíti a hallgató eddigi matematikai tanulmányait. Általában véve is továbbmélyíti a hallgató felkészültségét az önálló matematikai, elemző gondolkodásra. Ortogonális függvényrendszerek, teljesség és zártság. Fourier-féle együtthatók, Besselegyenlőtlenség, Parseval-formula, teljes és zárt rendszerek ekvivalenciája az L2 terekben, kifejtési alaptétel. Trigonometrikus Fourier-sorok konvergencia elmélete. Ortogonális polinomrendszerek, konvergencia-kritériumok. A Lebesque-függények szerepe. Fejér tétele, szummációs eljárások, Cesaro és Ábel szummációk. ét évközi zárthelyi dolgozat legalább 50%-os teljesítése. Vizsgajegy. A vizsgajegy két évközi zárthelyi dolgozat és egy vizsgadolgozat alapján kerül megállapításra. A vizsgára bocsátás feltétele, hogy a hallgató az évközi zárthelyi dolgozatokból legalább 50%-os eredményt érjen el. Szőkefalvi-Nagy Béla: Valós függvények és függvénysorok. Nemzeti Tankönyvkiadó, Budapest, Pál László György: Ortogonális függvénysorok. ELTE egyetemi jegyzet, Budapest, Mikolás Miklós: Valós függvények és ortogonális sorok. Nemzeti Tankönyvkiadó, Budapest, 1983.

18 A kriptográfia alapjai MTM2007 Meghirdetés féléve 4. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 Dr. Blahota István PhD, főiskolai tanár Megismertetni a hallgatót a modern kriptográfia elméleti alapjaival, a gyakorlati hasznosítás lehetőségeivel. Alapvető kriptográfiai fogalmak. Szimmetrikus, aszimmetrikus kriptorendszerek. Eltolásos, lineáris rendszer, DES, RSA. Alapvető kriptográfiai protokollok. Digitális aláírás. PGP bemutatása. ét évközi zárthelyi dolgozat legalább 50%-os teljesítése. Vizsgajegy. ét zárthelyi dolgozat. L. Buttyán, I. Vajda: kriptográfia és alkalmazásai, Typotex, L. Rónyai, G. Ivanyos, P. Szabó: Algoritmusok, Typotex, ödmön József: riptográfia, Computerbooks, Budapest, H. J. Menezes, P. C. is van Oorschot, S. A. Vanstone: Handbook of applied cryptography, CRC Press, 1997.

19 Matematikatörténet problémákon keresztül MTM2008 Meghirdetés féléve 2. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 Dr. Szalontai Tibor PhD, főiskolai tanár A leendő matematikatanár matematikatörténeti irodalmi tájékozottságának megalapozása az elemi matematika körében. Nevezetes elemi matematikai problémák, feladatok megoldása történeti kontextusban és a mai matematika felfogásában. Válogatott fejezetek az elemi matematikából: Régi kultúrák feladatai, történeti érdekességek. A számfogalom, számkörbővítés, a számelmélet, a geometria története. Az algebra fejlődése, a függvényfogalom fejlődéstörténete. A matematikai logika, a naív halmazelmélet története. A kombinatorika, a valószínűségszámítás története, matematika egyéb alkalmazási területei (kódelméleti, optimalizálási problémák története). A matematikatörténet és a matematika tanítás nagy magyar alakjai és munkásságuk. ét évközi zárthelyi dolgozat legalább 50%-os teljesítése. Vizsgajegy. ét zárthelyi dolgozat, házi dolgozat. Szemelvények, tankönyvek, matematikatörténeti könyvek (könyvtár, világháló). Sain Márton: Matematikatörténeti ABC. Typotex, Filep László: A tudományok királynője. Typotex, iss Elemér: Matematikai kincsek Bolyai János kéziratos hagyatékából. Typotex Lévárdi-Sain: Matematikatörténeti feladatok. Tankönyvkiadó, Freud Róbert: Nagy pillanatok a matematika történetében. Gondolat, 1981.

20 Elemi projektív geometria MTM2009 Meghirdetés féléve 3. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 2+2 G Dr. Vattamány Szabolcs PhD, főiskolai docens Az alapképzésben a projektív geometriai ismeretek alapvetően analitikus eszközökkel lettek tárgyalva. A témakör iskolai alkalmazása megköveteli a szintetikus felépítést, külön hangsúlyt fektetve a kúpszeletekre. Az affin geometria elemei. A projektív síkgeometria önálló felépítése. Illeszkedési tételek, dualitás. Modell: az euklideszi sík bővítése végtelen távoli elemekkel. Egydimenziós és kétdimenziós projektivitások. ettősviszony. Polaritás. úpszeletek projektív geometriája, nevezetes tételek (Pascal, Brianchon, Steiner). Véges projektív síkok. Aktív részvétel a gyakorlatokon, beadandó rajzfeladatok teljesítése, a házi feladatok rendszeres megoldása. ét gyakorlati zárthelyi dolgozat megírása. Gyakorlati jegy. Írásbeli vizsga. Az évközi teljesítmény, amely három beadandó rajzfeladatot is tartalmaz, 50%-os mértékben beszámít a vizsgajegybe. ovács Zoltán: Projektív geometria. zeus.nyf.hu/~kovacsz. ovács Zoltán-Schwarz Tibor: Projektív geometriai feladatok. zeus.nyf.hu/~kovacsz. Coxeter, H.S.M.: A geometriák alapjai. Műszaki önyvkiadó, Budapest, Coxeter, H.S.M.: Projektív geometria. Gondolat, Budapest, Reiman István: A geometria és határterületei. Gondolat, Budapest Rácz János: Paraboláról, hiperboláról elemi geometriai eszközökkel. ömal 1984/4-5.

TANTÁRGYLEÍRÁS. Meghirdetés féléve 2. Kreditpont 4 Heti kontakt óraszám (elm.+gyak.) 3+2 Félévi követelmény Előfeltétel (tantárgyi kód)

TANTÁRGYLEÍRÁS. Meghirdetés féléve 2. Kreditpont 4 Heti kontakt óraszám (elm.+gyak.) 3+2 Félévi követelmény Előfeltétel (tantárgyi kód) Analízis III. MTM1001 Meghirdetés féléve 2. Kreditpont 4 Heti kontakt óraszám (elm.+gyak.) 3+2 K Dr. Lénárd Margit egyetemi docens A hallgatók megismertetése a többváltozós függvények elméletének néhány

Részletesebben

Környezettani alapismeretek Tantárgy kódja

Környezettani alapismeretek Tantárgy kódja Tantárgy neve Környezettani alapismeretek AIB1004 Meghirdetés féléve 1. Kreditpont 2 Heti kontakt óraszám (elm.+gyak.) 2+0 Kollokvium - Dr. Kiss Ferenc, főisk. tanár KT A környezettudomány főbb területeinek

Részletesebben

TANTÁRGYLEÍRÁS. 4. A megszerzett ismeretek értékelése (félévközi jegy, vizsgajegy) Vizsgajegy.

TANTÁRGYLEÍRÁS. 4. A megszerzett ismeretek értékelése (félévközi jegy, vizsgajegy) Vizsgajegy. Analízis III. MTM1001 Meghirdetés féléve 2. reditpont 4 Heti kontakt óraszám (elm.+gyak.) 3+2 Dr. habil Lajkó ároly PhD, főiskolai tanár A hallgatók megismertetése a többváltozós függvények elméletének

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK OSZTATLAN MATEMATIKATANÁR SZAK

Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK OSZTATLAN MATEMATIKATANÁR SZAK Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK OSZTATLAN MATEMATIKATANÁR SZAK Matematikatanár szak A szak megnevezése: matematikatanár (Teacher of Mathematics)

Részletesebben

A Gyakorlóiskolai tanítási-nevelési gyakorlat c. tanegység részletes követelményei v. 1.0

A Gyakorlóiskolai tanítási-nevelési gyakorlat c. tanegység részletes követelményei v. 1.0 A Gyakorlóiskolai tanítási-nevelési gyakorlat c. tanegység részletes követelményei v. 1.0 A gyakorlóiskolai tanítási-nevelési gyakorlat két fő tartalmi részből áll: (a) általános jellegű, csoportos és

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Követelmények. A tanítás mestersége Tantárgy kódja. Dr. Szabó Antal főiskolai tanár A tantárgy oktatója

Követelmények. A tanítás mestersége Tantárgy kódja. Dr. Szabó Antal főiskolai tanár A tantárgy oktatója A tanítás mestersége M1002 Kreditpont 3 Konzultáció óraszáma 2+0 - - Legalább egy referátum készítése kiadott vagy választott témában. - Interjú készítése 4-5 tanárral és a kapott információ rendszerezett

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babes-Bolyai Tudományegyetem 1.2 Kar Pszichológia és Neveléstudományok Kar 1.3 Intézet Pedagógia és Alkalmazott Didaktika Intézet

Részletesebben

SZAKIRÁNYÚ TOVÁBBKÉPZÉS MATEMATIKÁBÓL. A matematika történet szerepe a matematika tanításban

SZAKIRÁNYÚ TOVÁBBKÉPZÉS MATEMATIKÁBÓL. A matematika történet szerepe a matematika tanításban A matematika történet szerepe a matematika tanításban I. MT8301 Kreditpont 4 Összóraszám (elm+gyak) 15+0 Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Dr. Filep László, PhD A főiskolán tanult ismeretek

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Int 1.4 Szakterület

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés)

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) Kötelezı tárgyak, szakdolgozat (mindegyik tárgy teljesítendı, a szakdolgozat írható a másik szakból) kód tárgynév kredit

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

Tantátgyi követelmények Család- és nevelésszociológiai alapismeretek

Tantátgyi követelmények Család- és nevelésszociológiai alapismeretek Tantátgyi követelmények Család- és nevelésszociológiai alapismeretek CGB1203 Heti kontakt óraszám (elm.+gyak.) 2+0 Tantárgyfelelős neve és beosztása Bodnárné dr. Kiss Katalin főiskolai docens A tantárgyfelelős

Részletesebben

Követelmények. Pedagógiai tervezés és értékelés Tantárgy kódja. Dr. Szabó Antal főiskolai tanár A tantárgy oktatója

Követelmények. Pedagógiai tervezés és értékelés Tantárgy kódja. Dr. Szabó Antal főiskolai tanár A tantárgy oktatója Pedagógiai tervezés és értékelés M1014 Kollokvium M1002L - Legalább egy referátum készítése kiadott vagy választott témában. - Egy házi dolgozat készítése 10.000 leütés terjedelemben. (Két megadott cím

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Tantárgyi követelmény

Tantárgyi követelmény Tantárgyi követelmény Multikulturális nevelés TKM2101 Meghirdetés féléve 4 Kreditpont 2 Heti kontakt óraszám (elm. + gyak.) 0+2 Tantárgyfelelős neve és beosztása Bodnárné Dr. Kis Katalin főiskolai tanár

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II.

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II. 2015/2016. 2. félév Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (gyak.) 0 + 1 Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős neve és

Részletesebben

KÖVETELMÉNYEK /I. Tantárgy neve Társadalomtudományi kutatások 2.

KÖVETELMÉNYEK /I. Tantárgy neve Társadalomtudományi kutatások 2. Társadalomtudományi kutatások 2. PDB1702 Félévi óraszám (elm.+gyak.) 0+2 Gyakorlati jegy PDB1005 Évközi tanulmányi követelmények: Empirikus vizsgálat adatfelvétele és az adatok statisztikai feldolgozása.

Részletesebben

1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979.

1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979. Dr. Czeglédy István PhD publikációs jegyzéke 1. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre I. OOK. Nyíregyháza, 1979. 2. Analízis gépi kollokviumi tételsor BCO-2 oktatógépre II. OOK. Nyíregyháza,

Részletesebben

OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel)

OKLEVÉLKÖVETELMÉNYEK. MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel) Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKA ALAPKÉPZÉSI SZAK (2013 és 2014 kezdéssel) Matematika képzés Az alapképzés (BSc) célja, hogy

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek III. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Döntési módszerek TÁVOKTATÁS Tanév 2014/2015 II- félév A KURZUS ALAPADATAI Tárgy megnevezése: Döntési módszerek Tanszék: Matematika-Statisztika Tantárgyfelelős

Részletesebben

A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben

A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben A matematikatanári szak kredit alapú szakmai tanterve a 2002/2003 tanévtől, felmenő rendszerben Szak : matematikatanári szak Tagozat: nappali Képzési idő: 8 félév Az oktatás nyelve: magyar A megszerezhető

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 3 = 111 A tanmenet 100 óra beosztását tartalmazza. A dolgozatok írása és javítása ezeken felül 8 órát

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Matematika alapszak (BSc) 2015-től

Matematika alapszak (BSc) 2015-től Matematika alapszak (BSc) 2015-től módosítva 2015. 08. 12. Nappali tagozatos képzés A képzési terv tartalmaz mindenki számára kötelező tárgyelemeket (MK1-3), valamint választható tárgyakat. MK1. Alapozó

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 10. tankönyv A Heuréka-sorozat tagja, így folytatása a Matematika 9. tankönyvnek. Ez a kötet is elsősorban

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

TANTÁRGYI KÖVETELMÉNYEK

TANTÁRGYI KÖVETELMÉNYEK 1. A tantárgy megnevezése: OKTATÁSTAN I. 2. Az évfolyam megnevezése: Okl. mérnöktanár, mérnöktanár szak nappali tagozat II. évf. 2. félév, II. évf. 1. félév Műszaki szakoktató szak II. évfolyam 1. félév

Részletesebben

I. Fejezetek a klasszikus analízisből 3

I. Fejezetek a klasszikus analízisből 3 Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9

Részletesebben

MATEMATIKA (EMELT SZINT)

MATEMATIKA (EMELT SZINT) MATEMATIKA (EMELT SZINT) Tanterv 0 0 2 2 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető Ellenőrizte: Csajági Sándor közismereti igazgató-helyettes Érvényes: 2013/2014 tanévtől 2013. Óratervtábla

Részletesebben

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN

A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Konszern számvitel alapjai. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Konszern számvitel alapjai. tanulmányokhoz III. évfolyam pénzügy-számvitel specializáció (szakirány) BA TANTÁRGYI ÚTMUTATÓ Konszern számvitel alapjai tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Konszern

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények

PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak

Részletesebben

2006. szeptemberétől. kódja

2006. szeptemberétől. kódja - Programtervező informatikus Programtervező informatikus alapszak - Tanári szakirányok mintatanterve 2006. szeptemberétől "A" típusú tantárgyak 1 2 3 4 5 6 7 8 9 10 Tantágy neve Tantárgy kódja Heti Tantárgyfelelős

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje.

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. 2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. Az oktatási folyamat tervezése a központi kerettanterv alapján a helyi tanterv elkészítésével kezdődik. A szakmai munkaközösség tagjai

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Statisztika 1.

TANTÁRGYI ÚTMUTATÓ. Statisztika 1. I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt

Részletesebben

KÖVETELMÉNYEK. Tantárgy oktatója és beosztása Dr. Tóthné Gacsályi Viktória főiskolai tanársegéd Tantárgyfelelős tanszék kódja

KÖVETELMÉNYEK. Tantárgy oktatója és beosztása Dr. Tóthné Gacsályi Viktória főiskolai tanársegéd Tantárgyfelelős tanszék kódja Pedagógiai szociálpszichológia TKM1010 Kreditpont 2 Heti kontaktóraszám (elm. + gyak.) 2+0 Előfeltétel (tantárgyi kód) TKM1001 Dr. Margitics Ferenc főiskolai tanár és beosztása Az előadáson való részvétel

Részletesebben

Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKATANÁRI MESTERKÉPZÉSI SZAK

Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKATANÁRI MESTERKÉPZÉSI SZAK Debreceni Egyetem Természettudományi és Technológiai Kar Matematikai Intézet OKLEVÉLKÖVETELMÉNYEK MATEMATIKATANÁRI MESTERKÉPZÉSI SZAK Matematikatanári mesterszak A mesterképzési szak megnevezése: tanári

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz 2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:

Részletesebben

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli

A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI. A vizsga formája. Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli Az érettségi vizsga követelményei 1 MATEK A vizsga formája Közé pszinten: írásbeli Emelt szinten: írásbeli és szóbeli A MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga

Részletesebben

TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14

TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14 Kód Tárgy kred it Ea/ Gyak Matematikai Intézet Óra szá m Évfo lyam Szakirány Oktató Terem Időpont TMBE0301 Trigonometria és koord. geom. 2 E 2 1 Matematika BSc közös köt Vincze Csaba M426 Sz 12-14 TMBG0301

Részletesebben

Iskolai szociális munka gyakorlata

Iskolai szociális munka gyakorlata Iskolai szociális munka gyakorlata B1206 Meghirdetés féléve 4 Kreditpont 1 Heti kontakt óraszám (elm. + gyak.) 30 óra gyakorlat Min ai Előfeltétel (tantárgyi kód) B1101 Dr. Torkos Katalin 1. A tantárgy

Részletesebben

KÉPZÉSI PROGRAM PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK

KÉPZÉSI PROGRAM PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK KÉPZÉSI PROGRAM PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK SZOLNOKI FŐISKOLA SZOLNOK SZOLNOKI FŐISKOLA SZOLNOK TANTERV érvényes a 2013/2014. tanévtől felmenő rendszerben PÉNZÜGY ÉS SZÁMVITEL ALAPKÉPZÉSI SZAK

Részletesebben

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á Kompetencia alapú oktatás (tanári kompetenciák) A kompetencia - Szakértelem - Képesség - Rátermettség - Tenni akarás - Alkalmasság - Ügyesség stb. A kompetenciát (Nagy József nyomán) olyan ismereteket,

Részletesebben

ÁLTALÁNOS SZEMPONTÚ HOSPITÁLÁS PEDAGÓGIA GYAKORLAT TEMATIKA KÖVETELMÉNYEK, A KURZUS TELJESÍTÉSÉNEK FELTÉTELEI

ÁLTALÁNOS SZEMPONTÚ HOSPITÁLÁS PEDAGÓGIA GYAKORLAT TEMATIKA KÖVETELMÉNYEK, A KURZUS TELJESÍTÉSÉNEK FELTÉTELEI SZTE BTK Neveléstudományi Intézet ÁLTALÁNOS SZEMPONTÚ HOSPITÁLÁS PEDAGÓGIA GYAKORLAT TEMATIKA A PEDAGÓGIA GYAKORLAT CÉLJA, hogy a hallgatók számára betekintést nyújtson az iskolai élet és a pedagógusszakma

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

KÖVETELMÉNYEK. Tantárgy neve. Csecsemő- és kisgyermekkor pszichológiája. Meghirdetés féléve 2 Kreditpont: 3 Heti kontakt óraszám (elm.+gyak.

KÖVETELMÉNYEK. Tantárgy neve. Csecsemő- és kisgyermekkor pszichológiája. Meghirdetés féléve 2 Kreditpont: 3 Heti kontakt óraszám (elm.+gyak. Csecsemő- és kisgyermekkor pszichológiája CGF1301 Meghirdetés féléve 2 Kreditpont: 3 Heti kontakt óraszám (elm.+gyak.) 2+0 Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve: Dr. Margitics Ferenc

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK

HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK HELYI TANTERV MATEMATIKA GIMNÁZIUMI OSZTÁLYOK 1 MATEMATIKA (4+4+4+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

KÉPZÉSI PROGRAM KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK

KÉPZÉSI PROGRAM KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK KÉPZÉSI PROGRAM KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK SZOLNOKI FŐISKOLA SZOLNOK SZOLNOKI FŐISKOLA SZOLNOK TANTERV KERESKEDELEM ÉS MARKETING ALAPKÉPZÉSI SZAK (BA.) NAPPALI TAGOZAT érvényes a 2013/2014.

Részletesebben