IF 1.feltétel. 1.műveletso r. 2.feltétel. Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "IF 1.feltétel. 1.műveletso r. 2.feltétel. Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar"

Átírás

1 IF 1.feltétel THEN 1.műveletso r [ ELSIF 2.feltétel THEN Zalotay Péter PROGRAMOZHATÓ IRÁNYÍTÁSOK II. Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar

2 Tartalomjegyzék 1. Pozicionálás...4 Az encoder...6 Az inkrementális (növekményes)...6 Az abszolút encoder...8 Inkrementális jeladó alkalmazása Pozícióba vezérlés léptetőmotorral A léptetőmotor A léptetőmotor működése A léptetőmotorok statikus jellemzői Dinamikus jellemzők Léptetési módok Vezérlési táblázatok A léptetőmotor vezérlési szakaszai: A léptetőmotorok illesztő áramkörei A meghajtó áramkörök vezérlése Példa Pozíciószabályozás szervomotoros hajtással A szervomotor...29 Egyenáramú szervomotorok Szervomotoros hajtások...32 A hajtás főáramköre...33 A hajtás szabályozása Pozícióvezérlés aszinkronmotoros hajtással A frekvenciaváltó Szinuszos jel előállítása PWM-el PLC-k programozása A PLC típusonkénti programozás A PLC programozási nyelvek szabványosítása Sorrendi vezérlésekhez az SFC (Sequential Function Chart) Strukturált szöveges ST (Structured Text) Irányítási rendszerek felügyelete Mérésadatgyűjtés Adatbázis: Az automatikus mérés (adatbázisgyűjtés): Mintavételezési idő Mérés-adatgyűjtő rendszerek Adatgyűjtő rendszerek rendszertechnikai felépítése Adatfeldolgozás: Folyamatmegjelenítés Megjelenítés fogalma és alkalmazása Rövid történeti áttekintés A megjelenítő rendszerek legfőbb típusai Folyamatterminál Riport készítés Operátori szerviz Megjelenítés Adatfeldolgozás Hozzáférési szintek Alarmkezelés oldal

3 Trendkezelés Vezérlések MODBUSZ A protokoll Fizikai szint A kommunikáció felépítése Digitális szabályozók A numerikus integrálás változatai Téglalap formula Egyszerű (kis) trapéz formula Összetett (nagy) trapéz formula Érintő formula Egyszerű (kis) Simpson formula Összetett (nagy) Simpson formula PLC-ben alkalmazott algoritmusok Állásos szabályozók Kétállású (kétpont) szabályozók Háromállású (hárompont) szabályozók Folytonos szabályozók oldal

4 1. Pozicionálás Az ipari automatizálásban sokszor szükséges egy mozgó készülék, berendezés adott helyre történő mozgatása. Az ilyen feladatokat látja el a pozícióvezérlés, vagy pozíciószabályozás. A feladatok csoportosíthatók a mozgatási irányok száma (koordináta szám, szabadságfok), illetve a mozgató eszköz szerint. Az utóbbi csoportba tartoznak a villamos motorokkal a különböző mechanikai hajtások kombinációja. Használnak léptető-, szervo-, és aszinkron motorokat. A mechanikai megoldások között megtaláljuk a vonóorsót, fogas szíjhajtásokat stb. Meghajtásokban mind a pneumatikus, mind, pedig a hidraulikus erőátvitelt is használják. A fejezetben csak a villamos motorok alkalmazását tárgyaljuk. A pozicionálás megoldások összefoglalása látható az 1. ábrán. 1. ábra Foglaljuk össze tömören, hogy mikor célszerű a vezérlést. Illetve a szabályozást alkalmazni. A pozicionálás minden olyan esetben vezérléssel megoldható, amikor a mozgatott tömeg állandó. Ekkor előre meghatározhatók a mozgatás paraméterei, az út, a sebesség. Értelemszerűen szabályozást kell alkalmazni, amikor a mozgatott tömeg előre nem ismert, illetve menet közben változhat. Ilyenkor a cél megadásán túl mást nem tudunk megadni. A paramétereket a szabályozó állítja be. 4.oldal

5 Mind a vezérlésnél mind, pedig a szabályozásnál a mozgatás sebességét változtatni kell az idő függvényében. A 2. ábrán szemléltettük az általánosságban érvényes mozgatási függvényt. 2. ábra Az ábrán szemléltetett időfüggvény szerinti vezérlés függő változója az idő. Annak feltétele, hogy az egyes szakaszok idejének változtatásával pozícionáljunk, csak akkor lehet, ha a mozgatás egyes sebességeit nagy pontossággal tudjuk beállítani. A gyakorlatban a pontos pozicionáláshoz szüksége helyzet jeladók alkalmazása. Csak a léptetőmotoros hajtásoknál hagyható el az érzékelő akkor, ha lépéstévesztés nélküli vezérlést biztosítunk. A konkrét megoldásokról a fejezet további részeiben ejtünk szót, amikor áttekintést nyújtunk a léptetőmotoros, és frekvenciaváltós vezérlési megoldásról, valamint röviden foglakozunk a szervomotoros szabályozással. A következőkben tömören tekintsük át ismétlés gyanánt a helyzet-meghatározásnál alkalmazható jeladókat. Kihagyjuk viszont a legegyszerűbb megoldás tárgyalását, amikor a mozgatott objektum helyzetét egy-egy állás-kapcsoló, vagy optikai érzékelő jelzi. A különböző encoderekről rövid áttekintéssel szolgálunk. 5.oldal

6 Az encoder Az encoder olyan jeladó, amely egy tengely elfordulását érzékeli és az elfordulás szögével arányosan valamilyen elektromos jelet szolgáltat. Sok egyéb névvel is illetik. Pl.: szögadó, forgás jeladó angular encoder, rotary encoder, stb. A jeladó tengelyére rögzített tárcsa általában üveg, amelyre különböző alakzatban nem átlátszó alakzatokat visznek fel. A jeladó tengelyét kell rugalmas tengelykapcsolóval csatlakoztatni a hajtáshoz. Egy változatának felépítése látható a 3. ábrán. 3. ábra (A tárcsa egyik oldalán fényforrás, a másikon fényérzékeny elem helyezkedik el. A tárcsa forgásakor a fényérzékelő elemre hol érkezik fény, hol nem. A vevő részében ennek megfelelő elektromos jel jön létre. Az érzékelők két nagy csoportba sorolhatók, úgymint az o inkrementális, illetve o abszolút jeladók. ( Készítenek olyan változatot is, amelyben mind a két fajta jelelőállítás is megtalálható.) Az inkrementális (növekményes) jeladóban olyan tárcsa van, amelyiken egyforma távolságra egyforma méretű sávok vannak. A sávokat két db optokapu figyeli, amelyek úgy helyezkednek el, hogy egymáshoz képest 90 fokkal eltolt fázisú jelet szolgáltatnak a tárcsa forgásakor. Ez a két jel az "A" és a "B" fázis. Az optokapu k jelét beépített elektronika alakítja szabványos jellé. Ez leggyakrabban TTL, nyitott kollektoros, esetleg 24V-os jel, bizonyos esetekben a jelek inverze is ki van vezetve. Az elvi felépítést szemlélteti a 4. ábra. 6.oldal

7 4. ábra A jeladókban rendszerint egy harmadik optokapu is van, ami fordulatonként csak egyszer kap megvilágítást. Neve "Z" vagy "Index". Röviden áttekintjük, hogy miképpen használhatók az inkrementális jeladók pozíció meghatározására. A tárcsára felvitt sugárirányú vonalak száma adja a jeladó érzékenységét, vagyis azt, hogy a kimeneti jel két azonos irányú változása hány fokos szögelfordulást jelez. A mikor csak azt kívánjuk meghatározni, hogy az iránytól függetlenül mennyit mozdult el a tárgy, akkor elégséges számlálni az egyik jel valamelyik irányú változásait. A számláló mindenkori tartalma a mozgás sebességétől függetlenül - a tárcsa szögelfordulásával arányos. Amennyiben a jeladó tárcsájára harmadik sávot is felvittek, amelyen csak egy változás van fordulatonként, akkor a számlálás szétbontható a fordulatok és a nem egész fordulaton belüli szögelmozdulás független megállapítására. Amikor a mozgás közben irányváltozás is előfordul, ilyenkor az irányt is meg kell állapítani. Az 5. a. ábrán láthatók a kimenetek 90 fokos fázistolású jelei az egyik forgásiránynál, amikor az J1 felfutó éle érkezik először. A b. ábra a másik forgásirányhoz tartozó viszonyokat szemlélteti. Az egyik forgásirány esetében a J1 pozitív irányú jelváltásakor a J2 alacsony szintű, míg a másik iránynál magas szintű. A két jelből tehát meghatározható a mozgatás iránya. a. b. 5. ábra 7.oldal

8 A mozgatás kezdetétől való elmozdulás, vagyis a pozíció pontos meghatározásához reverzibilis számlálást kell végezni. Az egyik iránynál a számláló tartalmát növelni, míg a másiknál csökkenteni kell. Így a számtartalom mindenkor az adott irányba megtett abszolút elmozdulással arányos. Az ilyen megoldásra akkor is szükség van, ha a mozgás meg-meg áll, ugyanis az álló állapotban a berendezés rezgéséből is eredhet jelváltozás, mégpedig mindkét irányba. A kétirányú számlálással csökkenthető a pozíció-meghatározás hibája. Az abszolút encoder Az abszolút encoderben a tárcsán n db koncentrikusan felvitt sáv van. A sávokon áteresztő és át nem eresztő szakaszok úgy helyezkednek el, hogy adott sugár mentén az n szakasz, az un. Gray (reflektált bináris) kód szerinti változik. Minden sávot egy optokapu érzékel. (6. ábra) Az optokapu -k egy sugár mentén helyezkednek el. 6. ábra Az encoder kimenetén az n bites kód adja meg a tengely szöghelyzetét. A Gray kód egymás utáni elemei csak egy bitben különböznek és ezért a pozíció meghatározás biztosabb. A kimenetek illesztése lehet párhuzamos TTL jel (a kód minden bitje ki van vezetve) vagy szinkron soros kommunikáció. A működés módjából adódóan az abszolút jeladók felépítése bonyolultabb, ezért drágábbak is. Előnye viszont, hogy nem a pozíció kódja közvetlenül olvasható le a kimeneti jelkombinációból. Nem kell még számlálást is beiktatni a feldolgozásnál és ezzel gyorsabb is az értékelés. A jeladók tárgyalását a jelfeldolgozással fejezzük be. Először azt nézzük meg, hogyan lehet a mikrogéphez illesztett inkrementális adó jeleiből a pozíciót meghatározni. 8.oldal

9 Inkrementális jeladó alkalmazása. 1. Először azt az esetet tárgyaljuk, amikor állandó egyirányú mozgás helyzetét kell meghatározni. A művelet folyamatábrája a 7. ábrán látható. Start A mozgás indítása Mozog? Számlálás Komparálás Z n = Z p? A mozgás leállítása Ebben az alkalmazásban, a mozgatás indításától kezdődően számlálni kell a jel változásainak a számát Z n, és amikor a számtartalom eléri a cél pozíciójához tartozó számot Z p -t következik a mozgatás leállítása. A 80C552 mikrokontroller alkalmazásakor a jelfeldolgozáshoz célszerű a T2 számlálót használni, amelyik az impulzus-sorozatot számlálja (Z n ). A véghelyzet meghatározásához felhasználhatjuk a compare funkciót. Pl. a CMP0 regiszterpárba írjuk a célpozícióhoz tartozó számot (Z p ), és az egyezéskor bekövetkező megszakítás rutinja állítja le a mozgást. 7. ábra 1. A főirányú mozgás közben irányváltozás, vagy megállás is előfordulhat. Ilyen mozgatásnál megoldás, ha a J1 jel megszakítást kezdeményez, és a megszakítás rutinban a J2 jelszintjétől függően egy memória szó tartalmát növeljük (increment) vagy csökkentjük (decrement). Az összehasonlítást és döntést (a célpozíció elérését) szoftverben kell elvégezni Pozícióba vezérlés léptetőmotorral A léptetőmotorok olyan elektromechanikus átalakítók, amelyek villamos impulzusokat alakítanak át meghatározott nagyságú szögelfordulásokká. A motor tengelyének pozícióját tehát a vezérlő által kiadott impulzusok száma határozza meg. A pontos pozicionálás tehát ellenőrző jel nélkül is megvalósítható. Miután nem csak egyetlen körülfordulást vezérlünk, ezért vezérlő frekvenciáról szokás beszélni. 9.oldal

10 A motor fordulatszáma igy n = 60 f i k ahol n a motor tengelyének percenkénti fordulatszáma, f i a vezérlő impulzussorozat frekvenciája, k a motor fordulatonkénti lépésszáma. A szakaszban foglalkozunk a léptetőmotorok működésével, legfontosabb jellemzőivel, valamint működtető vezérlés megoldásaival A léptetőmotor Tulajdonságaik révén a léptetőmotorokat a digitális pozícióvezérlésekben, - szabályozásokban alkalmazzák. Készülnek állandó-mágneses, lágy-mágneses és hibrid típusok. Az állandó-mágneses motorokat alkalmazzák a legszélesebb körben, mivel jó statikus és dinamikus tulajdonságaik mellett a hatásfokuk is jó. Lényeges szempont még, hogy tartónyomatékuk van, és csillapításuk is megfelelő. A léptetőmotor működését meghatározza, mint ahogy az elnevezés is utal rá hogy tengelye diszkrét lépések sorozatával forog. Mindig ugyanannyi lépés után tesz meg egy körülfordulást. A diszkrét léptetés alkalmassá teszi a digitális vezérlőjelekkel történő működtetést. A léptetőmotoros hajtások legjellemzőbb tulajdonságai: Pontos pozicionálás visszacsatolás nélkül adott számú léptető-impulzus hatására. Nagy nyomaték kis sebességeknél, még egyedi léptetésnél is. Nyugalmi helyzetben, gerjesztett állapotban nagy tartónyomaték, amely önzárást biztosíthat A léptetőmotor működése Az állandó-mágnesű léptetőmotoroknál az állórész pólusain helyezkednek el a fázistekercsek, míg a forgórész - nagy koercitív erejű - permanens mágnes. Egy kétfázisú léptetőmotor felépítése látható a 8. ábrán. 10.oldal

11 8. ábra Működés fázisait a 9. ábrán látható két - póluspárral felépített motoron keresztül szemléltetjük. A fázistekercseket - két különböző megoldással - helyezik el a pólusokon. unipoláris, minden póluson egy önálló tekercs van (9.a.ábra) illetve a bipoláris, amelynél egy pólus-páron van egy tekercs, és az lehet egyszeres-, (9.b.ábra). Az unipoláris tekercselésnél a póluson elhelyezkedő fél - tekercsnek, vagy mindkettő, vagy csak egyik végük, és egy közösített vég van kivezetve. A geometriailag szembenálló pólusok alkotnak egy póluspárt, és ezeken van egy fázistekercs. Az unipoláris elnevezés arra utal, hogy mindegyik tekercset azonos polaritású feszültséggel (árammal) kell gerjeszteni. a. b. 9. ábra 11.oldal

12 A geometriailag szembenálló pólusok alkotnak egy póluspárt, és ezeken van egy fázistekercs. Az unipoláris elnevezés arra utal, hogy mindegyik tekercset azonos polaritású feszültséggel (árammal) kell gerjeszteni. Egy fázisnál a két fél tekercset kezdet - vég - kezdet - vég sorrendben kell összekötni. A közösített pont egy fázistekercs két-felének ellentétes pontja. A 10. ábrán egy motor álló-, és forgórészének képe látható. A 11. ábra szemlélteti, hogy miként helyezkedik el az állandó mágnes a forgórészben. a. b. 10. ábra 11. ábra Az egyenletesebb léptetést a fázisszám növelésével lehet elérni. A gyakorlatban alkalmazott léptetőmotoroknál az öt-fázisú változat elvi felépítése látható a 11. ábrán. 12.oldal

13 12. ábra A léptetőmotorok statikus jellemzői A léptetőmotorok statikus jellemzői az álló helyzetre vonatkozó adatok. A legfontosabb jellemzők a követezőek: - a maximális gerjesztő feszültség, - a maximális tartóáram, - lépésszög, - öntartó nyomaték, - tartó nyomaték, - statikus nyomatékgörbe. A nyomatékgörbe (13. ábra) azt mutatja meg, hogy ha a motor áll, és a tengelyére ható nyomatékot folyamatosan növeljük, akkor hogyan változik a forgórész elfordulás szöge. Az így adódó nyomatékgörbe közel szinuszos lefolyású. Az szemlélteti egy pólus alatt a változást, ha csak az egyik fázistekercset gerjesztjük. Nyugalmi helyzetben az állórész, és a forgórész pólusai szemben helyezkednek el. A nyomaték növelésének kezdetekor a forgórész elmozdul a forgatás irányába, de ha a terhelés megszűnik, akkor visszatér a stabil helyzetbe. Viszont, ha a terhelő nyomaték egy adott határt meghalad, akkor a forgórész egy pólusosztással tovább mozdul, átbillen. Ezt a terhelést nevezzük a motor M b billenési nyomatékának, az elfordulási szöget, pedig φ b billenési szögnek. 13.oldal

14 13. ábra A különböző előjelű billenő-nyomatékok között van a labilis tartomány. Amennyiben a tengelyt az átbillenés után is terheli az M b értéket meghaladó nyomaték, akkor a tengely továbbfordul. Amikor mindkét fázistekercs gerjesztést kap, akkor az egyes tekercsek nyomatékgörbéinek összegzése adja a motor statikus nyomatékgörbéjét. Kétfázisú léptetőmotor eredő nyomatékgörbéjét mutatja a 14. ábra. Az M H a motor álló állapotbeli tartó nyomatéka. Mint látható ez eléggé hullámos. A két stabil állapot között mérjük, az un. lépésszöget az α t. 14.oldal 14. ábra

15 A fázisszám növelésével az eredő nyomatékgörbe hullámossága csökken. A 15. ábrán egy ötfázisú léptetőmotor nyomatékgörbéje látható. 15. ábra A továbbiakban csak a kétfázisú motor viszonyival foglalkozunk. A motorok gyártási szórásából, illetve a gerjesztési aszimmetriákból a Δα s szisztematikus szöghiba léphet fel. Erre mutat példát a 16. ábra. Itt a különböző aszimetriák miatt a két fázis billenő nyomatéka különbözik. Ezért a lépésszög is váltakozik. A gerjesztés módosításával az ilyen eltérés kiküszöbölhető. 16. ábra 15.oldal

16 Az állandó mágnesű forgórésszel készülő léptetőmotoroknál külső gerjesztés nélkül is mérhető billenőnyomaték. Ez viszont kétszeres frekvenciájú, mint a gerjesztett motoré, mint ezt a 17.ábra szemlélteti. 17. ábra Dinamikus jellemzők Egy léptetőmotor dinamikus jellemzői azt adják meg, hogy az indításkor, folytonos forgatásnál, nyomatékváltozásnál, leállításkor hogyan viselkedik a motor. A folyamatos - fázisról-fázisra - történő gerjesztés a tengely léptetését, illetve a váltások frekvenciájának növelésével közel folytonos forgást lehet elérni. A léptetőmotorok tengelyének elfordulása elsősorban a tengelyt terhelő tehetetlenségi nyomatéktól (Q), a tekercset gerjesztő áram időbeli változásától függ. Mivel a tekercsen átfolyó áram, és így a kialakuló mágneses mező logaritmikusan változik, ezért a forgórész elfordulása csak késve (18. ábra), a billentő-nyomaték elérésekor kezdődik. 16.oldal

17 18. ábra A mennyiben hamarabb szűnik meg a gerjesztő feszültség, akkor lépéskimaradás, lépéstévesztés következik. A leírt alapján következtethetünk arra, hogy a kívánt impulzus számmal megegyező lépést csak egy adott frekvenciánál alacsonyabb impulzussorozattal lehet elérni. A motorok adatai között ezt az értéket az un. start/stop frekvenciaként adják meg. A megadott érték motor terheletlen állapotára vonatkozik. A valós viszonyok között mindig van terhelés. A 19. ábrán egy léptetőmotor nyomatékváltozását mutatja a lépésfrekvencia függvényében. 19. ábra Az ábrán látható karakterisztika görbék közül az 1, illetve 2 számokkal jelzettek azt mutatják, hogy egy lépésben milyen frekvenciájú impulzussorozattal indítható a motor lépéstévesztés nélkül. Az 1-el jelzett görbe a terheletlen, míg a 2-vel jelzett a terhelt 17.oldal

18 viszonyokat jelzi. A külső karakterisztika-görbe mutatja, hogy forgás közben léptetési frekvenciánál - mekkora nyomatékkal terhelhető a motor tengelye. A motor müködtetéséhez tehát két szakaszt különböztethetünk meg. Az indítási szakasz az a frekvenciatartomány (0 f1 Hz) amely hatására lépéstévesztés nélkül indul a motor lépegetése. Látható, hogy az f1 indítási határfrekvencia a terhelő nyomatéktól is függ. A terheletlen motornak is van saját tehetetlenségi nyomatéka, surlódása, amit figyelembe kell venni a hajtás tervezésekor. A már mozgásban lévő motor léptetési frekvenciája a gyorsítási tartományon belül - fokozatosan növelhető az f2 üzemi határfrekvenciáig. A karakterisztika alapján meghatározható, hogy adott üzemi nyomatéknál emkkora az indítási-, illetve az üzemi határfrekvencia. Természetesen a tényleges működtetési frekvenciákat ezen értékek alatt kell megválasztani, hogy se az indításnál, sem pedig a folytonos forgatásnál ne legyen lépéstévesztés. Az indításhoz hasonlóan a leállításkor is történhet túllendülésből eredő lépéstévesztés. Amennyiben egy lépésben szüntetjük meg a gerjesztő impulzussorozatot, akkor a tehetetlenségi nyomaték további lépéseket eredményezhet. A pontos pozicióba állításnál, mindhárom üzemelési szakaszban biztosítani kell a tévesztésmentes léptetést. Vezérléskor betartandó viszonyokat a 20. ábra szemlélteti. 20. ábra Az f1 frekvenciájú vezérlőimpulzus egy lépésben be-, vagy kikapcsolható. A nagyobb f2 frekvenciájú üzemi forgatásra történő felgyorsítás, illetve errőla lelassítás csak fokozatosan történhet. A változás lehet lineáris (c), vagy egyéb időfüggvény szerinti (a,b). A feladat határozza meg, hogy végső pozíció elérésének ideje döntő-e. Amikor nem lényeges az idő, akkor elégséges a hajtás f 1 frekvenciájú léptetése. A gyorsabb pozicióba éréshez, gyorsítási, üzemi mozgatási, és lassítási szakaszokra kell bontani a vezérlést. Az utóbbi választásakor léptetőmotoros hajtás jellemzőinek ismeretében 18.oldal

19 határozhatjuk meg azt a frekvenciaváltoztatási (df/dt) sebességet, amelynél még nincs lépéstzévesztés. Az esetek többségében ismerjük a választott motor üresjárási paramétereit start/stop frekvencia, indítási nyomaték, és a statikus jellemzők -, mivel ezeket a gyártó megadja. A megvalósítandó hajtás jellemzőit az üzemi nyomatékot, az indítási-, és az üzemi határfrekvenciákat méréssel célszerű meghatározni. A mért értékek alapján kell kiszámítani a a hajtás indításához, gyorsításához- lassításához, szükséges frekvenciaváltozásokat. A 21. ábrán egy M L nyomatékkal terhelt léptetőmotoros hajtás méréssel meghatározott nyomaték-lépésfrekvencia karakterisztikája látható. A karakterisztikából kiindulva határozzuk meg a vezérléshez szükséges léptetési frekvenciákat. A hajtást biztonságos indítása csak az indítási határhoz tartozó értéknél a határgörbe, és az M L nyomaték-egyenesének metszése - kisebb frekvenciájú jellel történhet. Az ábrán az N munkaponthoz tartozó f 1 frekvenciát választjuk, amelyhez az M gy1 gyorsító nyomaték tartozik. A megengedhető legyorsabb üzemi forgatás frekvenciája ugyancsak alacsonyabb kell legyen a határtákhez tartozónál, mert ekkor már nincs nyomatéktartalék. A szükséges M gy2 értékű nyomatékkal biztosíthatjuk a lpéstévesztés nélküli üzemi mozgatást, vagyis a gyorsításnál csak az f 2 frekvenciáig szabad eljutni. 21. ábra A választott határfrekvenciák után a frekvenciaváltoztatás sebességét, illetve módját kell meghatároznunk. Előszőr azt állapítsuk meg, hogy az adott nyomaték, és terhelés esetén mekkora lehet a frekvenciaváltoztatás. A szükséges gyorsítónyomaték: dω Mgy = Θ dt ahol Θ a rendszer tehetetlenségi nyomatéka (inercia), és ω a szöggyorsulás. A gyorsítási-lassítási szakaszokban df f = f0 ± dt t 19.oldal

20 ahol f 0 a változtatás kezdőfrekvenciája, és az előjelet kell megfelelően alkalmazni. A megengedhető frekvenciaváltoztatás az összefüggés alapján számítható ki. df dt M = min Θ 180 π α A frekvencia lineáris változtatásakor az M gy gyorsítónyomaték, és a Θ tehetetlenségi nyomatéktól, és a léptetőmotor k lépésszámától az alábbi egyenlőtlenség alapján választható meg a változtatás megengedett mértéke: df k Mgy dt π Θ = Κ A leírt egyenlőtlenségbe helyettesítve a gyorsítónyomaték minimumát (M gy2 t) kiszámíthatjuk a motorra jellemző K értéket. Ennek ismeretében már meghatározhatjuk a frkvenciaváltoztatás léptékét f-t, és a változtatás időbeli lépéseit t t. A két érték közül egyiket választhatjuk szabadon, majd ezt követően kapjuk a másik változtatásának lépéseit. A változtatás meredekségét a K-t soha nem szaban túllépni. A biztonságot jelenti az, hogy a gyorsítási tartományban megválasztott legkisebb nyomatékkal számolunk. A kétfázisú léptetőmotorok kellemetlen tulajdonsága a lengési hajlam. Mivel a nyomatékgörbe (lásd 7. ábra), ezért minden léptető impulzus hatására a forgórész leng. A lengés mechanikus (pl surlódás növelése), illetve villamos csillapítással ( pl helyes R/L viszony beállítása) csökkenthető. A vezérlés megfelelő kialakítása is hozhat eredményt. A 22. ábrán látható görbék különböző csillapitási viszonyok melleti szögváltozástokat mutatja. Az 1 jelű görbe a csillapítatlan eset. A 2 jelű mutatja a surlodó, és villamos csillapítás együttes hatását. 22. ábra 20.oldal

21 Említeni kell még a motor pontos leállításánal szükséges vezérlést is. A 23. ábra a leállítás utolsó impulzusa körüli időbeli változásokat szemlélteti. Az utolsóelötti léptetőimpulzus hatására bekövetkező lengés maximumánál (A időpont) kell az utolsó léptetést végrehajtani. Ekkor tullendülés, vagy visszalépés nélkül áll le a motor. A forgásirány-váltás (reverzálás) akkor lesz sikeres, ha a D időpontban kapja az impulzust a fázistekercs. 23. ábra A következőekben röviden áttekintjük a kétfázisú léptetőmotorok vezérlési megoldásait Léptetési módok. A léptetés történhet teljes természetes lépéses (Full step), fél lépésfelezés lépéses (Half step) és mikrolépés -es üzemmódban. A felosztás az egy pólus-pár által meghatározott szögelfordulás alatt megtett lépések számára utal. A teljes-, és féllépésű léptetésnél a tekercs gerjesztését 0, +Ig és -Ig között kell változtatni. Mikro-lépésnél a gerjesztés - a szélsőértékek között - több diszkrét lépésben változik. Az egyes léptetési megoldásokat szemléltetik a következő ábrák két póluspár esetében. A 24. ábrán láthatjuk a teljes lépésű (full-step) léptetést, ha egyidejűleg csak egy fázistekercs egyik fele kap gerjesztést. Ezt a változatot pólus - alatti vezérlésnek is nevezhetjük. A 25. ábra szerinti léptetés ugyancsak teljes lépésű, de mindkét fázistekercs egyik fele kap egyidejűleg gerjesztést, ezért a pólusok közé áll be a forgórész (pólusközötti vezérlés). A szemléltetett motor - mindkét vezérlési megoldásnál - négy lépés alatt tesz meg egy teljes körülfordulást. 21.oldal

22 A 26. ábrán látható megoldásban felváltva egy, illetve két féltekercsen folyik át gerjesztő-áram. A motor nyolc lépés alatt fordul egyet. Ezt nevezzük lépés-felezéses vezérlésnek. 24. ábra Teljes természetes - lépés egy fázis gerjesztésével 25. ábra Teljes természetes - lépés két fázis gerjesztésével 22.oldal

23 26. ábra Fél lépésfelezéses - lépésű működés Vezérlési táblázatok A következő táblázatokban foglaljuk össze a különböző meghajtásoknál alkalmazható vezérlési sorrendet. A táblázatok alapján lehet meghatározni a választott meghajtó kapcsolás tranzisztorainak a vezérlését. Az Ig jelölés jelenti, hogy az adott fél-, vagy teljes tekercsen folyik áram. Az előjel pedig a tekercs kezdethez viszonyított áramirányt jelzi- Unipoláris (osztott) fázistekercs Bipoláris (osztatlan) fázistekercs Természetes lépésű üzemmód (Egyidejűleg csak egy tekercsben folyik áram) ütem L 11 L 21 L 12 L 22 ütem L 1 L 2 1 Ig Ig Ig Ig Ig Ig 0 4 I 0 0 Ig Ig Természetes lépésű üzemmód (Egyidejűleg két tekercsben folyik áram) ütem L 11 L 21 L 12 L 22 ütem L 1 L 2 1 Ig Ig Ig Ig 2 0 Ig Ig Ig Ig Ig Ig 3 - Ig - Ig 4 Ig 0 0 Ig 4 Ig - Ig 23.oldal

24 Lépésfelezéses üzemmód ütem L 11 L 21 L 12 L 22 ütem L 1 L 2 1 Ig Ig Ig 2 Ig Ig Ig 3 0 Ig Ig Ig 4 0 Ig Ig Ig Ig Ig - Ig Ig Ig Ig Ig 7 Ig - Ig 8 Ig 0 0 Ig 8 Ig A léptetőmotor vezérlési szakaszai: A léptetőmotorral megvalósított hajtásoknál a pozícióba történő vezérlés pontossága mellett, igény még a cél leggyorsabb elérése is. A megvalósításnál cél a megengedhető legnagyobb üzemi frekvenciájú léptetés, amelynél szükséges az alábbi három szakasz szerinti vezérlés megvalósítása. A vezérlési szakaszok az indítás (felfuttatás), az állandó szögsebességű hajtás, és a leállítás (fokozatosan). Mindhárom szakaszban biztosítani kell, hogy ne legyen lépéstévesztés. Ezt egyrészt a megfelelő sorrendű gerjesztéssel másrészt, pedig azzal érhetjük el, hogy a sebesség változtatásának mértéke nem haladhatja, meg az un. start-stop frekvenciát. A változó forgásirányú hajtásvezérlés is három szakaszú. A forgásirány változtatása, csak a motor nyugalmi helyzetében történhet. Ekkor lesz rángatás-mentes a váltás. A vezérlés csak az adott motor tulajdonságainak figyelembevételével végezhető el. Első lépésben ismerni kell a motort, és a hajtott rendszer nyomatékigényét. Ezek ismeretében határozható meg az indítási-, leállítási határfrekvencia, az alkalmazható üzemi-frekvencia A léptetőmotorok illesztő áramkörei A léptetőmotor meghajtó áramkörök feladata a szükséges teljesítményillesztés biztosítása. Az egyes tekercseken átfolyó áram nagyságát és irányát is változtatni szükséges. 24.oldal

25 A két-fázisú léptetőmotorokat két alapvetően eltérő tekercselési megoldásban gyártják. Ezek a fázisonként egy-, illetve a kettős-, vagy osztott (két fél-tekercs) fázistekercsű változatok. A fázisonként kéttekercsű megoldásoknál az egyes tekercsek kezdeteinek és végeinek megfelelő bekötésével azonos külső áramirány esetén is változtatható a belső mágnesmező iránya, unipoláris vezérlés. Az illesztő-, meghajtó áramkör tekercsenként egy-egy megfelelő teljesítményű elektronikus kapcsolóval megoldható. A 27. ábrán látható a meghajtó áramkör elvi kapcsolása. A motor négy fél-tekercsének közösített végei csatlakoznak az Ut tápfeszültség pozitív pólusához. A tekercsek másik végeire egy-egy teljesítmény tranzisztor (darlington kapcsolású) kapcsolja a vezérlés sorrendjében a tápfeszültség negatív pontját. 27. ábra A lengések csökkentésének egyik módja, hogy a motortekercsekkel sorba kötünk ellenállást. Az optimális megoldás, ha a külső ellenállás a tekercs ohmos ellenállásának háromszorosa. A fázisonként egytekercsű motorok esetében a belső mágnes mező irányának változtatása csak a gerjesztő áramok irányváltoztatásával oldható meg. Ezt híd-kapcsolású illesztő áramkörökkel lehet megoldani. A motorvezérlésekhez fejlesztett (LM 298 típusú) két teljes hidat tartalmazó áramkörének kapcsolási vázlata látható a 28. ábrán. 25.oldal

26 28. ábra A motor tekercseinek induktivítása miatt szükséges védő diódákat alkalmazni- A 29. ábrán az egyik hídhoz brkötött diódák láthatók. Ugyanitt szemléltettük a vezérlő áramot valamint a kikapcsoláskor a diodákon záródó kiegyenlítő áramot _._. 29. ábra 26.oldal

27 A meghajtó áramkörök vezérlése Példa X irány NYÁK tálca x=0 y=0 pozició Y irányú vonóorsó a kocsit mozgató léptetőmotor LMy Y irány X irányú vonóorsó a tálcát mozgató léptetőmotor LMx kocs kezelőpult OE CLK EX IX EZ IY G A L O P x O P y FHx FHy LMx LMy 30. ábra 27.oldal

28 31. ábra 32. ábra 28.oldal

29 1.2. Pozíciószabályozás szervomotoros hajtással A szervomotorok csaknem minden esetben valamilyen szabályozott hajtás végrehajtó szervei. A leggyakoribb szabályozott jellemzők: az áram, a nyomaték, a fordulatszám (szögsebesség), valamint a pozíció A szervomotor A villamos szervomotorok olyan villamos gépek, amelyeknél a jó szabályozási tulajdonságokat az igényeknek megfelelő szerkezeti megoldásokkal érik el. A szervomotorok bemenö jele a motorra kapcsolt feszültség, vagy áram, kimenő jele pedig szögelfordulás, vagy mechanikai szögsebesség. A szervomotorokkal szemben támasztott követelmények: a) a motor a szőgelfordulást, vagy az üj szögsebességre való beállást minél gyorsabban hajtsa végre. Ehhez az szükséges, hogy a motor idő (T, és T kicsik legyenek; b) a fordulatszámmal arányos szögsebesség széles tartományban legyen változ tatható (az n max /n min arány, az ún. átfogás szervomotoroknál szokásos értéke: , szemben a hagyományos gépekkel, ahol ez az érték ); c) a motor nagy indító-, és fékezőnyomatékkal rendelkezzen (egy szervomotor- nál az I. vagy az ezzel arányos M arány értéke szemben egy hagyományos géppel. ahol ez az arány l,53); d) a motor w(m) jelleggörbéje lehetőleg lineáris legyen; e) a forgásirányváltás egyszerűen legyen megoldható; vezérlő feszültség nélkül a motor álljon le. A szervoniotornál a elóbb felsorolt igények teljesítése a fó cél vagyis nem az elektromechanikus átalakítás ezért a szervomotorok hatásfoka gyakran rosz szabb, minta hagyományos villamos gépeknél megszokott érték. A motorválasztékban vannak egyenáramú és váltakozóáramú szervomotorok is. A legtöbb alkalmazásban az egyenáramú szervomotorokat használják. A következőkben áttekintjük az egyenáramú szervomotorok leg jellemzőbb változatait és tulajdonságait. 29.oldal

E-Laboratórium 2 A léptetőmotorok alkalmazásai Elméleti leírás

E-Laboratórium 2 A léptetőmotorok alkalmazásai Elméleti leírás E-Laboratórium 2 A léptetőmotorok alkalmazásai Elméleti leírás 1. Bevezető A szinkronmotorok csoportjában egy külön helyet a léptetőmotor foglal el, aminek a diszkrét működését, vagyis a léptetést, egy

Részletesebben

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ

8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 8. Laboratóriumi gyakorlat INKREMENTÁLIS ADÓ 1. A gyakorlat célja: Az inkrementális adók működésének megismerése. Számítások és szoftverfejlesztés az inkrementális adók katalógusadatainak feldolgozására

Részletesebben

TB6600 V1 Léptetőmotor vezérlő

TB6600 V1 Léptetőmotor vezérlő TB6600 V1 Léptetőmotor vezérlő Mikrolépés lehetősége: 1, 1/2, 1/4, 1/8, 1/16. A vezérlő egy motor meghajtására képes 0,5-4,5A között állítható motoráram Tápellátás: 12-45V közötti feszültséget igényel

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

Irányítástechnikai alapok. Zalotay Péter főiskolai docens KKMF

Irányítástechnikai alapok. Zalotay Péter főiskolai docens KKMF Irányítástechnikai alapok Zalotay Péter főiskolai docens KKMF Az irányítás feladatai és fajtái: Alapfogalmak Irányítás: Műszaki berendezések ( gépek, gyártó sorok, szállító eszközök, vegyi-, hő-technikai

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR

Részletesebben

Elektromechanikai rendszerek szimulációja

Elektromechanikai rendszerek szimulációja Kandó Polytechnic of Technology Institute of Informatics Kóré László Elektromechanikai rendszerek szimulációja I Budapest 1997 Tartalom 1.MINTAPÉLDÁK...2 1.1 IDEÁLIS EGYENÁRAMÚ MOTOR FESZÜLTSÉG-SZÖGSEBESSÉG

Részletesebben

Háromfázisú aszinkron motorok

Háromfázisú aszinkron motorok Háromfázisú aszinkron motorok 1. példa Egy háromfázisú, 20 kw teljesítményű, 6 pólusú, 400 V/50 Hz hálózatról üzemeltetett aszinkron motor fordulatszáma 950 1/min. Teljesítmény tényezője 0,88, az állórész

Részletesebben

SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család

SYS700-PLM Power Line Monitor modul DDC rendszerelemek, DIALOG-III család DDC rendszerelemek, DIALOG-III család KIVITEL ALKALMAZÁS A az energiaellátás minőségi jellemzőinek mérésére szolgáló szabadon programozható készülék. Épületfelügyeleti rendszerben (BMS), valamint önállóan

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

4. FEJEZET MOTORHAJTÁSOK

4. FEJEZET MOTORHAJTÁSOK Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 5. félév Óraszám: 2+2 1 4. FEJEZET MOTORHAJTÁSOK Széles skála: o W...MW, o precíz pozícionálás...goromba sebességvezérlés.

Részletesebben

Programozható logikai vezérlő

Programozható logikai vezérlő PROGRAMABLE LOGIC CONTROLLER Programozható logikai vezérlő Vezérlés fejlődése Elektromechanikus (relés) vezérlések Huzalozott logikájú elektronikus vezérlések Számítógépes, programozható vezérlők A programozható

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató BUDAPESTI MÛSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport EGYENÁRAMÚ GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

A forgórész az állórész eredő mezejének irányába áll be. Ezt a mágneses erők egyensúlya alapján is követhetjük.

A forgórész az állórész eredő mezejének irányába áll be. Ezt a mágneses erők egyensúlya alapján is követhetjük. 55 Léptetőmotorok A léptetőmotorok kívülről adott, digitális vezérlőimpulzusokat diszkrét szögelfordulásokká alakítanak át. Az elfordulás szöge arányos az impulzusok számával, a forgási sesség pedig az

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

52 523 01 1000 00 00 Automatikai műszerész Automatikai műszerész

52 523 01 1000 00 00 Automatikai műszerész Automatikai műszerész A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Generátor gerjesztés kimaradási védelmi funkcióblokk leírása

Generátor gerjesztés kimaradási védelmi funkcióblokk leírása Generátor gerjesztés kimaradási védelmi funkcióblokk leírása Dokumentum ID: PP-13-20540 Budapest, 2014. július A leírás verzió-információja Verzió Dátum Változás Szerkesztette V1.0 2014.04.16. Első kiadás

Részletesebben

PWM elve, mikroszervó motor vezérlése MiniRISC processzoron

PWM elve, mikroszervó motor vezérlése MiniRISC processzoron PWM elve, mikroszervó motor vezérlése MiniRISC processzoron F1. A mikroprocesszorok, mint digitális eszközök, ritkán rendelkeznek közvetlen analóg kimeneti jelet biztosító perifériával, tehát valódi, minőségi

Részletesebben

Szakképesítés: 54 523 01 Automatikai technikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Irányítástechnikai alapok, gyártórendszerek

Szakképesítés: 54 523 01 Automatikai technikus Szóbeli vizsgatevékenység A vizsgafeladat megnevezése: Irányítástechnikai alapok, gyártórendszerek A vizsgafeladat ismertetése: A szóbeli vizsgatevékenység központilag összeállított vizsgakérdései a IV. Szakmai követelmények fejezetben megadott 10003-12 Irányítástechnikai alapok és a 10002-12 Ipari

Részletesebben

BSD2010 BSD4010. Bipoláris léptetőmotor meghajtó modulok felhasználói kézikönyve

BSD2010 BSD4010. Bipoláris léptetőmotor meghajtó modulok felhasználói kézikönyve BSD2010 BSD4010 Bipoláris léptetőmotor meghajtó modulok felhasználói kézikönyve Q-Tech Mérnöki Szolgáltató Kft. 2003 -2- Tartalomjegyzék Felhasználói kézikönyv 1 Bevezetés... 4 Jellemzők... 4 A meghajtó

Részletesebben

1. Irányítástechnika. Készítette: Fecser Nikolett. 2. Ipari elektronika. Készítette: Horváth Lászó

1. Irányítástechnika. Készítette: Fecser Nikolett. 2. Ipari elektronika. Készítette: Horváth Lászó A mechatronikai technikus képzés átvilágítására és fejlesztésére irányuló projekt eredményeképp az egyes tantárgyakhoz új, disszeminációra alakalmas tanmeneteket dolgoztunk ki. 1. Irányítástechnika. Készítette:

Részletesebben

A forgójeladók mechanikai kialakítása

A forgójeladók mechanikai kialakítása A forgójeladók mechanikai kialakítása A különböző gyártók néhány szabványos kiviteltől eltekintve nagy forma- és méretválasztékban kínálják termékeiket. Az elektromos illesztéshez hasonlóan a mechanikai

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése.

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése. Soros LCD vezérlő A vezérlő modul lehetővé teszi, hogy az LCD-t soros vonalon illeszthessük alkalmazásunkhoz. A modul több soros protokollt is támogat, úgy, mint az RS232, I 2 C, SPI. Továbbá az LCD alapfunkcióit

Részletesebben

MiniStep-4 Léptetőmotor vezérlő

MiniStep-4 Léptetőmotor vezérlő MiniStep-4 Léptetőmotor vezérlő Hw. verzió: V 1.1 Dátum: 2003 október 31. Doku verzió: V1.1-1 - Leírás. A MiniStep-4 léptetőmotor vezérlő széles körben alkalmazható, általános célra gyártott léptetőmotor

Részletesebben

ÜZLETKÖTŐI ÉRTEKEZLET 2012-01-13 DUNAKESZI

ÜZLETKÖTŐI ÉRTEKEZLET 2012-01-13 DUNAKESZI ÜZLETKÖTŐI ÉRTEKEZLET 2012-01-13 DUNAKESZI ÉS MOTORVÉDŐ KAPCSOLÓK KONTAKTOROK Kontaktor definíció: Olyan gyakori működésre alkalmas elektromágneses elven működtetett mechanikus kapcsolókészülék,

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elektronika 2. TFBE1302 Mérőműszerek Analóg elektronika Feszültség és áram mérése Feszültségmérő: V U R 1 I 1 igen nagy belső ellenállású mérőműszer párhuzamosan kapcsolandó a mérendő alkatrésszel R 3

Részletesebben

Irányítástechnika 1. 9. Elıadás. PLC-k programozása

Irányítástechnika 1. 9. Elıadás. PLC-k programozása Irányítástechnika 1 9. Elıadás PLC-k programozása Irodalom - Helmich József: Irányítástechnika I, 2005 - Zalotay Péter: PLC tanfolyam - Jancskárné Anweiler Ildikó: PLC programozás az IEC 1131-3 szabvány

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

LÉPCSŐHÁZI AUTOMATÁK W LÉPCSŐHÁZI AUTOMATA TIMON W SCHRACK INFO W FUNKCIÓK W MŰSZAKI ADATOK

LÉPCSŐHÁZI AUTOMATÁK W LÉPCSŐHÁZI AUTOMATA TIMON W SCHRACK INFO W FUNKCIÓK W MŰSZAKI ADATOK W LÉPCSŐHÁZI AUTOMATA TIMON 150 BZ327210-A W FUNKCIÓK Energiamegtakarítás funkció Beállíthatóság 0,5 30 perc Halk működés Nagy bekapcsoló képesség, 80 A max / 20 ms 3 vagy 4 vezetékes bekötés Glimmlámpaállóság:

Részletesebben

USB I/O kártya. 12 relés kimeneti csatornával, 8 digitális bemenettel (TTL) és 8 választható bemenettel, mely analóg illetve TTL módban használható.

USB I/O kártya. 12 relés kimeneti csatornával, 8 digitális bemenettel (TTL) és 8 választható bemenettel, mely analóg illetve TTL módban használható. USB I/O kártya 12 relés kimeneti csatornával, 8 digitális bemenettel (TTL) és 8 választható bemenettel, mely analóg illetve TTL módban használható. Műszaki adatok: - Tápfeszültség: 12V DC - Áramfelvétel:

Részletesebben

Új kompakt X20 vezérlő integrált I/O pontokkal

Új kompakt X20 vezérlő integrált I/O pontokkal Új kompakt X20 vezérlő integrált I/O pontokkal Integrált flash 4GB belső 16 kb nem felejtő RAM B&R tovább bővíti a nagy sikerű X20 vezérlő családot, egy kompakt vezérlővel, mely integrált be és kimeneti

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Programozható irányító rendszerek I. Vizsgakérdés. 1. tétel

Programozható irányító rendszerek I. Vizsgakérdés. 1. tétel 1. tétel A: Ismertesse a kombinációs feladatok tervezésének, és a megvalósító program készítésének a lépéseit! Részletesen tárgyalja a - a logikai tervezés menetét, - az egyszerűsítés célját, módszereit,

Részletesebben

Hármas tápegység Matrix MPS-3005L-3

Hármas tápegység Matrix MPS-3005L-3 Hármas tápegység Matrix MPS-3005L-3 Általános leírás Az MPS-3005L-3 tápegység egy fix 5V-os, 3A-rel terhelhető és két 0V-30V-között változtatható,legfeljebb 5A-rel terhelhető kimenettel rendelkezik. A

Részletesebben

Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros

Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros Aktuátorok Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros kapcsolatára utalnak. mért nagyság A fizikai

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt.

Multi-20 modul. Felhasználói dokumentáció 1.1. Készítette: Parrag László. Jóváhagyta: Rubin Informatikai Zrt. Multi-20 modul Felhasználói dokumentáció. Készítette: Parrag László Jóváhagyta: Rubin Informatikai Zrt. 49 Budapest, Egressy út 7-2. telefon: +36 469 4020; fax: +36 469 4029 e-mail: info@rubin.hu; web:

Részletesebben

2. Mágneskapcsolók: NC1-es sorozat

2. Mágneskapcsolók: NC1-es sorozat 2. Mágneskapcsolók: NC1-es sorozat Alkalmazási terület: A mágneskapcsolót egyen- vagy váltakozó feszültséggel vezérelve kapcsolhatunk max. 6VAC névleges feszültségű és 95A névleges áramú áramkört. A készülék

Részletesebben

TM-73733 Szervó vezérlő és dekóder

TM-73733 Szervó vezérlő és dekóder TM-73733 Szervó vezérlő és dekóder Használati útmutató 2011 BioDigit Ltd. Minden jog fenntartva. A dokumentum sokszorosítása, tartalmának közzététele bármilyen formában, beleértve az elektronikai és mechanikai

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

Danfoss frekvenciaváltók speciális, beépített funkciói

Danfoss frekvenciaváltók speciális, beépített funkciói Danfoss frekvenciaváltók speciális, beépített funkciói www.danfoss.hu/vlt Hajtástechnika Date 1 Előadók Toma Gábor Értékesítés támogatási vezető, Alkalmazástechnikai mérnök 2004 Budapesti Műszaki Egyetem,

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók

Részletesebben

Útváltók. Fenyvesi D. Dr. Harkay G. OE-BGK

Útváltók. Fenyvesi D. Dr. Harkay G. OE-BGK Útváltók Fenyvesi D. Dr. Harkay G. OE-BGK Irányítóelemek Irányítóelemek A hidraulikus rendszer alapvető irányítási feladatait, a működtetett rendszer igényei határozzák meg, mint pl. Mozgásirány: útváltók.

Részletesebben

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens

Teljesítményelektronika szabályozása. Összeállította dr. Blága Csaba egyetemi docens Teljesítményelektronika szabályozása Összeállította dr. Blága Csaba egyetemi docens Szakirodalom 1. Ferenczi Ödön, Teljesítményszabályozó áramkörök, Műszaki Könyvkiadó, Budapest, 1981. 2. Ipsits Imre,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. február 23. ELEKTRONIKAI ALAPISMERETEK ELŐDÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 180 perc

Részletesebben

AIRPOL PRM frekvenciaváltós csavarkompresszorok. Airpol PRM frekvenciaváltós csavarkompresszorok

AIRPOL PRM frekvenciaváltós csavarkompresszorok. Airpol PRM frekvenciaváltós csavarkompresszorok Airpol PRM frekvenciaváltós csavarkompresszorok Az Airpol PRM frekvenciaváltós csavarkompresszorok változtatható sebességű meghajtással rendelkeznek 50-100%-ig. Ha a sűrített levegő fogyasztás kevesebb,

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Elektromos gép- és készülékszerelő szakma gyakorlati oktatásához OKJ száma: 34 522 02 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

Választás /Program gomb Forgató gomb Start/ Stop gomb

Választás /Program gomb Forgató gomb Start/ Stop gomb Kezelési útmutató akkumulátoros (12V) automata elektronikához A készülék használata Időzítés Ciklus 1. 2 Választás /Program gomb Forgató gomb Start/ Stop gomb Az akkumulátor csatlakozók megfelelő polaritással

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Feszültségérzékelők a méréstechnikában

Feszültségérzékelők a méréstechnikában 5. Laboratóriumi gyakorlat Feszültségérzékelők a méréstechnikában 1. A gyakorlat célja Az elektronikus mérőműszerekben használatos különböző feszültségdetektoroknak tanulmányozása, átviteli karakterisztika

Részletesebben

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor

2000 Szentendre, Bükköspart 74 WWW.MEVISOR.HU. MeviMR 3XC magnetorezisztív járműérzékelő szenzor MeviMR 3XC Magnetorezisztív járműérzékelő szenzor MeviMR3XC járműérzékelő szenzor - 3 dimenzióban érzékeli a közelében megjelenő vastömeget. - Könnyű telepíthetőség. Nincs szükség az aszfalt felvágására,

Részletesebben

IDAXA-PiroSTOP. PIRINT PiroFlex Interfész. Terméklap

IDAXA-PiroSTOP. PIRINT PiroFlex Interfész. Terméklap IDAXA-PiroSTOP PIRINT PiroFlex Interfész Terméklap Hexium Kft. PIRINT Terméklap Rev 2 2 Tartalomjegyzék. ISMERTETŐ... 3 2. HARDVER... 4 2. LED... 5 2.2 KAPCSOLAT A VKGY GYŰRŰVEL... 6 2.3 CÍMBEÁLLÍTÁS...

Részletesebben

Léptetőmotor vezérlő

Léptetőmotor vezérlő MiniStep-5 Léptetőmotor vezérlő Hw. verzió: V 1.2 Dátum: 2006 február 3. Doku verzió: V1.4-1 - Leírás. A MiniStep-5 léptetőmotor vezérlő széles körben alkalmazható, általános célra gyártott léptetőmotor

Részletesebben

Kimenetek száma Kimenet Szoftveres beállítás Bank funkció Típus. Nincs Nincs H8PS-8BP 16 H8PS-16BP 32 H8PS-32BP. Felbontás Kábelhossz Típus

Kimenetek száma Kimenet Szoftveres beállítás Bank funkció Típus. Nincs Nincs H8PS-8BP 16 H8PS-16BP 32 H8PS-32BP. Felbontás Kábelhossz Típus H8PS Digitális pozícionáló Kiváltja a mechanikus pozícionálókat Kompatibilis az abszolút kódadókkal Maximális fordulat: 1600 1/min Nagyméretû LCD-kijelzõ 8 / 16 / 32 db tranzisztoros kimenet 96 x 96 mm-es

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

IRC beüzemelése Mach3-hoz IRC Frekvenciaváltó vezérlő áramkör Inverter Remote Controller

IRC beüzemelése Mach3-hoz IRC Frekvenciaváltó vezérlő áramkör Inverter Remote Controller IRC beüzemelése Mach3-hoz IRC Frekvenciaváltó vezérlő áramkör Inverter Remote Controller A PicoPower család tagja 2012-10-19 A Pico IRC használatával szoftverből állíthatjuk a frekvenciaváltóval vezérelt

Részletesebben

Hajtástechnika. Villanymotorok. Egyenáramú motorok. Váltóáramú motorok

Hajtástechnika. Villanymotorok. Egyenáramú motorok. Váltóáramú motorok Hajtástechnika Villanymotorok Egyenáramú motorok Váltóáramú motorok Soros gerjesztésű Párhuzamos gerjesztésű Külső gerjesztésű Vegyes gerjesztésű Állandó mágneses gerjesztésű Aszinkron motorok Szinkron

Részletesebben

KIBŐVÍTETT RUGALMAS AUTOMATIZÁLÁS

KIBŐVÍTETT RUGALMAS AUTOMATIZÁLÁS KIBŐVÍTETT RUGALMAS AUTOMATIZÁLÁS ZEN-C4 nagyobb rugalmasság RS-485 kommunikációval Kínálatunk kommunikációs típussal bővült. Így már lehetősége van több ZEN egység hálózati környezetbe csatlakoztatására.

Részletesebben

Irányítástechnika 1. 4. Elıadás. Relék. Relés alapkapcsolások

Irányítástechnika 1. 4. Elıadás. Relék. Relés alapkapcsolások Irányítástechnika 1 4. Elıadás Relék. Relés alapkapcsolások Irodalom - Csáki Frigyes, Bars Ruth: Automatika, 1974 - J. Ouwehand, A. Drost: Automatika, 1997 - Helmich József: Irányítástechnika I, 2005 Elektromechanikus

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Folyamatirányítás labor 4. mérés Gyártósori szállítószalag modell irányítása Modicon M340 PLC-vel. Feladat leírás

Folyamatirányítás labor 4. mérés Gyártósori szállítószalag modell irányítása Modicon M340 PLC-vel. Feladat leírás Folyamatirányítás labor 4. mérés Gyártósori szállítószalag modell irányítása Modicon M340 PLC-vel Feladat leírás A mérési feladat a tanszéki laborban található, az alábbi ábrán felülnézetbl látható, gyártósori

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

FL-11R kézikönyv Viczai design 2010. FL-11R kézikönyv. (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához)

FL-11R kézikönyv Viczai design 2010. FL-11R kézikönyv. (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához) FL-11R kézikönyv (Útmutató az FL-11R jelű LED-es villogó modell-leszállófény áramkör használatához) 1. Figyelmeztetések Az eszköz a Philips LXK2 PD12 Q00, LXK2 PD12 R00, LXK2 PD12 S00 típusjelzésű LED-jeihez

Részletesebben

OPT. típusú öntáp-egységek ΩProt készülékek számára. Budapest, 2005. április. Azonosító: OP-13-6769-20

OPT. típusú öntáp-egységek ΩProt készülékek számára. Budapest, 2005. április. Azonosító: OP-13-6769-20 OmegaProt OPT típusú öntáp-egységek ΩProt készülékek számára Azonosító: OP-13-6769-20 Budapest, 2005. április Alkalmazási terület Azt OPT típusú öntáp-egység másik ΩProt készülék táplálására és az általa

Részletesebben

7400 Kaposvár, Pázmány P. u. 17. OM 034164 TANMENET. Modul: 0919-06. Osztály: Heti óraszám: Hetek száma: 32. P. h.

7400 Kaposvár, Pázmány P. u. 17. OM 034164 TANMENET. Modul: 0919-06. Osztály: Heti óraszám: Hetek száma: 32. P. h. EÖTVÖS LORÁND MŰSZAKI SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM 7400 Kaposvár, Pázmány P. u. 17. OM 034164 TANMENET Tantárgy: Számítógép alkalmazása az elektrotechnikában Modul: 0919-06 Osztály: Heti óraszám:

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

T Ö R P E M O T O R O K

T Ö R P E M O T O R O K VILLANYSZERELŐ KÉPZÉS 2 0 1 5 T Ö R P E M O T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Törpemotorok fogalma...3 Reluktancia motor...3 Árnyékolt pólusú motor...3 Szervomotorok...4

Részletesebben

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal

Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Laboratóriumi műszerek megvalósítása ARM alapú mikrovezérlővel és Linux-szal Fuszenecker Róbert Budapesti Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar 2007. október 17. Laboratóriumi berendezések

Részletesebben

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján.

Tanulmányozza az 5. pontnál ismertetett MATLAB-modell felépítést és működését a leírás alapján. Tevékenység: Rajzolja le a koordinaátarendszerek közti transzformációk blokkvázlatait, az önvezérelt szinkronmotor sebességszabályozási körének néhány megjelölt részletét, a rezolver felépítését és kimenőjeleit,

Részletesebben

Követővezérlés időzítőkkel

Követővezérlés időzítőkkel Követővezérlés időzítőkkel Szállítószalagok együttes vezérlése A kikapcsolás-késleltetéses időzítő tipikus alkalmazására láthatunk példát a következő feladat megoldásában, ahol a szilárd anyag feltorlódását

Részletesebben

Forgójeladók (kép - Heidenhain)

Forgójeladók (kép - Heidenhain) Forgójeladók A forgójeladók választékában számos gyártó különböző szempontoknak megfelelő terméke megtalálható, ezért a felhasználónak a megfelelő típus kiválasztása néha nem kis nehézséget okoz. Ezen

Részletesebben

Alternatív kapcsolás. Feladat

Alternatív kapcsolás. Feladat Alternatív kapcsolás Az épületvilágítási áramkörök közül igen elterjedt az a megoldás, amikor egy világító készüléket két különböző helyről lehet működésbe hozni, illetve kikapcsolni. Ha a világítás működik,

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Kezelési leírás. Portos motor DELUX-R

Kezelési leírás. Portos motor DELUX-R Kezelési leírás Portos motor DELUX-R 1 Tartalomjegyzék Elektromos bekötés Végállás pozíciók beállítása Távirányító egységek hozzáadása/törlése Közbenső pozíciók programozása Végállás pozíciók szerkesztése

Részletesebben

Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autotechnikai Intézet. Elektrotechnika

Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autotechnikai Intézet. Elektrotechnika Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autotechnikai Intézet Elektrotechnika Különleges motorok Összeállította: Lukács Attila PhD hallgató (BME MOGI) és

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

Egyenáramú gépek. Felépítés

Egyenáramú gépek. Felépítés Egyenármú gépek Felépítés 1. Állórész koszorú 2. Főpólus 3. Segédpólus 4. Forgórész koszorú 5. Armtúr tekercselés 6. Pólus fluxus 7. Kompenzáló tekercselés 1 Állórész - Tömör vstest - Tömör vs pólus -

Részletesebben

ASTER motorok. Felszerelési és használati utasítás

ASTER motorok. Felszerelési és használati utasítás 1. oldal ASTER motorok Felszerelési és használati utasítás A leírás fontossági és bonyolultsági sorrendben tartalmazza a készülékre vonatkozó elméleti és gyakorlati ismereteket. A gyakorlati lépések képpel

Részletesebben

Felhasználói kézikönyv. DM2280A típusú léptetőmotor meghajtó

Felhasználói kézikönyv. DM2280A típusú léptetőmotor meghajtó Felhasználói kézikönyv DM2280A típusú léptetőmotor meghajtó Bevezetés A DM2280A egy új generációs léptetőmotor meghajtó, a 32 bites digitális jelfeldolgozásnak (DSP) köszönhetően, lépésvesztés lehetősége

Részletesebben

KAPCSOLÓÓRÁK ÉS ALKONYKAPCSOLÓK

KAPCSOLÓÓRÁK ÉS ALKONYKAPCSOLÓK W ANALÓG SZINKRON KAPCSOLÓÓRA TEMPUS ANALOG 1KE BZ926448 W SCHRACK INFO Analóg kapcsolóóra 1 csatornás Napi program Járási tartalék nélkül 96 kapcsoló szegmens Hálózat szinkron : 15 perc Csavaros kapcsok

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Rugalmas tengelykapcsoló mérése

Rugalmas tengelykapcsoló mérése BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék

Részletesebben

Csőmotor Redőnyhöz Oximo WT motorok

Csőmotor Redőnyhöz Oximo WT motorok Csőmotor Redőnyhöz Oximo WT motorok Oximo WT: Automatikus végállás beállítás, motorfejen nem kell végállást állítani Akadályfelismerő funkció Típusok: Cikkszám Hossz L1 Hossz L2 Forgatónyomaték (Nm) Oximo

Részletesebben

LPT_4DM_2a. Bekötési utasítás

LPT_4DM_2a. Bekötési utasítás LPT_4DM_2a Bekötési utasítás Az LPT illesztőkártya a PC-n futó mozgásvezérlő program ki-, és bemenőjeleit illeszti a CNC gép és a PC printer csatlakozója között. Főbb jellemzők: 4 tengely STEP és DIR jelei

Részletesebben

Kezelési útmutató. Egyfázisú 230V-os 50Hz hálózatról üzemelő háromfázisú motor hajtására alkalmas. AC Automatavezérlésű Mézpörgető készülékhez

Kezelési útmutató. Egyfázisú 230V-os 50Hz hálózatról üzemelő háromfázisú motor hajtására alkalmas. AC Automatavezérlésű Mézpörgető készülékhez Kezelési útmutató Egyfázisú 230V-os 50Hz hálózatról üzemelő háromfázisú motor hajtására alkalmas AC Automatavezérlésű Mézpörgető készülékhez Kérjük, hogy olvassa el, mielőtt a készüléket üzemeltetni kezdené!

Részletesebben

ÉRTÉKELEMZÉS A GYÁRTMÁNY- ÉS MINSÉGFEJLESZTÉSBEN

ÉRTÉKELEMZÉS A GYÁRTMÁNY- ÉS MINSÉGFEJLESZTÉSBEN BUDAPESTI MSZAKI FISKOLA BÁNKI DONÁT GÉPÉSZMÉRNÖKI FISKOLAI KAR GÉPGYÁRTÁSTECHNOLÓGIAI TANSZÉK HÁZIFELADAT ÉRTÉKELEMZÉS A GYÁRTMÁNY- ÉS MINSÉGFEJLESZTÉSBEN Készítette: Minségügyi Szakmérnök I.évf. hallgató

Részletesebben

feszültség konstans áram konstans

feszültség konstans áram konstans Szélessávú Hírközlés és Villamosságtan Tanszék Űrtechnológia laboratórium Szabó József Egyszerű feszültség és áramszabályozó Űrtechnológia a gyakorlatban Budapest, 2014. április 10. Űrtetechnológia a gyakorlatban

Részletesebben

Programozható Vezérlő Rendszerek. Hardver

Programozható Vezérlő Rendszerek. Hardver Programozható Vezérlő Rendszerek Hardver Hardver-bemeneti kártyák 12-24 Vdc 100-120 Vac 10-60 Vdc 12-24 Vac/dc 5 Vdc (TTL) 200-240 Vac 48 Vdc 24 Vac Belül 5V DC!! 2 Hardver-bemeneti kártyák Potenciál ingadozások

Részletesebben