Hidak és Profunktorok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hidak és Profunktorok"

Átírás

1 Hidak és Profunktorok Pécsi Bertalan Doktori disszertáció 2012

2 Pécsi Bertalan: Hidak és Profunktorok Doktori disszertáció Javított verzió, ELTE TTK, Matematika Doktori Iskola Elméleti Matematika Program Témavezető: Sain Ildikó ELTE TTK, Algebra és Számelmélet Tanszék, Rényi Alfréd Matematikai Kutatóintézet

3 Tartalomjegyzék Bevezető 2 0. Alapvetések 7 1. Bikategóriák Profunktorok Ekvivalenciahidak Morita-összefüggések Kettős kategóriák Kolaza/laza adjunkciók 67 A. Függelék: Bénabou-féle bikategóriák 73 B. Függelék: Verity-féle kettős kategóriák 76 Tárgymutató 81 Hivatkozások 82 1

4 Bevezető Jelen értekezés tárgya a bikategóriák, kettős kategóriák és a köztük menő laza, kolaza funktorok egy alternatív, koherencia-ötszögtől és különbözeti celláktól mentes felépítése, és néhány további, ezekhez kapcsolódó struktúra vizsgálata. Az axiomatikus felépítésben Tom Leinster egyik irányvonalát követjük, továbbá profunktorokat és reflexiókat használunk. Nagy vonalakban leírva, a következő kategóriaelméleti struktúrákat fogjuk tanulmányozni: Amikor két adott kategória (A és B) közt mehetnek (A-n és B-n kívüli) külső nyilak, úgynevezett heteromorfizmusok, amik komponálhatóak A és B nyilaival [persze csak ha a végpont és a kezdőpont stimmel]. Ilyen általánosságban ezt úgy hívjuk, hogy híd; az irányított (A Û B) esetet pedig hogy profunktor, avagy magyarul ág. (2.1. def.) Egy A Û B ág önmagában rejthet akár egy A Ñ B funktort [ha minden A-beli objektumnak van reflexiója B-ben], akár egy B Ñ A funktort [ha minden B-beli objektumnak van koreflexiója A-ban], s ha mindkettőt, akkor ez a két funktor adjungált egymáshoz. (2.4. def. és 2.7. tétel.) Amikor egy kategória nyilai között is mehetnek morfizmusok (úgynevezett 2-cellák), amiket, ha a széleik passzolnak, vízszintesen és függőlegesen is össze lehet fűzni. Ha csak párhuzamos nyilak között mennek 2-cellák, akkor bikategóriáról beszélünk (1.1. def.), egyébként kettős kategóriáról (angolul double category, 5.3. def.) Sajnos számos fontos példában a nyilak eredeti kompozíciója nem asszociatív a szigorú értelemben véve, csak izomorfizmus 2-cella erejéig (ez a fajta gyenge asszociativitás megfigyelhető például a halmazok Descartes-szorzatánál: az paˆbqˆc és AˆpBˆCq halmazok nem egyenlőek egymással, csak természetesen izomorfak). Ez a bikategória axiomatikus definíciójánál bonyodalmakat okoz, amire számos feloldás született már, jelen írásban mi Tom Leinster unbiased bikategória definíciójának ([Leinster]) egy változatát ismertetjük: a kétváltozós gyengén asszociatív kompozíció művelet helyett egy (szintén gyengén, azaz csak izomorfizmus erejéig) asszociatív műveletcsaládot veszünk alapul, lásd 1.1. def). Az A. függelékben ezt összevetjük az eredeti, Bénabou-féle definícióval. Kettős ágak bikategóriák illetve kettős kategóriák közt (angolul double profunctors", 5.6. és 5.1. def). Ezek teljesen analóg módon viselkednek, mint a hagyományos kategóriák közti ágak: segítségükkel jellemezhetjük a laza- és kolaza- funktorokat, sőt a kolaza/laza adjunkciókat is (angolul lax és colax functor ). (5.11, 5.13, 6.6. tételek.) A kategóriák közti ágak mint vízszintes nyilak egy bikategóriát határoznak meg, amiben egy A é B híd a két ága (A Û B és B Û A) által éppen 2

5 egy híres diagram-féleséget határoz meg, amit úgy hívnak, hogy Moritakontextus avagy Morita-összefüggés, és bármely bikategóriában definiálható. A 0. fejezetben áttekintjük a szükséges kategóriaelméleti hátteret. Az 1. fejezetben, Tom Leinster unbiased bicategory definiciójának [Leinster] egy elemi interpretációját adjuk, valamint felvázolunk néhány bikategórián belül értelmezhető fogalmat (úgymint adjungált nyílpár vagy belső monoid, monoidhatás). A 2. fejezetben bevezetjük a 3.-ban és 4.-ben használt híd fogalmat, és ennek egyirányú változatát, az ág -at, valamint igazoljuk, hogy az ágak és a profunktorok egyértelműen meghatározzák egymást. Bevezetjük a kategóriák és ágak Prof bikategóriáját, majd a kategóriák és funktorok Cat bikategóriájának két kanonikus, Prof-ba való beágyazását taglaljuk. A 3. fejezetben a kategóriák ekvivalenciáját és Morita ekvivalenciáját jellemezzük bizonyos fajta hidakkal. A 4. fejezetben a gyűrűk köréből ismert ún. Morita-összefüggések és a hidak közös általonísátását vezetjük be, tetszőleges bikategóriában. Az 5. fejezetben a vízszintesen gyengén asszociatív kettős kategóriát definiáljuk, mint egy függőleges struktúrával kibővített bikategóriát, majd a 2. fejezetben írtak 2 dimenziós analógiájaként, reflexiókkal illetve koreflexiókkal adunk egy elegáns jellemzését a bi- és kettős kategóriák elméletében alapvető szerepet játszó kolaza illetve laza funktoroknak. A 6. fejezetben egy konkrét, mindkét irányban gyengén asszociatív kettős kategória közbenjárásával kiterjesztjük a két kanonikus Cat ãñ Prof beágyazást kettős kategóriákra, majd ezt felhasználva egy tollvonással megmutatjuk, hogy a [Gran-Pare2]- ban értelmezett kolaza/laza adjunkciók hogyan jellemezhetők kettős ágakkal, vö. [Fio-Gam-Kock]. Végül, az A. függelékben összevetjük a Bénabou-féle és az itt interpretált Leinsterféle bikategóriákat, valamint, a B. függelékben a felépített saját apparátussal definiáljuk az utolsó fejezethez a Verity-féle, mindkét irányban gyengén asszociatív kettős kategóriákat. o Saját eredményeim: - A híd fogalma, mint szimmetrikus profunktor: 2.1. def., avagy mint Moritaösszefüggés a profunktorok körében: A kategóriák Morita-ekvivalenciájára vonatkozó 3.9. tétel elemi bizonyítása. - A 3.4. tétel, mely a kategóriaekvivalenciának egy híddal való jellemzése, és ami alapvető építőköve Mark Lawson félcsoportok Morita elméletéről szóló egyik cikkének: [Lawson]. 3

6 - A 2.9. következmény, miszerint minden adjungált funktorpár előáll egy koreflektív és egy reflektív adjunkció kompozíciójaként. ([Pecsi]-ben azt is igazoltam, hogy ez egy gyenge faktorizációs rendszert határoz meg.) - Egy adott bikategória Morita-összefüggéseinek bikategóriájának néhány tulajdonsága, például, hogy ugyanazok az objektumok lesznek ekvivalensek egymással, mint az eredeti bikategóriában (4.7. tétel és 4.8. és 4.9. következmények.) - A bikategóriák illetve kettős kategóriák közti laza- és kolaza funktoroknak (ko-)reflexiókkal való egyszerű jellemzése, kettős ágon belül, koherencia feltételek és különbözeti cellák nélkül: ezek a kettős ág struktúrába bele vannak kódolva. (5.11, tételek.) Ezt a 6.6. tétel egy alternatív bizonyításához is használni fogjuk. - A [Gran-Pare2] cikk egyik központi kettős kategóriájának, ami a laza és kolaza funktorokat mint vízszintes és függőleges nyilakat tartalmazza, teljes beágyazása a kettős ágak bikategóriájába (ami a laza funktorokon kontravariáns, 6.5. tétel). - A [Verity]-ben értelmezett mindkét irányban gyengén asszociatív kettős kategória ( double bicategory ) egy, [Morton]-étól eltérő kompakt definíciója: B.1. o Terminológia és jelölés. Minthogy a bikategóriák, kettős kategóriák és profunktorok elmélete viszonylag fiatal a matematikán belül, a fogalmak pláne magyarul! még nem mind szilárdultak meg teljesen. Ha egy faág két rügypontnál vett transzverzális metszetét tekintjük, illetve az ezek közt futó rostokat, az olyasmi ábrázolatú, amilyennek egy általános profunktort mint irányított hidat szokott az ember a táblára vagy a jegyzetébe rajzolni (vagy akár egy páros gráfot). Ez ihlette az ág elnevezést, melyet még azelőtt találtam ki, hogy megismertem volna az ugyanerre alkalmazott profunktor kifejezést (ami mellett még a (bi-)modulus, és disztribútor szavak is valamennyire elterjedtek). Precízen, a 2.1.-beli ág egy profunktor kollázsának felelne meg, ld. pl. [Gran-Pare], ami azonban könnyen láthatóan meghatározza magát a profunktort, ld. még 2.3. tétel. Mindazonáltal, meghagyjuk az ágakra az egyik legelterjedtebb profunktor jelölésmódot, az áthúzott nyilat: F : A Û B, ugyanakkor magát F-et is kategóriának tekintjük, ami megkönnyíti a tárgyalásmódot. E Egy közös halmazból induló függvénypárt ( villa diagramot, A B angolul span -t) páros gráfnak fogunk tekinteni, ilyenkor A-t és B-t diszjunktnak 4

7 ábrázoljuk, ez a két ponthalmaz (ha van közös elemük, azt mindkét oldalon külön szerepeltetjük), E elemeit élekként fogjuk fel, és a két függvény minden élnek kijelöli a kezdő- és végpontját. Nyilak kompozícióját összefűzésnek is nevezzük. Gyakran írjuk azt valamiféle nyílról, hogy X és Y közti. Ezt úgy értjük, hogy ay adott nyíl kezdőpontja X és végpontja Y. Általánosabban is, a kijelölt irányok mindenütt az olvasás irányai: balról jobbra, illetve fentről lefele. Ezt szem előtt tartva legtöbbször megspóroljuk az ábrákban a 2-cellák, cellák, de néha még a nyilak irányításának a jelölését is. Megjegyzendő, hogy ezen lerögzíteett haladási irányok mellett az Ehresmann-féle kvintett-konstrukció ( pl.) szükségszerűen megfordítja a két irány egyikét, nálunk a vízszinteset: 88 Ez összhangban van azzal, hogy a és a 6.5. tételekben szereplő beágyazások mindegyike kontravariáns, pontosan az egyik irányban. Kategóriákat A, B, C, F,..., funktorokat F, G, U, V,..., bikategóriákat A, B, C,..., kettős kategóriákat A, B, D, F,..., cellákat és 2-cellákat α, β, γ,... betűtípussal fogunk jelölni. A nyilakat általában vegyesen kis latin vagy görög betűkkel. Emellett, α P A azt fogja jelenteni, hogy α egy nyíl az A kategóriában, és β P B azt, hogy β egy 2-cella a B bikategóriában, legalábbis eleinte. A 2-cellákat (nyilak közötti nyilakat) absztraktan mindig dupla nyíllal jelöljük: α : f ùñ g, de konkrét példákban, például, ha a 2-cellák valamiféle funktorok vagy bimodulus-morfizmusok, akkor maradunk a szimpla nyílnál. Nyilak vízszintes kompozíciót egymás mellé írással, 2-cellák vízszintes kompozícióját a jellel jelöljük, és a b jelet meghagyjuk a gyűrűk közti (fölötti) bimodulusok tenzorszorzatára. Mivel a függeléket nem számítva végig ezekkel fogunk dolgozni, az egyszerűség kedvéért lehagyjuk a Leinster-féle unbiased bicategory, unbiased lax functor elnevezések unbiased előtagját, valamint a pszeudo kettős kategóriá -ból a pszeudo előtagot. A belső monoidokat ( internal monoid ) gyakran monádok -nak hívják, ha bikategórián belül van, de monoidális kategórián belül (ami lényegében az egy objektumú bikategória) viszont inkább (internal) monoid -nak. Ami azért ellentmondásos kicsit, mert minden bikategóriabeli monád egy objektumon van értelmezve, így ha arra az objektumra megszorítjuk a bikategóriát, egy monoidális kategóriát kapunk, amin belül a monád már monoid -nak nevezhető. Eredendően a Cat 2-kategóriábeli belső monoidokat hívják monádoknak. Az 5. fejezetben megjelennek a függőleges nyilak, ezekre az A Ó B jelölést 5

8 alkalmazzuk, ami tehát egyik esetben sem vesszőkategória ( comma category ). [Gran-Pare]-val ellentétben nálunk, a bikategóriás jelöléseket és terminológiát követve, a vízszintes kompozíció a gyengén asszociatív, és a függőleges irány a szigorúan asszociatív. A vízszintes kompozíciót itt is jelöli, a függőleges kompozícióra viszont a törtjelet vezetjük be, követve [Gran-Pare]-t, viszont ezt a jelölést a függőleges nyilakra is kiterjesztjük: ha f :A Ó B és g :B Ó C, akkor összefűzöttjük az f :A Ó C függőleges g nyíl lesz. A kolaza funktorokat helyenként oplax functor -nak is szokták nevezni, nálunk a ko prefix összhangban van azzal, hogy a függőleges ellentettet co jelöli. A [Verity]-ben és [Morton]-ban double bicategory -nak nevezett fogalom nálunk Verity-féle kettős kategória néven van definiálva (B.1). Noha a definíció valóban tartalmaz két bikategóriát, a fogalom mégis inkább a vízszintesen és függőlegesen is gyengén asszociatív kettős kategóriákat kívánja megfogni ( doubly weak double category ). Amit az 1. és 5. fejezetekben α pϕ ψq β-val jelölünk, az a B. függelékben már az α " emeletes ϕ ψ írásmódba megy át, merthogy ez voltaképpen α felülről illetve β! β alulról való hatása (a ϕ ψ vízszintes kompozíción). Ugyanakkor, megtartjuk a -t az itt felbukkanó bal és jobb oldali hatásokra. o A mű elkészüléséért köszönetemet fejezem ki témavezetőmnek, Sain Ildikónak, továbbá Böhm Gabriellának, Márki Lászlónak, Szlachányi Kornélnak, valamint Gyenis Zalánnak, Horváth Ramónnak, Pintér Gergőnek. 6

9 0. Alapvetések Az alábbiakban egy rövid halmazelméleti megalapozás után tömören összefoglaljuk a későbbi fejezetekhez szükséges hátteret. E fejezetben felsorolt fogalmak, állítások mindegyike megtalálható a legtöbb kategóriaelméleti bevezető könyvben (pl. [MacLane], [Freyd-Sced], [JoyCat]), helyenként némi ekvivalens átfogalmazással. A matematika szinte minden területe valamiféle struktúrákról szól: ezek rendszerint egy vagy több alaphalmazra épülnek, amin vagy amiken az adott struktúrafajtákra jellemző operációk és/vagy relációk vannak értelmezve. Például a monoidok, a gráfok vagy a kategóriák (ld. 0.4, 0.1. def.) mind struktúrafajták. A kategóriaelmélet, mint nyelv, általánosságban képes beszélni a struktúrákról, a struktúratartó függvények (ún. morfizmusok ) segítségével. o Használni fogjuk a hagyományos halmazelméleti és logikai minden x-re : P olvasata: minden X-beli x-re teljesül P ), Dx: D!x : P _ Q: P ^ Q: P és Q P ñ Q: létezik olyan x, hogy, pontosan egy x létezik, amire, P vagy Q (ahol P, Q kijelentések) P -ből következik Q, P ðñ Q: P és Q ekvivalensek, azaz pp ñ Qq ^ pq ñ P q, x P y: x Ď y: xa 1, a 2,..., a n y: x eleme y-nak, x részhalmaza y-nak, rendezett elem n-es. Ahogy az a halmazelméleti felépítésekben szokás, egy rendezett párokból álló f halmazt függvénynek vagy leképezésnek nevezünk az A és B halmazok közt (jelben f :A Ñ B), D!bPB : xa, by P f y : pxx, yy P f ñ x P Aq. Egy adott A halmazhoz tartozó txa, ay a P Au identitás függvényt id A jelöli. Ha f : A Ñ B és g : B Ñ C függvények, a kompozíciójukat balról jobbra írjuk, és egymás mellé írással vagy -tal jelöljük, így: f g : txa, cy DbPB : pxa, by P f ^ xb, cy P gqu. Ha egy adott a P A elemhez b az egyetlen elem, amire xa, by P f, akkor azt mondjuk, hogy f az a-hoz b-t rendeli hozzá (jelben a ÞÑ b), ugyanekkor b-t az a elem f függvénynél vett képének is nevezzük, és f-et az a jobb felső indexébe helyezve 7

10 jelöljük, így: Tehát, a f, összhangban a kompozíció balról jobbra menő írásmódjával. b a f def ðñ xa, by P f, és így a f g pa f q g. Egy f : A Ñ B függvény értékkészlete a tb P B Da P A : a f bu halmaz (Ď B), és ha ez megegyezik B-vel (azaz DaPA : a f b), akkor azt mondjuk rá, hogy szürjektív. Továbbá, f-et injektívnek nevezzük, a 1 P A : `af a f 1 ñ a a 1. Ha mindkettő teljesül, akkor f bijektív. Legyen X Ď A és f : A Ñ B egy függvény, ennek az X-re vett megszorítását jelölje F æ X, ez tehát egy X Ñ B függvény lesz: az X Ñ A identikus beágyazás (X Q x ÞÑ x P A) és f kompozíciója. Egy I indexhalmazzal indexelt xx i y ipi sorozat alatt azt az f : I Ñ X függvényt értjük, amire i f x i minden i P I-re. Speciálisan, egy rendezett elem n-es az egy, az t1, 2, 3,..., nu halmazon értelmezett függvényként interpretálható. o A konstrukciókban használni fogjuk a kiválasztási axiómát (amikor majd egy adott gráf bizonyos pontjaihoz lerögzítünk valahogy bizonyos éleket, pl tétel vagy állítás). Valamint gyakran előfordul majd egy halmaz (vagy struktúra) több, egymástól diszjunkt, izomorf példányba való lemásolása. A későbbi példákban elvétve előfordulnak olyan közismertebb struktúrafajták, kifejezések, melyeket itt nem vezetünk be. Ezek a következők: - a 0.4. részben ismertetett monoidok és biaktok additív megfelelői: az (egységelemes) gyűrűk, és a gyűrűk közti bimodulusok; - Abel-csoportok, biaktok, valamint bimodulusok tenzorszorzata; - csoportok, azok kommutátor részcsoportjaik; - testek fölötti vektorterek, illetve csoportok lineáris reprezentációi; - ekvivalenciarelációk és velük való lefaktorizálás; - metrikus terek; - Boole-algebrák és relációalgebrák. Ezeknek a fogalmaknak a nagy része a legtöbb egyetemi jegyzetben szerepel, és mindegyik megtalálható a következő könyvek valamelyikében: [Kiss-Freud], [Simon], [Hirsh-Hod]. 8

11 o Az értekezésben sok helyen említünk olyan példát, amik a szó legtágabb értelmében a (Zermelo-Fraenkel féle, röviden ZFC) halmazelméletben nem állják meg a helyüket, például alább a 0.1. részben a halmazok kategóriájában (Set-ben) az objektumok összessége intuitíve az összes halmaz lenne, ami azonban nem alkot halmazt ZFCben! Az efféle problémák feloldhatók úgy, hogy a ZFC axiómarendszerhez az alábbiak szerint hozzáveszünk még egy axiómát, 1 és a példákat megszorítjuk egy, az új axióma szerint létező ún. Grothendieck univerzum halmazaira. Definíció. Egy U halmazt Grothendieck univerzumnak nevezzük, és elemeit kis halmazoknak hívjuk, ha 1. Kis halmazok elemei is kis y : x P y P U ñ x P U, 2. Egy vagy két kis halmaz halmaza kis y : x, y P U ñ tx, yu P U, 3. Kis halmaz hatványhalmaza kis : x P U ñ ty y Ď xu P U, 4. Kis halmaznyi sok kis halmaz uniója is kis PU : : xi P U ñ ď x i P U. ipi Ezek a feltételek többek között biztosítják, hogy ha x, y P U, akkor az összes x-ből y-ba menő függvényt tartalmazó halmaz is kicsi. Ez elegendő ahhoz, hogy a kis alaphalmazokon értelmezett struktúrák és a köztük menő struktúratartó leképezések lokálisan kis kategóriát alkossanak a 0.1.-ben adott definíció értelmében. A ZFC-hez hozzáveendő axióma ekkor így szól: Minden X halmazhoz van olyan U Grothendieck univerzum, amire X P U. Ettől a kibővített axiómarendszer ekvikonzisztens marad a ZFC-vel, azaz ugyanannyira ellentmondásmentes. (Lásd pl. [Sonner], [Fef-Krei]). Most két példán keresztül bemutatjuk, hogy halmazelméletileg milyen limitálásokkal értelmezendőek a később bevezetésre kerülő kategóriák, bikategóriák, kettős kategóriák. 1 Szokás még például a Gödel-Bernays-féle halmazelmélet keretrendszerében dolgozni (ld. pl. [Bernays]), amelyben tárgynyelvi szinten beszélhetünk valódi osztályokról és halmazokról: ebben a megközelítésben egy H összességre vonatkozó kis jelző úgy olvasandó, hogy H halmaz. Egy harmadik feloldási mód, hogy olyan halmazelméletbe helyezzük a témakört, amelyben megengedettek az efféle totális konstrukciók, mint pl. minden halmaz halmazát tekinteni. Ilyen halmazelmélet létezik, ld. pl. Quine New Foundation rendszere, [Holmes]. 9

12 Először is, rögzítsünk le egy U Grothendieck univerzumot, ami tartalmaz végtelen halmazt, elemeire továbbra is kis halmazokként hivatkozunk. Tekintsük a fentebb említett és a 0.1. utáni 2. példában bevezetett Set kategóriát, továbbá a példában bevezetett Span bikategóriát: mindkettőnél azt írjuk, hogy az objektumai a halmazok, de ezt igazából (e (kibővített ZFC) + rögzített U rendszeren belül) úgy értjük, hogy Set-nek és Span-nek is az objektumai a kis halmazok. Vagyis, ObSet U és ObSpan U. Span nyilai a kis páros gráfok, azaz olyan A Ð E Ñ B függvénypárok, ahol A, E, B P U. A definíció utáni megjegyzés következtében ekkor maga a két, kezdőés végpontot kijelölő függvény is U-ban van Kategóriák Egy irányított gráf alatt pontok és élek összességét értjük, ahol minden élnek meg van adva a kezdő- és végpontja. Formálisan tehát ez egy xp, E, k, vy négyes, ahol P és E halmazok, P elemeit pontoknak, E elemeit éleknek mondjuk, és k és v mindketten E Ñ P függvények: E k v P. Az α P E élhez hozzárendelt α k pontot α kezdőpontjaként, illetve az α v pontot α végpontjaként említjük. Azt a tényt, hogy egy α élre α k A és α v B, leggyakrabban ezzel a jelöléssel szoktuk kifejezni: α : A Ñ B vagy A Ñ α B, illetve egyéb nyílrajzulattal, attól függően, hogy a szóban forgó gráfban éppen hogy jelöljük az éleket. (Tehát az α : A Ñ B jelölés nem feltétlenül bármiféle halmazok közti függvényt takar.) Megengedjük, sőt használjuk a hurokéleket (α : A Ñ A) és párhuzamos éleket is (α, β :A Ñ B esetén α β nem feltétlenül teljesül). Két él, α és β, ilyen sorrendben egymást követő, ha α végpontja megegyezik β kezdőpontjával, azaz α v β k. Éleknek egy xα 1, α 2,..., α n y sorozatát n hosszú A-ból B-be menő (A B) útnak hívjuk, ha ezek ilyen sorrendben egymást követőek, valamint α 1 kezdőpontja A és α n végpontja B. Egy A pontot 0 hosszú (A A) útnak is tekintünk. Hasonlóan, egy A és egy B halmaz közti (irányított, egyirányú) páros gráf alatt formálisan egy xa, B, E, k, vy ötöst értünk, ahol E az élek halmaza, és k :E Ñ A, v : E Ñ B függvények. Mivel az A és B ponthalmazok kitüntetett szerepűek, sokszor diszjunktként tekintünk rájuk 2 innen a név, noha ezt explicite nem 2 Precízen, vehetünk mondjuk A helyett t0u ˆ A-t és B helyett t1u ˆ B-t, ezek már biztos diszjunktak. 10

13 követeljük meg. (Sőt, figyeljük meg, hogy pl. az A B szerepválasztás visszaadja az irányított gráf definícióját.) k E Egy ilyen páros gráfot az ún. villa diagrammal ábrázolunk: v A B, vagy olykor röviden csak így jelöljük: E :A B. A rá való hivatkozásnál néhol azonosítjuk a páros gráfot E-vel Definíció. Kategóriának nevezünk egy xg, y párt, ha G egy irányított gráf, és az egymást követő élpárjain adott lokálisan egységelemes asszociatív művelet, amit kompozíciónak (avagy összefűzésnek, helyenként szorzásnak ) nevezünk. Ez a művelet tehát minden xα, βy 2 hosszú A C úthoz (azaz, egymást követő élpárhoz) egy α β-val jelölt A Ñ C élt rendel úgy, hogy pα βq γ α pβ γq, minden xα, β, γy 3 hosszú útra, valamint a gráf minden A pontján van egy (1 A -val jelölt) A Ñ A lokális egységelem, amire minden A-ba érkező α-ra α 1 A α, és minden A-ból induló β-ra 1 A β β teljesül. Ha minden A, B pontpárra az A-ból B-be menő nyilak halmaza kicsi, a kategóriát lokálisan kis kategóriának nevezzük. Ez a feltétel a legtöbb példánkban teljesülni fog, igazi jelentősége pedig a hamarosan bevezetésre kerülő hom-funktor értelmezésénél lesz. A pontokat objektumoknak, az éleket nyilaknak vagy (homo-)morfizmusoknak is nevezzük. Az 1 A egységnyilat úgy is hívjuk, hogy A identitása. Egy A kategória objektumainak összességét ObA jelöli, a nyilak összességét meg maga A. Ha ez kis halmaz, A-ról azt mondjuk, hogy kis kategória. Az A Ñ B nyilak halmazát hom-halmaznak hívjuk és ApABq-vel jelöljük, esetleg csak pabq-vel, ha a szóban forgó kategória világosan kiderül a szövegből. A kompozíciót alapjában véve minden kategóriában balról jobbra értjük, összhangban a fentebb bevezetett függvénykompozícióval. (Illetve a későbbiekben helyenként felülről lefele is.) Ha egy kategória két egymást követő élpárjára α β γ δ, akkor azt mondjuk, hogy az γ α γ # β δ α δ β négyzet kommutál. Ezt rajzban a # szimbólummal jelöljük, így: Példák. 1. Bármely halmazra tekinthetünk mint ponthalmaz, és elláthatjuk formális identitásnyilakkal, így egy ún. diszkrét kategóriához jutunk (amiben minden nyíl 11

14 identitásnyíl). Precízen, ha adott az A halmaz, tekintsük az xa, A, id A, id A y gráfot, ebben az élek (akárcsak a pontok) A elemei, az a P A élnek a kezdőpontja és a végpontja is az a pont, tehát az egymást követő élpárok csak az xa, ay párok lehetnek, a kategóriában a kompozíció pedig xa, ay ÞÑ a. 2. A halmazok kategóriáját jelölje Set: ennek az objektumai a (kis) halmazok, a nyilai a függvények, az összefűzés a függvénykompozíció. Mivel a fenti értelmezés szerint, ha f : A Ñ B egy függvény és B Ď C, akkor ugyanúgy f :A Ñ C is írható. Hogy a végpont leképezés mégis egyértelmű legyen, formálisan a függvények helyett az xa, f, By hármasokat szokás Set morfizmusainak tekinteni, ahol f : A Ñ B függvény, és A, B kis halmazok. Hasonlóan értelmezendőek a további példák is. 3. A csoportok kategóriájában az objektumok a (kis halmazokon értelmezett) csoportok, a nyilak a homomorfizmusok, az összefűzés függvénykompozíció. 4. Analóg módon értelmezhető bármely algebrai struktúrafajták kategóriája, pl. az Abel-csoportok, az egységelemes gyűrűk, vagy a monoidok kategóriája. 5. Az irányított gráfok kategóriájában az objektumok az irányított gráfok, és a nyilak az úgynevezett gráfmorfizmusok: olyan függvények, amik ponthoz pontot, élhez élt rendelnek, és megtartják a kezdő- és végpontokat. Precízen, ha G xp, E, k, vy és G 1 xp 1, E 1, k 1, v 1 y irányított gráfok, akkor egy f : G Ñ G 1 alatt egy f xf P, f E y függvénypárt értünk, ahol f P : P Ñ P 1 és f E :E Ñ E 1, valamint E k P f E # E 1 P 1 k1 f P és E v P f E # f P. E 1 v1 P 1 6. Hasonlóan, egy E : A B páros gráfból egy E 1 : A 1 B 1 -be menő (páros gráf)-morfizmus alatt egy xf A, f E, f B y függvényhármast értünk, amelyre E A f B # E # f A E 1 A 1 B 1 f B. 7. Egy A kategória nyílkategóriája az az A Ñ, aminek pontjai az A nyilai és nyilai az A kommutatív négyzetei, tehát, A Ñ pf gq : txα, βy f β α g, azaz α f # β g u. 12

15 o Funktor alatt két kategória közt egy olyan gráfmorfizmust értünk, ami identitáshoz identitást rendel, és megtartja az összefűzést, vagyis, (jelben F :A Ñ B), - ha α P A, α:a Ñ A 1 esetén α F :A F Ñ A 1 F, - ha α, β P A egymást követőek, akkor pα βq F α F β F, - minden A P ObA-ra 1 A F 1 A F. F egy funktor A-ból B-be A kategóriák és funktorok maguk is kategóriát alkotnak, jelöljük ezt Cat-tal: ennek az objektumai a kis kategóriák, a nyilai a köztük menő funktorok, és az összefűzés a függvénykompozíció. Azt mondjuk, hogy B teljes részkategóriája A-nak, ha feszített részgráf, azaz B Ď A és minden B, B 1 P ObB és α : B Ñ B 1 P A esetén α P B. Általánosabban, ha egy B Ď A nyílhalmaz zárt az összefűzésre, és minden β P B, β :X Ñ Y esetén 1 X és 1 Y benne van B-ben, akkor (ObB : tx P ObA 1 X P Bu objektumhalmazzal együtt) A-nak egy részkategóriáját alkotja. Az F :B Ñ A funktor [teljes] beágyazás, ha F injektív (a pontokon és a nyilakon is), és értékkészlete [teljes] részkategória A-ban. Egy kategória ϕ : A Ñ B nyila balinvertálható, ha van olyan ψ : B Ñ A, hogy ψ ϕ 1 B. Duálisan értelmezzük a jobbinvertálható nyilat. Egy kategória két objektuma, A és B izomorf (jelben A B), ha van köztük egy mindkét oldalról invertálható ϕ : A Ñ B nyíl. Könnyen adódik, hogy ekkor ϕ bármely balinverze megegyezik bármely jobbinverzével, tehát egyetlen egy, mindkét oldali inverze van, amit ϕ -1 jelöl. Az invertálható nyilakat izomorfizmusoknak is hívjuk. Az izomorf objektumokat kategóriaelméletileg (azaz a nyilak nyelvén ) nemigen tudjuk megkülönböztetni egymástól: ha A A 1, akkor az A-ból induló [ill. A- ba érkező] nyilak egy az egyben megfelelnek az A 1 -ből induló [ill. oda érkező] nyilaknak. Legyenek A 1,.., A n egy adott A kategória objektumai. Ezek direkt szorzata alatt egy olyan P P ObA objektumot értünk, amihez adva vannak p i : P Ñ A i úgynevezett projekció -nyilak (i 1,.., n), hogy akárhogy is veszünk egy közös X P ObA objektumból induló pf i q i nyílcsaládot (f i : X Ñ A i ), az egyértelműen átvezethető a pp i q i nyílcsaládon, úgy értve, hogy D!s:X Ñ P : pf i s p i q Ez, izomorfizmus erejéig egyértelműen definiálja P -t, már ha létezik, és ekkor ezt a P -t A 1 ˆ A 2 ˆ... ˆ A n -nel jelölik. Ha n 0-val elismételjük a fentieket, a végobjektum fogalmához jutunk: végobjektuma az A kategóriának, ha minden X objektumból pontosan egy nyíl megy P -be: D!s:X Ñ P. P 13

16 Egy ilyen n tényezős direkt szorzatot szinte minden konkrét példában a megfelelő elem n-esekből álló struktúra jeleníti meg, a végobjektumot ugyanakkor az egyelemű struktúra. Nincs ez másként a kategóriák kategóriájában, Cat-ben sem: Ha A 1,.., A n P ObCat, akkor az A 1 ˆ... ˆ A n direkt szorzat pontjai legyenek az xa 1,..., A n y pontsorozatok, az ilyenek közti nyilak a (koordinátánként köztük menő) xα 1,..., α n y nyílsorozatok (α i P A i ), ezzel összhangban xα 1,..., α n y k : xα k 1,..., α k ny, xα 1,..., α n y v : xα v 1,..., α v ny, és az összefűzés is koordinátánként értelmezett. Az üres direkt szorzat pedig legyen az egy objektumú diszkrét kategória (Cat végobjektuma). A direkt szorzatot ugyanígy fogjuk használni esetlegesen nem kis kategóriákra is. Ha egy A kategória nyilait és vele együtt az összefűzést is megfordítjuk, akkor az A op ellentett kategóriáról beszélünk, ennek tehát a kompozícióját a g f : f g határozza meg, és a végpont és kezdőpont A Ñ ObA függvények értelemszerűen felcserélődnek. Minden lokálisan kicsi A kategória meghatároz egy A op ˆ A Ñ Set funktort, a hom-funktort, amely az xa, By objektumpárhoz az ApA Bq hom-halmazt rendeli (ami kis halmaz, így valóban Set objektuma), és az xα, βy nyílpárhoz az f ÞÑ α f β függvényt. Az ellentett-kategória révén jön egy kézenfekvő dualitás a kategóriaelméletben: Ha valamely fogalmat a nyilak (-ból kirakott diagramok) nyelvén meg tudunk fogalmazni, annak rögvest ott van a duális fogalma, amit néhány kivételtől eltekintve mindig a fogalom neve elé helyezett ko- előtag jelez. A direkt szorzat duálisa (koszorzat avagy koproduktum) a kategóriák körében éppúgy mint a halmazok vagy gráfok körében, a diszjunkt unió: fogjuk a szóban forgó kategóriák egy-egy egymástól diszjunkt izomorf példányát, és ezek unióját vesszük, jelben A \ B. Legyen adott egy A kategória, és képezzük ennek az A Ñ nyílkategóriáját. Jön két egyszerű, de fontos funktor A Ñ dom A : az egyik (dom) a baloldal funktor, cod a másik (cod) a jobboldal funktor, melyek egy A Ñ B nyílhoz mint A Ñ -beli objektumhoz A-t illetve B-t rendelik, egy kommutatív négyzethez pedig annak a bal illetve jobb oldalát. Azt mondjuk, hogy ϕ:f ùñ G természetes transzformáció az F, G : A Ñ B funktorok közt, ha ϕ voltaképpen egy A Ñ B Ñ funktor (A pontjaihoz B-beli nyilakat rendel) úgy, hogy ϕ dom F és ϕ cod G. Ekkor tehát A ϕ : A F Ñ A G minden A P ObA-ra, és ezen A ϕ nyilak összessége, ha meg 14

17 van adva F és G, már meghatározza ϕ-t. A ϕ:f ùñ G és ψ :G ùñ H természetes transzformációk (függőleges) kompozíciója alatt az A ÞÑ A ϕ Aψ természetes transzformációt értjük. Egy ϕ : A Ñ B Ñ természetes transzformációt természetes izomorfizmusnak nevezünk, ha minden A P ObA objektumhoz a hozzárendelt A ϕ nyíl egy B-beli izomorfizmus Reflexiók 0.2. Definíció. Legyen B teljes részkategóriája A-nak, és legyen A P ObA. Ekkor egy f : A Ñ B nyílról azt mondjuk, hogy A reflexiónyila B-be, ha B P ObB és minden B-be menő g : A Ñ B 1 nyíl egyértelműen átvezethető f-en, azaz D!h P B : g f h. A f B D! Ugyanekkor a B-beli B pontot illetve a h nyilat az A illetve a g (f általi) vetületének B 1 hívjuk. Ugyanezt a jelenséget úgy is szokták fogalmazni, hogy f univerzális tulajdonságú az A-ból induló B-be érkező nyilak között. Azt mondjuk, hogy B reflektív részkategória A-ban, ha A minden objektumának van vetülete B-ben. A duális fogalmak a ko-vetület avagy koreflexió, illetve a koreflektív részkategória. Tehát A ko-vetülete a B a B teljes részkategóriában, ha van olyan f : B Ñ A (koreflexió-) nyíl, :B 1 Ñ A D!hPB : g h f. Központi jelentőségű lesz a következő ismert tény: izomorfizmus erejéig egyértelmű. egy objektum vetülete 0.3. Állítás. Legyen B Ď A teljes részkategória. Ekkor a következők érvényesek: a) Amennyiben B és B 1 is vetülete A-nak B-ben, úgy B B 1. b) Legyen f :A Ñ B egy reflexiónyila A-nak B-be. Ekkor egy f 1 :A Ñ B 1 nyíl (ahol B 1 P ObB) pontosan akkor lesz szintén reflexiója A-nak, ha van egy t : B Ñ B 1 izomorfizmus, amire fẗ f 1. Az ilyen t ekkor mindig egyértelműen meghatározott. c) Tegyük fel, hogy A B, B P ObB. Ekkor B az A vetülete B-ben. Bizonyítás. Az a) és c) állítás mindkettő közvetlen folyománya b)-nek, így elegendő azt megmutatni. Tegyük fel először, hogy adott egy A-ból induló másik reflexiónyíl, f 1 : A Ñ B 1. Mivel f reflexiónyíl és B 1 P ObB, van egyetlen t P B az f 1 -hez, hogy f t f 1, és f- hez is csak egy ilyen van, méghozzá az 1 B. Hasonlóan, minthogy f 1 is reflexiónyíl, D!t 1 PB : f 1 t 1 f, de akkor f t t 1 f 1 t 1 f f 1 B miatt t t 1 1 B. Ugyanígy 15

18 t 1 t 1 B1. Tehát t 1 t -1. Ha meg f 1 f t egy t : B Ñ B 1 izomorfizmusra, akkor tetszőleges g : A-ból B-be menő nyílhoz D!h : g fḧ, így ez f 1 -en is egyértelműen vezethető át: g f 1 ẗ -1 ḧ. Példák Tekintsük a csoportok (és homomorfizmusaik) kategóriájának az Abel csoportok Ab teljes részkategóriáját. Ekkor egy G csoport vetülete Ab-ban a G { rg, Gs kommutátor szerinti faktorcsoportja (illetve minden ezzel izomorf csoport), a reflexiónyíl pedig a kanonikus G Ñ G { rg, Gs leképezés Legyen adva egy A kategória két ugyanoda menő nyila: f : B Ñ D és g : C Ñ D, tekintsük ezekhez az A kategóriának egy fiktív, mondjuk -gal 88 B f jelölt objektumával vett P f,g bővítését, amelyben az A Ñ nyilak az A 88 D C g kommutatív négyzetek, és -ból az identitáson kívül nem indul nyíl. Az összefűzés értelemszerű. Ebben a P f,g kategóriában a pont A-ban vett ko-vetületét úgy hívják, hogy pullback: ezen tehát minden f, g jobbalsó szélű kommutatív négyzet egyértelműen átvezethető. Set-ben egy f :B Ñ D és g :C Ñ D nyílpár pullback-je reprezentálható a txb, cy P B ˆ C b f c g u halmazzal. A pullback duálisát, az egy pontból induló f, g nyílpár pushout-ját jelen tézisben nem használjuk Hasonlóan, bármely diagram limeszét lehet így koreflexióval, kolimeszét pedig reflexióval jellemezni (ld.pl. [JoyCat], 13.27). Amit még használni fogunk, az egy adott A kategóriabeli párhuzamos X f Y nyílpár koegyenlítője: g ehhez az A-t bővítsük megint egy objektummal, amiből indulva a Ñ A nyilak legyenek azon t : Y Ñ A A-beli nyilak, amelyekre f t g t, és vegyük a bővített kategóriában a pont A-beli reflexióját (már ha létezik). Ezt Set-ben reprezentálja az a halmaz, amit úgy kapunk, hogy az Y -beli x f és x g elemeket azonosítjuk egymással (minden x P X esetére): X f Y Y { g ahol tehát az a legszűkebb ekvivalenciareláció, : x f x g. A fenti pullback tehát megkérdezi B-t és C-t, hogy az f és a g hol egyenlő, a koegyenlítő pedig felszólítja Y -t, hogy f és g legyenek egyenlőek Idempotensek Egy e:a Ñ A nyilat idempotensnek hívunk, ha e e e. 16

19 Figyeljük meg, hogy ha valamely x f, g y nyílpár kompozíciója egyik irányból az AÑBÑA identitás (azaz f g 1 A ), akkor a másik irányból, g f idempotens [ugyanis: g f g f g 1 A f g f]. Ebben az esetben azt mondjuk, hogy a g f : B Ñ B idempotens felhasad (az A objektumon keresztül, g-re és f-re). Az A kategória idempotensen teljes (avagy, Cauchy-teljes 3 ), ha minden idempotens nyila felhasad. Minden kategória kibővíthető egy idempotensen teljes kategóriává, erre a 3. fejezetben szükségünk lesz Definíció. Egy adott A kategória idempotens bővítése alatt azt az A id kategóriát értjük, aminek objektumai az A idempotens nyilai, és amiben e, f P ObA id közt akkor megy az eredeti α P A nyíl, ha e, α, f összefűzhetőek és e és f bal- ill. jobbegységként viselkedik α-ra nézve: e α f α. Hogy a nyilak eleje és vége A id -ben meghatározott legyen, precízen ezen xe, α, fy nyílhármasokat szokás venni: A id : txe, α, fy e α f αu. Az összefűzés marad az eredeti: xe, α, fy xf, β, gy : xe, α β, gy, az egységnyilak (identitások) az xe, e, ey hármasok lesznek. Az A ÞÑ 1 A (és nyilakon α ÞÑ x1 A, α, 1 B y) megfeleltetés A-nak egy teljes AÑB beágyazása A id -be, s minthogy az összefűzést A-tól örökli, A id -ben ugyanazok a nyilak lesznek idempotensek, és ezek A id -ben immár mind felhasadnak: ha e:a Ñ A idempotens, akkor A id tehát idempotensen teljes. x1 A, e, 1 A y x1 A, e, ey xe, e, 1 A y Állítás. Egy A kategória e : B Ñ B idempotense pontosan akkor hasad fel az A objektumon keresztül, ha A id -ben 1 A e. Bizonyítás. Mindkét állítás olyan A-beli x f, g y nyílpár létezéséről szól, melyre AÑBÑA g f e és f g 1 A (ez már maga után vonja azt is, hogy x1 A, f, ey P A id és xe, g, 1 A y P A id, mármint hogy 1 A f e f és e g 1 A g). o 0.4. Monoidok Monoidnak, avagy egységelemes félcsoportnak nevezünk egy asszociatív művelettel ellátott halmazt, amelyre nézve a halmazban van egy egyszersmind bal és jobb oldali egységelem. A műveletet egyszerűen egymás mellé írással jelöljük, az egységelemet 3 A metrikus terek háromszögegyenlőtlensége dpa, bq ` dpb, cq ě dpa, cq és a kategóriák összefűzés művelete pabq ˆ pb Cq Ñ pacq közti analógia explicitté tehető lásd [Lawvere], és e tekintetben a kategóriák idempotens teljességének a metrikus terek Cauchy-teljessége felel meg, amikor is minden Cauchy-sorozat konvergens. 17

20 1-gyel. Tehát minden x, y, z elemére xpyzq pxyqz és 1x x x1 teljesülnek. Legyenek A és B monoidok. Egy f : A Ñ B függvény homomorfizmus köztük, ha az A-beli egységelemet a B egységelemébe viszi, és minden a, a 1 P A elemekre paa 1 q f a f a f 1. Természetesen a monoidok és homomorfizmusaik is kategóriát alkotnak, a monoidok kategóriáját. Az A és B monoidok közti két oldali hatás vagy idegen szóval biakt, az egy M halmaz, ellátva egy A ˆ M Ñ M és egy M ˆ B Ñ M függvénnyel (amiket szintén egymás mellé írással jelölünk), úgy, hogy 1m m, m1 m, pamqb apmbq, a 1 pamq pa 1 aqm és pmbqb 1 mpbb 1 q teljesül minden a, a 1 P A, m P M, b, b 1 P B elemekre. Egy A és B monoidok közti biaktot röviden így jelölünk: M : A B. Ha M : A B és N : C D monoidok közti biaktok, f : A Ñ C és g : B Ñ D monoidhomomorfizmusok, akkor egy h : M Ñ N leképezést f, g menti biakthomomorfizmusnak nevezünk, amennyiben minden a P A, m P M, b P B elemekre pambq h a f m h b g. Gyakran használt speciális esetben A C, B D és f és g is identitás. Ezeket a konfigurációkat később így is ábrázoljuk: A M f h B g C N D illetve A M h B N Példák. 1. Minden A monoid tekinthető A A biaktnak: a bal és jobb oldali hatást is az eredeti monoidműveletként értelmezve. 2. Bármely, egységelemes gyűrűk közti bimodulus magában foglal egy biaktot, amit úgy kapunk, hogy az additív struktúrákat egyszerűen figyelmen kívül hagyjuk. 3. Hasonlóan, egy G csoport K test feletti lineáris reprezentációja egy V vektortéren (jobboldali hatással) meghatároz egy K G biaktot: a vektortér struktúrából adódóan K multiplikatív monoidja balról hat V -n, míg G a reprezentáció szerint jobbról. A két hatás felcserélhetősége (a fenti pamqb apmbq kitétel) abból következik, hogy G minden eleme V -nek egy lineáris transzformációját határozza meg a reprezentációban. Legyenek A, B, C monoidok, M egy A-B-biakt, és N egy B-C-biakt. Értelmezzük ekkor az M ˆ N tenzorszorzatot az alábbi módon: B M ˆ N : M ˆ N { B 18

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

1.1 Halmazelméleti fogalmak, jelölések

1.1 Halmazelméleti fogalmak, jelölések 1.1 Halmazelméleti fogalmak, jelölések Alapfogalmak (nem definiáljuk) Halmaz x eleme az A halmaznak x nem eleme A halmaznak Jelölések A,B,C, x A x A SiUDWODQ V]iRN Halmaz megadása: Elemeinek felsorolásával:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Halmazok-előadás vázlat

Halmazok-előadás vázlat Halmazok-előadás vázlat Naiv halmazelmélet:. Mi a halmaz? Mit jelent, hogy valami eleme a halmaznak? Igaz-e, hogy a halmaz elemei valamilyen kapcsolatban állnak egymással? Jelölés: a A azt jelenti, hogy

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

Ismerkedés az Abel-csoportokkal

Ismerkedés az Abel-csoportokkal Ismerkedés az Abel-csoportokkal - Szakdolgozat - Készítette: Takács Mária (Matematika BSc, Tanári szakirány) Témavezető: Kiss Emil (Algebra és Számelmélet Tanszék, Matematikai Intézet) Eötvös Loránd Tudományegyetem

Részletesebben

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat.

Házi feladatok megoldása. Nyelvtani transzformációk. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 6. gyakorlat. Nyelvtani transzformációk Formális nyelvek, 6. gyakorlat a. S (S) SS ε b. S XS ε és X (S) c. S (SS ) Megoldás: Célja: A nyelvtani transzformációk bemutatása Fogalmak: Megszorított típusok, normálformák,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Chomsky-féle hierarchia

Chomsky-féle hierarchia http://www.ms.sapientia.ro/ kasa/formalis.htm Chomsky-féle hierarchia G = (N, T, P, S) nyelvtan: 0-s típusú (általános vagy mondatszerkezetű), ha semmilyen megkötést nem teszünk a helyettesítési szabályaira.

Részletesebben

Absztrakt algebra I. Csoportelmélet

Absztrakt algebra I. Csoportelmélet Absztrakt algebra I. Csoportelmélet Dr. Tóth László egyetemi docens Pécsi Tudományegyetem 2006 Bevezetés Ez az anyag tartalmazza az Algebra és számelmélet című tárgy 4. féléves részének kötelező elméleti

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

Gáspár Csaba. Analízis

Gáspár Csaba. Analízis Gáspár Csaba Analízis Készült a HEFOP 3.3.-P.-004-09-00/.0 pályázat támogatásával Szerzők: Lektor: Gáspár Csaba Szili László, egyetemi docens c Gáspár Csaba, 006. Tartalomjegyzék. Bevezetés 5. Alapvető

Részletesebben

A kvantummechanika általános formalizmusa

A kvantummechanika általános formalizmusa A kvantummechanika általános formalizmusa October 4, 2006 Jelen fejezetünk célja bevezetni egy általános matematikai formalizmust amelynek segítségével a végtelen dimenziós vektorterek elegánsan tárgyalhatók.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Juhász Tibor. Lineáris algebra

Juhász Tibor. Lineáris algebra Juhász Tibor Lineáris algebra Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Lineáris algebra Eger, 2013 Készült a TÁMOP-425B-11/1-2011-0001 támogatásával Tartalomjegyzék

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Automaták mint elfogadók (akceptorok)

Automaták mint elfogadók (akceptorok) Automaták mint elfogadók (akceptorok) Ha egy iniciális Moore-automatában a kimenőjelek halmaza csupán kételemű: {elfogadom, nem fogadom el}, és az utolsó kimenőjel dönti el azt a kérdést, hogy elfogadható-e

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Számítástudomány matematikai alapjai segédlet táv és levelező

Számítástudomány matematikai alapjai segédlet táv és levelező Számítástudomány matematikai alapjai segédlet táv és levelező Horváth Árpád 2008. december 16. A segédletek egy része a matek honlapon található: http://www.roik.bmf.hu/matek Kötelező irodalom: Bagyinszki

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet).

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet). Vektortér A vektortér (lineáris tér, lineáris vektortér) két, már tanult algebrai struktúrát kapcsol össze. Def.: Legyen V nemüres halmaz, amelyben egy összeadásnak nevezett művelet van definiálva, és

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

DISZKRÉT MATEMATIKA I. TÉTELEK

DISZKRÉT MATEMATIKA I. TÉTELEK DISZKRÉT MATEMATIKA I. TÉTELEK Szerkesztette: Bókay Csongor 2011 őszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. január 16. Ez a Mű a Creative Commons

Részletesebben

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása 5 Tartalomjegyzék Bevezetés.......................................................... 7 A) Függvényegyenletek a természetes számok halmazán........... 11 B) Egyváltozós függvényegyenletek megoldása....................

Részletesebben

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Írta: ÉSIK ZOLTÁN GOMBÁS ÉVA IVÁN SZABOLCS AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Dr. Gombás Éva és Dr. Iván Szabolcs, Szegedi Tudományegyetem

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

22. szakkör (Csoportelméleti alapfogalmak 1.)

22. szakkör (Csoportelméleti alapfogalmak 1.) 22. szakkör (Csoportelméleti alapfogalmak 1.) A) A PERMUTÁCIÓK CIKLIKUS SZERKEZETE 1. feladat: Egy húsztagú társaság ül az asztal körül. Néhányat közülük (esetleg az összeset) párba állítunk, és a párok

Részletesebben

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006 A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

4. előadás. Vektorok

4. előadás. Vektorok 4. előadás Vektorok Vektorok bevezetése Ha adottak a térben az A és a B pontok, akkor pontosan egy olyan eltolás létezik, amely A-t B- be viszi. Ha φ egy tetszőleges eltolás, akkor ez a tér minden P pontjához

Részletesebben

Kombinatorika. 9 10. évfolyam. Szerkesztette: Surányi László Ábrák: Hraskó András. 2015. december 6.

Kombinatorika. 9 10. évfolyam. Szerkesztette: Surányi László Ábrák: Hraskó András. 2015. december 6. Kombinatorika 9 10. évfolyam Szerkesztette: Surányi László Ábrák: Hraskó András 2015. december 6. A kötet létrehozását 2008-tól 2010-ig a Fővárosi Közoktatásfejlesztési Közalapítvány támogatta Technikai

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Lineáris algebra bevezető

Lineáris algebra bevezető Lineáris algebra bevezető 1 Egyismeretlenes egyenletek bemelegítés Az ilyen egyenletek rendezés után ax = b alakba írhatók Ha a 0, akkor a(z egyértelmű megoldás x = b/a Ha a = 0, akkor b 0 esetben nincs

Részletesebben

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6.

Kaposi Ambrus. University of Nottingham Functional Programming Lab. Hackerspace Budapest 2015. január 6. Bizonyítás és programozás Kaposi Ambrus University of Nottingham Functional Programming Lab Hackerspace Budapest 2015. január 6. Bizonyítás, érvelés Példa: sáros a csizmám ha vizes a föld, esett az eső

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }

II. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { } II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon

Részletesebben

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat

1. előadás Matematikai és nyelvi alapok, Szintaktikai vizsgálat 1. előadás Matematikai és nyelvi alapok, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapfogalmak Halmazok Relációk Függvények Homomorfizmusok Nyelvi alapfogalmak Ábécé, szavak, nyelvek Műveletek

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

MATEMATIKA A 10. évfolyam

MATEMATIKA A 10. évfolyam MATEMATIKA A 10. évfolyam 8. modul Hasonlóság és alkalmazásai Készítették: Vidra Gábor, Lénárt István Matematika A 10. évfolyam 8. modul: Hasonlóság és alkalmazásai A modul célja Időkeret Ajánlott korosztály

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Geometriai axiómarendszerek és modellek

Geometriai axiómarendszerek és modellek Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének

Részletesebben

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap

Alap fatranszformátorok I. Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap Alap fatranszformátorok I Vágvölgyi Sándor Oyamaguchi [3], Dauchet és társai [1] és Engelfriet [2] bebizonyították hogy egy tetszőleges alap termátíró rendszerről eldönthető hogy összefolyó-e. Mindannyian

Részletesebben