MATEMATIKA II. FELADATGY JTEMÉNY

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MATEMATIKA II. FELADATGY JTEMÉNY"

Átírás

1 MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today.

2 KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja a m szaki képzésben részt vev hallgatók matematika tanulmányainak megkönnyítése, továbbá, hogy a hallgatók a matematika mérnöki, illetve gazdasági alkalmazásaiba is betekintést nyerjenek. A feladatgy jtemény jó néhány standard, gyakorló feladatot tartalmaz, melyeken keresztül begyakorolhatók a rutinszer en elvárt feladatok megoldásai. Ezen kívül tartalmaz nehezebb, gondolkodást igényl feladatokat, illetve szép számmal alkalmazott matematikai példákat is. A példatár gondos átolvasásáért, és a felmerül hibák javításáért köszönettel tartozom Molnár Ildikó m szaki menedzser és Tóth Xénia Erzsébet mechatronika szakos hallgatóknak. Köszönettel tartozom Dr. Kocsis Imre tanszékvezet nek, Dr. Szíki Gusztáv Áron f iskolai tanárnak, akik hasznos információkkal láttak el a feladatgy jtemény megírása során. Köszönöm továbbá a M szaki Alaptárgyi Tanszék minden oktatójának, valamint jó barátomnak, Baják Szabolcsnak, akikt l a személyes beszélgetéseink során jó néhány hasznosítható ötletet meríthettem.

3 MATEMATIKA II. FELADATGY JTEMÉNY 3 I. DIFFERENCIÁLSZÁMÍTÁS. Dierencia- és dierenciálhányados fogalma, geometriai és zikai jelentése.. Feladat. Határozzuk meg az f() = 3 függvény deriváltját az = pontban deníció szerint! A dierenciahányados f() f( ) = 3 = ( ) = ( )( + ) = +, melynek az = pontbeli határértéke lim ( + ) = + =... Feladat. Dierenciálható-e az f() = függvény az = pontban? A dierenciahányados f() f( ) = =, melynek az = pontbeli határértéke létezik ugyan, de nem véges: lim + =, így a függvény nem dierenciálható az = pontban..3. Feladat. Határozzuk meg az f() =, függvény deriváltját az pontban deníció szerint! A dierenciahányados f() f( ) = melynek az pontbeli határértéke = + ( )( )( ) = ( )( ), lim ( )( ) = ( ).

4 4 KÉZI CSABA.4. Feladat. A kilövés után t másodperccel a rakéta 3t méter magasságban van a földfelszín felett. Mekkora a rakéta sebessége másodperccel a kilövés után? Az s(t) = 3t függvény t = pontbeli dierenciálhányadosát (deriváltját) kell meghatároznunk. A dierenciahányados s(t) s(t ) t t = s(t) s() t = 3t 3 t Ennek a t = pontbeli határértéke = 3(t ) t v() = s () t 3(t + ) = 6 m s. = 3(t + )(t ) t = 3(t + )..5. Feladat. Mutassuk meg, hogy az f() = függvény dierenciálható! Egyedül az = pontban lehet probléma a dierenciálhatósággal. A baloldali derivált az = pontban f ( ) = f() f( ) lim a jobboldali derivált f +( ) = ( + )( ) + f() f( ) lim + ( + ) + + f() f( ) + =, + =, f() f( ) + így f ( ) = f +( ), tehát a függvény dierenciálható. ( ) + ( + ) = =.6. Feladat. Értelmezési tartományának mely pontjaiban dierenciálható az f() = + függvény?

5 MATEMATIKA II. FELADATGY JTEMÉNY 5 Egyedül az = pontban lehet probléma a dierenciálhatósággal, így írjuk föl az = pontbeli dierenciahányadost: f() f( ) = + +. Ennek a baloldali határértéke f ( ) = lim A jobboldali határérték + + = lim =. ( + ) ( + ) + = lim ( + ) ( + ) = f +( ) = lim =. Így f ( ) f +( ), tehát f nem dierenciálható az = pontban..7. Feladat. Ábrázoljuk az f() = 5 3 függvényt, majd állapítsuk meg, hogy értelmezési tartományának mely pontjaiban dierenciálható! Mivel { 5, ha 5 5 = + 5, ha < 5, ezért { 8, ha 5 f() = +, ha < 5. Ez alapján a függvény:

6 6 KÉZI CSABA Tehát az = ; 5; 8 pontokban lehet probléma a dierenciálhatósággal, így ezeken a helyeken ellen rizzük a dierenciálhatóságot. Mivel az = helyen a baloldali határérték f () f() f() a jobboldali határérték pedig f +() f() f() =, =, ezért f () f + = (), így f nem dierenciálható az = helyen. Hasonlóan mutatható meg, hogy az = 5, illetve az = 8 helyen sem dierenciálható a függvény..8. Feladat. Bizonyítsuk be, hogy ha f : I R páros, dierenciálható függvény, akkor a deriváltja páratlan! Az f függvény páros, ezért f( ) = f() minden I esetén. Mivel így f páratlan. f ( ) = f( ) f( ) lim + f() f( ) = f ( ), f() f( ) ( ).9. Feladat. Bizonyítsuk be, hogy ha f : I R páratlan, dierenciálható függvény, akkor a deriváltja páros! Az f függvény páratlan, ezért f( ) = f() minden I esetén. Mivel így f páratlan. f ( ) = f( ) f( ) lim + f() f( ) ( ) f() + f( ) ( ) = = f() f( ) = f ( ),

7 MATEMATIKA II. FELADATGY JTEMÉNY 7.. Feladat. Dierenciálható-e az f() = sin, ha, ha = függvény az = pontban? A dierenciahányados f() f( ) = sin = sin, melynek az = pontbeli határértéke, ugyanis sin = sin. Tehát a függvény dierenciálható az = helyen, és a deriváltja f () =... Feladat. Mutassuk meg, hogy az sin f() =, ha, ha = függvény az = pontban folytonos, de nem dierenciálható! A függvény folytonos az = pontban, mert ott létezik a határértéke, és az, ugyanis sin = sin. A dierenciahányados f() f( ) = sin = sin,

8 8 KÉZI CSABA aminek nem létezik az = pontbeli határétéke, mert például az nπ és az (n+)π sorozatokat véve, az el bbinél ( ) lim sin n =, nπ míg az utóbbinál lim sin n ( (n+ )π ) =. Tehát a függvény nem dierenciálható az = pontban. A feladatban szerepl függvény grakonját az alábbi ábra szemlélteti:.. Feladat. Dierenciálható-e az f() = { +, ha 3, ha > függvény az = pontban? Mivel lim f() =, valamint lim f() =, + így lim f() lim + f(), tehát a függvény nem folytonos az = pontban, így ott nem is dierenciálható.

9 MATEMATIKA II. FELADATGY JTEMÉNY 9.3. Feladat. Bizonyítsuk be, hogy az {, ha f() = a + a, ha > függvény folytonos! Határozzuk meg az a paraméter értékét úgy, hogy f dierenciálható legyen az = pontban! A baloldali derivált f () =, amelynek az = pontbeli helyettesítési értéke f () = =. A jobboldali derivált f +() f() f() + a + a a( ) A baloldali és jobboldali határértéknek egybe kell esnie ahhoz, hogy a függvény dierenciálható legyen, így a = adódik..4. Feladat. Határozzuk meg az m és b valós paraméter értékét úgy, hogy az { 3, ha f() = m + b, ha > függvény dierenciálható legyen az = pontban! A függvény baloldali deriváltja f ( f() f( ) ) jobboldali deriváltja 3 3 f +( f() f( ) ) + ( )( + + ) m + b (m + b) m( ) = a. + + = 3, = m. Egy függvény pontosan akkor dierenciálható az helyen, ha ott a baloldali és jobboldali deriváltja megegyezik, ezért m = 3. A dierenciálhatósághoz szükséges az adott pontbeli

10 KÉZI CSABA folytonosság, amihez szükséges az adott pontban a baloldali és jobboldali határérték egyenl sége. Így a lim f() f() + egyenl ségb l kapjuk, hogy = m + b. Az m értékét már ismerjük. Azt behelyettesítve b = adódik. Ezzel meghatároztuk a kérdezett paraméterek értékét..5. Feladat. Az m és b paraméterek mely értéke mellett lesz az { sin, ha < π f() = m + b, ha π függvény dierenciálható az = π helyen! A dierenciálhatóságnak szükséges feltétele a folytonosság. Ehhez az = π helyen meg kell egyeznie a függvény baloldali és jobboldali határértékének. A boldali határérték lim f() = sin π =, π a jobboldali határérték Tehát teljesülni kell az lim f() = m π + b. π+ m π + b = egyenletnek. Másrészt ahhoz, hogy a függvény dierenciálható legyen, a bal- és jobboldali deriváltjának meg kell egyeznie az = π helyen. A baloldali derivált f ( f() f( ) ) π π π π π π sin ( π++π sin ( π sin ( π π ) ( sin π ++π π ) cos ( +π ) cos ( +π ) +cos ( π ) ( + cos +π π sin sin π π π ) = sin ( π + +π ) sin ( +π ) sin ( π ) ( sin +π π π sin ( ) ( π cos +π ) sin ( ) π ( ) + π π π π cos = sin ( ) π ( ) + π lim cos = cos π =. π π A jobboldali derivált f +( f() f( ) ) π+ ) m + b (mπ + b) π+ π sin π = ) ( sin +π π π ) cos ( π sin ( π ) = ) +cos ( +π ) ( cos +π ) π ) ( sin π ) = m( π) π+ π = m. =

11 MATEMATIKA II. FELADATGY JTEMÉNY Mivel f ( ) = f +( ) egyenl ségnek teljesülnie kell a dierenciálhatósághoz, ezért m = adódik. Másrészt a folytonosság miatt az m π + b = egyenletnek is teljesülni kell, amib l b = π következik..6. Feladat. Az a és b paraméterek mely értéke esetén lesz az { a + b, ha f() = a b, ha > függvény mindenütt dierenciálható? Egyedül az = helyen lehet probléma a dierenciálhatósággal. Ezen a helyen szükségképpen folytonosnak kell lennie a függvénynek, amihez teljesülni kell a egyenl ségnek. Ez jelen esetben az lim f() f() + a( ) + b = a( ) 3 + ( ) + b egyenletet jelenti, amib l b = adódik. A dierenciálhatósághoz a baloldali és jobboldali deriváltaknak egybe kell esni. A baloldali derivált f ( ) = a jobboldali derivált f +( ) = f() f( ) lim + f() f( ) lim a + b ( a + b) + a( + ) + a b ( a + b) + + a a a( + )( + ) a( + ) + = 3a +. = = a, a( 3 + ) + + = + ( + ) ( a( + ) + ) + + Így teljesülnie kell a 3a + = a egyenletnek, amib l a = adódik. =

12 KÉZI CSABA. Deriválási szabályok.. Feladat. Deriváljuk az f() = függvényt! Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja a derivált számszorosa (azaz a számszorzó differenciáláskor változatlan marad) f () = ( 3 ) + 3( ) = = Feladat. Deriváljuk az f() = e (sin + cos ) függvényt! Két függvény szorzatának a deriváltját úgy kapjuk, hogy a szorzat els tényez jének a deriváltját megszorozzuk az eredeti függvény második tényezez jével, ehhez hozzádjuk az eredeti függvény els tényez jének a második tényez deriváltjával való szorzatát. Ezt felhasználva f () = e (sin + cos ) + e (cos sin ) = cos e..3. Feladat. Deriváljuk az f() = + sin cos függvényt! Hányadost úgy deriválunk, hogy a számláló deriváltját megszorozzuk a nevez vel, ebb l levonjuk a számlálónak a nevez deriváltjával kapott szorzatát, majd az így kapott különbséget elosztjuk a nevez négyzetével. Ezt felhasználva f () = ( + cos ) cos ( + sin )( sin ). cos Felbontva a zárójeleket, és felhasználva a sin + cos = trigonometrikus azonosságot f () = + cos + sin. cos.4. Feladat. Deriváljuk az f() = függvényt! Összeget tagonként deriválva f () = Feladat. Deriváljuk az f() = 3 log függvényt! A szorzat deriválási szabályát felhasználva f () = 3 ln 3 log + 3 ln.

13 MATEMATIKA II. FELADATGY JTEMÉNY 3.6. Feladat. Deriváljuk az f() = sin + függvényt! Felhasználva a = azonosságot, majd alkalmazva a hányados deriválási szabályát cos ( ( ) + ) sin f + () = (. + ).7. Feladat. Deriváljuk az f() = + 7 Felhasználva a 7 = 7 3 függvényt! azonosságot, majd alkalmazva a hányados deriválási szabályát ( ) + f ( ) 3 () = Feladat. Deriváljuk az f() = 4 lg függvényt! A szorzat deriválási szabálya szerint f () = 4 ln 4 lg Feladat. Deriváljuk az f() = függvényt! ln. Felhasználva az összeadásra, illetve konstansszorzóra vonatkozó deriválási szabályokat f () = ( 7 ) + (8 ) 3 = Feladat. Deriváljuk az f() = függvényt! A =, illetve 3 = 3 felhasználása után az összeget tagonként deriválva azt kapjuk, hogy f () = = Feladat. Deriváljuk az f() = + + függvényt! Felhasználva, hogy =, továbbá, hogy =, majd az összeget tagonként deriválva f() = 3 = 3... Feladat. Deriváljuk az f() = 3 sin + 5 cos + sh függvényt!

14 4 KÉZI CSABA Felhasználva az összeadásra, illetve konstansszorzóra vonatkozó deriválási szabályokat f () = 3 cos 5 sin + ch..3. Feladat. Deriváljuk az f() = 5 log 4 függvényt! Felhasználva az összeadásra, illetve konstansszorzóra vonatkozó deriválási szabályokat f () = 5 ln 5 ln Feladat. Deriváljuk az f() = e sin függvényt! Felhasználva a szorzásra vonatkozó deriválási szabályt f () = (e ) sin e (sin ) sin.5. Feladat. Deriváljuk az f() = ln függvényt! Felhasználva a szorzásra vonatkozó deriválási szabályt = e sin e cos sin. f () = ln + (ln ) = ln + = ln Feladat. Deriváljuk az f() = log 3 függvényt! Felhasználva a szorzásra vonatkozó deriválási szabályt f () = ( ) log 3 (log 3 ) log 3.7. Feladat. Deriváljuk az f() = + 3 Felhasználva a hányadosfüggvény deriválási szabályát e = ln log 3 log 3 függvényt. f () = ( + 3 ) e ( + 3 )(e ) = ( + 3) e ( + 3 ) e (e ) e A számlálóban e -et kiemelve, majd elvégezve az egyszer sítést f () = ( + 3) e ( + 3 ) e = e ( ) e e.8. Feladat. Deriváljuk az f() = ( ) sin függvényt! ln 3. = 4 e.

15 Felhasználva a szorzatfüggvény deriválási szabályát MATEMATIKA II. FELADATGY JTEMÉNY 5 f () = ( ) sin + ( )(sin ) = ( + 7) sin + ( ) cos..9. Feladat. Deriváljuk az f() = ln(sin ) függvényt! A küls függvény az ln, a bels függvény a sin. El ször deriváljuk a küls függvényt, amire adódik, majd abba beírjuk az eredeti bels függvényt, végül a kapott eredményt szorozzuk a bels függvény deriváltjával: f () = sin (sin ) = cos = ctg. sin.. Feladat. Deriváljuk az f() = ln( + 5 ) függvényt! A küls függvény az ln, a bels függvény + 5. El ször deriváljuk a küls függvényt, amire adódik, majd abba beírjuk az eredeti bels függvényt, végül a kapott eredményt szorozzuk a bels függvény deriváltjával: f () = + 5 ( + 5 ) =.. Feladat. Deriváljuk az f() = e függvényt! + 5 ( + 5) = A küls függvény az e, a bels függvény az. A küls függvény deriváltja e, ebbe beírjuk az eredeti bels függvényt, végül a kapott eredményt szorozzuk a bels függvény deriváltjával: f () = e... Feladat. Deriváljuk az f() = (3 + ) függvényt! A küls függvény az, a bels függvény 3 +. A küls függvény deriváltja 99. Ebbe beírjuk az eredeti bels függvényt, végül a kapott eredményt szorozzuk a bels függvény deriváltjával: f () = (3 + ) 99 (3 + ) = (3 + ) 99 3 = 3(3 + ) Feladat. Deriváljuk az f() = 3 + függvényt! Felhasználva, hogy 3 + = ( + ) 3, a küls függvény 3, a bels függvény +. A küsl függvény deriváltja 3 3, így f () = 3 ( + ) 3 ( + ) = = 3 ( + ) 3.4. Feladat. Deriváljuk az f() = ln( sin ) függvényt! 3 3 ( + ). Küls függvény az ln, bels függvény az sin. A küls függvény deriváltja, amibe beírva

16 6 KÉZI CSABA az eredeti bels függvényt:. A bels függvény deriváltja sin + cos, így sin f sin + cos () =. sin.5. Feladat. Deriváljuk az f() = sin ( 3 cos ) függvényt! 3 Küls függvény az sin, bels függvény az cos. A küls függvény deriváltja cos, amibe beírva az eredeti bels függvényt: cos ( ) 3 3(cos )+3 sin cos. A bels függvény deriváltja, így cos ( ) 3 f 3 cos + 3 sin () = cos. cos cos.6. Feladat. Deriváljuk az f() = tg( + ) függvényt! Küls függvény a tg, bels függvény az +. A küls függvény deriváltja cos, amibe beírva az eredeti bels függvényt:. A bels függvény deriváltja +, így f () = cos ( +) cos ( + ) ( + ) = + cos ( + )..7. Feladat. Deriváljuk az f() = e sin függvényt! Küls függvény a e, bels függvény az sin. A küls függvény deriváltja e, amibe beírva az eredeti bels függvényt: e sin. A bels függvény deriváltja cos, így f () = e sin cos..8. Feladat. Deriváljuk az f() = e +3 4 függvényt! Küls függvény a e, bels függvény az A küls függvény deriváltja e, amibe beírva az eredeti bels függvényt: e A bels függvény deriváltja + 3, így f () = e +3 4 ( + 3)..9. Feladat. Deriváljuk az f() = sin függvényt! Küls függvény a, bels függvény az sin. A küls függvény deriváltja ln, amibe beírva az eredeti bels függvényt: sin ln. A bels függvény deriváltja cos, így f () = sin ln cos..3. Feladat. Deriváljuk az f() = + 3 függvényt! Felhasználva, hogy =, a küls függvény az, bels függvény az + 3. A küls

17 MATEMATIKA II. FELADATGY JTEMÉNY 7 függvény deriváltja, amibe beírva az eredeti bels függvényt: bels függvény deriváltja +, így f () = ( + 3) ( + ) = Feladat. Deriváljuk az f() = cos(sin ) függvényt! ( + 3). A Küls függvény a cos, bels függvény az sin. A küls függvény deriváltja sin, amibe beírva az eredeti bels függvényt: sin(sin ). A bels függvény deriváltja cos, így f () = sin(sin ) cos..3. Feladat. Deriváljuk az f() = cos( ) függvényt! A szorzat és összetett függvény deriválási szabályát használva f () = cos( ) sin( )( + 3)..33. Feladat. Deriváljuk az f() = ( + ) ln + + függvényt! A szorzat, az összetett függvény és a hányados deriválási szabályát használva f () = ( + ) ln ( + ) ( + ) = ( + ) = ( + ) ln ( + ) ( + ). ( ).34. Feladat. + Deriváljuk az f() = arctg függvényt! A szorzat, a hányados és az összetett függvény deriválási szabályát használva ( ) f + () = arctg + + ( ) Feladat. Deriváljuk az f() = tg(e ) függvényt! Küls függvény a tg, bels függvény az e. A küls függvény deriváltja, amibe beírva cos az eredeti bels függvényt: cos (e ). A bels függvény szintén összetett, a küls függvény e, a bels függvény, az összetett függvény deriválási szabálya szerint (e ) = e. Így f () = cos (e ) (e ) = cos (e ) e.

18 8 KÉZI CSABA.36. Feladat. Deriváljuk az f() = ln ( ln() ) függvényt! Az összetett függvény deriválási szabályát felhasználva f () = ln() = ln()..37. Feladat. Deriváljuk az f() = sin( ) függvényt! Felhasználva, hogy sin = (sin ), az összetett függvény deriválási szabálya szerint f () = (sin ) cos. (.38. Feladat. Deriváljuk az f() = sin cos ( sin )) függvényt! Az összetett függvény deriválási szabályát felhasználva ( f () = cos cos ( sin )) ( sin(sin ) ) cos..39. Feladat. Deriváljuk az f() = ln ( + sin( ) ) függvényt! Az összetett függvény deriválási szabályát felhasználva f () = + sin( ) ( + cos( ) )..4. Feladat. Deriváljuk az f() = sin() függvényt! Az összetett függvény deriválási szabályát felhasználva f () = sin() ln cos()..4. Feladat. Deriváljuk az f() = + függvényt! Felhasználva, hogy = f () = ( + ) ( + )..4. Feladat. Deriváljuk az f() = cos(sin ) függvényt! f () = sin(sin ) cos

19 MATEMATIKA II. FELADATGY JTEMÉNY Feladat. Deriváljuk az f() = cos(ln( )) függvényt! f () = sin (ln ( )). (.44. Feladat. Deriváljuk az f() = ln sin ( cos )) függvényt! f cos (cos ()) sin () () = sin (cos ()).45. Feladat. Deriváljuk az f() = sin ( ) függvényt! f () = 4 sin ( ) cos ( ).46. Feladat. Deriváljuk az f() = 3 ln ( sin() ) függvényt! f cos ( ) () = /3 (ln (sin ( ))) /3 sin ( ).47. Feladat. Deriváljuk az f() = 7 sin ( cos () ) függvényt! f () = /7 cos ( (cos ()) ) cos () sin () ( sin ( (cos ()) )) 6/7.48. Feladat. Deriváljuk az f() = ln sin függvényt! A hányados, és a szorzat dierenciálási szabályát alkalmazva f (ln + ) sin ln cos () = sin..49. Feladat. Deriváljuk az f() = sin + sin( ) függvényt! A hányados, és a szorzat dierenciálási szabályát alkalmazva f () = ( sin cos + cos( )) 3 ( sin + sin( ) ) Feladat. Deriváljuk az f() = sin(3) sin(5) függvényt! A szorzat dierenciálási szabályát alkalmazva 3 f () = 3 cos(3) sin(5) + 5 sin(3) cos(5).

20 KÉZI CSABA.5. Feladat. Deriváljuk az f() = ( + ) 3 sin( 4 ) függvényt! A szorzat deriválási szabályát alkalmazva f () = 6( + ) sin( 4 ) + ( + ) cos( 4 )..5. Feladat. Deriváljuk az f() = sin e függvényt! A hányados, és a szorzat dierenciálási szabályát alkalmazva.53. Feladat. Deriváljuk az f() = Felhasználjuk, hogy 8 = 8 : f () = ( sin + cos ) e sin e e. f () = 8 sin függvényt! sin 8 ( sin + cos ) ( sin )..54. Feladat. Deriváljuk az f() = 3π + (4π) 5 függvényt! Az összetett függvény deriválási szabálya szerint f () = 3π 3π + (4π) 5 ln(4π) Feladat. Deriváljuk az f() = (3 + ) e tg függvényt! A hányados deriválási szabályát alkalmazzuk, gyelve arra, hogy a számláló két függvény szorzata, így ott a szorzat deriválási szabályát használjuk: ( (3 f + ) e +( 3 + ) e ) tg ( 3 + ) e cos () =. tg Elvégezve az összevonást ( ) e ( ) tg 3 + f cos () =. tg.56. Feladat. Deriváljuk az f() = sin( ) + sin e függvényt!

21 MATEMATIKA II. FELADATGY JTEMÉNY A hányados és az összetett függvény deriválási szabálya szerint ( cos( ) ) f + (sin ) cos e ( sin( ) + sin ) e () =. e Feladat. Deriváljuk az f() = 3 + e tg függvényt! A hányados deriválási szabálya szerint f () = (3 + ) (e tg ) ( 3 + ) (e ) ( ) cos. (e tg ).58. Feladat. Deriváljuk az f() = + arcsin() függvényt! Az összetett függvény deriválási szabálya szerint f () = ln Feladat. Deriváljuk az f() = 7 + arctg e + ln (). függvényt! A hányados dierenciálási szabálya szerint ( ) f + (e + ln ) ( 7 + arctg ) ( ) e + () = ( e + ln )..6. Feladat. Deriváljuk az f() = függvényt!.megoldás Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = = e ln = e ln. Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ( f () = e ln ln + ) = (ln + )..megoldás Vegyük az f() = mindkét oldalának a logaritmusát: ln ( f() ) = ln, amib l ln ( f() ) = ln.

22 KÉZI CSABA Mindkét oldalt dierenciálva az változó szerint f() f () = ln +. Végigszorozva f()-el, kapjuk a megoldást f () = f()(ln + ) = (ln + )..6. Feladat. Deriváljuk az f() = sin függvényt!.megoldás Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = sin = e ln sin = e sin ln. Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ( f () = e sin ln cos ln + sin ) ( = sin cos ln + sin )..megoldás Vegyük az f() = sin mindkét oldalának a logaritmusát: ln ( f() ) = ln sin, amib l ln ( f() ) = sin ln. Mindkét oldalt dierenciálva az változó szerint f() f () = cos ln + sin. Végigszorozva f()-el, kapjuk a megoldást ( f () = f() cos ln + sin ) ( = sin cos ln + sin )..6. Feladat. Deriváljuk az f() = (sin ) függvényt!.megoldás Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = (sin ) = e ln(sin ) = e ln(sin ). Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ) f () = e (ln(sin ln(sin ) ) + sin cos = (sin ) (ln(sin ) + ctg )..megoldás

23 MATEMATIKA II. FELADATGY JTEMÉNY 3 Vegyük az f() = (sin ) mindkét oldalának a logaritmusát: ln ( f() ) = ln(sin ), amib l ln ( f() ) = ln(sin ). Mindkét oldalt dierenciálva az változó szerint f() f () = ln(sin ) + ctg. Végigszorozva f()-el, kapjuk a megoldást f () = f() (ln(sin ) + ctg ) = (sin ) (ln(sin ) + ctg )..63. Feladat. Deriváljuk az f() = cos függvényt!.megoldás Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = cos = e ln cos = e cos ln. Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ( f () = e cos ln sin ln + cos ) ( = cos sin ln + cos )..megoldás Vegyük az f() = cos mindkét oldalának a logaritmusát: ln ( f() ) = ln cos, amib l ln ( f() ) = cos ln. Mindkét oldalt dierenciálva az változó szerint f() f () = sin ln + cos. Végigszorozva f()-el, kapjuk a megoldást ( f () = f() sin ln + cos ) ( = cos.64. Feladat. Deriváljuk az f() = (cos ) függvényt!.megoldás Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = (cos ) = e ln(cos ) = e ln(cos ). sin ln + cos ).

24 4 KÉZI CSABA Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ) f () = e (ln(cos ln(cos ) ) cos sin = (cos ) (ln(cos ) tg )..megoldás Vegyük az f() = (cos ) mindkét oldalának a logaritmusát: ln ( f() ) = ln(cos ), amib l ln ( f() ) = ln(cos ). Mindkét oldalt dierenciálva az változó szerint f() f () = ln(cos ) tg. Végigszorozva f()-el, kapjuk a megoldást f () = f() (ln(cos ) tg ) = (cos ) (ln(cos ) tg )..65. Feladat. Deriváljuk az f() = (sin ) cos függvényt! Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = (sin ) cos = e ln(sin )cos = e cos ln(sin ). Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ) f () =e ( cos ln(sin ) sin ln(sin ) + cos sin cos = = (sin ) cos ( sin ln(sin ) + cos ctg )..66. Feladat. Deriváljuk az f() = függvényt! Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = = e ln = e ln. Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ( f () = e ln ln + ) ( = ln + ).

25 MATEMATIKA II. FELADATGY JTEMÉNY Feladat. Deriváljuk az f() = ( ) függvényt! Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = ( ) = e ln( ) = e ln. Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ( f () = e ln ln ) + = ( ( ) ln + )..68. Feladat. Deriváljuk az f() = e függvényt! Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = e = e ln e = e e ln. Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ( f () = e e ln e ln + e ) ( ) = e e ln + e..69. Feladat. Deriváljuk az f() = () 3 függvényt! Az a = e ln a azonosság felhasználásával azt kapjuk, hogy f() = () 3 = e ln()3 = e 3 ln(). Az átalakítás során alkalmaztuk az ln a b = b ln a logaritmus azonosságot. Az összetett függvény deriválási szabályát alkalmazva ) f () = e (3 3 ln() ln() + 3 = () 3 (3 ln() + 3)..7. Feladat. Deriváljuk az f() = arcsin() függvényt! Felhasználva, hogy f() = e ln arcsin( ) = e arcsin( ) ln, az összetett függvény deriválási szabálya szerint (küls függvény az e ) ( ) f () = e arcsin( ) ln ( ) ln + arcsin, amib l ( f () = arcsin( ) ln 4 + arcsin( ) ).

26 6 KÉZI CSABA 3. Magasabbrend deriváltak, dierenciálható függvények néhány lokális jellemz je, L'Hospital szabály 3.. Feladat. Számoljuk ki az f() = e függvény n-edik deriváltját! A függvény els deriváltja f () = e, a második deriváltja f () = 4e, harmadik deriváltja 8e. Ebb l a sejtésünk az n-edik deriváltra f (n) () = n e. Ezt teljes indukcióval igazolhatjuk f (n+) () = ( f (n) () ) = ( n e ) = n e = n+ e. Ezzel igazoltuk, hogy f (n) () = n e. 3.. Feladat. Számoljuk ki az f() = n függvéy n-edik deriváltját! A függvény deriváltja f () = n n, második deriváltja f () = n(n ) n. Ebb l már látható, hogy az n-edik derivát f (n) () = n! Feladat. Számoljuk ki az f() = ln függvény n-edik deriváltját! A függvény els deriváltja f () =, második deriváltja f () =, harmadik deriváltja f () = 3. Ebb l megsejthet, hogy az n-edik derivált f (n) () = ( )n+ (n )! n Feladat. Számoljuk ki az f() = sin függvény n-edik deriváltját! A függvény deriváltja f () = cos, második deriváltja f () = sin, harmadik deriváltja f () = cos, negyedik deriváltja f (iv) () = sin. Innent l kezdve ugyanezek a deriváltak ismétl dnek, így sin, ha n = 4k (azaz, ha n osztható 4-el) f (n) cos, ha n = 4k + (azaz, ha n 4-el osztva maradékot ad) () = sin, ha n = 4k + (azaz, ha n 4-el osztva maradékot ad) cos, ha n = 4k + 3 (azaz, ha n 4-el osztva 3 maradékot ad) Feladat. Számoljuk ki az f() = cos függvény n-edik deriváltját! A függvény deriváltja f () = sin, második deriváltja f () = cos, harmadik deriváltja f () = sin, negyedik deriváltja f (iv) () = cos. Innent l kezdve ugyanezek a deriváltak

27 MATEMATIKA II. FELADATGY JTEMÉNY 7 ismétl dnek, így cos, f (n) sin, () = cos, sin, ha n = 4k (azaz, ha n osztható 4-el) ha n = 4k + (azaz, ha n 4-el osztva maradékot ad) ha n = 4k + (azaz, ha n 4-el osztva maradékot ad) ha n = 4k + 3 (azaz, ha n 4-el osztva 3 maradékot ad) Feladat. Számoljuk ki az f() = függvény negyedik deriváltját! A függvény deriváltja A második derivált A harmadik derivált A negyedik derivált 3.7. Feladat. Határozzuk meg az függvény n-edik deriváltját! A függvény deriváltja A második derivált A harmadik derivált f () = =. f () = 4 3 = 4 3. f () = = f iv () = f() = + f () = ( + ) ( ) ( + )( ) ( ) = Így az n-edik deriváltra a sejtésünk 5 = ( + ) ( ) = f () = ( ( ) ) = 4( ) 3 ( ) = f () = ( 4( ) 3) = ( ) 4 ( ) = f (n) () = n!( ) (n+) = n! ( ) n+. 4 ( ) 3. ( ) 4. ( ).

28 8 KÉZI CSABA Ezt teljes indukcióval bizonyíthatjuk: f (n+) () = ( n!( ) (n+)) ( ) = n! (n + ) ( ) (n+) ( ) = = (n + )!( ) (n+) Feladat. Írjuk fel az f() = függvény = pontbeli érint jének egyenletét! Az érint egyenlete y = f( ) + f ( )( ). Jelen esetben f( ) = f() =, f () =, így f ( ) = f () =. Ebb l a keresett egyenlet y = + ( ). Elvégezve a zárójel felbontását és az összevonást y = Feladat. Írjuk fel az f() = e függvény = pontbeli érint jének egyenletét! Az érint egyenlete y = f( ) + f ( )( ). Jelen esetben f( ) = f() = e =, f () = e, így f ( ) = f () =. Ebb l az érint y = + ( ). Tehát a keresett egyenlet y = +.

29 MATEMATIKA II. FELADATGY JTEMÉNY Feladat. Írjuk fel az f() = + függvény = pontbeli érint jének egyenletét! Az érint egyenlete y = f( ) + f ( )( ). Jelen esetben f( ) = f() = 4 =, f () = ( + ) = +, így f ( ) = f () = 4. Ebb l a keresett egyenlet y = + ( ). 4 Elvégezve a zárójel felbontását és az összevonást y = 4 + 3, beszorozva a közös nevez vel 4y = Feladat. Írjuk fel az f() = + + függvény = pontbeli érint jének egyenletét! Az érint egyenlete y = f( ) + f ( )( ). Jelen esetben f( ) = f( ) =, f () = ( + ) ( + ) = + 4 ( + ) ( + ), így f ( ) = f ( ) = 4. Ebb l a keresett egyenlet y = 4( + ).

30 3 KÉZI CSABA Elvégezve a zárójel felbontását és az összevonást y = Feladat. Határozzuk meg az f() = függvény azon érint jének egyenletét, amelyik mer leges az y = + 5 egyenesre! A keresett egyenes egyenlete y = m+b, ahol m = a mer legesség miatt (ugyanis egymásra mer leges egyenesek meredekségeinek szorzata -), tehát az érint y = +b alakú. Másrészt m = f ( ) = Így meghatározható a = egyenletb l, ami ekvivalens az + = egyenlettel. Ennek megoldásai = ± + 8 = ± 3, azaz = vagy =. Így két érintési pont van E = (, ) és E = (, ). Az y = + b egyenletbe behelyettesítve az érintési pontok koordinátáit, megkapjuk a b értékét: b =, b = 5. Így az érint k egyenletei y =, y = + 5.

31 MATEMATIKA II. FELADATGY JTEMÉNY Feladat. Határozzuk meg az f() = + 3 függvénynek az y = 4 3 egyenlet egyenessel párhuzamos érint jének egyenletét. A keresett egyenes egyenlete y = m + b, ahol m = 4 a párhuzamosság miatt (ugyanis párhuzamos egyenesek meredeksége megegyezik), tehát az érint y = 4 + b alakú. Másrészt m = f ( ) =. Így meghatározható a = 4 egyenletb l, ami ekvivalens a = 6 egyenlettel. Ennek megoldása = 3. Így az érintési pont E = (3, 6). Az y = 4 + b egyenletbe behelyettesítve az érintési pont koordinátáit, megkapjuk a b értékét: b = 6. Így az érint k egyenletei y = Feladat. Határozzuk meg, hogy az f() = érint je párhuzamos az tengellyel? függvénynek melyik pontjába húzott A keresett érint meredeksége nulla, így az érint t y = b alakban keressük. Másrészt m = f ( ) = 6 (3 + ) (3 + )( ) (3 + ) = 6 (3 + ), amib l =. Így f( ) = 3. Tehát a keresett egyenes egyenlete y = 3.

32 3 KÉZI CSABA 3.5. Feladat. Mekkora annak a háromszögnek a területe, melyet az f() = e 3 függvénynek az = pontjába húzott érint je a koordinátatengelyekkel bezár? Az érint egyenlete y = f( ) + f ( )( ). Jelen esetben f( ) =, továbbá f () = e 6, így f ( ) = f () =. Tehát az érint egyenlete y = +. Ez az egyenes az tengelyt /-nél, az y-tengelyt -nél metszi, így a keresett terület: T = = Feladat. Határozzuk meg az f() = 3 függvénynek az -tengellyel párhuzamos érint jének egyenletét! Az -tengellyel párhuzamos érint meredeksége, így meg kell oldanunk az f () = egyenletet. Mivel f() = 3, ezért f () = 4 3. Így a 4 3 = egyenletet kell megoldanunk. Kiemelve -et az (4 3) = egyenlethez jutunk. Egy szorzat csak úgy lehet nulla, ha valamelyik tényez je nulla, így = vagy = 4 3. Mivel f() =, és f ( 4 3 Tehát a keresett egyenesek egyenlete y = és y = 3 7. ) = 3 7.

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

10. Differenciálszámítás

10. Differenciálszámítás 0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Függvények menetének vizsgálata, szöveges széls érték feladatok

Függvények menetének vizsgálata, szöveges széls érték feladatok Függvények menetének vizsgálata, szöveges széls érték feladatok 2015. március 29. 1. Alapfeladatok 1. Feladat: Hol növekv az f() függvény, ha deriváltja f () = ( + 2)( 5) 2? Megoldás: Egy függvény növekedését,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,

Részletesebben

Gazdasági Matematika I. Megoldások

Gazdasági Matematika I. Megoldások . (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

Hatványsorok, elemi függvények

Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Nagy Krisztián Analízis 2

Nagy Krisztián Analízis 2 Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Egyváltozós függvények differenciálszámítása

Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Ebben a részben I egy tetszőleges, pozitív hosszúságú, intervallumot jelöl. Egyváltozós függvények differenciálszámítása

Részletesebben

Elemi függvények, függvénytranszformációk

Elemi függvények, függvénytranszformációk Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

Függvénytani alapfogalmak

Függvénytani alapfogalmak Függvénytani alapfogalmak 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg a valós számok legb vebb részhalmazát, 4x + melyen az f(x) = hozzárendelési utasítású függvény értelmezhet! x Megoldás:

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42 Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1 Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben