Deep Learning Szeminárium. MTA, Rényi Alfréd Matematikai Kutatóintézet
|
|
- Jakab Tamás
- 4 évvel ezelőtt
- Látták:
Átírás
1 Deep Learning Szeminárium 5. előadás: Mély hálózatok Csiszárik Adrián MTA, Rényi Alfréd Matematikai Kutatóintézet 1
2 A hálózat mélysége A 2000-es évekig 1-2 rejtett rétegű, sekély hálózatokkal kísérleteztek Több réteg növeli a reprezentáció rugalmasságát Kevesebb neuron is elég lehet Hierarchikus adatreprezentációk tudnak létrejönni Gazdagabb reprezentációs struktúra, jobb általánosítás Sajnos mélyebb hálózatokat nehezebb tanítani! 2
3 Instabil gradiensek problémája Vanishing gradients: bemenet felé egyre kisebb gradiensek Exploding gradients: bemenet felé egyre nagyobb gradiensek A korai rétegek gradiense egy hosszú szorzat eredménye W T i σ (z i ) alakú tényezőkkel Ahhoz, hogy a különböző rétegek gradiensei hasonló nagyságrendűek legyenek, valamilyen mechanizmusnak gondosan ki kell(ene) egyensúlyoznia ezeket a tényezőket. 3
4 Instabil gradiensek problémája Sok trükk segíthet ennek kezelésében: Más aktivációs függvények keresése: ReLU Súlyok és eltolások gondos inicializálása Több tanító adat, augmentáció Különféle SGD variánsok átméretezhetik a gradienst Konvolúciós hálók: kevesebb paraméter, gazdagabb gradiens jel Batch Normalization: stabil eloszlás a rétegek bemenetein Reziduális hálózatok 4
5 Batch Normalization A rétegek bemenetének eloszlása változik a tanulás során Törékenyebb és lassabb a tanulási folyamat A rétegeknek folyamatosan adaptálódniuk kell a megváltozott adatkörnyezethez Ötlet: Normalizáljuk a retegek bemeneteit Mini batch alapján, komponensenként normalizálunk A normalizált eloszlás paraméterei tanulhatóak 5
6 Batch Normalization Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Sergey Ioffe, Szegedy Krisztián (2015) Google Scholar szerint hivatkozás 6
7 Reziduális hálózatok Deep Residual Learning for Image Recognition He et al hivatkozás Degradation problem: Egy hálózathoz új rétegeket adva egy ideig nő a pontosság, de gyorsan teĺıtődik és aztán elkezd csökkenni. Pedig a hálózat reprezentációs képessége nő! Hiszen az identitás függvényt kellene megtanulni, hogy az új réteg ne ártson. 7
8 Reziduális hálózatok Nem könnyű SGD-vel identitás függvényt tanulni. Lényesen egyszerűbb elérni, hogy a hálózat konstans nulla függvényt tanuljon: csupa nulla súly. Ha az optimális leképezés az identitás közelében van: könnyebb megtalálni a konstans nullához viszonyítva. 8
9 Reziduális hálózatok Nem jön létre új reprezentációs tér A gradiens exponenciálisan sok úton terjed A közvetlen kapcsolatokon keresztül erős gradiens tud áramlani 9
10 Reziduális hálózatok Residual Networks Behave Like Ensembles of Relatively Shallow Networks Andreas Veit, Michael Wilber, Serge Belongie Tekinthetünk egy reziduális hálóra úgy, mint sok különböző mélységű hálózat együttesére 10
11 Reziduális hálózatok Egy praktikus megfontolás: paraméterszám csökkentése Bottleneck reziduális blokk 11
12 Reziduális hálózatok Akár 1000 felett is tudnak javulást hozni új rétegek. Egy idő után nagyon kicsit növekedés nagyon sok paraméterrel A háló figyelmen kívül tudja hagyni a reziduális blokkokat, ahelyett, hogy hasznosítaná őket. A szélesség növelésével (a mélység rovására), ugyanannyi paraméterrel jobb eredményt tudunk elérni Wide Residual Networks Densenets Wide Residual Networks Sergey Zagoruyko, Nikos Komodakis 12
13 Reziduális hálózatok Egyszerű implementálni https: //github.com/zsoltzombori/keras fashion mnist tutorial/ blob/master/fashion mnist resnet.py 13
14 Optimization An overview of gradient descent optimization algorithms Sebastian Ruder 14
15 Optimization Visualizing the Loss Landscape of Neural Nets Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein NIPS
16 Optimization Cyclical Learning Rates for Training Neural Networks Leslie N. Smith WACV
17 Optimization On the importance of initialization and momentum in deep learning Sutskever et al. ICML
Konvolúciós neurális hálózatok (CNN)
Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
Deep learning. bevezetés
Deep learning bevezetés Egy kis történelem - a kezdetek 1957 - Frank Rosenblatt: Perceptron A perceptron algoritmus első implementációja a Mark I Perceptron gép 20 20 pixeles képet adó kamerához volt kötve
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
Teljesen elosztott adatbányászat alprojekt
Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
Kovács Ernő 1, Füvesi Viktor 2
Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Deep learning szoftverek
Deep learning szoftverek Neurális hálózatok - rétegenkénti szemlélet Előreterjesztés Visszaterjesztés Bemeneti réteg Bemeneti réteg x Rejtett réteg (FC, ReLU) C/ x w1 out1 Rejtett réteg (FC, lin) Rejtett
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.
NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. Neuron helyett neuronháló Neuron reprezentációs erejének növelése: építsünk
Google Summer of Code Project
Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Neurális hálók tanítása során alkalmazott optimalizáció
Neurális hálók tanítása során alkalmazott optimalizáció Háló paramétereinek tanulása Lényegében egy szélsőérték keresési feladat: θ: háló paramétereinek vektora X: tanító minták bemeneteiből képzett mátrix
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
Aradi Bernadett. 2017/18 ősz. TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11
TensorFlow konvolúciós hálózatokhoz Aradi Bernadett 2017/18 ősz TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11 Tensorflow import tensorflow as tf szoftverkönyvtár neurális hálózatokhoz a Google
Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés http://smartlab.tmit.bme.hu Modellezés célja A telefon szenzoradatai alapján egy általános viselkedési
Adversarial tanítás neurális hálózatokban
, Faculty of Information Technology Adversarial tanítás neurális hálózatokban András Horváth Budapest, 2018.11.21 Neurális hálózatok Számos helyen használhatóak Önvezető autók Alpha Go Arcfelismerés Neurális
Peer-to-peer (P2P) gépi tanulás. Hegedűs István
Peer-to-peer (P2P) gépi tanulás Hegedűs István Motiváció Adatokban rejlő információk kinyerésének fontossága adatbányászat, gépi-tanulás, modell építés Különböző módszerekkel összegyűjtött adatok feldolgozása
Deep Learning: Mélyhálós Tanulás
Deep Learning Deep Learning: Mélyhálós Tanulás Mesterséges Neuronhálók 2015 o sz Milacski Zoltán Ádám srph25@gmail.com http://milacski.web.elte.hu ELTE Informatika Doktori Iskola 2015-09-21 Deep Learning
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ
infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
Sergyán Szabolcs szeptember 21.
Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére. Szoldán Péter
>ready to transmit A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére Szoldán Péter A hálózatnak nincs kontextusa Képzeljék el, hogy amióta megszülettek, semmit mást nem
WWW.HOTHOTEXCLUSIVE.COM
AQUA AQUA - ELEMES RADIÁTOR A gömbölyű formákkal rendelkező, elegáns Aqua elemes radiátor ötvözi a klasszikus megjelenést a nagy teljesítménnyel és különféle színekkel. Alakjának köszönhetően a minimumra
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
Informatikai Kar Eötvös Loránd Tudományegyetem Mesterséges neuronhálók
Mesterséges neuronhálók Lőrincz András Bevezető kérdések Mi az intelligencia? Mi a mesterséges intelligencia? 2 Miről lesz szó? Felismerés első típusa 3 Miről lesz szó? Felismerés első típusa Ló Honnan
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
KÁRTÉKONY NÖVÉNYEK AZONOSÍTÁSA
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Távközlési és Médiainformatikai Tanszék Osváth Márton KÁRTÉKONY NÖVÉNYEK AZONOSÍTÁSA KÖZÖSSÉGI ADATBÁZISBÓL MÉLY KONVOLÚCIÓS
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL
PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL Csúszóablakos szegmentálás Szegmentálás direkt osztályozással Kisméretű ablakkal kivágott kép alapján megítéli az adott pixel környezetének a típusát Nagyon lassú, nehezen
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Digitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
Megerősítéses tanulás 2. előadás
Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Új eredmények a mély neuronhálós magyar nyelvű beszédfelismerésben
Szeged, 2014. január 16 17. 3 Új eredmények a mély neuronhálós magyar nyelvű beszédfelismerésben Grósz Tamás 1, Kovács György 2, Tóth László 2 1 Szegedi Tudományegyetem, TTIK, Informatikai Tanszékcsoport,
Rendszámfelismerő rendszerek
Problémamegoldó szeminárium Témavezető: Pataki Péter ARH Zrt. ELTE-TTK 2013 Tartalomjegyzék 1 Bevezetés 2 Út a megoldás felé 3 Felmerült problémák 4 Alkalmazott matematika 5 További lehetőségek Motiváció
1. Bevezetés...4. 1.1. A kutatás iránya, célkitűzése...4. 1.2. A dokumentum felépítése...6. 2. Irodalmi áttekintés...8
Tartalomjegyzék 1. Bevezetés...4 1.1. A kutatás iránya, célkitűzése...4 1.. A dokumentum felépítése...6. Irodalmi áttekintés...8.1. Fuzzy logika, halmazok, műveletek...8.1.1. Fuzzy halmazok...9.1.. Fuzzy
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)
Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás
Véleménypolarizáció és választási részvétel. Kmetty Zoltán MTA- ELTE- PERIPATO
Véleménypolarizáció és választási részvétel Kmetty Zoltán MTA- ELTE- PERIPATO Tartalom Problémafelvetés Magyarázati sémák Indikátorok, modellek Eredmények Választási verseny és részvétel összefüggése Kistelepülések
Biológiai és mesterséges neurális hálózatok
Biológiai és mesterséges neurális hálózatok Szegedy Balázs 2018. október 10. Hasonlóságok és külömbségek A mesterséges neurális hálózatok története 1957-ben kezdődött: perceptron (Frank Rosenblatt). 400
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
BIG DATA ÉS GÉPI TANULÁS KÖRNYEZET AZ MTA CLOUD-ON KACSUK PÉTER, NAGY ENIKŐ, PINTYE ISTVÁN, HAJNAL ÁKOS, LOVAS RÓBERT
BIG DATA ÉS GÉPI TANULÁS KÖRNYEZET AZ MTA CLOUD-ON KACSUK PÉTER, NAGY ENIKŐ, PINTYE ISTVÁN, HAJNAL ÁKOS, LOVAS RÓBERT TARTALOM MTA Cloud Big Data és gépi tanulást támogató szoftver eszközök Apache Spark
Rendszertan. Visszacsatolás és típusai, PID
Rendszertan Visszacsatolás és típusai, PID Hangos Katalin Számítástudomány Alkalmazása Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium MTA Számítástechnikai és Automatizálási Kutató Intézete
Probabilisztikus modellek II: Inferencia. Nagy Dávid
Probabilisztikus modellek II: Inferencia Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 előző előadás előző előadás az agy modellt épít a világról előző előadás az agy modellt épít a világról
Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában
Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának
Valósidejű objektumkövetés mély tanulás segítségével
SZAKDOLGOZAT FELADAT Münczberg Tamás szigorló mérnök informatikus hallgató részére Valósidejű objektumkövetés mély tanulás segítségével A gépi tanulás új módszerei az intelligens érzékelés számos területét
Bodó / Csató / Gaskó / Sulyok / Simon október 9. Matematika és Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár
Bodó / Csató / Gaskó / Sulyok / Simon Matematika és Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2016. október 9. Tudnivalók Tudnivalók: 1 Csapatok kiválasztása: a második hét végéig; 2
Mély neuronhálók az akusztikus modellezésben
Szeged, 2013. január 7 8. 3 Mély neuronhálók az akusztikus modellezésben Grósz Tamás, Tóth László MTA-SZTE Mesterséges Intelligencia Kutatócsoport, e-mail: groszt@sol.cc.u-szeged.hu,tothl@inf.u-szeged.hu
Marketing Történelmi mérföldkövek
Marketing Történelmi mérföldkövek A Semperit abroncs divizió beolvad a Continental AG-ba. A Master-Grip bevezetése. A Semperit név megalkotása a Latin "semper it szavakból. (gördülésben tart). A Semperit
A TensorFlow rendszer és a mély tanulás. TensorFlow system and deep learning
Gradus Vol 5, No 2 (2018) 360-367 ISSN 2064-8014 TensorFlow system and deep learning Dr. Buzáné dr. Kis Piroska 1 1 Matematika és Számítástudományi Tanszék, Informatikai Intézet, Dunaújvárosi Egyetem,
Szomszédság alapú ajánló rendszerek
Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Mély konvolúciós neurális hálózatok. Hadházi Dániel BME IE 338
Mély konvolúciós neurális hálózatok Hadházi Dániel BME IE 338 hadhazi@mit.bme.hu ÚJ ARCHITEKTÚRÁLIS ELEMEK Konvolúciós réteg Motiváció: Klasszikus képfeldolgozásnál alapművelet a konvolúció: Zajszűrésre
Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben
Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút
Probabilisztikus modellek V: Struktúra tanulás. Nagy Dávid
Probabilisztikus modellek V: Struktúra tanulás Nagy Dávid Statisztikai tanulás az idegrendszerben, 2015 volt szó a normatív megközelítésről ezen belül a probabilisztikus modellekről láttatok példákat az
A Barabási-Albert-féle gráfmodell
A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.
Pletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban
Közösségek keresése nagy gráfokban
Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek
Keleti kikötő negyed, Amszterdam
Amszterdam Keleti kikötő negyede néhány mesterséges félszigeten helyezkedik el, melyeket 1900 körül létesítettek az intenzív hajó- és áruforgalom kiszolgálására. A kikötői funkció jellege azóta megváltozott,
Bevezetés az informatikába
Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
KUTATÁSI JELENTÉS. Multilaterációs radarrendszer kutatása. Szüllő Ádám
KUTATÁSI JELENTÉS Multilaterációs radarrendszer kutatása Szüllő Ádám 212 Bevezetés A Mikrohullámú Távérzékelés Laboratórium jelenlegi K+F tevékenységei közül ezen jelentés a multilaterációs radarrendszerek
MATEMATIKAI PROBLÉMAMEGOLDÓ GYAKORLAT
MATEMATIKAI PROBLÉMAMEGOLDÓ GYAKORLAT Ergodelmélet Dávid Szabolcs Papp Dániel Stippinger Marcell 2009.12.11 2 Definíció: A T endomorfizmust ergodikusnak nevezzük, ha bármely f L 2 függvényre f const. (Miután
Teljesítmény Mérés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés / 20
Teljesítmény Mérés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) Teljesítmény Mérés 2013 1 / 20 Tartalomjegyzék 1 Bevezetés 2 Visual Studio Kód metrikák Performance Explorer Tóth Zsolt
Idősor előrejelzés. Szórádi Júlia, BSc konzulens: Dr. Horváth Gábor. Önálló laboratórium (BMEVIMIA362) II. félév
Idősor előrejelzés Szórádi Júlia, BSc konzulens: Dr. Horváth Gábor Önálló laboratórium (BMEVIMIA362) 2010-11 II. félév IDŐSOR ELŐREJELZÉS Az idősor előrejelzés számos területen alapvető fontosságú feladat,
A szimplex algoritmus
. gyakorlat A szimplex algoritmus Az előző órán bevezetett feladat optimális megoldását fogjuk megvizsgálni. Ehhez új fogalmakat, és egy algoritmust tanulunk meg. Hogy az algoritmust alkalmazni tudjuk,
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON
A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON Pintér István, pinter@gandalf.gamf.hu Nagy Zoltán Gépipari és Automatizálási Mûszaki Fõiskola, Informatika Tanszék Gépipari és Automatizálási
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
Lineáris különböz ségek
Ivanyos Gábor MTA SZTAKI 2010 december 13 A feladat Titok: u = (µ 1,..., µ n ) n dimenziós vektor Z n 3 -b l Z 3 = az egész számok modulo 3 Gombnyomásra kapunk: véletlen v i = (a i1,..., a in ) vektorokat,
Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2.
Véletlen gráfok Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet agnes@cs.elte.hu 2015. december 2. Nagy hálózatok Példák valós hálózatokra társadalmi hálózatok