Elektromosságtan. I. Egyenáramú hálózatok. Magyar Attila

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elektromosságtan. I. Egyenáramú hálózatok. Magyar Attila"

Átírás

1 Elektromosságtan I. Egyenáramú hálózatok Magyar Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék február 1.

2 Áttekintés Alaptörvények Áramerősség 1 Alaptörvények Áramerősség Feszültség Potenciál A feszültség és az áram kapcsolata Ellenállás Források és generátorok 2 Lineáris egyenáramú hálózatok elemi számítása Magyar Attila (Pannon Egyetem) Elektromosságtan február 2 / 39

3 Áramerősség Alaptörvények Áramerősség Elektromos áram: töltött részecskék mozgása. Áramirány: pozitív töltéshordozók iránya. Jele I. [I ] = amper = A (Kirchoff csomóponti törvénye) Bármely csomópontra az I k áramerősségek előjeles összege nulla. n I k = 0 A csomópontba befolyó a negatív, a kifolyó a pozitív. Magyar Attila (Pannon Egyetem) Elektromosságtan február 3 / 39

4 Alaptörvények Áramerősség Ismeretlen áramirányoknál referencia áramiránnyal dolgozunk. I 4 + I 5 I 1 I 2 I 3 = 0 Csomóponti törvény Töltésmegmaradás elve: a csomópontot körülvevő zárt felület belsejében levő töltések száma állandó. Általánosítása a vágattörvény Magyar Attila (Pannon Egyetem) Elektromosságtan február 4 / 39

5 Feszültség Alaptörvények Feszültség Töltésáramlás energiaviszonyait fejezi ki, jele U. Iránya a pozitív pólusból a negatív felé mutat. Mérése voltmérővel történik. [U] = volt = V (Kirchoff huroktörvénye) Bármely hurok (irányított zárt görbe) mentén az U k feszültségek előjeles összege nulla. (Az ellenkező irányúakat negatív előjellel kell figyelembe venni.) n U k = 0 Magyar Attila (Pannon Egyetem) Elektromosságtan február 5 / 39

6 Potenciál Alaptörvények Potenciál 4 csomópont, köztük 6 feszültség mérhető. Helyette megadható 3 csomópont feszültsége (potenciálja) egy alapponthoz viszonyítva: Huroktörvény a kijelölt hurokra: U A0 U B0 U AB = 0 Φ A Φ B = U AB Két pont potenciáljának különbsége a két pont közt eső feszültség. Magyar Attila (Pannon Egyetem) Elektromosságtan február 6 / 39

7 Alaptörvények A feszültség és az áram kapcsolata Fesz és áram kapcsolata A kétpólusra szabályozható feszültségforrást kapcsolva és az áramot mérve megkaphatjuk a kétpólus U = f (I ), illetve I = g(u) karakterisztikáját. Magyar Attila (Pannon Egyetem) Elektromosságtan február 7 / 39

8 Teljesítmény Alaptörvények Fesz és áram kapcsolata Időegység alatt felvett, vagy leadott energia, illetve végzett munka. Teljesítmény jele P, [P] = watt = W, P = U I Mérése wattmérővel történik Fogyasztói referencia, termelői referencia Magyar Attila (Pannon Egyetem) Elektromosságtan február 8 / 39

9 Alaptörvények Fesz és áram kapcsolata A P = U I teljesítmény lehet pozitív, vagy negatív. Ennek alapján a kétpólus lehet passzív, vagy aktív. passzív: csak (villamos) teljesítmény felvételére képes fogyasztó: teljesítményt vesz fel aktív: teljesítmény leadására termelő: teljesítményt ad le is képes Passzív kétpólus csak fogyasztó lehet, aktív kétpólus fogyasztó és termelő is lehet. Magyar Attila (Pannon Egyetem) Elektromosságtan február 9 / 39

10 Ellenállás Alaptörvények Ellenállás Az ellenállás passzív kétpólus. Ha a karakterisztikája lineáris, akkor lineáris az ellenállás, ha nem, akkor nemlineáris. Az ellenállás, mint fizikiai mennyiség: rezisztencia Magyar Attila (Pannon Egyetem) Elektromosságtan február 10 / 39

11 Alaptörvények Ellenállás (Ohm-törvénye) Lineáris ellenálláson eső feszültség egyenesen arányos a rajta átfolyó árammal. U = R I, I = G U G = 1 R vezetés, vagy konduktancia. Mértékegységeik: [R] = V A = ohm = Ω [G] = A V = siemens = S = Ω 1 Lineáris ellenállás teljesítménye: U I = (R I ) I = R I 2 P = U I = U U R = G U2 Az ellenállás teljesítménye mindig pozitív, azaz az ellenállás mindig fogyasztó. (Negatív ellenállás: olyan aktív elem, amely mindig termelő - nemlineáris kétpólusok leírására alkalmas.) Magyar Attila (Pannon Egyetem) Elektromosságtan február 11 / 39

12 Források Alaptörvények Források és generátorok A források és generátorok aktív kétpólusok. A feszültségforrás U V forrásfeszültsége (az áramforrás I A forrásárama) állandó, azaz U U V (I I A ). A feszültségforrással párhuzamosan kapcsolt bármely elem a hálózat többi elemének szempontjából elhagyható, mivel csak a feszültségforrás áramát befolyásolja. Magyar Attila (Pannon Egyetem) Elektromosságtan február 12 / 39

13 Alaptörvények Források és generátorok Áramforrás: A teljesítmény pozitív is lehet, ha a terhelő kétpólus aktív. Az áramforrással sorba kapcsolt bármely elem a hálózat többi elemének szempontjából elhagyható, mivel csak az áramforrás feszültségét befolyásolja. Magyar Attila (Pannon Egyetem) Elektromosságtan február 13 / 39

14 Generátorok Alaptörvények Források és generátorok A valódi aktív kétpólust generátornak hívjuk. Generátor = forrás + ellenállás A karakterisztika helyettesíthető feszültség- és áramgenerátorral is. Magyar Attila (Pannon Egyetem) Elektromosságtan február 14 / 39

15 Alaptörvények Generátoros helyettesítések Források és generátorok Fesz. generátor karakterisztikája: Áramgenerátor karakterisztikája: U = U V I R b I = I A G b U A feszültséggenerátor üresjárási feszültsége az U V forrásfeszültség, az áramgenerátor rövidzárási árama az I A forrásáram. A kettő hányadosa a generátor R b belső ellenállása: U V I A = R bi A I A = R b Magyar Attila (Pannon Egyetem) Elektromosságtan február 15 / 39

16 Alaptörvények Feszültséggenerátor hatásfoka Források és generátorok Az R ellenállással lezárt feszültséggenerátor kapocsteljesítménye az R b -n hővé alakuló teljesítménnyel kisebb a forrás teljesítményénél: P = U I = (U V I R b ) I = U V I I 2 R b. P = R I 2, P b = R b I 2, η = P hasznos P teljes = P P+P b Az R terhelő ellenállás által felvett teljesítmény: P = R I 2 = U 2 V R (R + R b ) 2 Magyar Attila (Pannon Egyetem) Elektromosságtan február 16 / 39

17 Teljesítmény illesztés Alaptörvények Források és generátorok Keressük meg azt az R 0 terhelést, amely mellett a teljesítmény maximális! P max = U2 V 4R b, η = 50% Terhelő ellenállás által felvett teljesítmény: P = R I 2 = UV 2 R (R + R b ) 2 Maximalizáljuk a felvett teljesítményt: dp dr = 0 = = UV 2 (R + R b ) 2 2R(R + R b ) (R + R b ) 4 R 0 = R b mellett maximális Magyar Attila (Pannon Egyetem) Elektromosságtan február 17 / 39

18 Alaptörvények Források és generátorok Bármely, P max -nál kisebb teljesítmény két különböző R-rel biztosítható P 1 = UV 2 R (R + R b ) 2 = R U2 V R 2 + 2R b R + Rb 2 nullára rendezve: R 2 P 1 + (2R b P 1 UV 2 ) R + R2 b P 1 = 0 R-ben másodfokú egyenlet UV 2 2R b P 1 ± (2R b P 1 UV 2 )2 4Rb 2 P2 1 R 1,2 =, R 1 R 2 = Rb 2 2P 1 A belső ellenálláson hővé alakuló teljesítmény P b = R b I 2 = UV 2 R b (R + R b ) 2 Hatásfok η = P = R P + P b R + R b Magyar Attila (Pannon Egyetem) Elektromosságtan február 18 / 39

19 Áttekintés 1 Alaptörvények 2 Lineáris egyenáramú hálózatok elemi számítása Lineáris hálózat Szuperpozíció elve Ellenállások soros és párhuzamos kapcsolása Ellenállások csillag-háromszög átalakítása Wheatstone - híd A helyettesítő generátorok tétele Millmann tétele Magyar Attila (Pannon Egyetem) Elektromosságtan február 19 / 39

20 Lineáris hálózat Lineáris hálózat Egy hálózat lineáris, ha felépíthető lineáris kétpólusokból. Lineáris kétpólus matematikai alakja: U = R I + U 0 lineáris feszültséggenerátor I = G U + I 0 lineáris áramgenerátor U 0 = 0, ill. I 0 = 0 esetben homogén lineáris karakterisztika, egyébként inhomogén lineáris. R = 0, ill. G = 0 esetben az áramforrás és feszültségforrás karakterisztikája adódik. Egyenáramú hálózat: U V, I A, és R időben állandó. (Lineáris egyenáramú hálózatok számításának alapfeladata) Adott a hálózat struktúrája, az ellenállások rezisztenciája, a források forrásfeszültsége, és forrásárama; határozzuk meg a hálózatot alkotó elemek ismeretlen feszültségeit és áramait! Magyar Attila (Pannon Egyetem) Elektromosságtan február 20 / 39

21 Szuperpozíció elve Szuperpozíció elve Lineáris hálózat esetén az x bemenet és az y kimenet között lineáris kapcsolat áll fenn: y = L{x}, ahol L{c 1 x 1 + c 2 x 2 } = c 1 L{x 1 } + c 2 L{x 2 }, c 1,2 R Összegtartás: szuperpozíció elve Aránytartás: a kimenet a bemenet változásával arányosan változik (Szuperpozíció elve) Lineáris hálózat esetén a különböző források egymástól függetlenül hozzák létre feszültségeiket és áramaikat, ezek a hálózati elemeken összegződnek, szuperponálódnak. Az egyes források hatása úgy is vizsgálható, hogy a többi forrást kikapcsoljuk, azaz a feszültségforrásokat rövidzárral (U V = 0), az áramforrásokat pedig szakadással (I A = 0) helyettesítjük. Magyar Attila (Pannon Egyetem) Elektromosságtan február 21 / 39

22 Szuperpozíció elve A szuperpozíció elve csak lineáris hálózatokra érvényes. I 1 = I 1 + I 1, I 2 = I 2 + I 2, U 1 = U 1 + U 1, U 2 = U 2 + U 2 Magyar Attila (Pannon Egyetem) Elektromosságtan február 22 / 39

23 Ellenállások soros kapcsolása Soros és párhuzamos kapcsolás Sorba kapcsolt ellenállások árama közös, feszültségeik összegződnek Az eredő kétpólus is ellenállás: n n U = R S I = U k = R k I = I és R S = n R k n R k, Az ellenállásokon eső feszültségek arányosak az ellenállások rezisztenciájával: U k = R k I = R k R S U, k = 1,..., n Magyar Attila (Pannon Egyetem) Elektromosságtan február 23 / 39

24 Rezisztív feszültségosztó Soros és párhuzamos kapcsolás Két sorba kapcsolt ellenállás rezisztív feszültségosztót alkot: A leosztott feszültségek: U 1 = U R 1 R 1 + R 2 = U G 2 G 1 + G 2 U 2 = U R 2 R 1 + R 2 = U G 1 G 1 + G 2 G 1 = 1 R 1, G 2 = 1 R 2, és U 1 U 2 = R 1 R 2 = G 2 G 1 Magyar Attila (Pannon Egyetem) Elektromosságtan február 24 / 39

25 Ellenállások párhuzamos kapcsolása Soros és párhuzamos kapcsolás Párhuzamosan kapcsolt ellenállások feszültsége közös, áramaik összegződnek I = U R P = ebből n 1 R P = U R k = U n 1 R k Az ellenállásokon átfolyó áramok fordítottan arányosak az ellenállások rezisztenciájával: I k = U = R P I, k = 1,..., n R k R k n 1 R k, Magyar Attila (Pannon Egyetem) Elektromosságtan február 25 / 39

26 Rezisztív áramosztó Soros és párhuzamos kapcsolás Két párhuzamosan kapcsolt ellenállás rezisztív áramosztót alkot: A leosztott áramok: (Szimmetria) I 1 = R P R 1 I = I I 2 = R P R 2 I = I R 2 G 1 = I R 1 + R 2 G 1 + G 2 R 1 G 2 = I R 1 + R 2 G 1 + G 2 A sorba kapcsolt konduktanciákra vonatkozó összefüggések ugyanolyan alakúak, mint a párhuzamosan kapcsolt rezisztanciákra vonatkozók, és fordítva. R 1 és R 2 párhuzamos eredője R 1 R 2 (replusz) R 1 R 2 = R 1 R 2 R 1 + R 2 Magyar Attila (Pannon Egyetem) Elektromosságtan február 26 / 39

27 Csillag-háromszőg átalakítás Ellenállások csillag-háromszög átalakítása A csillagkapcsolás és a háromszögkapcsolás rezisztenciái mindig megválaszthatók úgy, hogy a hálózat többi részében a feszültségek és áramok nem változnak meg: a két kapcsolás ekvivalens (Kérdés) Mi az összefüggés a két kapcsolás ellenállásai között? Magyar Attila (Pannon Egyetem) Elektromosságtan február 27 / 39

28 Háromszög csillag Csillag-háromszőg átalakítás Az ekvivalencia feltétele, hogy bármely két kapocsra nézve az eredő rezisztencia a két kapcsolásnál megegyezzen, ha a harmadik kapocs árammentes. (i) R 10 + R 20 = R 12 (R 23 + R 31 ) (ii) R 20 + R 30 = R 23 (R 31 + R 12 ) (iii) R 10 + R 30 = R 31 (R 12 + R 23 ) A csillag kapcsolás rezisztanciái R 10 = R 31 R 12 R Jelölés: R = R 12 + R 23 + R 31 R 10 : (i) + (iii) (ii) R 20 : (i) + (ii) (iii) R 30 : (ii) + (iii) (i) R 20 = R 12 R 23 R R 30 = R 23 R 31 R Magyar Attila (Pannon Egyetem) Elektromosságtan február 28 / 39

29 Csillag háromszög Csillag-háromszőg átalakítás Ötlet: páronként zárjuk rövidre a kapcsokat, és határozzuk meg az így kapott kétpólus konduktanciáját. Például 2 és 3 rövidre zárva, és határozzuk meg 1 és 2 közötti konduktanciát! Magyar Attila (Pannon Egyetem) Elektromosságtan február 29 / 39

30 Csillag-háromszőg átalakítás (i) G 12 + G 31 = G 10 (G 20 + G 30 ) (ii) G 23 + G 12 = G 20 (G 30 + G 10 ) (iii) G 31 + G 23 = G 30 (G 10 + G 20 ) Jelölés: G Y = G 10 + G 20 + G 30 G 12 : (i) + (ii) (iii) G 23 : (ii) + (iii) (i) G 31 : (i) + (iii) (ii) A háromszög kapcsolás konduktanciái G 12 = G 10 G 20 G Y G 23 = G 20 G 30 G Y G 31 = G 30 G 10 G Y Áttérve rezisztenciákra: továbbá 1 R Y = 1 R R R 30 R 12 = 1 G 12 = R 10 R 20 R Y R 23 = 1 = R 20 R 30 G 23 R Y R 31 = 1 = R 30 R 10 G 31 R Y Magyar Attila (Pannon Egyetem) Elektromosságtan február 30 / 39

31 Wheatstone-híd Wheatstone - híd Feladat: határozzuk meg az I áramot! Ötlet: alakítsuk át az A-B-C háromszöget csillaggá! Magyar Attila (Pannon Egyetem) Elektromosságtan február 31 / 39

32 Wheatstone - híd R = R + R 3 + R 1 R A = R 1 R R R B = R 3 R R R C = R 1 R 3 R A híd bemenő ellenállása a forrás kapcsairól nézve: R b = R 0 +R C +(R A +R 2 ) (R B +R 4 ) I A és I B ágáramok meghatározása: I A = U 0 R b R B + R 4 R A + R 2 + R B + R 4 I B = U 0 R A + R 2 R b R A + R 2 + R B + R 4 A és B közti feszültség, illetve áram: U = R 2 I A R 4 I B I = U R = R 2 I A R 4 I B R (Kiegyenlített híd) Abban az esetben, ha I=0 R 2 I A = R 4 I B R 2 R 3 = R 1 R 4 Magyar Attila (Pannon Egyetem) Elektromosságtan február 32 / 39

33 A helyettesítő generátorok tétele A helyettesítő generátorok tétele Tétel (Helmholtz) Bármely lineáris kétpólus helyettesíthető egy feszültséggenerátorral (Thévenin-ekvivalens), vagy egy áramgenerátorral (Norton-ekvivalens). Magyar Attila (Pannon Egyetem) Elektromosságtan február 33 / 39

34 A helyettesítő generátorok tétele A kétpólus linearitásának következménye. U és I kapcsolata: U = U V I R b, vagy I = I A G b U A helyettesítő generátor forrásfeszültsége a kétpólus üresjárási feszültsége (I = 0), forrásárama pedig a kétpólus rövidzárási árama (U = 0). Az üresjárási feszültség és a rövidzárási áram hányadosa az R b belső ellenállás, amely úgy is meghatározható, hogy kikapcsoljuk a forrásokat, és meghatározzuk a kétpólus bemeneti ellenállását. Magyar Attila (Pannon Egyetem) Elektromosságtan február 34 / 39

35 Sorba kapcsolt feszültséggenerátorok A helyettesítő generátorok tétele A forrásfeszültségek összeadódnak, az eredő belső ellenállás pedig a belső ellenállások soros eredője: R b = R b1 + R b2 U V = U V 1 + U V 2 n generátor esetén n R b = U V = n R bk U V k Magyar Attila (Pannon Egyetem) Elektromosságtan február 35 / 39

36 A helyettesítő generátorok tétele Párhuzamosan kapcsolt áramgenerátorok A forrásáramok összeadódnak, az eredő belső konduktancia pedig a belső konduktanciák párhuzamos eredője. G b = G b1 + G b2, I A = I A1 + I A2 n G b = G bk n I A = I Ak Magyar Attila (Pannon Egyetem) Elektromosságtan február 36 / 39

37 A helyettesítő generátorok tétele Párhuzamosan kapcsolt feszültséggenerátorok Párhuzamosan kapcsolt feszültséggenerátorokat helyettesíthetjük Norton-ekvivalensükkel. G bk = 1, k = 1, 2, G b = G b1 + G b2, U V = 1 (G b1 U V R bk G 1 + G b2 U V 2 ) b n n I A = G bk U V k G b = G bk, U V = 1 n G bk U V G k b Magyar Attila (Pannon Egyetem) Elektromosságtan február 37 / 39

38 Sorba kapcsolt áramgenerátorok A helyettesítő generátorok tétele Sorba kapcsolt áramgenerátorokat helyettesíthetjük Théveninekvivalensükkel. n n U V = R bk I Ak, R b = R bk, I A = 1 n R bk I Ak R b Magyar Attila (Pannon Egyetem) Elektromosságtan február 38 / 39

39 Millmann tétele Millmann tétele, vagy csillagpont-eltolódás tétele Határozzuk meg az alábbi kapcsolásban az U AB feszültséget! U AB = r r U Vk R k + 1 R k + t m=1 s I Am 1 R r+i i=1 = összes áram összes ellenállás Magyar Attila (Pannon Egyetem) Elektromosságtan február 39 / 39

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra

ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA, KIRCHHOFF I. TÖRVÉNYE, A CSOMÓPONTI TÖRVÉNY ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA. 1. ábra ELLENÁLLÁSOK PÁRHUZAMOS KAPCSOLÁSA Három háztartási fogyasztót kapcsoltunk egy feszültségforrásra (hálózati feszültségre: 230V), vagyis közös kapocspárra, tehát párhuzamosan. A PÁRHUZAMOS KAPCSOLÁS ISMÉRVE:

Részletesebben

Villamos hálózatok - áramkörök

Villamos hálózatok - áramkörök Villamos hálózatok - áramkörök Az elektromágneses térnek olyan egyszerűsített leírása, amely csak az erőtér néhány jellemző mennyisége közötti kapcsolatára vonatkozik Áram Töltések rendezett mozgása villamos

Részletesebben

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA

TRANZISZTOROS KAPCSOLÁSOK KÉZI SZÁMÍTÁSA TRNZSZTOROS KPSOLÁSOK KÉZ SZÁMÍTÁS 1. gyenáramú számítás kézi számításokhoz az ábrán látható egyszerű közelítést használjuk: = Normál aktív tartományban a tranzisztort bázis-emitter diódáját az feszültségforrással

Részletesebben

ELEKTROTECHNIKA (GEVEE 048B)

ELEKTROTECHNIKA (GEVEE 048B) ELEKTOTECHNKA (GEVEE 048B) Dr. adács László főiskolai docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mail: elkrad@uni-miskolc.hu Honlap: www.uni-miskolc.hu/~elkrad Hét Tárgykör Előadási anyag. (8). (9)

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA (GEVEE050B) ELEKTROTECHNIKA (GEVEE6047)

ELEKTROTECHNIKA-ELEKTRONIKA (GEVEE050B) ELEKTROTECHNIKA (GEVEE6047) ELEKTOTECHNKA-ELEKTONKA (GEVEE050B) ELEKTOTECHNKA (GEVEE6047) Dr. adács László főiskolai docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mail: elkrad@uni-miskolc.hu Honlap: www.uni-miskolc.hu/~elkrad

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

VILLAMOSSÁGTAN I. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék

VILLAMOSSÁGTAN I. Áramkör számítási példák és feladatok. MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék MISKOLCI EGYETEM Elektrotechnikai-Elektronikai Intézeti Tanszék VILLAMOSSÁGTAN I. Áramkör számítási példák és feladatok Összeállította: Dr. Radács László Gépészmérnöki és Informatikai Kar Villamosmérnöki

Részletesebben

Egységes jelátalakítók

Egységes jelátalakítók 6. Laboratóriumi gyakorlat Egységes jelátalakítók 1. A gyakorlat célja Egységes feszültség és egységes áram jelformáló áramkörök tanulmányozása, átviteli karakterisztikák felvétele, terhelésfüggőségük

Részletesebben

3. Térvezérlésű tranzisztorok

3. Térvezérlésű tranzisztorok 1 3. Térvezérlésű tranzisztorok A térvezérlésű tranzisztorok (Field Effect Transistor = FET) működési elve alapjaiban eltér a bipoláris tranzisztoroktól. Az áramvezetés mértéke statikus feszültséggel befolyásolható.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 006. május 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 006. május 18. 1:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM

Részletesebben

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m]

2. Egymástól 130 cm távolságban rögzítjük az 5 µ C és 10 µ C nagyságú töltéseket. Hol lesz a térerısség nulla? [0,54 m] 1. Elektrosztatika 1. Egymástól 30 m távolságban rögzítjük az 5 µ C és 25 µ C nagyságú töltéseket. Hová helyezzük a 12 µ C nagyságú töltést, hogy egyensúlyban legyen? [9,27 m] 2. Egymástól 130 cm távolságban

Részletesebben

Elektronika. Kerecsenné dr Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék V2. 3.emelet

Elektronika. Kerecsenné dr Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék V2. 3.emelet Elektronika Kerecsenné dr Rencz Márta rencz@eet.bme.hu Ress Sándor (ress@eet.bme.hu) Elektronikus Eszközök Tanszék V2. 3.emelet http://www.eet.bme.hu A tantárgy oktatásának módja Az előadások vázlata pdf

Részletesebben

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)

Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet) Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép és készülékszerelő

Részletesebben

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban.

A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. E II. 6. mérés Műveleti erősítők alkalmazása A mérés célja: Példák a műveleti erősítők lineáris üzemben történő felhasználására, az előadásokon elhangzottak alkalmazása a gyakorlatban. A mérésre való felkészülés

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIM Elektronikai alapismeretek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Egyszerű áramkörök vizsgálata

Egyszerű áramkörök vizsgálata A kísérlet célkitűzései: Egyszerű áramkörök összeállításának gyakorlása, a mérőműszerek helyes használatának elsajátítása. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek)

Részletesebben

Elektronika 1. 9. Előadás. Teljesítmény-erősítők

Elektronika 1. 9. Előadás. Teljesítmény-erősítők Elektronika 1 9. Előadás Teljesítmény-erősítők Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki Könyvkiadó, 1999 - Borbély

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Irányítástechnika 1. 5. Elıadás. Félvezetıs logikai áramkörök. Irodalom

Irányítástechnika 1. 5. Elıadás. Félvezetıs logikai áramkörök. Irodalom Irányítástechnika 1 5. Elıadás Félvezetıs logikai áramkörök Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Helmich József: Irányítástechnika I, 2005 Félvezetıs logikai elemek Logikai szintek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria 005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 011. május 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 011. május 13. 8:00 Az írásbeli vizsga időtartama: 0 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

higanytartalom kadmium ólom

higanytartalom kadmium ólom Termék Alkáli elem, 1,5 V oldal 1. az 5-ből 1. Típusmegjelölés: IEC: LR14 JIS: AM-2 ANSI: C 2. Kémiai rendszer: elektrolit-cink-mangándioxid (higany- és kadmiummentes) 3. Méretek: Ø 24.9-26.2mm, magasság:

Részletesebben

Mágneses szuszceptibilitás vizsgálata

Mágneses szuszceptibilitás vizsgálata Mágneses szuszceptibilitás vizsgálata Mérést végezte: Gál Veronika I. A mérés elmélete Az anyagok külső mágnesen tér hatására polarizálódnak. Általában az anyagok mágnesezhetőségét az M mágnesezettség

Részletesebben

A döntő feladatai. valós számok!

A döntő feladatai. valós számok! OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. május 1. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 1. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 201. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 201. május 20. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika tárgy 5. sz. laboratóriumi gyakorlatához

Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika tárgy 5. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útmutató Periodikus jelek vizsgálata, egyfázisú egyenirányító kapcsolások Az Elektrotechnika

Részletesebben

Transzformátor vizsgálata

Transzformátor vizsgálata A kísérlet, mérés célkitűzései: A transzformátor működési elvének megértése, gyakorlati alkalmazás lehetőségeinek megismerése kísérletek útján. Eszközszükséglet: Tanulói transzformátor készlet digitális

Részletesebben

A Hozzárendelési feladat megoldása Magyar-módszerrel

A Hozzárendelési feladat megoldása Magyar-módszerrel A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2006. október 2. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 2. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Autóipari beágyazott rendszerek. Fedélzeti elektromos rendszer

Autóipari beágyazott rendszerek. Fedélzeti elektromos rendszer Autóipari beágyazott rendszerek Fedélzeti elektromos rendszer 1 Személygépjármű fedélzeti elektromos rendszerek 12V (néha 24V) névleges feszültség Energia előállítás Generátor Energia tárolás Akkumulátor

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Napenergia hasznosítási lehetőségek összehasonlító elemzése. Mayer Martin János Dr. Dán András

Napenergia hasznosítási lehetőségek összehasonlító elemzése. Mayer Martin János Dr. Dán András Napenergia hasznosítási lehetőségek összehasonlító elemzése Mayer Martin János Dr. Dán András Napenergia hasznosítása Villamosenergiatermelés Hő hasznosítás: fűtés és használati melegvíz Közvetlen (napelemek)

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 3 gyakorlat Gyakorlatvezet : Bogya Norbert 2012 február 27 Bogya Norbert Lineáris algebra gyakorlat (3 gyakorlat) Tartalom Egyenletrendszerek Cramer-szabály 1 Egyenletrendszerek

Részletesebben

higanytartalom kadmium ólom

higanytartalom kadmium ólom . Termék Alkáli elem, 1,5 V oldal 1. az 5-ből 1. Típusmegjelölés: IEC LR6 JIS: AM3 ANSI: AA LR6, mignon, AA 2. Kémiai rendszer: elektrolit-cink-mangándioxid (higany- és kadmiummentes) 3. Méretek: Ø 13,5-14,5

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 5 ÉRETTSÉGI VIZSG 05. október. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ EMBERI ERŐFORRÁSOK MINISZTÉRIM Egyszerű, rövid

Részletesebben

Mintavételező és tartó áramkörök

Mintavételező és tartó áramkörök 8. Laboratóriumi gyakorlat Mintavételező és tartó áramkörök 1. A dolgozat célja A mintavételező és tartó (Sample and Hold S/H) áramkörök működésének vizsgálata, a tároló kondenzátor értékének és minőségének

Részletesebben

11 kw/715 1/min. 160 kw/10000 1/min. Dr. Emőd István. Zöllner B-220 tip. örvényáramú fékpad 3-fázisú indítómotorral 2006.02.06.

11 kw/715 1/min. 160 kw/10000 1/min. Dr. Emőd István. Zöllner B-220 tip. örvényáramú fékpad 3-fázisú indítómotorral 2006.02.06. 11 kw/715 1/min 160 kw/10000 1/min Zöllner B-220 tip. örvényáramú fékpad 3-fázisú indítómotorral 1_2/1 hajtás fékezés U R g R t Φ Külső gerjesztésű egyenáramú mérlegdinamó (mellékáramkörű motor) Ward-Leonard

Részletesebben

Az ideális feszültségerősítő ELEKTRONIKA 2

Az ideális feszültségerősítő ELEKTRONIKA 2 Az ideális feszültségerősítő ELEKTONIKA Erősítők: Erősítőknek nevezzük azokat az áramköröket amelyek: Nagyobb teljesítményt képesek a kimeneti áramkörben szolgáltatni mind amennyit a bemeneti jelforrástól

Részletesebben

[MECHANIKA- HAJLÍTÁS]

[MECHANIKA- HAJLÍTÁS] 2010. Eötvös Loránd Szakközép és Szakiskola Molnár István [MECHANIKA- HAJLÍTÁS] 1 A hajlításra való méretezést sok helyen lehet használni, sok mechanikai probléma modelljét vissza lehet vezetni a hajlítás

Részletesebben

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei

Részletesebben

xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78%

xdsl Optika Kábelnet Mért érték (2012. II. félév): SL24: 79,12% SL72: 98,78% Minőségi mutatók Kiskereskedelmi mutatók (Internet) Megnevezés: Új hozzáférés létesítési idő Meghatározás: A szolgáltatáshoz létesített új hozzáféréseknek, az esetek 80%ban teljesített határideje. Mérési

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 080 ÉETTSÉGI VIZSG 009. május. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy

Programozható irányítóberendezések és szenzorrendszerek ZH. Távadók. Érdemjegy Név Neptun-kód Hallgató aláírása 0-15 pont: elégtelen (1) 16-21 pont: elégséges (2) 22-27 pont: közepes (3) 28-33 pont: jó (4) 34-40 pont: jeles (5) Érzékelők jellemzése Hőmérsékletérzékelés Erő- és nyomásmérés

Részletesebben

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével.

A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. A mérés célkitűzései: Kaloriméter segítségével az étolaj fajhőjének kísérleti meghatározása a Joule-féle hő segítségével. Eszközszükséglet: kaloriméter fűtőszállal digitális mérleg tanulói tápegység vezetékek

Részletesebben

Bevezetés a lágy számítás módszereibe

Bevezetés a lágy számítás módszereibe BLSZM-07 p. 1/10 Bevezetés a lágy számítás módszereibe Nem fuzzy halmaz kimenetű fuzzy irányítási rendszerek Egy víztisztító berendezés szabályozását megvalósító modell Viselkedésijósló tervezési példa

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 582 03 Hűtő-, klíma- és hőszivattyú

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 4 előadás Főátlagok összehasonlítása http://uni-obudahu/users/koczyl/gazdasagstatisztikahtm Kóczy Á László KGK-VMI Viszonyszámok (emlékeztető) Jelenség színvonalának vizsgálata

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály 5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,

Részletesebben

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4

33 522 04 1000 00 00 Villanyszerelő 4 Villanyszerelő 4 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk

Részletesebben

Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő

Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő A 10/007 (. 7.) SzMM rendelettel módosított 1/006 (. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

TYP UTR-52472 Elektronikus Hőmérsékletszabályozó UFS-2 Kezelési utasítás

TYP UTR-52472 Elektronikus Hőmérsékletszabályozó UFS-2 Kezelési utasítás TYP UTR-52472 Elektronikus Hőmérsékletszabályozó UFS-2 Kezelési utasítás Figyelmeztetés! A függetlenül felszerelendő készüléket feszültségmentes állapotban csak elektromos szakember nyithatja ki. A csatlakoztatást

Részletesebben

HITELESÍTÉSI ELŐÍRÁS MÉRŐTRANSZFORMÁTOROK HE 39-2000

HITELESÍTÉSI ELŐÍRÁS MÉRŐTRANSZFORMÁTOROK HE 39-2000 HITELESÍTÉSI ELŐÍRÁS HE 39-2000 Az adatbázisban lévő elektronikus változat az érvényes! A nyomtatott forma kizárólag tájékoztató anyag! TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS HATÁLYA...4 2. MÉRTÉKEGYSÉGEK, JELÖLÉSEK...4

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség

Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,

Részletesebben

Azonosító jel: Matematika emelt szint

Azonosító jel: Matematika emelt szint I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012

Részletesebben

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK

ALAPFOGALMAK ÉS ALAPTÖRVÉNYEK A ALAPFOGALMAK ÉS ALAPTÖVÉNYEK Elektromos töltés, elektromos tér A kémiai módszerekkel tová nem ontható anyag atomokól épül fel. Az atom atommagól és az atommagot körülvevő elektronhéjakól áll. Az atommagot

Részletesebben

Egyenáramú alapmérések. Elektrolitok vezetőképességének mérése

Egyenáramú alapmérések. Elektrolitok vezetőképességének mérése 4. fejezet Egyenáramú alapmérések. Elektrolitok vezetőképességének mérése Ha egy áramköri elemre (pl. fémes vezetőre vagy elektrolitbe merülő elektródák közé) eletromotoros erőt, azaz feszültséget kapcsolunk,

Részletesebben

Differenciál egyenletek (rövid áttekintés) d x 2

Differenciál egyenletek (rövid áttekintés) d x 2 Differeniál egenletek (rövid áttekintés) Differeniálegenlet: olan matematikai egenlet, amel eg vag több változós ismeretlen függvén és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges

Részletesebben

15. TRANZISZTOROS ERŐSÍTŐ

15. TRANZISZTOROS ERŐSÍTŐ 15. TRANZISZTOROS RŐSÍTŐ élkitűzés: A közös emitteres erősítőkapcsolás működésének megértése. I. lméleti áttekintés A tranzisztorok főleg feszültség vagy áramerősség erősítésére használt félvezető eszközök,

Részletesebben

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla

MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla MBLK12: Relációk és műveletek (levelező) (előadásvázlat) Maróti Miklós, Kátai-Urbán Kamilla Jelölje Z az egész számok halmazát, N a pozitív egészek halmazát, N 0 a nem negatív egészek halmazát, Q a racionális

Részletesebben

VILLAMOSSÁGTANI ALAPOK

VILLAMOSSÁGTANI ALAPOK Energetikai Gépek és Rendszerek Tanszék Azonosítási szám: A 04 dr. Zsebik Albin VILLAMOSSÁGTANI ALAPOK Oktatási segédanyag Kézirat Budapest, 003. január Villamosságtan_zsa.doc www.jomuti.lpm.hu Az alább

Részletesebben

1. Ismertesse a villamos áramkörök szimulációjára használható szoftverek típusait! Az egyik csoportba az áramkör tervezéshez használható szoftverek

1. Ismertesse a villamos áramkörök szimulációjára használható szoftverek típusait! Az egyik csoportba az áramkör tervezéshez használható szoftverek 1. Ismertesse a villamos áramkörök szimulációjára használható szoftverek típusait! Az egyik csoportba az áramkör tervezéshez használható szoftverek (az angol nyelvű szakirodalomban: Circuit-Oriented Simulators)

Részletesebben

B+ B- A+ A- G Y 1 C1 2 3 C2 4

B+ B- A+ A- G Y 1 C1 2 3 C2 4 230V BE Trafó 230V/16V Min 30VA Amennyiben nincs beltéri sziréna, akkor a B és B pontok közé be kell kötni 1db 1kiloohmos ellenállást! Akku 12V/7Ah 3,15A Biztosító BA BA B B A A G Y 1 C1 2 3 C2 4 1 A A

Részletesebben

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!

1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! 1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti

Részletesebben

Klórérzékelı vezérlı elektronika

Klórérzékelı vezérlı elektronika Klórérzékelı vezérlı elektronika Leírás: A vezérlı elektronika fı feladata a mérés során alkalmazott klórgáz-érzékelı szonda mőködıképességének megırzése a kémiailag igen aktív gáz érzékelésekor, valamint

Részletesebben

Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja

Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek, mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A vllamos forgógépek, mutatós műszerek működésének alapja Magnetosztatka mező: nyugvó állandó mágnesek és egyenáramok dőben állandó

Részletesebben

2. gyakorlat. Szupravezető mérés

2. gyakorlat. Szupravezető mérés 2. gyakorlat Szupravezető mérés A gyakorlat során a hallgatók 5 mérési feladatot végeznek el: 1. Meissner effektus bemutatása: Mérés célja: az elméletben megismert Meissner effektus gyakorlati megjelenítése

Részletesebben

Elektrotechnika-tételek 3. félév (Elektrotechnika I.) 1. Villamos er tér összefüggései általánosan, pontszer töltésekre, síkkondenzátorra.

Elektrotechnika-tételek 3. félév (Elektrotechnika I.) 1. Villamos er tér összefüggései általánosan, pontszer töltésekre, síkkondenzátorra. 3. félév (Elektrotechnika I.) 1. Villamos er tér összefüggései általánosan, pontszer töltésekre, síkkondenzátorra. Villám, villámvédelem. 2. Egyenáramú körök törvényei, feszültség és áramgenerátorok, szuperpozíció.

Részletesebben

Hőszivattyú. Zöldparázs Kft

Hőszivattyú. Zöldparázs Kft Hőszivattyú Ez az előadás 2010.szeptember 20-án hangzott el. Mivel az internetes keresők hosszú időre megőrzik a dokumentumokat, vegye figyelembe, hogy az idő múlásával egyes technikai megoldások elavulttá

Részletesebben

Szabályozatlan tápegységek

Szabályozatlan tápegységek Tartalom Áttekintés.2 szabályozatlan tápegységek.4.1 Áttekintés A kompakt tápegységek fontos láncszemek a vezérlések energiaellátásában. Mindenütt használják őket, ahol a folyamat vagy a vezérlés feszültsége

Részletesebben

2011. március 9. Dr. Vincze Szilvia

2011. március 9. Dr. Vincze Szilvia . márius 9. Dr. Vinze Szilvia Tartalomjegyzék.) Elemi bázistranszformáió.) Elemi bázistranszformáió alkalmazásai.) Lineáris függőség/függetlenség meghatározása.) Kompatibilitás vizsgálata.) Mátri/vektorrendszer

Részletesebben

Elektromechanika. 3. mérés. Háromfázisú transzformátor

Elektromechanika. 3. mérés. Háromfázisú transzformátor Elektromechanika 3 mérés Háromfázisú transzformátor 1 Milyen feltételezésekkel élünk ideális transzformátor tárgyalásakor? 1 A primertekercs és a szekundertekercs ellenállása egyaránt zérus (R 1 = 0; R

Részletesebben

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek

Osztályozó vizsga kérdések. Mechanika. I.félév. 2. Az erőhatás jellege, jelölések, mértékegységek Osztályozó vizsga kérdések Mechanika I.félév 1. Az erő fogalma, jellemzői, mértékegysége 2. Az erőhatás jellege, jelölések, mértékegységek 4 A 4. 4 3. A statika I., II. alaptörvénye 4. A statika III. IV.

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

Telekommunikáció Mészáros István Kábelmenedzsment

Telekommunikáció Mészáros István Kábelmenedzsment Kábelmenedzsment Telekommunikáció - függőleges kábelterelők - színes kábelek AMPTRAC 5 AMPTRAC Telekommunikáció Nagysűrűségű kábelezési megoldások - előszerelt és tesztelt moduláris kábelszerelvények -

Részletesebben

Lineáris algebra jegyzet

Lineáris algebra jegyzet Lineáris algebra jegyzet Készítette: Jezsoviczki Ádám Forrás: Az előadások és a gyakorlatok anyaga Legutóbbi módosítás dátuma: 2011-12-04 A jegyzet nyomokban hibát tartalmazhat, így fentartásokkal olvasandó!

Részletesebben

Keresleti függvény - rugalmasság

Keresleti függvény - rugalmasság A rugalmasság fogalma. Pont- és ívrugalmasság. A rugalmasság kiszámítása, grafikus ábrázolása. A rugalmasság különböző fajtái. Rugalmasság és iaci egyensúly. Elemzések a rugalmasság segítségével 2016.

Részletesebben

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve) Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...

Részletesebben

Fluxus. A G vektormező V egyszeresen összefüggő, zárt felületre vett fluxusa:

Fluxus. A G vektormező V egyszeresen összefüggő, zárt felületre vett fluxusa: Matematikai alapok Fluxus A G vektormező V egyszeresen összefüggő, zárt felületre vett fluxusa: GF d V Divergencia Koordinátaredszertől független definíció: div G lim V Descartes-féle koordináták esetén:

Részletesebben

Elektronika I. Dr. Istók Róbert. IV. előadás

Elektronika I. Dr. Istók Róbert. IV. előadás Elektronika I Dr. Istók Róbert IV. előadás Nagyfrekvenciás frekvenciakompenzáció Közös emitteres kapcsolásoknak a nagyfrekvenciás átviteli tulajdonságait, kapcsolás csekély módosításával javítjuk. Nagyfrekvenciás

Részletesebben

Mehet!...És működik! Non-szpot televíziós hirdetési megjelenések hatékonysági vizsgálata. Az r-time és a TNS Hoffmann által végzett kutatás

Mehet!...És működik! Non-szpot televíziós hirdetési megjelenések hatékonysági vizsgálata. Az r-time és a TNS Hoffmann által végzett kutatás Mehet!...És működik! Non-szpot televíziós hirdetési megjelenések hatékonysági vizsgálata Az r-time és a TNS Hoffmann által végzett kutatás 2002-2010: stabil szponzorációs részarány Televíziós reklámbevételek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSGA 008. májs 6. ELEKTONIKAI ALAPISMEETEK EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTUÁLIS MINISZTÉIUM Egszerű,

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor

Részletesebben

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám.

A jelenség magyarázata. Fényszórás mérése. A dipólus keletkezése. Oszcilláló dipólusok. A megfigyelhető jelenségek. A fény elektromágneses hullám. Fényszórás mérése A jelenség magyarázata A megfigyelhető jelenségek A fény elektromágneses hullám. Az elektromos tér töltésekre erőhatást fejt ki. A dipólus keletkezése Dipólusok: a pozitív és a negatív

Részletesebben

HIRDETMÉNY AKCIÓK, KEDVEZMÉNYEK

HIRDETMÉNY AKCIÓK, KEDVEZMÉNYEK HIRDETMÉNY KONDÍCIÓS LISTÁK ÉS ÜGYFÉLTÁJÉKOZTATÓK MÓDOSÍTÁSÁRÓL ÉS VÁLTOZÁSÁRÓL I. A módosítással érintett kondíciós listák és ügyféltájékoztatók A CIB Bank Zrt. (1027 Budapest, Medve u. 4-14.; cégjegyzékszám.:

Részletesebben

Felépítettünk egy modellt, amely dinamikus, megfelel a Lucas kritikának képes reprodukálni bizonyos makro aggregátumok alakulásában megfigyelhető szabályszerűségeket (üzleti ciklus, a fogyasztás simítottab

Részletesebben

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE

GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE GENERÁTOR FORGÓRÉSZ ELLENŐRZÉS A FLUXUS SZONDA FELÉPÍTÉSE, MŰKÖDÉSE Készítette: Ács György RTO FORRÁS: FLUXUS SZONDA ÉS ALKALMAZÁSA KTT MÉRNÖKI IRODA 11SP mérési eredményei A forgórész menetzárlat okozta

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 10 X DETERmINÁNSOk 1 DETERmINÁNS ÉRTELmEZÉSE, TULAJdONSÁGAI A másodrendű determináns értelmezése: A harmadrendű determináns értelmezése és annak első sor szerinti kifejtése: A

Részletesebben

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata

Részletesebben

Mértékegységrendszerek 2006.09.28. 1

Mértékegységrendszerek 2006.09.28. 1 Mértékegységrendszerek 2006.09.28. 1 Mértékegységrendszerek első mértékegységek C. Huygens XVII sz. természeti állandók Párizsi akadémia 1791 hosszúság méter tömeg kilogramm idő másodperc C. F. Gauss 1832

Részletesebben

µflow 100 Áramlás számító egység

µflow 100 Áramlás számító egység µflow 100 Áramlás számító egység µflow 100 Gáz µflow 100 Gőz Kompakt kompenzációszámító gázokra és gőzökre letárolt összenyomhatósági táblázatokkal Gyártó: RFA Industrietechnik e. K. D-82362 Weilheim Web:

Részletesebben

Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén?

Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén? Növelhető-e a hazai szélerőmű kapacitás energiatárolás alkalmazása esetén? Okos hálózatok, okos mérés konferencia Magyar Regula 2012 2012. március 21. Hartmann Bálint, Dr. Dán András Villamos Energetika

Részletesebben