tudáspróbák a középiskolai matematika tananyag oktatásához-tanulásához

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "tudáspróbák a középiskolai matematika tananyag oktatásához-tanulásához"

Átírás

1 1 tudáspróbák a középiskolai matematika tananyag oktatásához-tanulásához Több évtizedes pedagógiai munkám során lehetőségem volt arról meggyőződni, hogy az oktatás nem a tudás közvetítése, hanem a tanulás egyéni folyamatainak irányítása, segítése, szabályozása. Olyan összetett és sokoldalú pedagógiai folyamat ez, amelynek bizonyos pontjain információkat gyűjtünk és értékelünk is. Más szóval: pedagógiailag indokolt szinteken, a kimeneti oldalról érkező információkat visszacsatoljuk a szabályozó rendszer bemeneti oldalára. Ehhez legtöbbször egy olyan rendszert alkalmazunk, amelyik az elérendő célokhoz viszonyított valamilyen hibajellel, hibaértékkel szabályoz. Az előzőekben említett pedagógiai folyamatra visszatérve azt vallom, hogy a mai iskolában helytállóbb az oktatás, tanítás szó helyett a tanulásszervezés használata. Ehhez természetesen annak tisztánlátása is szükséges, hogy a tanulás folyamata során (a környezettel való interakció révén) mindenki maga alkotja meg saját tudását. Tehát nem egyszerű átadásról és átvételről van szó, hanem egy önálló konstrukcióról amelynek számos egyedi jellemzője van. Ilyen például az, hogy ki, minek a megtanulására képes. Oktatáselméleti kutatások (Vigotszkíj, Bloom) megállapították, hogy ebben döntő szerepe van a kiinduló vagy előzetes saját tudásnak. Ez a tudás képezi, egy adott szinten az alapját a további tanulásnak és alapvetően meghatározza, hogy mit lehet erre az alapra felépíteni (élethosszig tartó tanulás). Éppen ezért van jelentősége a folyamatok közbeni információknak, visszacsatolásoknak, formatív értékeléseknek, hogy a szükséges kompenzációs feladatokat időben el tudjuk végezni, végeztetni. Erre a tanulásszervezési feladatra gondolva készítettem el a kvíz tudáspróbákat. Tettem ezt olyan céllal, hogy ezeket a visszacsatolási folyamatokat, a napi gyakorlatban, a lehetőségekhez mérten egyszerűen lehessen megvalósítani. Nagy vállalkozás ez részemről, hiszen a teljes középiskolás (középszintű) tantervi anyag ilyen jellegű feldolgozására még senki nem tett kísérletet. Egy aktív életút tapasztalata és a korai nyugdíjas éveimből közel öt év munkája van ebben a flash videó digitális anyagban. Ezért is merem bátran ajánlani a kollégák figyelmébe. Megtanultam, hogy a pedagógiában nincs tökéletes vagy legjobb. Ennek a munkának is lehetnek gyenge pontjai. Maga a műfaj is olyan, hogy ezt magában hordozza. Alkalmazásának hatékonyságát több szempont megvizsgálása után érdemes megítélni. Lehet a gyenge pontoktól különböző oldalra tenni például a formatív értékelésben betöltött jelentőségét, a tanulói motivációra gyakorolt hatását, a kognitív és a személyes kompetenciák fejlesztésében betöltött szerepét is. Mindezek mellett természetes számomra, hogy minden jobbító szándékú észrevételt köszönettel fogadjak és igényeljek is.

2 2 Az egyes évfolyamok anyagaihoz készült külön szerzői ajánlások részletesen tartalmazzák a felhasználáshoz szükséges tudnivalókat, ezért ebben az írásban ezekkel nem foglalkozom. Tájékoztató jelleggel megemlítem, hogy a nagy projektnek öt egysége van. Ezek közül négy a középiskolai évfolyamoknak (9. 12.) készült és egy a szakiskolai tanulóknak (9. évfolyam.). Ez utóbbi kifejezetten a matematikai kulcskompetenciák kompenzációs feladataira összpontosít, így az általános iskola 8. évfolyamain is eredményesen alkalmazható. KVÍZ az interneten A mai értelemben használatos KVÍZ szó eredete az 1860-as évektől többször változott. Egyik lehetséges eredete a kérdez szó. Használatos a teszt vagy elmepárbaj elnevezés is. A gyakorlatban egy játékos versennyel, párbajjal, vetélkedéssel stb. összefüggésben közismert. Az érdeklődő internetező legalább három nagy weboldalon talál kvíz játékokat. Jellemző, hogy különböző tudományokból merítik a kérdéseket, alternatív válaszokat kínálnak fel. Van oldal, ahol a helyes válasz is tudomására jut a versenyzőnek, van ahol nem. A játék végén pontszám és/vagy nyeremény is van akkor, ha valamilyen üzleti megfontolás miatt regisztrált is a játékos. A struktúrát illetően: van egy kérdés és többnyire négy alternatíva a válaszadásra. Ezek közül kell választani (kijelölni) egyet, ezért feleletválasztós. A játék lényege az, hogy ki, milyen pontosan és gyorsan tudja a memóriából előhívni az adott kérdésre a választ. Különösebb manuális tevékenységet (pl. rajzolás, részletszámítások) nem igényelnek a válaszok. A rövid válaszadási (választási) idő ezt nem is teszi lehetővé. Nincs lehetőség a kijelölt válasz esetleges korrigálására. Ennek is köszönhetően inkább a találgatás kerül előtérbe, mint a gondolkodás. A kérdések többsége viszonylag nagy tudományterületeken belül mozog vagy azokon átível. Van olyan weboldal, ahol pl. matematika kvíz is szerepel. Itt nem témakörökre vagy témákra lebontva, hanem egy-egy adott évfolyam tananyagából szerepelnek, módszertani megfontolások nélkül összerakott, feleletválasztós kérdések. A feleletválasztásnál némi nehézséget okoz, hogy nem a szokásos matematikai jelölések szerepelnek. Az is érzékelhető, hogy az ismeretek gyakorlatban való alkalmazni tudására nem irányulnak kérdések. A látottak alapján megállapíthattam, hogy ezek kvízek kevésbé alkalmasak, vagy egyáltalán nem, a napi tanulásszervezési folyamatba való beépítésbe. Ennek oka természetesen nem a tartalomban van, hanem abban, hogy nem ilyen rendeltetéssel, céllal készültek.

3 3 Milyen egyedi ismérvei vannak az általam készített kvíz tudáspróbáknak? a) Tartalmi, strukturális jellemzők. A tartalom az adott évfolyam középszintű tantervi követelményeihez igazodik. Ezek a tartalmak a gyakorlatban használatos legtöbb tankönyv tematikáját követik, így a tanítás során felépített (tanmenetek gyakorlatának leginkább megfelelő) témakörönként rendszerezettek. A 9. évfolyamon 25 témakör szerepel (pl.: kombinatorika, halmazok, algebrai alapfogalmak, a hatványozás, nevezetes azonosságok stb.). A 10. évfolyamon 28 témakör szerepel (pl.: gondolkodási módszerek, négyzetgyökvonás, az n-edik gyök, a másodfokú egyenlet fogalma, a másodfokú egyenlet megoldóképlete stb.). A 11. évfolyamon 28 témakör szerepel (pl.: permutációk, variációk, kombinációk, gráfok, binomiális együtthatók és a Pascal-háromszög, hatványozás, gyökvonás stb.) A 12. évfolyamon 16 témakör szerepel (pl.: logikai módszerek (I. és II. rész), a számsorozat fogalma és egyszerűbb tulajdonságok, a számtani sorozat, a mértani sorozat stb.) A szakiskolai évfolyamnak készült anyag 11 témakört tartalmaz. (Számok és alapműveletek, modellalkotás a négy alapműveletre, százalékszámítás, egyenletek és egyenlőtlenségek, síkgeometriai számítások, térgeometriai számítások, gondolkodási műveletek, tájékozódás a koordináta-rendszerben, számelmélet alapjai, algebrai alapismeretek, függvényekről egyszerűen) Az egyes témakörökben szereplő kvíz kérdések száma változó. Többnyire 15 és 25 közötti. Ennek megfelelően az időhatárok is változnak. Átlagosan perc adott a kérdéssorok megválaszolására. A szakiskolai anyagban valamivel több az egy-egy témakörhöz tartozó kvíz kérdések száma és néhány perccel hosszabb a megoldásra adott idő is. A kérdések után megjelölt alternatívák száma változó. A kérdéstől függően legalább három és legfeljebb öt válaszból lehet kijelölni a helyesnek véltet. Fontos technikai és ugyanakkor pedagógiai elem is, hogy a már kijelölt válaszon, a megadott időhatáron belül, lehet korrigálni egy törléssel és egy újat kijelölni. A felhasználó minden témakörhöz tájékoztatást kap a következőkről: a) A kvíz kérdések megválaszolásához rendelkezésére álló összes idő. b) A használattal kapcsolatos technikai tudnivalók. c) Kérdésenként a gondolkodási idő. d) Kérdésenként az elérhető pontszám. e) A megfelelő válasz kijelölése után a választás helyességéről. f) A kvíz végén teljesítményének értékeléséről.(pontszám, százalék.) g) Visszatérve a kvíz kérdésekhez a helyes válaszokról és az általa történt választásról. A szakiskolai változatban, a fentieken felül, minden kérdésre a helyes válasz részletes kidolgozása, valamint az ehhez kapcsolódó rövid magyarázatok is elérhetők.

4 4 b) A kvíz kérdésekről és a kiválasztási alternatívákról Célszerű külön választani a kérdéseket és a kérdés megválaszolására (kiválasztására) adott alternatívákat (válaszokat, megoldásokat). Megjegyzem, hogy a kérdések legalább 75%-a fogalmak, ismeretek, összefüggések, tételek stb. alkalmazását és ezekkel összefüggő kombinatív gondolkodást igénylő feladat. A kérdések (feladatok) főbb típusai: 1. A fogalomalkotással kapcsolatosak. 2. Ismeretjellegű tudáselemeket igényelnek 3. Algoritmikus gondolkodást igényelnek. 4. Képességjellegű tudáselemeket igényelnek. 5. Egyéni kreativitást igényelnek. 6. A korábban tanultakhoz kapcsolódó, ismétlő funkciót ellátók. A felkínált választási lehetőségek főbb típusai: 1. Megadott szövegben előforduló tartalmi, jelentésbeli hibát kell felismerni 2. Egy megoldási algoritmusban előforduló hibát kell felismerni. 3. Egy másik probléma megoldása után találjuk meg a helyes választ (közvetett feleletválasztás). 4. Numerikus hibát kell felismerni a helyes válaszadáshoz. 5. Azonos átalakítások után találjuk meg a helyes választ. c) A fejlesztő hatásokról Egy tanulásszervezést segítő eszköz alkalmazását akkor tekintem hatékonynak, ha annak a pedagógiai folyamat egészére nézve is vannak fejlesztő hatásai. Ezek közül feltétlenül szükségesnek tartok néhányat kiemelni. a) A kérdések (feladatok) szöveges megfogalmazása, másrészt az egyes alternatívák szövegben történő megformálása, a rejtett hibák felismerése stb., nagyban hozzájárul a szövegértés, szövegértelmezés, az elemzés, a problémafelismerés fejlesztéséhez. b) A válaszadási időkorlátok egyrészt fejlesztik az összpontosítási képességet, a koncentrációt, a kitartást, az önfegyelmet. c) A gyors visszajelzés és értékelés kedvezően hat az önértékelésre, a belső motivációs faktorok fejlődésére, a reális önkép kialakulására. d) A kialakult versenyhelyzet hozzásegít megtanulni azt, hogy a valós élethelyzetekben hogyan kell viselkedni, hogyan kell értékelni, hogyan lehet az esetleges kudarcot elviselni. e) A választási alternatívák megfontolásra, önfegyelemre, tudatosságra, a tudás fontosságának az elismerésére nevelnek. Nincs értelme a felesleges kattintgatásoknak, mert az elvárt 80%-os teljesítést ezzel nem lehet elérni.

5 5 f) A kvíz kérdések nagy része számolási, műveletvégzési tevékenységet is igényel a megadott időhatáron belül. Ez a tevékenység fejlesztő hatással van a tudásszerző képességre, ezen belül a műveletvégzési sebességre, de a metakognicióra (a saját tudás működtetésének ellenőrzésére) is. g) Fejleszti a tanulási képességet is az által, hogy mozgósítja az asszociatív-memóriát, aktiválja a különböző tudástömböket, a meglévő sémákat. h) Viszonylag sok ábra, kép is szerepel a tudáspróbáknál (pl.: geometria, térgeometria, függvények). Ezek alapjaiban hozzájárulnak a térlátás, a vizuális képesség fejlesztéséhez is. i) Lehetőség van az egyéni képességek és szükségletek szerinti differenciálásra. Ez lehet időre, tartalomra, teljesítményre egyaránt kiterjedő. k) A kérdések megválaszolására adott idő figyelembe veszi az életkori sajátosságokat, az itemek nehézségi fokát és összetettségét, az elvégzendő numerikus műveleteket. Több kísérlet után alakultak ki a jelenlegi határok, amelyek egy átlagos műveleti-, és gondolkodási sebességű ember számára is elegendő. l)kooperációra épülő tanulásszervezés esetén nagyban hozzájárul az érvelni tudás képességének a fejlesztéséhez. A fentiek mellett további lehetősége ennek a nagy projektnek, hogy a kompenzációs feladatokon túl a tanulói tevékenységet és a kooperációt helyezze a középpontba. Az első alkalmazáskor feltétlenül szükséges a tanulók figyelmét felhívni ezekre. A találgatásos kattintgatásoknak nincs értelme. Kipróbálhatják a tanulók ezt is, de hamar rájönnek, hogy egy így elért 30%-40% közötti teljesítménynek nincs értéke és nem is tekinthető teljesítménynek a 80%-hoz viszonyítva. Ezt érdemes megkövetelni és betartatni a tanulókkal. Szokják meg, hogy először figyelmesen elolvassák a kérdést (feladatot), megoldják az adott problémát és a végén keresik meg az alternatívák közül az általuk helyesnek véltet. A megoldáshoz természetesen a megszokott segédeszközöket használhatják. Több lehetőség is kínálkozik olyan tanulásszervezésre, amelyik pl. a páros kooperációra épít tanórai, vagy tanórán kívüli keretek között. Különösen akkor van ennek értelme, amikor a tudáspróba (a megoldások) ellenőrzésére kerül sor. Jó lehetőséget adnak erre az alternatívák egyenkénti vizsgálatai. Miért az a megoldás? Miért hibás a többi válasz? Miért nincs megoldása a feladatnak? Stb. Biztos vagyok abban, hogy ha a tanuló rendszeresen teljesíti a 80%-os eredményt, akkor a megértéshez feltétlenül szükséges fogalomalkotása biztos alapot ad az alkalmazó és a problémamegoldó értelmi funkciók működéséhez. Erre lehet alapozni az egyéni kreativitást, az összetettebb problémák önálló megoldását, mai szóhasználatban a matematikai modellalkotást. Így érvényesülhet igazán a tanulói öntevékenység elve, amelyik azt is jelenti, hogy a tanuló minél változatosabb formában találkozzon a tennivalóival, az önellenőrzés lehetőségeivel, mert annál biztosabb lesz a rögzítés, annál eredményesebb lesz a saját tudás alkalmazása. Ehhez a közös munkához kívánok sok sikert minden tanulónak és az őket tanító pedagógusnak. Kiskunfélegyháza, június. Huszka Jenő, címzetes igazgató, nyugalmazott középiskolai tanár.

11. évfolyam. Ez az anyag, harmadik része a középiskolai

11. évfolyam. Ez az anyag, harmadik része a középiskolai Szerzői ajánlások 1 Huszk@ Jenő Feleletválasztós digitális matematika kvíz 11. évfolyam Ez az anyag, harmadik része a középiskolai évfolyamok teljes anyagát (középszint) feldolgozó sorozatnak. Témaköreiben

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Eredmény rögzítésének dátuma: Teljesítmény: 97% Kompetenciák értékelése

Eredmény rögzítésének dátuma: Teljesítmény: 97% Kompetenciák értékelése Eredmény rögzítésének dátuma: 2016.04.20. Teljesítmény: 97% Kompetenciák értékelése 1. Pedagógiai módszertani felkészültség 100.00% Változatos munkaformákat alkalmaz. Tanítványait önálló gondolkodásra,

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr. Matematika A 9. szakiskolai évfolyam 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA Készítették: Vidra Gábor és Koller Lászlóné dr. MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 11. modul: EGYENLETEK, EGYENLŐTLENSÉGEK

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje.

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. 2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. Az oktatási folyamat tervezése a központi kerettanterv alapján a helyi tanterv elkészítésével kezdődik. A szakmai munkaközösség tagjai

Részletesebben

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Gaskó Krisztina április 13. A könyvtár-pedagógia módszertana képzés. Készült Golnhofer Erzsébet anyagainak felhasználásával

Gaskó Krisztina április 13. A könyvtár-pedagógia módszertana képzés. Készült Golnhofer Erzsébet anyagainak felhasználásával Gaskó Krisztina 2011. április 13. A könyvtár-pedagógia módszertana képzés Készült Golnhofer Erzsébet anyagainak felhasználásával Mit várnak a pedagógusok az értékeléstől? Pontos információ a tanulók tudásáról

Részletesebben

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7.

CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. TANKÖNYVISMERTETŐ TÓTFALUSI MIKLÓS Csahóczi

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat

NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat NT-17202 Matematika 10. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 10. tankönyv A Heuréka-sorozat tagja, így folytatása a Matematika 9. tankönyvnek. Ez a kötet is elsősorban

Részletesebben

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á Kompetencia alapú oktatás (tanári kompetenciák) A kompetencia - Szakértelem - Képesség - Rátermettség - Tenni akarás - Alkalmasság - Ügyesség stb. A kompetenciát (Nagy József nyomán) olyan ismereteket,

Részletesebben

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

BEVEZETŐ. Grúber György igazgató

BEVEZETŐ. Grúber György igazgató BEVEZETŐ 2015. május 25-én került sor az Országos Kompetenciamérésre a 10. évfolyamos tanulók csoportjának körén. A felmérés célja a tanulók szövegértési képességének és matematikai eszköztudásának felmérése

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

TANULÁSMÓDSZERTAN 5 6. évfolyam

TANULÁSMÓDSZERTAN 5 6. évfolyam TANULÁSMÓDSZERTAN 5 6. évfolyam A tanulás tanításának elsődleges célja, hogy az egyéni képességek, készségek figyelembe vételével és fejlesztésével képessé tegyük tanítványainkat a 21. században elvárható

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babes-Bolyai Tudományegyetem 1.2 Kar Pszichológia és Neveléstudományok Kar 1.3 Intézet Pedagógia és Alkalmazott Didaktika Intézet

Részletesebben

PEDAGÓGIA ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A VIZSGA LEÍRÁSA KÖZÉPSZINTEN

PEDAGÓGIA ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A VIZSGA LEÍRÁSA KÖZÉPSZINTEN PEDAGÓGIA ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A vizsga részei A VIZSGA LEÍRÁSA KÖZÉPSZINTEN Középszint 120 perc 15 perc 100 pont A vizsgán semmilyen segédeszköz nem használható. Nyilvánosságra hozandók

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

OKM ISKOLAI EREDMÉNYEK

OKM ISKOLAI EREDMÉNYEK OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 15. modul SÍKIDOMOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 15. modul: SÍKIDOMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Didaktika 1. Tanügyi és iskolai szabályozás. 3. Tantervi követelmények

Didaktika 1. Tanügyi és iskolai szabályozás. 3. Tantervi követelmények Didaktika 1. Tanügyi és iskolai szabályozás 3. Tantervi követelmények A tanítási-tanulási folyamat rendszeralkotó tényezői Képzési inputok (tanterv, kurzustartalmak) Transzformáció (oktatási folyamat)

Részletesebben

Évfolyam 5. 6. Óraszám 1 0,5

Évfolyam 5. 6. Óraszám 1 0,5 TANULÁSMÓDSZERTAN 5 6. évfolyam Évfolyam 5. 6. Óraszám 1 0,5 A tanulás tanításának elsődleges célja, hogy az egyéni képességek, készségek figyelembe vételével és fejlesztésével képessé tegyük tanítványainkat

Részletesebben

A mérés tárgya, tartalma

A mérés tárgya, tartalma A mérés tárgya, tartalma 1 A TUDÁS Az oktatás elméletének egyik legősibb problémája az ismeretek és a képességek viszonyának értelmezése. A tudás részei, elemei tekintetében számos álláspont alakult ki,

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

EGYÜTTNEVELÉS INTEGRÁCIÓ. Inklúzió

EGYÜTTNEVELÉS INTEGRÁCIÓ. Inklúzió EGYÜTTNEVELÉS INTEGRÁCIÓ = Inklúzió Integráció (együttnevelés) Inklúzió I-I-I Innováció A saját pedagógiai gyakorlatunk optimalizálására irányuló folyamat Integráció Inklúzió Az integrációval be kívánják

Részletesebben

Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról /

Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról / Tehetségről, a közoktatási törvényben /1993. évi LXXIX. törvény a közoktatásról / A gyermek, a tanuló jogai és kötelességei II. fejezet 10 (3) A gyermeknek tanulónak joga, hogy a) képességeinek, érdeklődésének,

Részletesebben

Kognitív játékok, feladatsorok és kompetenciamérések eredményeinek kapcsolatai

Kognitív játékok, feladatsorok és kompetenciamérések eredményeinek kapcsolatai Pilot kutatás 2016 Kognitív játékok, feladatsorok és kompetenciamérések eredményeinek kapcsolatai Faragó Boglárka Kovács Kristóf Sarkadi-Nagy Szilvia 2016. június 14. Az előadás céljai A Kognitos Kft.

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

Feladat Felelős Határidő Partner 1. A pedagógusok tájékoztatása a PISA mérés hátteréről, A PISA mérés

Feladat Felelős Határidő Partner 1. A pedagógusok tájékoztatása a PISA mérés hátteréről, A PISA mérés 4. MEGVALÓSÍTÁSI TERV 4.1. OKM matematika 6. és 8. évfolyam Feltárt probléma A 6. és 8. évfolyamos tanulók OKM matematika teljesítménye szignifikánsan az országos átlag alatt van. Elérendő cél Az Országos

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Debreceni Baross Gábor Középiskola, Szakiskola és Kollégium Debrecen, Budai Ézsaiás u. 8/A. OM azonosító: Pedagógiai program

Debreceni Baross Gábor Középiskola, Szakiskola és Kollégium Debrecen, Budai Ézsaiás u. 8/A. OM azonosító: Pedagógiai program Debreceni Baross Gábor Középiskola, Szakiskola és Kollégium 4030 Debrecen, Budai Ézsaiás u. 8/A. OM azonosító: 031242 Pedagógiai program Matematika tantárgy helyi tanterve Szakiskola A nevelőtestület véleményezte:

Részletesebben

II. A VIZSGA LEÍRÁSA

II. A VIZSGA LEÍRÁSA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Definíció, illetve tétel kimondása I. II. Egy téma összefüggő kifejtése Definíció közvetlen alkalmazása I. II. 45 perc 135 perc megadott

Részletesebben

Jegyzőkönyv. Önértékelés. Hogyan követi a szakmában megjelenő újdonságokat, a végbemenő változásokat?

Jegyzőkönyv. Önértékelés. Hogyan követi a szakmában megjelenő újdonságokat, a végbemenő változásokat? Jegyzőkönyv Az eljárás azonosítója Az eljárás típusa Az értékelt neve Az értékelt azonosítója Az adatgyűjtés módszere Az adatgyűjtést végző neve Az adatgyűjtést végző oktatási azonosítója Az adatgyűjtés

Részletesebben

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz TARTALOMFEJLESZTŐK FELADATAI Koczor Margit Budapest, 2013. 09.

Részletesebben

Mosolyt az arcokra! Tanoda

Mosolyt az arcokra! Tanoda Mosolyt az arcokra! Tanoda NEVELÉSI-OKTATÁSI PROGRAM Készült: 2013. augusztus 08. Készítette: Nagy Anikó szakmai vezető I. Alapelvek 1 I.1. Tanodai célok megfogalmazása A Tanoda biztosítja minden gyermek

Részletesebben

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP / STORYLINE KERETTÖRTÉNET

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP / STORYLINE KERETTÖRTÉNET XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 STORYLINE KERETTÖRTÉNET STORYLINE METHODE, KERETTÖRTÉNET MÓDSZER: Élményalapú, felfedeztető tanítási forma FORRÁSA,

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

A VIZSGA LEÍRÁSA KÖZÉPSZINTEN. Középszint. Szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép KÖZÉPSZINTŰ VIZSGA

A VIZSGA LEÍRÁSA KÖZÉPSZINTEN. Középszint. Szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép KÖZÉPSZINTŰ VIZSGA VENDÉGLÁTÓIPARi ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA A VIZSGA LEÍRÁSA KÖZÉPSZINTEN A vizsga részei Középszint 120 perc 100 pont 15 perc A vizsgán használható segédeszközök Középszint Szöveges adatok

Részletesebben

te+amatek Te +a matek Országos Matematika Verseny

te+amatek Te +a matek Országos Matematika Verseny Te +a matek A verseny szervezői Általános és középiskolai matematikatanárok, a Rákoscsabai Jókai Mór Református Általános Iskola és az Oktatási Hivatal segítségével az idei évben első alkalommal rendezik

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

Sakk logika Jó gyakorlat

Sakk logika Jó gyakorlat Sakk logika Jó gyakorlat a telki Pipacsvirág Magyar Angol Két Tanítási Nyelvű Általános Iskolában A sakk-logika oktatása a Pipacsvirág Magyar Angol Két Tanítási Nyelvű Általános Iskolában 2001 Megnyílik

Részletesebben

Pedagógusok felkészítése a tanulási képességek eredményes mozgósítására. Balassagyarmat, 2014.szeptember Lerchné Forgács Marianna

Pedagógusok felkészítése a tanulási képességek eredményes mozgósítására. Balassagyarmat, 2014.szeptember Lerchné Forgács Marianna Pedagógusok felkészítése a tanulási képességek eredményes mozgósítására Balassagyarmat, 2014.szeptember Lerchné Forgács Marianna Továbbképzés célja A pedagógusok ismerjék meg (elevenítsék fel) : Bővítsék

Részletesebben

NYME - SEK Némethné Tóth Ágnes

NYME - SEK Némethné Tóth Ágnes A kooperatív technikák típusai (Horváth H. Attila: Kooperatív technikák Altern füzetek) Mozaik módszer Páros mozaik Kereszt mozaik Kerekasztal módszer Csillag módszer Puzzle módszer Pókháló mődszer NYME

Részletesebben

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze.

Feladataink, kötelességeink, önkéntes és szabadidős tevékenységeink elvégzése, a közösségi életformák gyakorlása döntések sorozatából tevődik össze. INFORMATIKA Az informatika tantárgy ismeretkörei, fejlesztési területei hozzájárulnak ahhoz, hogy a tanuló az információs társadalom aktív tagjává válhasson. Az informatikai eszközök használata olyan eszköztudást

Részletesebben

A digitális korszak kihívásai és módszerei az egyetemi oktatásban

A digitális korszak kihívásai és módszerei az egyetemi oktatásban Csapó Benő http://www.staff.u-szeged.hu/~csapo A digitális korszak kihívásai és módszerei az egyetemi oktatásban Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a természettudományi

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

9. évfolyam. Órakeret Számtan, algebra Fejlesztési cél

9. évfolyam. Órakeret Számtan, algebra Fejlesztési cél MATEMATIKA A matematika tanulásának eredményeként a tanulók megismerik a világ számszerű vonatkozásait, összefüggéseit, az ember szempontjából legfontosabb törvényszerűségeket, relációkat. A tantárgyi

Részletesebben

Matematika 11. évfolyam

Matematika 11. évfolyam Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)

Részletesebben

Szakértelem a jövő záloga

Szakértelem a jövő záloga 1211 Budapest, Posztógyár út. LEKTORI VÉLEMÉNY Moduláris tananyagfejlesztés Modul száma, megnevezése: Szerző neve: Lektor neve: Imagine Logo programozás Babos Gábor Újváry Angelika, Szabó Imre Sorszám

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei. A program megvalósulását az Országos Foglalkoztatási Közalapítvány támogatja.

Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei. A program megvalósulását az Országos Foglalkoztatási Közalapítvány támogatja. Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei Célkitűzések Kulcskompetenciák fejlesztése Anyanyelvi kommunikáció Matematikai kompetencia Digitális kompetencia A tanulás tanulása Személyközi

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 3 = 111 A tanmenet 100 óra beosztását tartalmazza. A dolgozatok írása és javítása ezeken felül 8 órát

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

KOMPETENCIA. Forrainé Kószó Györgyi

KOMPETENCIA. Forrainé Kószó Györgyi KOMPETENCIA Forrainé Kószó Györgyi Mi a kompetencia? ismeretek tudás + képességek + attitődök alkalmazás A kompetenciafejlesztés feltételei ismeretátadás túlméretezett tananyag pedagógusközpontú, egységes

Részletesebben

Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály. Szövegértés, matematika. SIOK Balatonendrédi Általános Iskola

Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály. Szövegértés, matematika. SIOK Balatonendrédi Általános Iskola Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály Szövegértés, matematika SIOK Balatonendrédi Általános Iskola 1 Fit jelentés 2011-es tanév, 6-8. osztály (matematika, szövegértés) A 2011-es mérés

Részletesebben

KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA. Emelt szint. 180 perc 20 perc 100 pont 50 pont

KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA. Emelt szint. 180 perc 20 perc 100 pont 50 pont KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 20 perc 100 pont 50 pont A vizsgán használható segédeszközök A vizsgázó biztosítja A vizsgabizottságot

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

MATEMATIKA. Szakközépiskola

MATEMATIKA. Szakközépiskola MATEMATIKA Szakközépiskola Az osztályozóvizsga írásbeli feladatlap. Az osztályozó vizsgán az osztályzás a munkaközösség által elfogadott egységes követelményrendszer alapján történik. A tanuló az osztályozó

Részletesebben

ÚJGENERÁCIÓS FIZIKATANKÖNYV 7. ÉVFOLYAM

ÚJGENERÁCIÓS FIZIKATANKÖNYV 7. ÉVFOLYAM A NEMZETI ALAPTANTERVHEZ ILLESZKEDŐ TANKÖNYV, TANESZKÖZ ÉS NEMZETI KÖZOKTATÁSI PORTÁL FEJLESZTÉSE TÁMOP-3.1.2-B/13-2013-0001 ÚJGENERÁCIÓS FIZIKATANKÖNYV 7. ÉVFOLYAM Készítették: A tananyagfejlesztők 2015.

Részletesebben

MATEMATIKA II. A VIZSGA LEÍRÁSA

MATEMATIKA II. A VIZSGA LEÍRÁSA MATEMATIKA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Egy téma összefüggő II. I. II. kifejtése megadott 135 perc szempontok szerint I. 45 perc Definíció, ill. tétel kimondása

Részletesebben

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek

Részletesebben

IPR jó gyakorlatunk SOKORÓPÁTKA

IPR jó gyakorlatunk SOKORÓPÁTKA IPR jó gyakorlatunk SOKORÓPÁTKA IPR gyakorlatunk: A 2003/2004-es tanévtől foglalkozunk tudatosan a HH és a HHH gyerekek fejlesztésével. Az intézményi dokumentumaink tartalmazzák az IPR elemeit. A napi

Részletesebben

Munkaformák. Dr. Nyéki Lajos 2016

Munkaformák. Dr. Nyéki Lajos 2016 Munkaformák Dr. Nyéki Lajos 2016 Az oktatás munkaformái Az oktatási folyamat szervezésében a szervezeti formák mellett további differenciálás is lehetséges, attól függően, hogy a tanár a tanítási-tanulási

Részletesebben

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Helyi tanterv a pedagógiai gyakorlat oktatásához

Helyi tanterv a pedagógiai gyakorlat oktatásához Helyi tanterv a pedagógiai gyakorlat oktatásához Szakközépiskola 11-12. évfolyam 1. A tanterv szerzıi: Dr. Magyarné Sz. Ilona, Tóthné Kulcsár Ibolya 2. Óraszámok: 11. osztály: 74 óra 12. osztály: 64 óra

Részletesebben

SIOK Széchenyi István Általános Iskola FIT jelentés 2011 Kompetenciamérés

SIOK Széchenyi István Általános Iskola FIT jelentés 2011 Kompetenciamérés FIT jelentés 2011 Kompetenciamérés Készítette: Gáthy Péterné Siófok, 2012. április 9. minőségügyi vezető 1 1. Tanulási környezet A telephelyi kérdőív kérdéseire adott válaszok alapján az épületünk jó állagú.

Részletesebben

KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

DIAGNOSZTIKUS MÉRÉS. 33. modul

DIAGNOSZTIKUS MÉRÉS. 33. modul Matematika A 3. évfolyam DIAGNOSZTIKUS MÉRÉS 33. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 33. modul DIAGNOSZTIKUS MÉRÉS MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Tankönyvkiadók konferenciája Fizika

Tankönyvkiadók konferenciája Fizika Tankönyvkiadók konferenciája Fizika Általános iskola, felső tagozat Dr. Koreczné Kazinczi Ilona vezető szerkesztő 2014. 08. 21. Szombathely Magyar nyelv FELSŐ TAGOZAT Matematika Magyar nyelv Kalandozások

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben