Fény és Színek. avagy miért kék az ég és miért zöld a fő? Készítette: Szabó Péter

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fény és Színek. avagy miért kék az ég és miért zöld a fő? Készítette: Szabó Péter"

Átírás

1 Fény és Színek avagy miért kék az ég és miért zöld a fő? Készítette: Szabó Péter

2 I. Színek születése Elıbb egy kis bevezetı tisztázzuk az alapfogalmakat

3 A fény, mint elektromágneses hullám De mi az elektromágneses hullám? Gyorsuló töltés által keletkezik, pl.: megváltozik a vezetıben folyó áramerısség (antenna sugároz, villámlás rádió), röntgen sugárzás egyik fajtája (miért ne viseljünk ólommellényt) Kvantummechanikai effektusok révén is keletkezhet Hullámként terjed, azonban az energiáját adagokban adja le/át, ezen energiaadagokat (kvantumokat) hívjuk fotonoknak

4 Az elektromágneses sugárzás spektruma hullámhossz(λ) µm-ben radioaktivitás atommag gerjesztés Ionizáció belsı e - vegyérték e - gerjesztés molekula rezgések molekula forgás magspin gerjesztés kozmikus gamma röntgen UV infra mikrohullám rádió hullám ,4 0, energia növekedésének iránya Vízbontás? látható fény 360 nm 780 nm

5 A fény kölcsönhatása az anyaggal reflexió /tükrözıdés/ (I < I 0 és λ = λ 0 ) fényforrás (I 0 egyféleλ 0 ) fotolumineszcencia /foszforeszcencia minta fluoreszcencia/ ( λ > λ 0 ) fényszórás (λ = λ 0 ) abszorpció /fényelnyelés/ (I < I 0 és λ = λ 0 ) transzmisszó /átengedés/ E Hogyan születnek a színek? ha alapból egyszínő a fényforrás? (reflexió és szórás) ha nem egyszínő (fıleg fehér)? (szórás és abszorpció) J. W. Goethe

6 Miért kék az ég? Kolloid rendszerek Mire emlékszünk? fehér fény Tyndall Minél kisebb a fény hullámhossza, annál jobban szóródik. Tehát milyen színő fény szóródik a legjobban? Mi van a lézerfénnyel? Láthatjuk egyáltalán? Fıd A fénysugarak egyenes vonalban terjednek Milyen színt látunk, ha szembenézünk a nappal? Mit látunk, ha nem a napba nézünk? Naplementekor is a napba nézünk de mégse..

7 és miért zöld a fő? A maradék, el nem nyelt komponensek hozzák létre a színt! Komplementer színek!!! Akkor miért is zöld a fő?

8 A válogatós fényelnyelés Miért csak adott hullámhosszú komponenseket nyelnek el az anyagok a fehér fénybıl? E = adott hullámhosszú fény energiájával azonos E-nek nem árt a látható fény tartományába esni E fény = hv = hc/λ E E Mit okoz a fényelnyelés? A fény energiát hordoz, ha elnyelıdik alapállapot fény gerjesztés gerjesztett állapot

9 Mitıl függ E? Általában a pi kötések (konjugált) csökkentik E t, így a szerves molekulák nagy része könnyen gerjeszthetı már a látható fény tartományában is, így színesek. Likopin F 2, Cl 2, Br 2, I 2 Égésnél Végtelen győrő tag számnál? Egyre sötétebb

10 Színek és reaktivitás Zöld növények és száradt, halott növények KMnO 4 és K 2 MnO 4 A reakciók sokszor a gerjesztett állapotból mennek végbe De ez csak fényelnyelésre igaz szóval vigyázni mert a színek máshogy is keletkezhetnek! Napszemüveg ırület??? Mibıl is vannak a mőanyagok?

11 fénybıl Nem külsı fény forrás hatására születı színek A lényeg, valahogy létrehozzuk a gerjesztett állapotot. (más) fény Sajátfény kisugárzás lumineszcenciák fény elektromosság mechanikai energia hı kémiai reakció radioaktivitás (???) foszforeszcencia fluoreszcencia különbség? E E alapállapot energia gerjesztés Általában hı formájában adja le a többlet energiát! gerjesztett állapot kisugárzott fény alapállapot Spontán és kényszerített emisszió lézer

12 II. Biolumineszcencia a környezetünkben

13 Fény az éjszakában Arisztotelész: világító gombák hideg tőz Plinius: olívaültetvényen világító fa Reneszánsz filozófusok: tüzes gombák, melyek csillagként kékes fénnyel ragyognak Többnyire babonás félelmek társultak a fényjelenségekhez: tündéri fény-ragyogás korhadó fákban, ahol a tündérek éjszakai dáridókat tartanak lidércfény, szellemek, lelkek megjelenése bőnös lélek jelenléte, aki képtelen elszakadni a testétıl Egyéb esetek: Világító, rothadó halak Kanadai farmer: a felaprított tőzifa világít az udvaron Kislány, akinek a szoknyája világított, miután hazatért az erdıben való játék után. Itthonról: foszforeszkáló csirke farhát

14 Robert Boyle Fénylı fák tanulmányozása: (csak holdfény mentes éjszakán érzékelhetı) Részletes kísérleti leírást ad. A levegı szükséges a fényjelenséghez A levegı nem a fény közvetítéséhez kell, mert az izzó vas a vákuumban is tovább izzik Csak akkor bocsát ki fényt a korhadó fa, ha nedves (Francis Bacon) 1850-es években igazolták, hogy a fénykibocsátás gombáktól származik. A XX. században pedig rámutattak, hogy a rothadó halak esetében baktériumok okozzák a lumineszkálást. A jelenséget biolumineszcenciának hívjuk.

15 Biolumineszcencia I. Fotolumineszcenciánál tulajdonképp csak fényátalakítás történik fizikai folyamatok révén. Biolumineszcencia esetén az élı szervezetek kémia reakcióinak mellékterméke a fény. Szinte 100% hatásfokkal mőködik! A fotoszintézis fordítottjának tekinthetı! Elterjedt jelenség az élıvilágban: baktériumok, algák, gombák, mohák, gerinctelen állatok, halak, rovarok. Világító gombák 1652-bıl egy svéd történész írja: Skandinávia távoli északi részein az emberek, amikor bemerészkednek az erdıbe, korhadó tölgyfakérgeket helyeznek el bizonyos távolságokban, ily módon a fényt követve visszatalálnak a kiindulási helyükre.

16 A második világháborúban a Csendes óceáni szigetek trópusi ıserdeiben az amerikai katonák állítólag világító gombákat tőztek a fegyvereikre és sisakjaikra, hogy elkerüljék az egymással való ütközést az éjszakai sötétségben. Egy Új Guineában tevékenykedı amerikai haditudósító feleségének írt levelét azzal kezdte, drágám ma éjjel öt gomba fényénél írok neked.

17 Kb. 60 féle lumineszkáló gomba ismeretes eddig. Hazánkban: világító tölcsérgomba (kis fény intenzitás) A gombák is, mint minden lumineszkáló életforma kémia energiából állítja elı a fényt. Ehhez egy úgynevezett lucifer típusú molekulára és luciferáz enzimre van szükség. Különbözı fajok különbözı színő fényt bocsátanak ki. 30 C felett nem tapasztalható fény, azonban 0 C körül igen intenzíven világít (O 2 jobban oldódik hidegvízben, enzim mőködés, sugárzás mentes folyamatok!)

18 Raphael Dubois baktériumai és a luciferin Kezdetben kagylókkal kísérletezett (világító kivonat) Érdekesnek találta, hogy csak hideg vízben mutatott fényjelenséget A világító anyagot elnevezte luciferinnek (Lucifer = fényhozó/hordozó) Késıbb kiderült, hogy O 2, ATP, Mg 2+ és Ca 2+ -ra is szükség van a mőködéshez. Leírta, hogy a folyamat során a luciferin gerjesztıdik, majd a többlet energiát fény formájában adja le. A folyamat pedig csaknem 100%- os. Hidegfény! Világító baktériumok Új energiaforrásként szerette volna alkalmazni ıket, ezért tenyésztésükbe kezdett (1910-es évek). a tamarisi tengeri biológiai laboratórium egy nagy termét tudtam megvilágítani; a jelenlevı személyek távolról megismerhették egymást és az arcjátékot is észrevehették. (folyékony holdfény)

19 A tengerben nagy rajokban élnek. Szaporodás idején 1ml vízben 10 8 darab sejt található. Nagy hasonlóság a kolera baktériumhoz. Az egyetlen tengeri baktériumok, amelyek megbetegedést okozhatnak. Fénylenek még 7 C-ig, de a megfagyott kocsonya v ilágító jéggé válik, amely néhány óra múlva kialszik, újra felolvasztva megint világít. Békába a hátán lévı bır alá fecskendezve ıket, a béka teljesen világítóvá válik 3-4 napon át, különösen ha 8 C h ımérsékleten tartják. Milky sea

20 Valószínőleg a fénytermelés az ısi légkör következménye. Az oxigén egyenesen mérgezı volt a számukra. Az életfolyamataik során keletkezı oxigént úgy tették ártalmatlanná, hogy vízzé alakították; ez a folyamat azonban nagy energia felszabadulással jár. Az energia pedig fény formájában kevésbé káros, mint a hı. A mélytengeri halak és fejlábúak nem a saját szervezetük erıforrásaival világítanak, hanem olyan szerveik alakultak ki, amelyekben együtt élı világító baktériumok találhatók.

21 Lidércfény Vizenyıs rétek, temetık tüneménye: bolygótőz, lidércfény. Régebben lángnak hitték, meggyulladt mocsárgáznak (metán) Azonban nem gyújtja meg a környezetében lévı anyagokat, sıt nem is meleg (belenyúltak néhányan). Nem hıtermelı égés, hanem fényjelenség Vízzel telített talajból távozó gáz levegı oxigénjével reakcióba lépve világít Szerves bomló anyagot is tartalmaznia kell a talajnak (temetık, harcmezık, tömegsírok felett népi hiedelmek) felszín hν + HPO 3 [HPO 3 ]* O 2 talaj Szerves foszfor vegyületek feltáródik H 3 PO 4 baktériumok PH 3 /P 2 H 4

22 A sarki fény Északon: aurora borealis/ délen: aurora australis Zöldes, pirosas (esetleg kékes vagy rózsaszínő) fényjelenség a sarkok közelében A napkitörésbıl származó töltött részecskék(elektronok, protonok, egyéb ionok) gerjesztik a légkörben található atomokat/molekulákat A gerjesztett állapot megszőnésekor fénykibocsátás történik

23 Sarki fény Magyarország felett

24 Miért csak a sarkok közelében észlelhetı? napszél töltött részecskék A Föld mágneses tere eltéríti a töltéssel rendelkezı részecskéket. A pólusoknál azonban kicsi a mágneses tér, így ott bejuthatnak Az ionoszférában akár elektromos vihart okozhatnak

25 Az oxigén atom elektronszerkezete [He]: 2s 2 2p S (gerjesztett állapot) Energia D (gerjesztett állapot) 3 P (alapállapot) A termek energiasorrendje a Hund szabályok értelmében: 1. Adott spinmultiplicitású (2S+1) állapotok közül a legtöbb párosítatlan elektronnal rendelkezı a legkisebb energiájú. 2. Azonos spinmultiplicittású állapotok közül annak a kisebb az energiája, ahol L értéke nagyobb 3.

26 S (gerjesztett állapot) Energia nm 1 D (gerjesztett állapot) O 2, és N 2 koncentrációjának magasság függése (keletkezés, gerjesztıdés, kioltás) megfelelı magasságban atomizáció és gerjesztıdés nm 3 P (alapállapot) csak 100 km felett keletkezik zöld fény! csak 150 km felett keletkezik vörös fény! O( 1 D)* + N 2 O( 3 P) + N 2 +kt

27 zöld fény: O atom 1 S 1 D átmenet piros fény: O atom 1 D 3 P átmenet kék fény: N atom 2 D 4 S átmenet rózsaszín fény: N 2 molekula IR, UV, sıt röntgen sugárzás is, de ezeket csak az őrbıl lehet meg- figyelni Amikor a nagy energiájú részecskék alacsonyabbra is eljutnak, akkor keletkezik a kék, ibolya és rózsaszín fény, ugyanis alacsonyabban a N 2 molekulák koncentrációja a nagyobb Néha megfigyelhetı, mintha a zöld fény üldözné a rózsaszínt, ennek oka, hogy a gerjesztett N 2 molekulák azonnal dezaktiválódnak, míg az O atomok gerjesztett állapota stabilabb

28 2OH - + Cl 2 OCl - + H 2 O + Cl - H 2 O 2 + OCl - H 2 O + Cl - + O 2 + hν O 2 * O 2 + hν 762 nm O 2 Kemilumineszcencia A reakciók általában azért játszódnak le, hogy stabilabb (kisebb energiájú) termék képzıdjön. Az energia nem vész el, így valamilyen formában le kell adni a felesleges energiát A megoldás általában a hı 1 Σ g + (gerjesztett állapot) 1270 nm 1 g (gerjesztett állapot) 3 Σ g - (alapállapot) Szingulett oxigén és az ezotéria!!!

29 Közvetett lumineszcencia, fotoérzékenyítés A + [érzékenyítı]* A* +[érzékenyítı] A* A + hv A közvetlenül nem tud gerjesztıdni, de az érzékenyítı igen, és áttudja adni A-nak az energiáját Fotodinamikus terápia Metilénkék Porfíria (felfedezésének története)sárgarépa Vámpírok Molekulák kemilumineszcenciája dioxetán szerkezet + hν

30 Luminol kemilumineszcenciája

31 Luminol kemilumineszcenciája keto enol

32 Biolumineszcencia II. Biológia rendszerekben lejátszódó kémia reakciók fénytermelése A biológiai fénylı molekulákat győjtınéven luciferinnek hívjuk Lucifer = fényhozó/hordozó Enzim katalizált reakció A reakcióhoz szükséges enzimek csoportját luciferázoknak hívjuk A luciferáz típusú enzimek fehérjék A reakcióhoz oxigénre van szükség Luciferin + O 2 luciferáz Oxoluciferin

33 Szentjános bogár Mintegy 2000 féle fajuk ismeretes. Hazánkban három fajuk él A fényszennyezés miatt a nagy szentjános bogár majdnem kihalt hazánkban (lámpák és velük párzani akaró hímek) Pete formában, lárvaként, kifejlett rovarként és még haláluk után is képesek világítani Kifejlett rovarként kevés ideig élnek és ezalatt szinte nem táplálkoznak, azonban lárvaként vérszomjas ragadozók (csigák)

34 Szentjános bogár világító szervei A fénysejtek egy fényszóró rétegben helyezkednek el Húgysav és guanin kristályok töltik be a fényszóró szerepét A fénysejtekben egy speciális vegyület, a luciferin, valamint annak specifikus enzime, a luciferáz együttmőködése hozza létre a fényjelenséget. A kisugárzott energia mintegy 98%-a fény! hidegfény λ kisugárzott = 518,0 és 656,0 nm Színe (fajtól függıen) a sárgászöldtıl a narancsvörösig terjedhet A nálunk elıforduló három faj sárgászöld fényt bocsát ki magából, azonban a legtöbb faj a trópusokon él, azok fénye leginkább narancsvörös.

35 A fénykibocsátás folyamata A luciferin királis vegyület, természetben csak az R-formája található meg (fehérjéhez való kötıdés kéz/kesztyő) A fény kibocsátás idegi úton szabályozott. A kapcsoló a nitrogén-monoxid Nyugalmi állapotban a fénysejtek mitokondriumai (sejtlégzést lebonyolító szervecskéi) veszik fel oxigént, így az nem jut el a luciferin/luciferáz rendszerhez nincs fény A NO aktiválás követıen az idegsejtek acetilkolint juttatnak a fénysejtekbe, aminek hatására felszabadul a luciferin, majd reakcióba lép oxigénnel mitokondrium NO 2 NO oxipamin ingerület luciferin O 2 acetilkolin fénysejt

36 Enzimhez kötve A luciferin reakciójának mechanizmusa

37 GFP Green Fluorescent Protein-zöld fluoreszkáló fehérje (218 aminosav) 2008-ban kémiai Nobel-díj. Medúzából izolálták (1960) Három egymást követı aminosav Ser-65, Tyr-66, Gly-67 alkotja a fluorofor részét. A középen található fluorofor részt kromofor fehérje veszi körül, aminek köszönhetıen ellenálló a drasztikusabb környezeti hatásokkal szemben is Kék (475 nm) és UV (396 nm) fénnyel gerjeszthetı, 508 nm-es zöld fényt bocsát ki Jelzıanyagként alkalmazható: láthatóvá teszi a sejtek növekedését

38

39 Konec

40

41 Keress anyagot a szingulett oxigénes Airenergyrıl A szerves három könyvben van ilyen az észterek reakicóinál/ Claisen féle..meg hasonlóak

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter egyetemi tanár ELTE, Kémiai Intézet Elméleti Kémiai Laboratórium Van közös bennük? Egy kis történelem

Részletesebben

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Kele Péter egyetemi adjunktus Lumineszcencia jelenségek Biolumineszcencia (biológiai folyamat, pl. luciferin-luciferáz) Kemilumineszcencia

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. www.chem.elte.hu/pr

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. www.chem.elte.hu/pr ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz 1) Mikor kapott Paul Ehrlich orvosi Nobel-díjat? A) Idén. B) Pont 100 éve, 1908-ban. C) Nem

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH folsav, (a pteroil-glutaminsav vagy B 10 vitamin) 2 2 2 2 pirimidin rész pirazin rész aminobenzoesav rész glutaminsav rész pteridin rész dihidrofolsav 2 2 2 2 tetrahidrofolsav 2 2 2 2 A dihidrofolát-reduktáz

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Fotoszintézis. 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége

Fotoszintézis. 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége Fotoszintézis 2. A kloroplasztisz felépítése 1. A fotoszintézis lényege és jelentısége Szerves anyagok képzıdése energia felhasználásával Az élıvilág szerves anyag és oxigénszükségletét biztosítja H2 D

Részletesebben

A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László

A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László A BIOLÓGIAI JELENSÉGEK FIZIKAI HÁTTERE Zimányi László Összefoglalás A négy alapvető fizikai kölcsönhatás közül az elektromágneses kölcsönhatásnak van fontos szerepe a biológiában. Atomi és molekuláris

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv?

Mit mond ki a Huygens elv, és miben több ehhez képest a Huygens Fresnel-elv? Ismertesse az optika fejlődésének legjelentősebb mérföldköveit! - Ókor: korai megfigyelések - Euklidész (i.e. 280) A fény homogén közegben egyenes vonalban terjed. Legrövidebb út elve (!) Tulajdonképpen

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

Vegyületek - vegyületmolekulák

Vegyületek - vegyületmolekulák Vegyületek - vegyületmolekulák 3.Az anyagok csoportosítása összetételük szerint Egyszerű összetett Azonos atomokból állnak különböző atomokból állnak Elemek vegyületek keverékek Fémek Félfémek Nemfémek

Részletesebben

Környezeti kémia II. A légkör kémiája

Környezeti kémia II. A légkör kémiája Környezeti kémia II. A légkör kémiája 2012.09.28. A légkör felépítése Troposzféra: ~0-15 km Sztratoszféra: ~15-50 km Mezoszféra: ~50-85 km Termoszféra: ~85-500 km felső határ: ~1000 km definiálható nehezen

Részletesebben

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1 Sav-bázis egyensúlyok 8-1 A közös ion effektus 8-1 A közös ion effektus 8-2 ek 8-3 Indikátorok 8- Semlegesítési reakció, titrálási görbe 8-5 Poliprotikus savak oldatai 8-6 Sav-bázis egyensúlyi számítások,

Részletesebben

Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Szerves kémiai analízis TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ BSC ANYAGMÉRNÖK SZAK VEGYIPARI TECHNOLÓGIAI SZÁMÁRA KÖTELEZŐ TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2016 1 Tartalomjegyzék 1. Tantárgyleírás,

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T

Tartalmi követelmények kémia tantárgyból az érettségin K Ö Z É P S Z I N T 1. Általános kémia Atomok és a belőlük származtatható ionok Molekulák és összetett ionok Halmazok A kémiai reakciók A kémiai reakciók jelölése Termokémia Reakciókinetika Kémiai egyensúly Reakciótípusok

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK

NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK Budapesti Műszaki és Gazdaságtudományi Egyetem NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK Dr. Palotás Béla Mechanikai Technológia és Anyagszerkezettani Tanszék Elektronsugaras hegesztés A katódból kilépő

Részletesebben

Plazma elektron spray ionizáló rendszer

Plazma elektron spray ionizáló rendszer Plazma elektron spray ionizáló rendszer tartalom Ismertetés 2... Fő funkciók 5... Jellemzők 7... Üzemmódok és alkalmazás 9... Tesztek és tanúsítványok 10... Technikai adatok 12... Csomagolás 13... 1. Ismertetés

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

Fluoreszcencia spektroszkópia

Fluoreszcencia spektroszkópia Elektromágneses spektrum Fluoreszcencia spektroszkópia Ujfalusi Zoltán A fény: elektromágneses hullám Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2011. február 14-16. Lumineszcencia: a fényt kibocsátó

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )

Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o ) Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív

Részletesebben

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata 1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind

Részletesebben

Számos lumineszkáló (világító) élőlény létezik: baktériumok, gombák, egysejtűek, hidrák, férgek, szivacsok, korallok, medúzák, rákok, kagylók,

Számos lumineszkáló (világító) élőlény létezik: baktériumok, gombák, egysejtűek, hidrák, férgek, szivacsok, korallok, medúzák, rákok, kagylók, Számos lumineszkáló (világító) élőlény létezik: baktériumok, gombák, egysejtűek, hidrák, férgek, szivacsok, korallok, medúzák, rákok, kagylók, csigák, tintahalak, soklábúak és rovarok. A biolumineszcencia

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Kormeghatározás gyorsítóval

Kormeghatározás gyorsítóval Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére

Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Módszer az ASEA-ban található reaktív molekulák ellenőrzésére Az ASEA-ban található reaktív molekulák egy komplex szabadalmaztatott elektrokémiai folyamat, mely csökkenti és oxidálja az alap sóoldatot,

Részletesebben

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések

Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

TERMÉSZETTUDOMÁNY JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Természettudomány középszint 1012 ÉRETTSÉGI VIZSGA 2010. október 26. TERMÉSZETTUDOMÁNY KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM I. Enzimek, katalizátorok

Részletesebben

AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE

AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE A biológia az élet tanulmányozásával foglalkozik, az élő szervezetekre viszont vonatkoznak a fizika és kémia törvényei MI ÉPÍTI FEL AZ ÉLŐ ANYAGOT? HOGYAN

Részletesebben

OPTIKA. Vozáry Eszter November

OPTIKA. Vozáry Eszter November OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Az anyagi rendszerek csoportosítása

Az anyagi rendszerek csoportosítása Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi

Részletesebben

Általános és szervetlen kémia 1. hét

Általános és szervetlen kémia 1. hét Általános és szervetlen kémia 1. hét A tantárgy elméleti és gyakorlati anyaga http://cheminst.emk.nyme.hu A CAPA teszt-gyakorló program használata Kliens programot letölteni a weboldalról Bejelentkezés

Részletesebben

Kémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S

Kémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S Szalay SzalayPéter Péter egyetemi egyetemi tanár tanár ELTE, ELTE,Kémiai Kémiai Intézet Intézet Elméleti ElméletiKémiai Kémiai Laboratórium Laboratórium F o t o n o k k e r e s z tt ü z é b e n a D N S

Részletesebben

Bevezetés a fluoreszcenciába

Bevezetés a fluoreszcenciába Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1

Részletesebben

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Molekulaspektroszkópiai módszerek UV-VIS; IR

Molekulaspektroszkópiai módszerek UV-VIS; IR Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

Fenntarthatóság és hulladékgazdálkodás

Fenntarthatóság és hulladékgazdálkodás Fenntarthatóság és hulladékgazdálkodás Néhány tény A különbözı rendszerek egymás negentórpiájával, szabad energiájával táplálkoznak A szabad-energia a rendezettség mértékének fenntartásához kell Az ember

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

ÁSVÁNYOK ÉS MÁS SZILÁRD RÉSZECSKÉK AZ ATMOSZFÉRÁBAN

ÁSVÁNYOK ÉS MÁS SZILÁRD RÉSZECSKÉK AZ ATMOSZFÉRÁBAN ÁSVÁNYOK ÉS MÁS SZILÁRD RÉSZECSKÉK AZ ATMOSZFÉRÁBAN A Föld atmoszférája kolloid rendszerként fogható fel, melyben szilárd és folyékony részecskék vannak gázfázisú komponensben. Az aeroszolok kolloidális

Részletesebben

A projekt rövidítve: NANOSTER A projekt idıtartama: 2009. október 2012. december

A projekt rövidítve: NANOSTER A projekt idıtartama: 2009. október 2012. december A projekt címe: Egészségre ártalmatlan sterilizáló rendszer kifejlesztése A projekt rövidítve: NANOSTER A projekt idıtartama: 2009. október 2012. december A konzorcium vezetıje: A konzorcium tagjai: A

Részletesebben

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó

Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer

Részletesebben

Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás

Arany-Tóth Attila. Sebészeti röntgenvizit: 8.30. Általános radiológia - előadás 1 2 Röntgen Osztály 9-15 8.00 10.00 2. illetve 5. csoport 11.00 13.00 1. illetve 4. csoport 13.00 15.00 3. illetve 6. csoport 3 4 Sebészeti röntgenvizit: 8.30 5 6 Honlapok www. univet.hu egységek sebészet

Részletesebben

Talián Csaba Gábor Biofizikai Intézet 2012. április 17.

Talián Csaba Gábor Biofizikai Intézet 2012. április 17. SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Kémiai reakciók. Kémiai reakció feltételei: Aktivált komplexum:

Kémiai reakciók. Kémiai reakció feltételei: Aktivált komplexum: Kémiai reakció feltételei: részecskék ütközése nagyobb koncentrációban gyakoribb: a részecskék megfelelı térhelyzetben legyenek Aktivált komplexum: részecskék ütközés utáni nagyon rövid ideig tartó összekapcsolódása

Részletesebben

Biztonsági adatlap. A 2001/58/EC irányelv szerint. kiadás dátuma: 2006. november 03. felülír minden korábbi kiadást CHORUS 75 WG

Biztonsági adatlap. A 2001/58/EC irányelv szerint. kiadás dátuma: 2006. november 03. felülír minden korábbi kiadást CHORUS 75 WG 1. A termék/készítmény és az adatszolgáltató cég azonosítása A termék/készítmény azonosítása : Formuláció kód: Felhasználási terület: Gombaölı szer A cég azonosítása Cég Syngenta Crop Protection AG P.O.

Részletesebben

Fluoreszcencia spektroszkópia

Fluoreszcencia spektroszkópia Fluoreszcencia spektroszkópia A fény: elektromágneses hullám Huber Tamás Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2014. február 04-06. 1 Elektromágneses spektrum Lumineszcencia: gerjesztett állapotú

Részletesebben

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly Biofizikai módszerek a citoszkeleton vizsgálatára I: Kinetikai és steady-state spektroszkópiai módszerek Sejt Citoszkeletális rendszerek Orbán József, 2014 április Institute of Biophysics Citoszkeleton:

Részletesebben

Ipari Lézerek és Alkalmazásaik

Ipari Lézerek és Alkalmazásaik Ipari Lézerek és Alkalmazásaik A lézer LASER: Light Amplification by Stimulated Emission of Radiation vagyis: fény erısítése sugárzás stimulált kibocsátásával Lézerfény tulajdonságai: monokromatikus, egyszínő

Részletesebben

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont) KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO

Részletesebben

Boyle kísérlete. Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege. Robert Boyle angol fizikus, kémikus

Boyle kísérlete. Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege. Robert Boyle angol fizikus, kémikus Boyle kísérlete Boyle 1781-ben ónt hevített és azt tapasztalta, hogy annak tömege Robert Boyle 1627-1691 angol fizikus, kémikus A tömegmegmaradás törvénye Lavoisier kísérlete 1. Boyle tapasztalata: ónt

Részletesebben

Az élő sejt fizikai Biológiája:

Az élő sejt fizikai Biológiája: Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai

Részletesebben

Lumineszcencia Fényforrások

Lumineszcencia Fényforrások Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós

Részletesebben

2.4. ábra Alkalmazási területek

2.4. ábra Alkalmazási területek Tanulmányozza a 2.4. ábrát! Vizsgálja meg/gyűjtse ki hegesztésnél alkalmazott lézerek jellemző teljesítmény sűrűségét, fajlagos energiáját és a hatás időtartamát! 2.4. ábra Alkalmazási területek Gyűjtse

Részletesebben

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba

GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA. Mérési útmutató. Gyurkócza Csaba GÁZIONIZÁCIÓS DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba BME NTI 1997 2 Tartalom 1. BEVEZETÉS... 3 2. ELMÉLETI ÖSSZEFOGLALÁS... 3 2.1. Töltéshordozók keletkezése (ionizáció) töltött részecskéknél...

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY

HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY MAGYAR TERMÉSZETTUDOMÁNYI TÁRSULAT HEVESY GYÖRGY ORSZÁGOS KÉMIAVERSENY Országos döntő Az írásbeli forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont

Részletesebben

www.biophys.dote.hu jelszó: geta5

www.biophys.dote.hu jelszó: geta5 www.biophys.dote.hu felhasználónév: hallgatok jelszó: geta5 Mi a Biofizika? 1. Fizikai módszerek alkalmazása biológiai rendszerek kutatására Pl. Rtg. diffrakciós kísérletek makromolekulák szerkezetének

Részletesebben

A TÖMEGSPEKTROMETRIA ALAPJAI

A TÖMEGSPEKTROMETRIA ALAPJAI A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására

Részletesebben