Módszerek, szervezési módok: Magyarázat, szemléltetés, beszélgetés, játéktevékenység, rajz Frontális, differenciált, páros

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Módszerek, szervezési módok: Magyarázat, szemléltetés, beszélgetés, játéktevékenység, rajz Frontális, differenciált, páros"

Átírás

1 Az óra címe: Sokszögek építése poliminókból, a sokszögek területe Ajánlott évfolyamok: 3., 4., 5. ( Nagylaci elsősöknek is ajánlható kiemelései kékkel) Ajánlott időtartam: két tanítási óra lehetőleg egymás után Tanítási cél: A terület fogalmának előkészítése, valamint elmélyítése Ismerkedés különböző formájú sokszögekkel A türelem és a kitartás fejlesztése Pontosságra, a szabályok betartására törekvés Tananyag: Alapfogalmak - új fogalmak: négyzet, téglalap, vízszintes, függőleges, hézag, hézagmentes, fedés, illeszkedés, oldal, csúcs (sarok), terület, méret, alak, alakzat, Poliminó Ismerkedés a Poliminókkal: Dominó, Trominó, Tetrominó, Pentominó, Monominó Sokszögek kirakása Poliminókkal Feladatok készségek, képességek fejlesztése: Célirányos próbálgatás (gondolkodás + cselekvés) Együttműködés és kapcsolatteremtés Kombinatív gondolkodás Modellezés Síkbeli tájékozódás, konstruálás Analitikus szintetikus gondolkodás Lényeglátás Képzelőerő Figyelem Válogatás, rendszerezés Számolás, következtetés Szövegértés, lényegkiemelés Stratégiai, taktikai gondolkodás Divergens gondolkodási mód Módszerek, szervezési módok: Magyarázat, szemléltetés, beszélgetés, játéktevékenység, rajz Frontális, differenciált, páros Eszközök: Négyzetlapok, poliminók, ábrás, szöveges papírok (feladatlapok), papírtáblák Az óra menete: 1. Bevezetés (Feladatlap, páros munka, rajz, utána közös megbeszélés.) o Motiváció mese: Egy messzi-messzi országban a király elhatározta, hogy téglalap alakú tróntermét olyan hatalmas, színes kőlapokkal boríttatja be, - amelyek

2 egymáshoz oldalakkal kapcsolódó négyzetlapokból, úgynevezett monominókból állnak -, vagyis poliminókkal. Például ilyenekkel: Birodalma minden szegletéből hozatott szebbnél szebb, különböző méretű és alakú köveket, melyek négyzetlapjait varázserő tartotta össze, így nem lehetett őket szétválasztani. Domíniából dominókat (2 lap), Tromíniából trominókat (3 lap), Tetromíniából tetrominókat (4 lap) és Pentomíniából pentominókat (5 lap). A király hírnökei útján kihirdette, hogy aki egyforma típusú kövekkel be tudja fedni a trónterem padlóját - nem lehet közöttük két egyforma alakú sem -, annak adja egyetlen szépséges leányát és fele királyságát. Végül a királyság egyik ifjú és tehetséges matematikusának sikerült a feladatot teljesítenie. A trónterem 10x6 os méretű, rajzát itt megtaláljátok! Tehát 10 négyzet fér el vízszintes, 6 négyzet függőleges irányban. A trónterem alaprajza: a) Hány monominót lehet elhelyezni a trónterem alján? Számold meg, vagy számold ki! 10x6 = 60 b) Mennyi kő lehet az egyes fajtákból? Dominó: 1, Trominó: 2, Tetrominó: 5, Pentominó: 12. c) Melyik kővel érdemes próbálkozni? Miért? Pentominókkal, mert belőlük van 12 féle, s így éppen lefedhetik a trónterem alját. d) A többi miért nem alkalmas a probléma megoldására? Mert nincs belőlük annyiféle, hogy lefedhessék hézagmentesen a padlózatot.

3 2. Feldolgozás (Feladatlapok, páros munka) o Mielőtt nekilátnánk mi is a parkettázás (kőlapozás) megoldásának, lássunk előtte néhány egyszerűbb feladatot! Pentominó készletet találtok magatok előtt az asztalotokon, amelyeket használni fogtok a továbbiakban! 1. feladat a) 2 db tetszés szerint kiválasztott pentominóból úgy illessz össze egy alakzatot, hogy az két másikból is kialakítható legyen! Ez lesz a másik játékos, a társad feladványa. Keress több megoldást! b) Miután mindkettőtöknek sikerült feladványt összeállítani, fejtsétek meg egymás feladványát! Könnyítések: Mutasd fel szomszédodnak az egyik keresett elemet! Mutasd fel szomszédodnak a másik keresett elemet is! c) Egyeztessétek a megoldásokat! d) Hány monominóból (négyzetlapból) állnak az összeállított alakzatok? 2x5 = 10 lapocskából. 2. feladat Végezd el az előző feladatot lépésről lépésre 3 pentominóval! 3. feladat a) A 4, 5, 6,, 12 pentominóval - hézag és átfedés nélkül - kirakható alakzat hány monominóból áll? Készíts táblázatot! b) Milyen számokat kapunk a táblázat alsó sorában? 5 többszöröseit. c) A 60 monominóból álló alakzat hány nem feltétlenül különböző - a) dominóból, b) trominóból és c) tetrominóból rakható össze? Milyen összefüggést fedezel fel a poliminók mérete és számuk között? a) 60:2 = 30 b) 60:3 = 20 c) 60:4 = 15 Minél nagyobb a méret, annál kevesebb kell belőle. (Ahányszor nagyobb, annyiszor kevesebb szükséges belőle.) d) Ha a c)-ben szereplő poliminók esetén is elkészítenénk az a)-beli táblázatot, milyen számok jelennének meg rendre az alsó sorban?

4 2, 3 és 4 többszörösei. o Játék (2 személyes) Helyezzétek középre a 8x8 as négyzettáblát, és készítsétek oda a 12 különböző pentominót! Játékszabály a) Vari A játékosok felváltva vesznek el egy-egy pentominót és a táblára helyezik azt az üres (még nem takart) négyzetlapokra illesztvén. Vesztes az, aki már nem képes egyetlen pentominót sem elhelyezni úgy, hogy az ne fedjen valamely korábban letett pentominó darabot. b) Vari A játék első részében a játékosok felváltva vesznek el egy-egy pentominót, így mindkettőjüknek lesz hat-hat darab. A második részben mindketten felváltva teszik le a táblára az a) ban említett feltétel szerint saját pentominóikat. Ebben a szakaszban az kezd, aki az elsőben utoljára vett el. A játék célja ugyanaz, mint az a) esetben. c) Vari Próbáljátok ki e játékot 10x10 es táblán is azzal az eltéréssel, hogy a pentominók oldalaikkal nem, csak kizárólag sarkosan, azaz csak csúcsaikkal érintkezhetnek egymással! Mire kell törekednünk, milyen stratégiát válasszunk, hogy esélyeink megnövekedjenek? Legfőbb célunk mindegyik variban az, hogy a magunk számára helyet biztosítsunk, míg ellenfelünket igyekezzünk megakadályozni ebben. Ezt szem előtt tartva az a) variban két hasonló nagyságú üres terület biztosítása lehet egy követendő stratégia, melyet az aktuális helyzetnek megfelelő taktikával biztosíthatunk. A b) variban célszerű mielőbb megszabadulnunk a nehezebben elhelyezhető idomoktól. További varik otthoni kipróbálásra: 1) A játékosok a 12 pentominóból felváltva választanak egyet a másiknak, aki azt már oda helyezheti, ahová akarja. A cél ugyanaz, mint az előző esetekben. 2) A játék célja megfordul: az a nyerő, aki már nem tud a szabályok szerint tenni. Mi lehet e játékok stratégiája?

5 o Térjünk vissza a mesében felvetett feladatra! Fogalmazzátok át a feladatot a matematika nyelvére! (Önálló tevékenységek) Feladat megfogalmazása: Rakjuk ki a 10x6-os téglalapot - takarás- és hézagmentesen - a 12 eltérő formájú pentominóval! Segédfeladat: Rakjunk ki 5x6-os téglalapot 6-6 eltérő formájú pentominóval! (Önálló próbálkozások) Például két 5x6-os megoldás egybetolása ad egy megoldást a 10x6-os problémára. 1. Feladat: Hány olyan 60 monominóból álló téglalap létezik, amely a 12 különböző formájú pentominóból felépíthető? Add meg a méreteiket! 60 = 6x10 = 5x12 = 4x15 = 3x20, tehát négy létezik. A 2x30-as már nem alkalmas, mert van olyan pentominó, amely nem fér el benne. Például ez: 2. Feladat: A 6x10-esen kívül melyik lenne előállítható a két 5x6-osból? Az 5x12-es, mert az 5 egység oldalaikat összetolva: 6+6 = Levezetés (Indirekt differenciált szervezési mód), szorgalmi házi feladat Kutatási feladatok, nyílt végű feladatok, Pentominós pasziánsz-puzzle feladványok egységes feladatlapon 4 monominóval kiegészítve a 12 darabos Pentominó készletet: 8x8-as négyzet kirakása a cél. Előző nehezítése: a monominók rögzítése után például a négy sarokban - kezdődik a kirakás. A 6x10-es, az 5x12-es, a 4x15-ös, vagy a 3x20-as téglalapok összeállítása pentominókkal. 8x8-as négyzet kirakása pentominókkal, csak összefüggő, tetrominóval lefedhető üres rész maradhat! Alkoss feladványokat 2, 3, 4, pentominóra! Keressetek megoldásokat! 3, 4, vagy 5 monominós szélességű sor feltöltése pentominókkal egyénileg, párban. Tetrominós feladványok készítése, megfejtése. Háromszög alakú feltöltés pentominókkal. Pentominó elemek kirakása nagyobb méretben. Játékok és feladványok Pentominó Hungariqa készlettel ínyenceknek, külön katalógusból. A fenti, lerakós, több varis játék kipróbálása kisebb táblákon. Paplanjáték pentominóval és tetrominóval (teljes készlet).

6 Néhány tanács: A játék elején ajánlott a pentominó darabok 3 csoportba osztása, miszerint vannak egyszerűbb elemek, bonyolultabbak, és olyanok, amelyekről nehéz eldönteni, hogy hová is tartozzon (állástól függ). Általában érdemes a nehéz elemektől megszabadulni, vagy megszelídíteni olyan módon, hogy valamely más elemmel, vagy elemekkel egybetolva könnyen elhelyezhető blokkot alkosson. 4. Befejezés, értékelés, dicséret, elpakolás Megjegyzés: Érdemes a Poliminók világát alaposabban feltárni, továbblépni a Hexominók stb. felé, valamint megismertetni a diákokat a Blokus eredeti, valamint trigon változatával. Legajánlatosabb azonban rátérni a Pentominók magyar, poroncsapott változatára (Hungariqa Pentominó), amely az eredetihez képest sokkal több lehetőséget, érdekességet kínál mind a feladványok, mind a kombinatív játékok terén.

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS?

MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS? MATEMATIKA C 9. évfolyam 8. modul SZIMMETRIKUS? Készítette: Surányi Szabolcs MATEMATIKA C 9. ÉVFOLYAM 8. MODUL: SZIMMETRIKUS? TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Gondolatok a Blokus játékról

Gondolatok a Blokus játékról Gondolatok a Blokus játékról Bagota Mónika Eötvös Loránd Tudományegyetem TÓK Matematika Tanszék, Budapest bagota.monika@tok.elte.hu A Blokus játék tartalma: 1db 400 mezős játéktábla; 84 db alakzat 4 színben.

Részletesebben

Nyerni jó. 7.-8. évfolyam

Nyerni jó. 7.-8. évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni

Részletesebben

Matematika C 3. évfolyam. Tanagramok. 2. modul. Készítette: Köves Gabriella

Matematika C 3. évfolyam. Tanagramok. 2. modul. Készítette: Köves Gabriella Matematika C 3. évfolyam Tanagramok 2. modul Készítette: Köves Gabriella Matematika C 3. évfolyam 2. modul tanagramok 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály A tudatos észlelés, a megfigyelés

Részletesebben

Játékszabály. Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc. A doboz tartalma:

Játékszabály. Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc. A doboz tartalma: Játékszabály Logikai játék 2 5 fő részére 7 éven felülieknek 1 játszma időtartama kb. 45 perc A doboz tartalma: 75 fakocka (15 15 db öt színből) 5 db kétoldalú játéktábla pontozótábla 5 db pontszám jelölő

Részletesebben

A táblajáték-foglalkozások nevelési célja, hogy biztonságos, derűs légkörben egyéni képességeiknek megfelelően fejlődjenek a gyermekek az

A táblajáték-foglalkozások nevelési célja, hogy biztonságos, derűs légkörben egyéni képességeiknek megfelelően fejlődjenek a gyermekek az Táblajátékok matematikaórán K. Nagy Emese A logikai- és táblajáték-foglalkozások fő célkitűzése a gyerekek értelmi képességének, fejlesztése, a szabadidő igényes, tartalmas eltöltése, a társas élet, a

Részletesebben

Lerakó. 7. modul. Készítette: Köves Gabriella

Lerakó. 7. modul. Készítette: Köves Gabriella Lerakó 7. modul Készítette: Köves Gabriella Lerakó A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A tudatos észlelés, a megfigyelés és a figyelem fejlesztése Saját megfigyelések, megtapasztalások

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

PENTOMINO. Az elnevezés Solomon W. Golomb matematikus nevéhez fűződik.

PENTOMINO. Az elnevezés Solomon W. Golomb matematikus nevéhez fűződik. Tanárként egyre gyakrabban szembesülhetünk azzal a ténnyel, hogy a tanulókat egyre nehezebb lekötni az órán. Könnyen kimondják az ítéletet egyegy óráról, hogy "unalmas", ha csak a tananyagot szeretnénk

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Ismeretek, tananyagtartalmak Négyzet, téglalap tulajdonságai A kerület

Részletesebben

A játékosok célja. A játék elemei. Spielablauf

A játékosok célja. A játék elemei. Spielablauf Donald X. Vaccarino játéka 2-4 játékos részére, 8 éves kortól A játék elemei 8 különböző játéktábla rész (A továbbiakban negyed) A játékosok célja Minden játékos települések ügyes megépítésével saját birodalmát

Részletesebben

Hány darab? 5. modul

Hány darab? 5. modul Hány darab? 5. modul Készítette: KÖVES GABRIELLA 2 Hány darab? A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Tapasztalati úton ismerkedés az adat fogalmával. Tapasztalatszerzés az

Részletesebben

Kártyajátékok. 10. modul. Készítette: Abonyi tünde

Kártyajátékok. 10. modul. Készítette: Abonyi tünde Kártyajátékok. modul Készítette: Abonyi tünde matematika c. ÉVFOLYAM. modul: Kártyajátékok Kártyajátékok A modul célja Időkeret Ajánlott korosztály A tudatos észlelés, a megfigyelés és a figyelem fejlesztése.

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben

Óravázlat Matematika. 1. osztály

Óravázlat Matematika. 1. osztály Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség

Részletesebben

kié nagyobb? 10. modul Készítette: Abonyi tünde

kié nagyobb? 10. modul Készítette: Abonyi tünde kié nagyobb? 10. modul Készítette: Abonyi tünde kié nagyobb? A modul célja Időkeret Ajánlott korosztály A tudatos észlelés, a megfigyelés és a figyelem fejlesztése. Saját megfigyelések, megtapasztalások

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály

A sakk feltalálója. A megfizethetetlen találmány. Számítsuk ki, mennyi is ez? Egy ötlet a számításhoz: az úgynevezett Teve szabály A sakk feltalálója Kevés játéknak van olyan regényes története, mint a sakknak. A tudomány mindmáig nem volt képes hitelt érdemlően feltárni eredetét, a körülötte terjengő legendákból viszont már évszázadokkal

Részletesebben

BIGYOO ötletpályázat ADATLAP

BIGYOO ötletpályázat ADATLAP BIGYOO ötletpályázat ADATLAP A pályázó neve: NYÁRI LÁSZLÓ... Tantárgyi szakja (a pályázatra vonatkozóan): tanító, informatika, technika... Iskola megnevezése, amelyben dolgozik: CSATA UTCAI ÁLTALÁNOS ISKOLA...

Részletesebben

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül.

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. WASABI Játékszabály A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. A JÁTÉK ELŐKÉSZÜLETEI A játék kezdetén minden játékos kap 4 kockát,

Részletesebben

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár:

JELENTKEZÉSI LAP. Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: JELENTKEZÉSI LAP Név: Osztály: E-mail cím (továbbjutásról itt is értesítünk): Iskola: Felkészítő tanár: Második fordulóba jutás esetén Windows 7 operációs rendszert, és Office 2007 programcsomagot fogsz

Részletesebben

SZKb_102_01. Bizalomjáték. Készítette: Lissai Katalin É N É S A M Á S I K SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2.

SZKb_102_01. Bizalomjáték. Készítette: Lissai Katalin É N É S A M Á S I K SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. SZKb_102_01 segítség, amit adhatok Bizalomjáték É N É S M Á S I K Készítette: Lissai Katalin SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. ÉVFOLYM tanári SEGÍTSÉG, MIT DHTOK MODULVÁZLT tevékenység

Részletesebben

FEJLESZTÉSI TERÜLETEK KOMPLEX KÉPESSÉGFEJLESZTÉS VILÁGHÍRŰ. logikai játékokkal KUDARCTŰRÉS ÖNBIZALOM TÁRSAS KAPCSOLATOK + =

FEJLESZTÉSI TERÜLETEK KOMPLEX KÉPESSÉGFEJLESZTÉS VILÁGHÍRŰ. logikai játékokkal KUDARCTŰRÉS ÖNBIZALOM TÁRSAS KAPCSOLATOK + = FEJLESZTÉSI TERÜLETEK KOMPLEX KÉPESSÉGFEJLESZTÉS IQ VILÁGHÍRŰ logikai játékokkal ÉRZELMI INTELLIGENCIA MATEMATIKA STRATÉGIAI GONDOLKODÁS LOGIKA KUDARCTŰRÉS ÖNBIZALOM TÁRSAS KAPCSOLATOK + = SIKER LOGIKA

Részletesebben

M A T EMATIKA 9. év fo ly am

M A T EMATIKA 9. év fo ly am Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Az iskola kódja: Az osztály kódja: A tanuló kódja: A tanuló neme: Kompetenciaalapú mérés 2008/2009. M A T EMATIKA

Részletesebben

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás Tartalom Tartalom A szerzőről, a fordítóról és a lektorról.... 7 Bevezetés.................................................................... 9 Áttekintő táblázatok.... 11 I. rész Játékok és fejtörők:

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó

Részletesebben

Modul bevezetése. Matematika 5. osztály 2009-2010. A negatív számok 0541. modul

Modul bevezetése. Matematika 5. osztály 2009-2010. A negatív számok 0541. modul Modul bevezetése Matematika 5. osztály 2009-2010 A negatív számok 0541. modul MODULLEÍRÁS A modul célja Időkeret Korosztály Modulkapcsolódási pontok A képességfejlesztés fókuszai Számfogalom bővítése.

Részletesebben

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat!

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat! Szülőktől még megértően elfogadom: a táblajátékok logikus gondolkodásra nevelnek, de mindig indulatosan reagálok, ha pedagógustól, újabban pedig, ha játékpedagógustól hallom az általános közhelyet. A pedagógus

Részletesebben

ÓRAVÁZLAT Készítette: Tantárgy: Évfolyam: Tematikai egység: Témakör: Az óra célja és feladata: Módszerek: Munkaformák: Szemléltetés: Eszközök:

ÓRAVÁZLAT Készítette: Tantárgy: Évfolyam: Tematikai egység: Témakör: Az óra célja és feladata: Módszerek: Munkaformák: Szemléltetés: Eszközök: ÓRAVÁZLAT Készítette: Antalffy Zsuzsanna (kiegészítette Bubernik Eszter) Tantárgy: Erkölcstan Évfolyam: 6. Tematikai egység: A technikai fejlődés hatásai Témakör: Ökológia Az óra célja és feladata: Megismerni

Részletesebben

TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod?

TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod? MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul TERÜLETMÉRÉS ALKALMI EGYSÉGGEL Mennyit ér a kézfogásod? Készítette: Schmittinger Judit MATEMATIKA B 2. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul: TERÜLETMÉRÉS

Részletesebben

TANMENETJAVASLAT. Matematika. 1. osztály

TANMENETJAVASLAT. Matematika. 1. osztály TANMENETJAVASLAT Matematika 1. osztály 2 1. Tájékozódás a tanulók készségeirôl, képességeirôl Játék szabadon adott eszközökkel Tk. 5. oldal korongok, pálcikák építôkockák GONDOLKODÁSI MÛVELETEK ALAPOZÁSA

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott

Részletesebben

Körös Tehetséggondozó Egyesület NTP-MTI-14-0146. Madárvárta. Tematika. Időszak: 2015. február 6 2015. június 30.

Körös Tehetséggondozó Egyesület NTP-MTI-14-0146. Madárvárta. Tematika. Időszak: 2015. február 6 2015. június 30. Körös Tehetséggondozó Egyesület NTP-MTI-14-0146. 1 Madárvárta Tematika Időszak: 2015. február 6 2015. június 30. 1. témakör: Tavaszi Madárles (Spring Alive) Cél: tudományos jellegű, azt életkori sajátosságoknak

Részletesebben

TANMENETJAVASLAT. Matematika. 2. osztály

TANMENETJAVASLAT. Matematika. 2. osztály TANMENETJAVASLAT Matematika 2. osztály 2 1. Ismerkedés a 2. osztályos matematika tankönyvvel és gyakorlókönyvvel Tankönyv Gyakorlókönyv 2. Tárgyak, személyek a megadott szempont szerint (alak, szín, nagyság).

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

KPN 2014. bemutatóóra Kada Mihály Általános Iskola

KPN 2014. bemutatóóra Kada Mihály Általános Iskola KPN 2014. bemutatóóra Kada Mihály Általános Iskola Pedagógus neve: Jászfalvi Ildikó Osztály: 1. a osztály Műveltségi terület: Magyar nyelv és irodalom Tantárgy: magyar irodalom Tananyag: A sajtot osztó

Részletesebben

DIAGNOSZTIKUS MÉRÉS. 33. modul

DIAGNOSZTIKUS MÉRÉS. 33. modul Matematika A 3. évfolyam DIAGNOSZTIKUS MÉRÉS 33. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 33. modul DIAGNOSZTIKUS MÉRÉS MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

FIGYELMEZTETÉS! Fulladásveszély! Apró alkatrészeket tartalmaz, ezért 3 éves kor alatt tilos! 5 éves kortól ajánlott 2-6 játékos számára

FIGYELMEZTETÉS! Fulladásveszély! Apró alkatrészeket tartalmaz, ezért 3 éves kor alatt tilos! 5 éves kortól ajánlott 2-6 játékos számára Zingo játékszabály és használati útmutató FIGYELMEZTETÉS! Fulladásveszély! Apró alkatrészeket tartalmaz, ezért 3 éves kor alatt tilos! 5+ 5 éves kortól ajánlott 2-6 játékos számára Játssz a kedvenc Zingo

Részletesebben

Fejlesztő játékok. MB 306029 Tapintós sétány. MB 118 210 Bűvös zsákok. MB 358023 Nagymosás. NA 337 224 Mágneses virágok 2+ ÉV 3+ ÉV 4+ ÉV 5+ ÉV

Fejlesztő játékok. MB 306029 Tapintós sétány. MB 118 210 Bűvös zsákok. MB 358023 Nagymosás. NA 337 224 Mágneses virágok 2+ ÉV 3+ ÉV 4+ ÉV 5+ ÉV MB 306029 Tapintós sétány 3 különböző mintával 6 négyzetet lehet összerakni, akár egymás után, akár egymás mellé. A gyerekek séta közben a talpukkal érzékelik a különböző mintázatot. Ezzel serkentik a

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK

Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK Csak kezdőknek 1. Könnyű percek 15x15-ös vicces hagyományos egész oldalas skandi 19x15-ös plusz egy poén Rejtvényfejtők Napja 2013 KATEGÓRIÁK KERESZTREJTVÉNYEK 2. Lexikon nélkül Mozaikrejtvény szokatlan

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Szakértelem a jövő záloga

Szakértelem a jövő záloga 1211 Budapest, Posztógyár út. LEKTORI VÉLEMÉNY Moduláris tananyagfejlesztés Modul száma, megnevezése: Szerző neve: Lektor neve: Imagine Logo programozás Babos Gábor Újváry Angelika, Szabó Imre Sorszám

Részletesebben

MATEMATIKA C 5. évfolyam 7. modul Játék a síkon

MATEMATIKA C 5. évfolyam 7. modul Játék a síkon MATEMATIKA C 5. évfolyam 7. modul Játék a síkon Készítette: Köves Gabriella MATEMATIKA C 5. ÉVFOLYAM 7. MODUL: JÁTÉKOK A SÍKON TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

KREATÍV TEVÉKENYSÉGEKRE ÉPÍTETT

KREATÍV TEVÉKENYSÉGEKRE ÉPÍTETT KREATÍV TEVÉKENYSÉGEKRE ÉPÍTETT MATEMATIKATANÍTÁSI KÍSÉRLETEK MASCIL PROJEKT http://www.mascil-project.eu MASCIL Constructing with Non-Standard Bricks, Australian Mathematics Teacher, 68(2012):4, 23-29

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Modulleírás és modulvázlat

Modulleírás és modulvázlat Modulleírás és modulvázlat A modul leírása Korosztály A 6. a osztály tanulói Téma Szimmetria a mindennapjainkban Célom A matematika, az informatika és a technika órákon bemutatjuk szűkebb és tágabb környezetünkben

Részletesebben

Játsszunk a szavakkal és a betűkkel!

Játsszunk a szavakkal és a betűkkel! Demény Piroska Szilágyi Mária Játsszunk a szavakkal és a betűkkel! Játékos nyelvi feladatgyűjtemény ERDÉLYI TANKÖNYVTANÁCS Válogatás a szerzők Szavak kincsesháza című nyelvi feladatgyűjteményéből (Erdélyi

Részletesebben

Kooperatív módszertanra épülő együttműködés. Moharos Ágnes Regőcziné Ábrahám Éva. 2015. február

Kooperatív módszertanra épülő együttműködés. Moharos Ágnes Regőcziné Ábrahám Éva. 2015. február Kooperatív módszertanra épülő együttműködés Moharos Ágnes Regőcziné Ábrahám Éva 2015. február Módszerekhez kapcsolható grafikai szervezők Halmazábrák (Venn-diagram) Gondolatok összehasonlítására, különbségek

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

A GOMBFOCI JÁTÉKSZABÁLYAI

A GOMBFOCI JÁTÉKSZABÁLYAI A GOMBFOCI JÁTÉKSZABÁLYAI A gombfoci szabályai szinte megegyeznek a futball szabályaival. Les nincs. A játékban két ember vesz részt. A versenyzők tíz-tíz darab mező ny játékosgombbal, egy-egy darab kapusgombbal

Részletesebben

szka102_27 É N É S A V I L Á G Készítette: Özvegy Judit SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM

szka102_27 É N É S A V I L Á G Készítette: Özvegy Judit SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM szka102_27 É N É S A V I L Á G Séta a vízparton Készítette: Özvegy Judit SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM 300 Szociális, életviteli és környezeti kompetenciák Tanári MODULVÁZLAT

Részletesebben

-3- -a zavartalan munka biztosítása. - felolvasással, egyéni javítással. 2. Házi feladat ellenőrzése: Tk. 100/12. FOM

-3- -a zavartalan munka biztosítása. - felolvasással, egyéni javítással. 2. Házi feladat ellenőrzése: Tk. 100/12. FOM ÓRATERVEZET Tantárgy: Magyar nyelv Osztály: 5.d Az óra címe: Hangalak és jelentés a szavakban A tematikus egység: A szavak alakja és szerkezete. Az óra célja: A tudatos és igényes szóbeli és írásbeli nyelvhasználat

Részletesebben

PROGRAMTERV. Ismeretanyag Módszerek Eszközök. Magyarázat szemléltetés játék. Magyarázat, szemléltetés, szituációs játék

PROGRAMTERV. Ismeretanyag Módszerek Eszközök. Magyarázat szemléltetés játék. Magyarázat, szemléltetés, szituációs játék PROGRAMTERV Ismeretanyag Módszerek Eszközök 1. Bevezetés, tervismertetés, foglalkozások célja STOP Közlekedj okosan! 1-3. rész Átkelés az úttesten 2. A gyalogos közlekedéssel összefüggő legfontosabb rendőri

Részletesebben

Sakk logika Jó gyakorlat

Sakk logika Jó gyakorlat Sakk logika Jó gyakorlat a telki Pipacsvirág Magyar Angol Két Tanítási Nyelvű Általános Iskolában A sakk-logika oktatása a Pipacsvirág Magyar Angol Két Tanítási Nyelvű Általános Iskolában 2001 Megnyílik

Részletesebben

Kutya-macska lerakós. ( 6x7-es táblához kb. 18-18 db cica- és kutya-bábu)

Kutya-macska lerakós. ( 6x7-es táblához kb. 18-18 db cica- és kutya-bábu) Kutya-macska lerakós. ( 6x7-es táblához kb. 18-18 db cica- és kutya-bábu) Üres táblán kezdve, felváltva egyet-egyet raknak a játékosok és azonnal veszít az, aki a másik játékos bábuja mellé(***) rak. )

Részletesebben

A dinamó felfedezésének nyomában Óravázlat Készült: Filep Otília óravázlatának alapján

A dinamó felfedezésének nyomában Óravázlat Készült: Filep Otília óravázlatának alapján A dinamó felfedezésének nyomában Óravázlat Készült: Filep Otília óravázlatának alapján A) Adatok Iskolatípus: általános iskola / felső tagozat Korosztály: 14 év Tantárgy: fizika Téma: Elektromágneses Indukció,

Részletesebben

FÖL(D)PÖRGETŐK HÁZI VERSENY 2. FORDULÓ 5-6. évfolyam Téma: Lelkünk temploma, avagy nagyító alatt az emberi test

FÖL(D)PÖRGETŐK HÁZI VERSENY 2. FORDULÓ 5-6. évfolyam Téma: Lelkünk temploma, avagy nagyító alatt az emberi test A Földpörgetők versenyen, minden tantárgy feladataira összesen 20 pontot lehet kapni, így egy forduló összpontszáma 100 pont a feladatok számától függetlenül. Csak a kiosztott fejléces üres papírokra lehet

Részletesebben

OECD adatlap - Tanmenet

OECD adatlap - Tanmenet OECD adatlap - Tanmenet Iskola neve: IV. Béla Általános Iskola Iskola címe: 3664, Járdánháza IV. Béla út 131. Tantárgy: Matematika Tanár neve: Lévai Gyula Csoport életkor (év): 13 Kitöltés dátuma 2003.

Részletesebben

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016.

Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola. Matematika tanmenet 2015-2016. Comenius Angol - Magyar Két Tanítási Nyelvű Általános Iskola Matematika tanmenet 2015-2016. Tankönyv: Árvainé Lángné Szabados: Sokszínű Matematika 3. /1. és 2. félév/ Árvainé Lángné Szabados: Sokszínű

Részletesebben

3 3 3 3 3 3 0 ----------------------- 0 3 3 3 3 3 3

3 3 3 3 3 3 0 ----------------------- 0 3 3 3 3 3 3 Nagy feladat: Készítse el a programot saját tudása és ötletei alapján. Semmilyen grafikát (OpenGL, DirectX, stb) NE használjon. Minden grafikát csak szövegesen jelenítsen meg. Működőképes programot kell

Részletesebben

Speciális tetőfedések és ács szerkezetei

Speciális tetőfedések és ács szerkezetei Speciális tetőfedések és ács szerkezetei 57 Hajlatképzés A hajlatképzést többnyire a bádogos szerkezetek kiváltására alkalmazzák. Fő jellemzője, hogy kis méretű palákból jobbos vagy balos fedéssel íves

Részletesebben

TÁRSASJÁTÉK. 4. Egy bábut mindenki elhelyez a pontok számolására szolgáló táblán

TÁRSASJÁTÉK. 4. Egy bábut mindenki elhelyez a pontok számolására szolgáló táblán TÁRSASJÁTÉK A játék célja A játék az útonállók, lovagok, földművesek és szerzetesek világába vezet el: Mindegyikőjük célja, gyarapodni, pontokat szerezni. Hogyan? Lovag várat, várost épít, minél nagyobb

Részletesebben

A Paint program használata

A Paint program használata A Paint program használata A Windows rendszerbe épített Paint program segítségével képeket rajzolhat, színezhet és szerkeszthet. A Paint használható digitális rajztáblaként. Egyszerű képek és kreatív projektek

Részletesebben

MATEMATIKA C 5. évfolyam 2. modul A KOCKA

MATEMATIKA C 5. évfolyam 2. modul A KOCKA MATEMATIKA C 5. évfolyam 2. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 5. ÉVFOLYAM 2. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Szemléletfejlesztés,

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0226 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: ÁltGpüz//50/Ksz/Rok Általános gépüzemeltető szakképesítés-csoportban,

Részletesebben

MATEMATIKA C 9. évfolyam 9. modul SAKKMATEK

MATEMATIKA C 9. évfolyam 9. modul SAKKMATEK MATEMATIKA C 9. évfolyam 9. modul SAKKMATEK Készítette: Surányi Szabolcs MATEMATIKA C 9. ÉVFOLYAM 9. MODUL: SAKKMATEK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Segítünk egymásnak. A matematika nem játék? 2. ÉVFOLYAM É N É S A M Á S I K. Készítette: Lissai Katalin

Segítünk egymásnak. A matematika nem játék? 2. ÉVFOLYAM É N É S A M Á S I K. Készítette: Lissai Katalin SZKb_102_06 Segítünk egymásnak A matematika nem játék? É N É S A M Á S I K Készítette: Lissai Katalin SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. ÉVFOLYAM tanári SEGÍTÜNK EGYMÁSNAK 53 MODULVÁZLAT

Részletesebben

Egy ötlet: hogyan lehet sudokuval játszani a matematikaórán

Egy ötlet: hogyan lehet sudokuval játszani a matematikaórán Gyermeknevelés. évf.. szám 7 8. (0) Egy ötlet: hogyan lehet sudokuval játszani a matematikaórán Bagota Mónika ELTE TÓK Az írás ötlete Ronit Bird: Száz játék és fejtörő a számolási nehézségek leküzdésére

Részletesebben

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző 1 SET A SET játékszabályairól röviden, már ha valaki nem ismerné: Hogy néznek ki a kártyalapok? Minden kártyán van egy ábra, aminek 4 jellemzője van. Minden kategória további három különböző lehetőséget

Részletesebben

Programozással ismerkedőknek ajánlom. SZERZŐ: Szilágyi Csilla. Oldal1

Programozással ismerkedőknek ajánlom. SZERZŐ: Szilágyi Csilla. Oldal1 A foglalkozás célja, hogy a tanulók játékosan ismerkedjenek meg az információ átadásának lehetőségeivel, a LOGO programnyelv alapjaival. Irányjátékokkal, robotjátékokkal fejlesszük a tanulók algoritmikus

Részletesebben

Tudorka óravázlat Magyar irodalom 4. évfolyam Tudorka 28. oldal

Tudorka óravázlat Magyar irodalom 4. évfolyam Tudorka 28. oldal Tudorka óravázlat Magyar irodalom 4. évfolyam Tudorka 28. oldal Tantárgy: Magyar irodalom Témakör: Történelmi arcképcsarnok Tananyag: Mátyás király és a pásztor című olvasmány feldolgozása, dramatizálása

Részletesebben

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat

Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő

Részletesebben

GEOMATECH Tanulmányi verseny Májusi feladatok

GEOMATECH Tanulmányi verseny Májusi feladatok GEOMATECH Tanulmányi verseny Májusi feladatok A hónap mottója: A felfedezés öröme, a problémamegoldó gondolkodás Ebben a fordulóban olyan gondolkodtató, kihívást jelentő matematikai feladatokat találtok,

Részletesebben

MATEMATIKA C 6. évfolyam 4. modul A KOCKA

MATEMATIKA C 6. évfolyam 4. modul A KOCKA MATEMATIKA C 6. évfolyam 4. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 4. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

Kompetencia alapú matematika óra: tanulásban akadályozott tanulók számára

Kompetencia alapú matematika óra: tanulásban akadályozott tanulók számára Kompetencia alapú matematika óra: tanulásban akadályozott tanulók számára Idő 4 perc 5 perc Tantárgy: matematika Évfolyam 5. évfolyam Tananyag: 7-es szorzó bennfoglaló tábla felépítése Tanóra jellege:

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0136 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Hulladé//30/Ksz//Ált Hulladékgazdálkodás szakképesítés-csoportban,

Részletesebben

Óravázlat. Az óra menete. 1. Együttműködés az állatvilágban című szöveg egyéni elolvasása, majd közös megbeszélése. Képek megtekintése. (Melléklet 2.

Óravázlat. Az óra menete. 1. Együttműködés az állatvilágban című szöveg egyéni elolvasása, majd közös megbeszélése. Képek megtekintése. (Melléklet 2. Óravázlat Tantárgy: Erkölcstan Évfolyam: 5. Tematikai egység: Kortársi csoportok Az óra témája: Az együttműködés Az óra célja és feladata: A közösséghez tartozás fontosságának megéreztetése. A csoporttagok

Részletesebben

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk.

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Óravázlat 2. osztályos matematika Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Oktatási cél: Pénzhasználat, pénzváltás. Játék a játékpénzzel párokban. Megismerési képességek

Részletesebben

Tanítási gyakorlat. 2. A tanárok használják a vizuális segítséget - képeket adnak.

Tanítási gyakorlat. 2. A tanárok használják a vizuális segítséget - képeket adnak. 1. szakasz - tanítási módszerek 1. A tananyagrészek elején megkapják a diákok az összefoglalást, jól látható helyen kitéve vagy a füzetükbe másolva mindig elérhetően, hogy követni tudják. 2. A tanárok

Részletesebben

ÓVODA-ISKOLA ÁTMENET

ÓVODA-ISKOLA ÁTMENET ÓVODA-ISKOLA ÁTMENET előadás Előadók: Vanya Lajosné Pula Éva 2011. április 18. Báta 1. Bikácsi óvoda bemutatása 2. TÁMOP 3.1.4. 2.1. Tapasztalatok 2.2. Pályázat adta lehetőségek, nehézségek 3. Óvoda-iskola

Részletesebben

Lerakós, tologatós játékok

Lerakós, tologatós játékok Matematika C 3. évfolyam Lerakós, tologatós játékok 5. modul Készítette: Köves Gabriella Matematika C 3. évfolyam 5. modul Lerakós, tologatós játékok MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Eszközök: Classmate PC, tanári laptop; füzetek; üres kis kártyalapok; pörgettyű, írólapok; óra; két szöveg; 2 darab szinonimaszótár.

Eszközök: Classmate PC, tanári laptop; füzetek; üres kis kártyalapok; pörgettyű, írólapok; óra; két szöveg; 2 darab szinonimaszótár. Óravázlat 2. osztályos nyelvtan Tananyag: Mit tudsz már a szavakról? Oktatási cél: A szavak jelentésének megfigyelése. Szómagyarázatok készítése az életkornak megfelelő szókincs használatával. Szavak összeállítása

Részletesebben

Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei. A program megvalósulását az Országos Foglalkoztatási Közalapítvány támogatja.

Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei. A program megvalósulását az Országos Foglalkoztatási Közalapítvány támogatja. Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei Célkitűzések Kulcskompetenciák fejlesztése Anyanyelvi kommunikáció Matematikai kompetencia Digitális kompetencia A tanulás tanulása Személyközi

Részletesebben

Periférikus látás kísérletek

Periférikus látás kísérletek Periférikus látás kísérletek A látás egyfajta tudattalan, illetve korlátozott tudatosságú, néha reflexszerű feldolgozása a szemünk elé táruló információáradatnak. A szemünk fizikai tulajdonságai révén

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelt szint 180 perc 15 perc 240 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

1. Táblabejárós feladat a lehetetlen észrevétele, belátása, bizonyítása:

1. Táblabejárós feladat a lehetetlen észrevétele, belátása, bizonyítása: Pepita Fekete és fehér ugye Te sem vagy sötét? A válogatás célja: Nem kezd úgy, hogy Nem értem! Ez nekem magas, meg hát nem is érdekel. Próbáld és menni fog! Beszélgessünk! Gondolkodás a gondolkodásról.

Részletesebben