LUCRARE METODICO-ŞTIINŢIFICĂ pentru obţinerea gradului didactic I

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "LUCRARE METODICO-ŞTIINŢIFICĂ pentru obţinerea gradului didactic I"

Átírás

1 UNIVERSITATEA BABEŞ-BOLYAI, CLUJ-NAPOCA DEPARTAMENTUL PENTRU PREGĂTIREA PERSONALULUI DIDACTIC FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ LUCRARE METODICO-ŞTIINŢIFICĂ pentru obţinerea gradului didactic I Coordonator ştiinţific, Lect. Dr. András Szilárd Candidat, Debrenti Attila-Sándor Cluj-Napoca Seria

2 UNIVERSITATEA BABEŞ-BOLYAI, CLUJ-NAPOCA DEPARTAMENTUL PENTRU PREGĂTIREA PERSONALULUI DIDACTIC FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ LUCRARE METODICO-ŞTIINŢIFICĂ pentru obţinerea gradului didactic I Metode cooperative în predarea matematicii la ciclul gimnazial Coordonator ştiinţific, Lect. Dr. András Szilárd Candidat, Debrenti Attila-Sándor Cluj-Napoca Seria

3 BABEȘ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR TANÁRKÉPZŐ INTÉZET MATEMATIKA ÉS INFORMATIKA KAR I. FOKOZATI TUDOMÁNYOS ÉS MÓDSZERTANI DOLGOZAT Kooperatív tanítási módszerek alkalmazása matematikaórán Témavezető, Dr. András Szilárd adjunktus Jelölt, Debrenti Attila-Sándor Kolozsvár

4 Tartalomjegyzék BEVEZETÉS KOOPERATÍV TANULÁS Alapgondolatok Kétségek és válaszok Miért van szükség kooperatív tanulásra? A kooperatív tanulás és a tradicionális csoportmunka Milyen eredményeket várhatunk? A KOOPERATÍV TANULÁS HAT KULCSFOGALMA Csoportok összeállítása Csoportalakítási módszerek Kooperatív tanulásszervezés Terem elrendezése Fegyelmezés. A csöndjel Csoportszabályok Utasítások Elismerés A tanár szerepe: megfigyelés és tanácsadás Kulcsszerepek a csoportban Értékelés és számonkérés Együttműködési szándék Közösségépítés (csoport- és osztályépítés) Feladat és értékelési módszerek Együttműködési készség A kooperatív tanulás négy alapelve Párhuzamos (egyidejű) interakciók Építő egymásrautaltság Az egyéni felelősség Egyenlő részvétel Módszerek A gondolkodásfejlesztés módszerei Az információ-megosztás módszerei A kommunikáció fejlesztésének módszerei Mesteri módszerek (képességfejlesztő módszerek) KOOPERATÍV MÓDSZEREK i

5 3.1. Kooperatív módszerek leírása Ablak módszer Belső kör, külső kör Bemelegítő játék Beszélő korongok Csoport szóforgó Diákkvartett Egyidejű diákkvartett Egymásnak háttal Ellenőrzés párban Feladatküldés Fordított szakértői mozaik Füllentős Gyors léptek Három megy, egy marad Időkitöltő Igaz Hamis Indián beszélgetés Jelzőlámpa Kerekasztal Keresd a helyed! Képtárlátogatás Kíváncsi riporter Kockázás Kóborlás a teremben Kupactanács Málnás muffin Ötletbörze Összerakás Szakértői mozaik Szerepjáték Tapasztalati tanulás Villámkártyák PEDAGÓGIAI KÍSÉRLET A kutatás bemutatása és célja A mintavétel és a minta Módszerek, eszközök A csoportalakításban használt módszerek A tananyag feldolgozása során alkalmazott módszerek A tanulók értékelésére alkalmazott módszerek A kísérlet lebonyolítása Az előzetes felmérés eredményeinek bemutatása Az utólagos felmérés eredményeinek bemutatása Elemzés A tanulók tudásszintjének fejlődése Javuló egyéni teljesítmény ii

6 A gyenge és közepes képességű tanulók feladatmegoldó készségének fejlődése Együttműködési készség és a matematikához való viszony Következtetések, javaslatok IRODALOMJEGYZÉK M. MELLÉKLETEK M.1. Előzetes felmérő M.2. Foglalkozásterv Rövidített számítási képletek M.2.1. Kártyakészlet algebrai kifejezésekkel M.2.2. Munkalapok a szakértői csoportoknak M.2.3. Feladatlapok a szakértői csoportoknak M.2.4. Munkalapok páros munkához M.3. Foglalkozásterv Rövidített számítási képletek (folytatás) M.3.1. Feladatlap az egyéni munkához M.3.2. Villámkártyák M.3.3. Feladatkártyák M.3.4. Időkitöltő feladatok M.4. Foglalkozásterv Tényezőkre bontás M.4.1. Kártyakészlet nevezetes azonosságok gyakolása M.4.2. Munkalapok a fordított szakértői mozaik módszerhez M.4.3. Feladatok a pármunkához Tényezőkre bontás M.5. Foglalkozásterv Tényezőkre bontás (folytatás) M.5.1. Feladatlap az egyéni munkához M.5.2. Villámkártyák M.5.3. Mintafeladatok A tényezőkre bontás módszerei M.6. Foglalkozásterv Pitagorasz tétele M.6.1. Munkalapok Pitagorasz tétele M.6.2. Feladatlapok Pitagorasz tételének begyakorlása M.6.3. Időkitöltő feladat M.7. Utólagos felmérő M.8. A kooperatív órákkal kapcsolatos kérdőív diákoknak iii

7 Táblázatok és ábrák jegyzéke 1. táblázat. A kooperatív és a hagyományos csoportmunka közötti különbségek ábra. Három-, négy- és ötfős csoportok lehetséges ülésrendjei ábra. Három fő három interakció, négy fő hat interakció ábra. Ülésrend minták ábra. Ablak módszer feladatlap minta (3 vagy 4 fős csoport esetén) táblázat. A minta nem, illetve osztály szerinti eloszlása táblázat. Az előzetes felmérés eredményei a kísérleti és a kontroll csoportnál táblázat. Az utólagos felmérés eredményei a kísérleti és a kontroll csoportnál táblázat. A kísérleti csoport által kitöltött kérdőív eredményei táblázat. Az felmérések eredményei a kísérleti és a kontroll csoportnál ábra. A két csoport teljesítményének összehasonlítása a mérések során táblázat. Az utó- és előmérés során kapott pontszámok különbsége a kísérleti és a kontroll csoport tanulóinál táblázat. A két csoport eredményeire alkalmazott statisztikai próbák eredményei táblázat. Az egyéni teljesítmények változása a kísérleti és a kontroll csoportnál ábra. Az egyéni teljesítmény változása táblázat. Az gyenge és közepes képességű tanulók teljesítményének változása ábra. Az gyenge és közepes képességű tanulók teljesítményének változása táblázat. Az utó- és előmérés során kapott pontszámok különbsége a kísérleti és a kontroll csoport gyenge és közepes képességű tanulóinál táblázat. A statisztikai próbák eredményei ábra. A kérdőívre adott válaszok eloszlása állításonként iv

8 Bevezetés Kevésbé az a fontos, hogy mit tanulnak a gyerekek az iskolában, inkább az, hogy hogyan tanulják, mert ez meghatározza a tudásuk felhasználását egész életük során. Max Plancot A matematikát és bármely más tantárgyat is sokféleképpen lehet tanítani. Romániában talán a legismertebb és legelterjedtebb módszer a frontális osztálymunka. Ennek a munkaformának is megvannak a maga előnyei, de az egyik legnagyobb hátránya az, hogy nem minden gyerek vesz részt aktívan a tanulásban, hanem a legtöbben csak passzív befogadóként vannak jelen. Ez nem jelenti azt, hogy nem fognak tudni problémákat megoldani, csak nem lesznek olyan kreatívak, nehézségeik lesznek saját ötletek kitalálásában. Eddigi tapasztalataim alapján, a hazánkban érvényes iskolai tanterv túlzsufolt, túl bonyolult és túl igényes a tanulók többségének. Egyesek nem sikerül lépést tartsanak, amikor VI., VII. osztályban megjelennek az elvont gondolkodást igénylő matematikai fogalmak, így elveszíthetik érdeklődésüket a matematika iránt. Ilyenkor mint pedagógusban feltevődik a kérdés: Hogyan tudnám úgy tanítani a matematikát, hogy a gyerekek ne érezzék nehéznek, unalmasnak, esetleg ijesztőnek és majd a későbbi életük során is alkalmazni tudják a tanultakat? Ezen okokból jutottam el a kooperatív módszerek kipróbálásához, bevezetéséhez. Úgy gondolom az együttműködésen alapuló kooperatív tanulás, mint alternatív tanítási módszer, nagy segítségére lehet a tanárnak a matematika tanításában, ha a megfelelő időben és csoporttal alkalmazza. Az első három fejezetben ismertetem ezen módszer alapelveit, jellemzőit és kulcsfogalmait. Bemutatok csoportalakítási és tanítási módszereket, amellyekkel meg lehet valósítani ezeket az órákat. A következő részben (4. fejezet) az általam végzet pedagógiai kutatást mutatom be, melyet elemzéssel zárok. A kutatás során tartott foglalkozások terveit és a hozzátartozó segédeszközöket a mellékletben helyeztem el, az órák megtartásának időrendi sorrendjében. 1

9 1. Kooperatív tanulás 1.1. Alapgondolatok A kooperatív tanítás azt jelenti, hogy a tanulók nem egyénileg dolgoznak, hanem kis csoportokban. Davidson négy fős csoportokkal dolgozik, [1] kiosztja a gyerekeknek a feldolgozandó anyagot, a megoldandó problémát és ezután a háttérbe húzódik. A diákoknak egyedül kell megoldaniuk a számukra kitűzött feladatot. A tanár természetesen rendelkezésükre áll, ha valami kérdésük van, de szerepe az eddigi aktív bemutatóhoz képest jelentősen megváltozott. A kooperatív tanulási módszer alkalmazása nemcsak a tanulók szaktárgyi tudásának fejlesztésében hatásos. [2] Azon kívül a gyerekek megtanulják, hogy hogyan figyeljenek egymásra, hogyan segítsék azokat a tanulókat, akik kevésbé értik a tananyagot. A kommunikációs készségek szempontjából is hasznos, ha a tanulóknak együtt kell dolgozniuk. Türelmet tanulhatnak, hogy meghallgassák egymás véleményét és megtanulhatják, hogy hogyan mondhatják el a sajátjukat. Megtanulják elfogadni, hogy nem mindenki rendelkezik egyforma képességekkel és van aki lassabban dolgozik mint a többiek. Olyan szociális készségeket sajátítanak el ezáltal, amiket az életben biztosan hasznosítani tudnak. A jobb képességű gyerekek tanítják és segítik a náluk gyengébbeket és ezáltal maguk is tanulnak. Azonban oda kell figyelni, hogy a jóképességű tanulóknak legyen lehetősége együtt, magukat más módon fejlesztve is dolgozniuk. A gyerekeknek fárasztó és kevésbé motiváló lehet, ha mindig csak magyarázniuk kell és nem szerezhetnek új ismereteket. A pedagógusnak arra is kell vigyáznia, hogy ne mindig ugyanazokkal a csoportokkal dolgozzon, mert akkor a csoportszerepek megmerevedhetnek. Felváltva kell létrehozni homogén ill. heterogén csoportokat és bizonyos időközönként a csoporttagokat is változtatni kell. A pedagógusok mindig is arra törekszenek, hogy olyan ismereteket tanítsanak a diákoknak, amik hasznosak számukra az életben való elboldogulás szempontjából. Világunk egyre inkább olyan irányba fejlődik, ahol a munkahelyeken szükség van a dolgozók együttműködésére. De nemcsak a munkahelyen belül, hanem különböző munkahelyek között, sőt egyes országok között is szükség van az együttműködésre a hatékonyabb munka érdekében. 2

10 A kooperatív munka több felkészülést, kidolgozottabb óraterveket igényel a pedagógustól, mivel a tanóra minden momentumában tudnia kell,hogy melyik tanulónak mi lesz a feladata, el kell készítenie a megfelelő kártyákat a csoportalkotáshoz, a különböző feladatlapokat a csoportok számára. Ez mind sok időt vesz igénybe, de ha azt nézzük, hogy egy ilyen óra keretein belül a pedagógusnak több ideje marad a gyerekekre figyelni, jobban tud nekik segítséget nyújtani, akkor megéri a fáradtságot. Pozitívum a módszer alkalmazásában, hogy nem kell új, speciális iskolákat létrehozni, hiszen bármelyik iskola bármelyik osztályában kipróbálható. Elég, ha van egy tanár aki jónak tartja ezt a módszert és van elég energiája, hogy olyan óraterveket készítsen, melyek a kooperatív módszereken alapulnak. A módszer másik előnye, hogy nem szükséges hozzá megfizethetetlen eszközkészlet, hiszen az eszközök kártyákból, feladatlapokból, zsetonokból állnak, melyeket ajánlott elkészíteni előre megfelelő minőségben, fóliázva, ezután ezen eszközök hosszú időn keresztül használhatóak. [3] A kooperatív tanulásról Spencer Kagan könyvéből [2] tudhatjuk meg a legtöbbet. Szerinte a kooperatív tanulás egyenlő esélyt biztosít minden gyerek számára függetlenül tudásszintjüktől, etnikumuktól, nemüktől. A kooperatív tanulást a következő kulcsfogalmak jellemzik: 1. Csoport 2. Kooperatív tanulásszervezés 3. Együttműködési szándék 4. Együttműködési készség 5. Alapelvek 6. Módszerek A kooperatív módszerek lehetővé teszik a fenn említett jellemzők megvalósítását figyelembe véve a tanítási célokat. Ezen módszerek közül a legismertebbek: beszélő korongok, feladatcsere, időkitöltő, indián beszélgetés, diákkvartett, három megy, egy marad, vakhernyó, szakértői mozaik, kóborlás a teremben Kétségek és válaszok Spencer Kagan [2] könyvében összegyűjtötte azt a tíz kérdést, melyek leggyakrabban hangzottak el a kooperatív tanítással kapcsolatban. Nézzük meg ezeket a kérdéseket és minden kérdés után megpróbálom összefoglalni az író válaszát. 3

11 1. Nem helytelen-e a kooperatív módszerekkel tanítani ebben a versenycentrikus világban? Kagan két dolgot hangsúlyoz ezzel a kérdéssel kapcsolatban. Az egyik az, hogy a világban mind kompetitív mind kooperatív készségekre szüksége lesz a gyerekeknek. Mint már említetettük, nincs olyan munkahely, ahol valamilyen mértékben ne kellene másokkal együttműködve dolgozni. Ugyanakkor természetesen a verseny is nagymértékben jelen van a mindennapi életben. A másik fontos dolog az, hogy a kooperatív módszerek kizárólagos használata épp úgy nem jó, mintha csak kompetitív módszereket alkalmaznánk. Meg kell találni az egységes egyensúlyt és a két különböző módszert felváltva használni. 2. Nem hátrányos-e ez a módszer a jól teljesítő tanulóknak? Nem fejlődhetnének-e ők gyorsabban, ha nem kellene gyengébb társaikat segíteni? A tanárok tudhatják, hogy tanítással rengeteget lehet tanulni. Azért, hogy érthetően el tudjanak magyarázni valamit, teljesen más szemszögből kell megközelíteni azt. Ezenkívül, a diákok kérdései rávilágíthatnak olyan részletekre, amik esetleg a tanár számára is homályosak voltak és a kérdés megválaszolása miatt újból át kell gondolnia, más szemszögből kell megközelítenie a témát. Tehát, ha magyaráznunk, tanítanunk kell valamit, akkor az egyfajta elmélyülést jelenthet már meglévő ismereteinkben. Ezenkívül, a magyarázó gyerekek vezetői képességeket is tanulhatnak a többiek segítségével. 3. Nem vezet magatartási problémákhoz, ha a gyerekek beszélgethetnek, vitatkozhatnak egymással? A hagyományos tanítási órákon a tanárnak rengeteg energiája elmegy a gyerekek fegyelmezésére, arra hogy elérje, hogy a gyerekek kizárólag rá és a feladatra koncentráljanak. A gyerekeknek ez nem a legtermészetesebb viselkedés. Ezzel szemben egy kooperatív tanítási órán a tanulóknak lehetősége van arra, hogy alaptermészetüknek megfelelően viselkedjenek beszélgethessenek, vitatkozzanak. Ezenkívül a nyelvtanításban jól ismert módszer, a kommunikatív módszer is azon alapszik, hogy bátorítja a gyerekek közötti kommunikációt és ott is sikerült a tanároknak megbirkózni az esetleges fegyelmezési problémákkal. 4. Nem ellentmondásos-e a kooperatív tanulás és a közvetlen tanítás? 4

12 A szerző válasza: nem. A kooperatív módszerekhez is szigorú szerkezet, meghatározott célok és rendszeres egyéni ellenőrzés tartozik. Itt egy-egy feladat elvégzése egy egész csoport felelőssége és a tanulók egyéni értékelése függ a társaktól. Ezért odafigyelnek arra, hogy mindenki a feladatával foglalkozzon. 5. Kényszeríti a kooperatív tanulás a gyerekeket, hogy olyan társaikkal dolgozzanak, akiket nem kedvelnek? A tanárnak figyelni kell arra, hogy egymást nagyon nem kedvelő gyerekek ne kerüljenek egy csoportba, hiszen az megakadájozhatja a feladat végrehajtását. 6. Nem jelenti a kooperatív tanulás a személyiség feladását? A kooperatív módszerek nem szorítanak senkit a háttérbe. A csoporttagok személyisége, viselkedési szokásai folyamatosan alakulnak. A gyerekek megtanulják tiszteletben tartani mások értékrendjét és képességeit. 7. Nem jelenti azt a kooperatív tanulás, hogy egy csoportban lesznek, akik dolgoznak és lesznek, akik csak lustálkodnak? A módszerek felépítése olyan, hogy ha egy csoport eredményesen akar dolgozni, akkor mindenki részvételére szükség van. Ebben a tekintetben a kooperatívtanulási módszerek különböznek az egyszerű együttműködésen alapuló módszerektől, melyekben az egyenlő részvétel nem feltétele a sikernek. A kooperatív módszerek úgy vannak megalkotva, hogy senki sem tud a csoporttársai munkájából megélni. A tanulási teljesítményt egyénenként értékelik, és saját fejlődéséért minden diák maga felelős. Másrészt pedig a tanár a tevékenységet úgy kell megtervezze, hogy amennyiben nem kooperálnak a csoporton belül, akkor csökkentsék a saját esélyeiket, hatékonyságukat. 8. Elvégezhető-e az előírt tanterv kooperatív tanítással? Nem hangsúlyosabb a folyamat a tartalomnál? A kooperatív módszerek többféleképpen is használhatók. Vannak, akik a tananyag gyakorlására, elsajátítására, mások interaktív készségek fejlesztésére használják. A tanár értékeitől, céljaitól függően választhatja meg a módszereit. 9. Mennyi időt szánjunk a kooperatív tanulásra? 5

13 Ez ismét a tanároktól függ. Vannak akik idejük nagy részében kooperatív módszerekkel dolgoznak, vannak akik ritkábban, hetente csak egyszer tartanak kooperatív órát. 10. Szükséges-e kitüntetések, jutalmak, pontok használata? A közös munkához hozzátartozik egymás értékelése, dícsérete is. A gyerekek ezt meg is teszik, tehát a jutalmazás szóbeli része tulajdonképpen csoporton belül megtörténik. Ezek mellett természetesen lehet külső jutalmazást is használni, hiszen ez növelheti a motivációt Miért van szükség kooperatív tanulásra? A tanároknak az a feladata, hogy diákjainak elsősorban olyan dolgokat tanítson, amikre az életben való boldoguláshoz szükségük van. [2] Ehhez a tanárnak tisztában kell lennie azzal, hogy társadalmunk, gazdaságunk milyen irányba alakul. A világ olyan gyorsan változik, olyan rohamosan fejlődik, hogy arról tulajdonképpen fogalmunk sincs, hogy a diákjainknak milyen világban kell majd elboldogulniuk. Ezért azt kell magtanítni a gyerekeknek, hogy hogyan gondolkodjanak, hogyan dolgozzák fel a rengeteg új információt, hogyan oldjanak meg problémákat esetleg másokkal együttműködve, hogyan viselkedjenek társas helyzetekben. Milyen változásokkal kell szembenéznie a pedagógusnak? Szocializációs változások A diákok manapság már különböző értékrendekkel érkeznek az iskolába. Nem mindenki olyan tisztelettudó, segítőkész és együttműködő, mint régebben. A szociális értékek megváltoztak. A családok szerkezete is változott. Ezek hozzájárulnak ahhoz, hogy a gyerekek társas képességei elsorvadjanak. Nem tudnak kommunikálni társaikkal, nem tudnak egymásra figyelni. Egyre inkább az iskola feladatává válik az, hogy a fiatalokat megtanítsa az egymásra való odafigyelésre, a segítségnyújtásra. Gazdasági átalakulás Gazdaságunkban egyre inkább a szolgáltatóipar és az információkezelés válik hangsúlyossá. Egyre nagyobb szükség van arra, hogy az emberek tudjanak kommunikálni egymással és arra, hogy fel tudják dolgozni a folyamatosan megújuló hatalmas mennyiségű információt. Ezen a téren is nélkülözhetetlen az együttműködési készség. 6

14 Népesség változás Országunkban is jelen vannak kükönböző etnikai csoportok. A kooperatív módszerek használata csökkenti az etnikai csoportok elkülönülését és segíti a pozitív kapcsolatok kialakulását. A fent említett társadalmi változások egyre inkább arra ösztönöznek, hogy a most érvényben lévő tanítási-tanulási kultúránkat megváltoztassuk. [4] A tanulásnak dinamikussá kell válnia, amelyben a gyerekek aktív résztvevőként vannak jelen. Erősíteni kell a tanulók egymás közötti és a tanulóknak a tanárokkal folytatott kommunikációs igényeit és készségeit. Meg kell változtatni a tanulás légkörét, mégpedig olyan irányba, hogy a tanulók merjenek kezdeményezni, merjenek próbálkozni és hibázni is. A kis csoportokban történő munka lehetőséget ad mindezek fejlesztésére és elősegíti, hogy a gyerekek megtanuljanak a matematikáról beszélni és, hogy megtanuljanak a matematika nyelvén érvelni és kommunikálni A kooperatív tanulás és a tradicionális csoportmunka A kooperatív tanulás több mint a teljesítmény növelése, tárgyi tudás mélyítése, a kritikai gondolkodás képességének fejlesztése - bár ezek mindegyike értékes eredmény. Meglévő olyan képességek, mint olvasás, beszédkészség, odafigyelés, írás, számolás, keveset érnek akkor, ha a személy nem tudja azokat kooperatív interakcióban más emberekkel való kapcsolatépítés terén a saját karrierjének, családjának, vagy az őt körülvevő közösség kialakításában hasznosítani. Haszontalan dolog kiképezni egy mérnököt, titkárnőt, könyvelőt, tanárt, ha a személy nem rendelkezik azokkal a kooperatív képességekkel, melyek segítségével az ismeretek, az együttműködés kapcsolatrendszerében, a munkában, családban és közösségben, baráti körben átadhatók. A legtöbb szervezetben nem azt várják el az alkalmazottaktól, hogy egy sorban ülve versenyezzenek kollégáikkal, velük való interakció nélkül. Ahol igen, ott a tapasztalatok szerint csökken a munkateljesítmény. Korunk társadalmában team-munka, kapcsolattartás, hatékony koordináció, munkamegosztás jellemzi a mindennapi élet legtöbb területét, s ezért itt lenne az ideje, hogy az iskolák érzékenyebben tükrözzék a felnőtt élet trendjeit. A feladatorientált szituációkban szükséges kooperatív ismeretek elsajátításának kézenfekvően praktikus módja, hogy a tanulók a tanulási szituációk túlnyomó részét kooperatív csoportokban éljék meg. Megtanulni azt, hogy valaki a képességeit más emberekkel kooperatív interakcióban hasznosítani tudja - ez jelenti az alapokat. 7

15 A kiscsoportos oktatás ismerősen hangzik minden pedagógus számára, ám jelentős különbségek vannak a tradicionális kiscsoportos oktatás és a kooperatív tanulócsoportok között. [5] KOOPERATÍV Pozitív interdependencia Egyéni beszámoltatás Heterogén csoportösszetétel Megosztott vezetés Megosztott felelősség A feladat és támogatása hangsúlyozott Szociális ismereteket közvetlenül tanítanak A tanár felügyel és beavatkozik tanulócsoportok HAGYOMÁNYOS Nincs interdependencia Nincs egyéni beszámoltatás Homogén csoportösszetétel Egy kijelölt vezető Az egyén csak önmagáért felel Csak a feladat hangsúlyozott A szociális ismereteket feltételezik, vagy elhanyagolják A tanár a csoport működését nem kíséri figyelemmel 1. táblázat. A kooperatív és a hagyományos csoportmunka közötti különbségek Mindezt érdemes részletesen, pontokba szedve is összefoglalni: 1. A kooperatív tanulócsoportok léte a csoporttagok pozitív interdependenciáján (egymást segítő kölcsönös függésen) alapszik, mely során a célok kialakítása/elérése érdekében a csoporttagoknak a saját teljesítményük mellett csoporttársaik teljesítményét is figyelemmel kell kísérniük. A pedagógus a csoportok vezetésében, a feladatok megalkotásában tudatosan építi a függőséget. A hagyományos csoportos feladatmegoldások esetében ez a kölcsönös függőség esetleges. 2. A kooperatív tanulócsoportokban világosan kirajzolódó egyéni felelőssége van minden tagnak. Ennek megfelelően minden tanuló visszajelzést kap saját előmeneteléről. Ugyanakkor az egész csoport számára ismert az egyes csoporttagok munkája, így a többi csoporttag tudja: kit kell bátorítani és munkájában segíteni. A hagyományos tanulócsoportokban az egyes tanulókat nem mindig számoltatják be: kivették-e a részüket a csoport munkájából, így egyes tanulók a társaik munkájának farvizén lavíroznak. 3. Amíg a kooperatív tanulócsoportok heterogén összetételűek képességek és személyi tulajdonságaikban, addig a tradicionális csoportok gyakran homogén szerkezetűek ( jók vannak egy csoportban vagy a gyengébbek). 4. A kooperatív tanulócsoportokban minden tag részesül a végrehajtás felelősségében, pedig sokszor nincs formális vezető, amíg a tradicionális csoportokban a 8

16 vezetőt gyakran kijelölik és a csoportért (munkájáért) ő a felelős egyedül (néha a többiekkel szemben ). 5. A kooperatív tanulócsoportokban az egymás teljesítményéért való felelősség egyetemes. A csoporttagoktól elvárják, hogy segítsék és bátorítsák egymást, hogy az eredmények elérésében mindegyikük kivegye a részét. A hagyományos tanulócsoportokban a tagok ritkán felelősek a többiek munkájáért. 6. A kooperatív tanulócsoportokban a tanulók az egyes csoporttagok maximális teljesítményének elérésére összpontosítanak, a tagok közötti jó munkakapcsolat fenntartása mellett. A hagyományos iskolai tanulócsoportok leggyakrabban csupán a feladatok elvégzésére helyezik a hangsúlyt. 7. A kooperatív tanulócsoportokban a szociális készségek elsajátításában a tanulók együttműködnek (pl. vezetés, kommunikáció, bizalomépítés, konfliktuskezelés stb.), s ezeket a pedagógus tudatosan tervezi, e készségek elsajátításához helyzeteket teremt. A hagyományos csoportokban a hatékony együttes munkát eleve feltételezik. 8. A kooperatív tanulás esetén a tanár szervez tanulási szituációkat a csoportok részére a folyamatok hatékonysága érdekében. A hagyományos tanulócsoportok esetében a csoportfolyamatok irrelevánsak, vagy épp zavarják a munkát Milyen eredményeket várhatunk? A kooperatív tanításnak nagyon sok pozitív hatása van. Először is a tanulmányi eredmények javulása figyelhető meg, főleg a hátrányos helyzetű diákok esetében. Másodszor, az integrált osztályokban jobb lesz a kapcsolat a különböző etnikai csoportok között. Harmadszor pedig, szociális és érzelmi fejlődés is tapasztalható a gyerekeknél. Ez utóbbi azt jelenti, hogy nő a tanulók önbecsülése, nagyobb önkontrollra lesznek képesek a gyerekek, könnyebben tudnak kommunikálni, jobban elfogadják a képességbeli különbségeket. A kooperatív tanulás kevesebb szorongással jár, mint a hagyományos módszer, így a tanulás élvezet lesz a diákok számára és nagyobb a siker valószínűsége. 9

17 2. A kooperatív tanulás hat kulcsfogalma 2.1. Csoportok összeállítása Egy kooperatív tanóra első elengedhetetlen lépése a csoportok kialakítása. A csoportok létszáma és összetétele függhet az elvégzendő feladattól, valamint az osztálylétszámtól. A csoportot létrehozhatja a tanár vagy akár a gyerekek is. Ez történhet játékok segítségével, véletlenszerűen, tanulási teljesítmény, vagy együttműködési készség alapján is. Minden esetben a legjobb a heterogén csoport, azaz a diákok képességei tekintetében vegyes csoportok. Ez esélyt ad a gyengébb képességűeknek arra, hogy ne maradjanak le, a jobb képességűeknek pedig akik tanítva is tanulnak arra, hogy az adott tárgykörben tudásuk mélyebbé és tartósabbá váljon. Az egymástól szerzett és egymásnak átadott tudás ugyanis mélyebben és tartósabban marad meg az emlékezetben, mintha frontális szervezeti keretek között jött volna létre. A négyfős csoportlétszám a legideálisabb. Miért? Egyrészt az ülőhelyek elrendezése miatt sokkal jobb a négy mint a három vagy az öt tag (1. ábra). A B A B A B C C D C D E 1. ábra. Három-, négy- és ötfős csoportok lehetséges ülésrendjei A középső elrendezésben senki nem marad ki a beszélgetésből, senki nem érzi magát kizárva a munkából. A másik két elrendezésben egy-egy gyerek mindig kilóg, így valószínüleg nem vesz részt a munkában olyan aktívan. Négy tanuló esetén a lehetséges interakciók száma kétszerese annak, amennyi egy háromfős csoportban kialakulhat (2. ábra) [2]. 2. ábra. Három fő három interakció, négy fő hat interakció 10

18 Ha az osztály létszáma nem osztható néggyel, alkalmazhatjuk a következő módszert: ha egy diák maradt ki, nézzünk körül és ültessük oda ahol a legtöbbet tud tanulni vagy segíteni. Ha ketten maradtak ki, állítsunk fel egy diákot az egyik négyes csoportból, és alkossunk két hármas csoportot. Ha három kimaradó van, ők magukban alkothatnak egy hármas csoportot. Jó, ha a csoport tartósan, több foglalkozás alatt együtt dolgozik, így erősödik a pozitív összetartozás-tudat, ismerik, elfogadják és támogatják egymást, valamint megtanulnak együtt tanulni. Bármilyen jól működik egy csoport, 2-3 hetente szervezzünk új csoportokat. Ez lehetővé teszi a diákok számára, hogy új helyzetekben is kipróbálják társas képességeiket. Most már csak az a kérdés, hogy hogyan alkossunk csoportokat. Erre többféle módszer is van. Köthetjük egy bemelegítő feladathoz, használhatunk kártyákat, vagy készíthetünk a tanulókról egy sorrendet, ami alapján csoportokba osztjuk őket. Spencer Kagan könyvében több tippet is találunk a csoportalkotásra. Fontos azt is átgondolni, hogy homogén vagy heterogén csoportokkal akarunk dolgozni. Mindkét összeállításnak megvannak a maga előnyei és hátrányai is Csoportalakítási módszerek Véletlenszerű csoportalakítás Számozott kártyák Annyi számot írunk le, ahány csoportot akarunk kialakítani, s annyi kártyára, ahány résztvevőt szeretnénk egy csoportba. Minden diák húz egy kártyát, és az azonos számúak egy csoportot alkotnak. A számok helyén lehetnek szimbólumok, mértani alakzatok, színek, ábrák, stb. is Puzzle Egy-egy, kevés darabból (4-6) álló puzzlet használunk minden csoport számára. A darabokat összekeverjük és minden gyerek húz egy darabot. Az összeillő darabok gazdái alkotják a csoportokat. Sajátos sorozatok Felhasználva egy tantárgy jellemzőit, csoportokat alkothatunk fogalmak, összefüggések, jelenségek, stb. osztályai szerint. Például matematikánál megalkothatjuk a négyszögek, szögletes testek,... csoportjait. Ünnep A gyerekek születési hónapjuk (évszakok) szerint csoportosulnak (ez az elosztás lehet egyenlőtlen). 11

19 Munkaeszköz A gyerekek a kiosztott munkaeszközök szerint csoportosulnak (különböző színű kártyákkal, különböző szimbólumokat tartalmazó cimkékkel ellátott feladatlapok). Család Annyi családot alakítunk, ahány csoportot szeretnénk. Papírcetlire felírjuk egy-egy családtag nevét Kovács-nagymama, Kovács-apuka, Kovács-anyuka, Kovács-lány, Kovács-fiú, ugyanígy a többi családot is. Minden gyerek húz egy cetlit, majd megkeresik családtagjaikat. Irányított csoportalakítás Vannak esetek amikor a gyerekeket előnyösebb saját szükségleteik függvényében vagy kitűzött célok szerint csoportosítani. Ugyanakkor csoportosíthatjuk megkülönböztető kritériumok alapján is (munkastílus, inteligencia-típus, stb.). Ezen esetekben az alábbi módszereket alkalmazhatjuk: Névvel ellátott puzzle Ennél a módszernél a puzzledarabokat előre ellátjuk a gyerekek nevével. Minden gyerek húz a zsákból egy puzzlet, és továbbítja annak a diáknak, akinek a neve szerepel a puzzlen. A gyerekek ezután az összeillő darabok szerint csoportosulnak. Névvel ellátott színes kartonok Mindenki húz egy névvel ellátott színes kártyát. A gyerekek, addig cserélgetik maguk között a kártyákat, amíg a saját nevükkel ellátott kártyát kapják. Ezután az azonos színű kártyák tulajdonosai csoportot alkotnak Kooperatív tanulásszervezés Ahhoz, hogy a csoportok hatékonyan, gördülékenyen működhessenek, és megfelelően tudjuk irányítani őket, néhány alapvető szabályt is fontos kialakítanunk. Ezek a szabályok a terem berendezésére, a zajszint szabályozására és a csoporton belüli munkát szabályozó szerepek kialakítására vonatkoznak Terem elrendezése A tanterem elrendezése nagyon fontos e módszernél. Lényeges, hogy a csoporton belül jól tudjanak dolgozni, a csoportok lássák egymást, és ha szükséges, akkor a tanárt is mindenki lássa. Figyelnünk kell arra is, hogy a tábla és a munkához szükséges szemléltető eszközök minden irányból jól láthatóak legyenek. Valószínűleg az a legjobb, ha négy szék 12

20 vesz körül egy asztalt vagy munkahelyet, mint ahogy az a következő ábrán is látható (3.ábra). 3. ábra. Ülésrend minták Fegyelmezés. A csöndjel Egy kooperatív óra talán egyik legnagyobb buktatója, hogy a gyerekek kommunikációjára, a megtárgyalásra helyezi a hangsúlyt. Viszont ugyanúgy fegyelmet vár el a tanulóktól, mint egy hagyományos órán, csak egy kicsit más keretek között. A hangzavar és a káosz veszélye különösen fenyeget, hiszen a tanár nem intheti csendre a gyerekeket, amikor az a feladat, hogy a csoporttal beszéljenek meg bizonyos fogalmakat, problémákat a tananyaggal kapcsolatban. Természetesen az sincs rendben, ha mindenki próbálja a másikat túlkiabálni. Éppen ezért az az egyik legnagyobb feladata a pedagógusnak, hogy megtanítsa a gyerekeket csendesen kommunikálni. Létezik egy egyszerű megoldás: a csöndjel. Egész iskolák sajátították el a csönd jelét, a felemelt kezet. Amikor a tanár felemeli a kezét, akkor, aki ezt észreveszi, az csendben marad, és szintén felemeli a kezét, így egy percen belül mindenki észleli az információt, és csend lesz. Ez nyilván hatásosabb, mint a csoportok túlordítása. Ezen kívül fontos, hogy a tanulók tisztában legyenek azzal, hogy a csoportos óra nem azt jelenti, hogy beszélgetni lehet az órán, hanem, hogy lehetőségük van a feladatokról, fogalmakról egymást megkérdezni. Így azt is fontos tisztázni, hogyha egy csoport megbeszélte a feltett kérdést, akkor csendben nézzenek a tanárra, hogy tudhassa, hogy ki hogy áll. Az alapszabályok betartása a legfontosabb, és egy idő után belátják a gyerekek, hogy ez nekik is érdekük. 13

21 Csoportszabályok A csoportszabályok nagyon hasznosak lehetnek. Jobb, ha maguk a diákok határozzák meg a szabályokat, mintha rájuk kényszerítjük azokat. Az a szabály, hogy Bánj tisztelettel a társaddal!, sokkal hatékonyabban fog működni, ha a gyerekek találják ki vagy legalábbis egyetértenek vele, mintha a tanár kényszeríti rájuk. A szabályok gyakran úgy keletkeznek, hogy a diákok reagálnak a csoportjukban történtekre. Ha becsületesen végiggondolják, hogy milyen érzés, ha dicséret helyett legorombítást kapnak, akkor hajlanak rá, hogy beleegyezzenek egy olyan szabályba, hogy a többieket tisztelettel kezeljék. A kooperatív tanulás sikeres irányításának fontos eleme, hogy világosan közöljük a diákokkal, hogy mit várunk tőlük. A tanár előre ismerteti az osztály sikeres működéséhez szükséges viselkedést. A megfelelő viselkedést a teljes, nyugodt figyelem jellemzi, bármikor, ha a tanár kéri; a társaknak nyújtott segítség, a társak elismerése, figyelem mások szükségletei, véleménye, kívánságai iránt Utasítások A csoportoknak szóló utasítások kiosztásakor vegyünk alapul néhány szempontot, amely segíthet, hogy megértsék a feladatokat: Az utasításokat szóban és írásban is közöljük, papíron,táblán vagy írásvetítőn; Csak kevés utasítást adjunk egyszerre; Mutassuk be; Ellenőrizzük, hogy mindenki megértette-e Elismerés Ha könnyedén akarjuk irányítani a tanulást, akkor az osztály légkörét az elismerő tanári figyelemnek kell meghatároznia. Fordítsunk figyelmet arra, hogy elismerjük azt, ha valaki úgy dolgozik, ahogy ez céljainknak megfelel és a diákok teljesítménye látványosan növekedni fog. Ha a csoportok nem dolgoznak jól, a tanár a figyelmét a felé a csoport felé fordítja, amelyik leginkább megközelíti a kívánt viselkedést, és ezt a csoportot modellként mutatja be. A többi csoport modellnek tekinti azt a csoportot, amelyik magára vonta a tanár elismerő figyelmét. Amikor a csoportok jól dolgoznak, a tanár az egész osztályt dicséretben részesíti. 14

22 Vizsgálatok bizonyítják, hogy ha a tanár arra a csoportra figyel, amelyik túl hangos vagy nem a feladaton dolgozik, akkor más csoportok is követni fogják azokat, akiknek sikerült a tanár figyelmét magukra vonni, még akkor is, ha ez a figyelem negatív. Ugyanígy, ha a tanár nem figyel azokra, akik nagyon zajosak vagy nem a feladattal foglalkoznak, hanem azokat tünteti ki figyelmével, akik jól dolgoznak, akkor hamarosan minden csoport a feladattal foglalkozik majd. Ez különösen akkor van így, ha az elismerés azonnali és nyilvános A tanár szerepe: megfigyelés és tanácsadás Mint már említettem, a tanár szerepe megváltozik egy kooperatív órán a hagyományos frontális órákon megszokotthoz képest. A tanár továbbra is kulcsfigura a tanítási órán, jelenlétére szükség van, viszont az óra középpontjában már nem ő, hanem a diákok állnak [6]. A pedagógusnak jó példával kell szolgálnia a gyerekeknek, mind viselkedésével, mind a problémamegoldáshoz való hozzáállásával probléma kereső, aktív résztvevő, nem mindentudó. Bátorítania kell a gyerekeket arra, hogy merjenek próbálkozni és ne féljenek a tévedés lehetőségétől. Ez a módszer a hibákat a tanulás velejárójának, elősegítőjének tekinti. A tanár az óra nagy részén csupán megfigyelőként van jelen. A háttérből figyeli a gyerekek munkáját és segít, ha tényleg szükség van rá. Próbálja a tanulókat a munkára ösztönözni. Egy kooperatív órán a tanár bármelyik tanulóval foglalkozhat egyénileg anélkül, hogy ez az órai munka rovására menne, hiszen a többi diák el van foglalva a saját csoportjában a számára kijelölt problémával [7]. A tanár folyamatosan figyelemmel kíséri, hogy mit csinálnak a diákok és állandó visszajelzésekkel szolgál a munkájukról, valamint le is ellenőrzi azt. A tanár feladata az is, hogy az esetleges csoporton belüli problémákat megoldja és elhárítsa a tanulás útjába kerülő akadályokat. Előfordulhat, hogy szükség van egy egész osztály előtti előadásra, például, ha minden diák ugyanazzal a problémával szembesül, vagy ha új ismeretet kell bevezetni, esetleg az eddigi elért eredmények megbeszélésekor, összefoglalásakor. 15

23 Kulcsszerepek a csoportban Minden csoportban van néhány kulcsfontosságú szerep [7]. Problémák adódhatnak abból, ha ezek közül valamelyik hiányzik. Nézzük az öt leglényegesebb szerepet: 1. A kezdeményező: ez a diák az, aki nem fél beszélni, aki el meri mondani az ötleteit. A kezdeményező nem feltétlenül az, aki megmondja, az elinduláshoz szükséges matematikai ötletet. Elég, ha bármilyen módon feloldja a hangulatot a csoporton belül. 2. Az ötletadó: Ő az, aki előáll a megoldáshoz szükséges matematikai gondolattal. Ő indítja el a csoportot a megoldás felé vezető úton. 3. A lázadó: az a tanuló, aki megkérdőjelezi az ötleteket, aki kételkedik. Ez a gyerek biztosítja a megbeszélést, a vitát a csoportban, ami nagyban hozzájárul az előrehaladáshoz. 4. Az összegző: az ő feladata, hogy összhangba hozza a különböző nézeteket. Ez egyfajta békítő szerep. 5. Az ego-építő: ez a tanuló az, aki dicséri, lelkesíti a többieket. Ezek a szerepek nagyon fontosak. Arról, hogy előre el kell-e dönteni, hogy ki melyik szerepet játssza, különböznek a vélemények. Crabill szerint ezek a szerepek maguktól alakulnak ki. Egy tanuló több szerepet is játszhat egyszerre és állandóan változik, hogy kinek mi a szerepe. Ha a szerepeket előre kiosztjuk, akkor a tanulók arra koncentrálnak, hogy jól játszák a szerepüket és a valódi munka háttérbe szorul. Ha egy csapatból végképp hiányzik valamelyik szerep, akkor azt a tanár eljátszhatja Értékelés és számonkérés A kooperatív módszer talán legnehezebb része az értékelés és a számonkérés. Hiszen míg az órákon az kapta a legnagyobb hangsúlyt, hogy együtt dolgozzanak, segítsenek a másiknak, addig egy-egy dolgozatnál éppen ennek ellenkezője a lényeg, hiszen az a fontos, hogy a saját tudásukról adjanak számot a gyerekek. A dolgozatírás mellett a csoportok értékelése is nagy hangsúlyt kap, ami szintén elősegíti a felelősségérzet kialakulását, illetve a csoporttársak teljesítményének megítélését. Egy csoport közösen is kap pontokat, amelyeket az általuk reálisnak tartott arányban kell szétosztaniuk. Ez nagyon fontos, hiszen így érzik a súlyát annak, hogy együtt dolgoznak, így nehezebb megúszni a munkát. Hiszen, ha a tanár értékeli rosszul egy tanuló teljesítményét, akkor a diák a tanárt 16

24 hibáztatja. Ha viszont a társai mondják neki, hogy nem dolgoztál jól, hátráltattál minket, nekünk kellett helyetted megoldani a feladatokat, akkor talán elgondolkodik azon, hogy a továbbiakban hogyan kéne az órához állnia. A nagyobb számonkérések mellett az órákon folyamatosan jelen van az ellenőrzés. Ez lehet szúrópróbaszerű felszólítás, amely során egy-egy feladatara kell jól válaszolni. Az erre adott felelet az egész csoport munkáját értékeli, hiszen az volt a dolguk, hogy a csoport minden egyes tagja tudjon válaszolni a kérdésekre. Így egy idő után kénytelen lesz mindenki figyelni a feladatokra és a megoldásokra, hogy ne vívja ki csoporttársai haragját. Ezen kívül úgynevezett szakértői mozaikkal is számot adhatnak tudásukról. Ez a következőképpen zajlik: egy-egy csoportban mindenki kap egy-egy betűjelet, amely szerint össze kell gyűlniük az A-knak, B-knek, C-knek és D-knek. Betűnként oldanak meg egy nagyobb feladatot, amit utána ismertetniük kell az eredeti csoportjuknak. Itt mindenkinek nagyon figyelnie kell a saját feladatára, hiszen a többieket hátráltatja, ha nem tudja nekik elmagyarázni. Ezeken kívül fontos, hogy ez a módszer az önállóságra, az egyéni felelősségre is nevel, így meg kell tanulniuk magukat ellenőrizni. Ez kiadott megoldókulcsokkal történik, amelynek megvan az a veszélye, hogy nem foglalkoznak vele, de egy idő után rájönnek, hogy nem kifizetődő rossz eredményt hagyni a füzetükben Együttműködési szándék Három módja van annak, hogy a diákokban kialakítsuk és fenntartsuk az együttműködés vágyát: közösségépítés (azaz csoport- és osztályépítés), kooperatív feladatok, jutalmazási/értékelési rendszer alkalmazása Közösségépítés (csoport- és osztályépítés) Ami először elfecsérelt időnek tűnik, valójában olyan többszörösen megtérülő befektetés, amely megfelelő társas környezetet teremt ahhoz, hogy a csoportok a lehető leghatékonyabban működhessenek. Általános tapasztalat, hogy azokban a tanulócsoportokban, amelyekben hangsúlyt fektettek a közösség építésére, a tanítás sokkal magasabb hatásfokon működött, a diákok sokkal jobban szerették a tantárgyat és a tananyagot. Ha sikerül kialakítanunk a pozitív közösségtudatot, a kölcsönös bizalmat, 17

25 szeretetet és megbecsülést a csoportokban és az osztály egészében, akkor olyan környezetet teremtünk, amely a leghatékonyabb tanulást teszi lehetővé. Bár sok elméleti szakember a közösségépítést nem tekinti a kooperatív tanítás részének, az a tapasztalat, hogy tekintsük fontosnak a közösségépítést, mert nagyon megkönnyíti és hatékonyabbá teszi a pedagógus munkáját. Az ezt célzó gyakorlatok olyan tanulási élményt nyújtanak, amelyhez hasonlót a kizárólag tudásra összpontosító módszerek nem jelentenek. Manapság az amerikaiak, a sikeres japán mintát alapul véve, egyre több és több energiát fordítanak munkahelyeiken a közösségek kifejlesztésére. Azokban az osztályokban, amelyekben korábbról származó feszültség van jelen, a közösségépítés elmulasztása komoly nehézségeket okozhat a csoportmunkában Feladat és értékelési módszerek A diákok együttmőködésre való hajlandóságát nagymértékben befolyásolja a feladat és a jutalmazás módszere. Ha a tanárnak sikerül elsajátítania a feladatosztás és a jutalmazás technikáit, képessé válik olyan kooperatív feladatok megtervezésére, amelyek a résztvevőket hatékony együttműködésre késztetik. A feladat szerkezete akkor kooperatív, ha a diák a rábízott feladatot nem tudja egyedül megoldani. A kooperatív feladatok leggyakoribb változatában a feladatot csoportmunkával lehet megoldani, vagyis csoporttársai segítsége nélkül a csoport egyik tagja sem tudja elvégezni a saját feladatát. Egy másik változatban a csoport minden egyes tagja részfeladatokat kap és ahhoz, hogy teljes legyen a kép úgy, mint a mozaik-játékban, bele kell adniuk a maguk részét a közösbe. A csoport feladata az, hogy az anyag egészét elsajátítsa. A jutalmazási módszerek számunkra a jutalmazás elveit jelentik. Jutalmazhatunk egyes személyeket, egy-egy csoportot, vagy megjutalmazhatjuk az egész osztályt is. Ha egyes személyeket jutalmazunk, majdnem biztos, hogy versengés alakul ki az osztályban. Minden diák jobb akar lenni az összes többinél. A gyengébbek újra és újra kudarcot szenvednek, és előbb-utóbb kiesnek a versenyből. Ha a diákokat jutalmazással versengésre kényszerítjük, biztosak lehetünk benne, hogy egyesek lemaradnak. Ha a diákokat fejlődésük szerint jutalmazzuk, egyéntől függő jutalmazási rendszert alakítunk ki, melyben a diákok nem érzik az egymással való versengés szükségességét. Ugyanakkor nem motiválja őket semmi a kooperációra. 18

26 Ha viszont a jutalmazási rendszer az osztály vagy a csoport teljesítményén alapul, akkor kooperatív jutalmazási rendszer alakul ki, amelyben a diákok bátorítják és segítik egymást. A kooperatív jutalmazási rendszer alkalmazásakor a diákok jegyei gyakran egymás teljesítményétől függnek; például, ha az egész csoportnak olyan egyetlen, közös jegyet adunk, amely a csoporttagok teljesítményétől függ. A kutatások szerint a kooperatív értékelés nagymértékben befolyásolja a csoportok erőfeszítését. Ha például a leggyengébben teljesítő diák eredménye nagy súllyal esik latba a csoport értékelésénél, akkor rendkívül sok buzdítást és segítséget fog kapni a csoporttársaitól, és a teljesítménye javulni fog. A csoportos jegyek ugyan motiválhatják a diákokat, viszont felvetődik két probléma. Először is, ha egy diák hosszabb ideig rosszul teljesít, ezzel ellenszenvet válthat ki a társaiból. Szemükben ő lesz az aki gátolja őket a jegy, a jó csoportjegy elérésében. A megoldás erre az, ha a diákok fejlődését osztályoznánk, mely lehetővé tenné, hogy valamennyi diák jól teljesítsen, függetlenül képességeitől. A másik probléma akkor adódik, amikor a csoportértékeléseket át kell vezetnünk a bizonyítványba. Ha minden diák bizonyítványában a csoportja által szerzett jegy szerepelne, akkor a csoporttársak teljesítménye egyesek jegyét javítaná, másokét rontaná. Ez nem megoldás. A megoldás az, ha a csoportos értékelést csak év közben használjuk, a bizonyítványban azonban soha. Azokban az osztályokban, amelyekben a diákok csoportokba vannak osztva, úgy javíthatjuk legkönnyebben és legbiztosabban a hangulatot, ha osztály-célt tűzünk ki, és annak elérése után az egész osztályt jutalmazzuk. Ha a csoportokat állandóan versenyeztetjük egymással, azzal csak a csoportok háborúját érjük el. Ha viszont kooperatív értékelési módszert alkalmazunk, akkor pozitív érzés, mi tudat keletkezik, ennek hatására minden diák úgy érzi, hogy az osztály része, és azonosulni tud osztálytársai sikereivel Együttműködési készség Az élet egyre több területén válik nélkülözhetetlenné az együttműködő csapatmunka. Az iskolában megszerzett tudást az életben legtöbbször csoporthelyzetben kell alkalmaznunk, éppen ezért nem mindegy, hogy az iskola felkészít-e az ilyen helyzetekre. A kooperatív tanulás egyik legfontosabb jellemzője, hogy fejleszti az együttműködési készséget, mivel ilyenkor segítségre szorulnak, megtanulják, hogyan 19

27 figyeljenek egymásra, hogyan oldják fel a konfliktusokat, hogyan osszák be teendőiket, miként ne kalandozzanak el a kitűzött feladattól, és hogyan bátorítsák egymást. Mindezt a gyerekek nemcsak a továbbtanulásban, hanem felnőttkorukban is kamatoztatni tudják A kooperatív tanulás négy alapelve A kooperatív tanulás négy alapelve a következő: építő egymásrautaltság, egyéni felelősség, egyenlő részvétel, párhuzamos interakció. Ezek meghatározzák a kooperatív tanulást. Ha a négy alapfeltétel közül valamelyik nem érvényesül, akkor nem beszélhetünk kooperatív tanulásról. Ha például egy csoportnak olyan feladatot adunk, amelyben se szerkezeti felépítés, se pontosan meghatározott szerepek nincsenek, ezt csoportmunkának és nem kooperatív tanulásnak nevezzük. A csoportmunkából hiányzik az egyéni felelősség, így előfordul, hogy míg egyes diákok sokat dolgoznak, a többiek háttérbe húzódva csendben megpihennek, vagyis hiányzik az egyenlő részvétel. A jól megalapozott és hatékony kooperatív módszerek magukban foglalják mind a négy alapelvet Párhuzamos (egyidejű) interakciók A kooperatív tanulás során a tanulók között egyidejű interakciók zajlanak. Ez az egyik eredménye, ami miatt a kooperatív tanulás hatékonyabb, mint a hagyományos oktatás. A hagyományos módszereket alkalmazó tanórán legtöbbször csak egy ember beszél egyszerre, aki általában a tanár, néha a diák is szót kap, amikor a tanár őt szólítja. Ez az ún. egy szálon futó módszer, hiszen az egyes szereplők egymás után lépnek színre. Az egy szálon futó módszer nem elég hatékonyak, hiszen az egy diákra eső aktív részvételi idő nagyon rövid. Vizsgáljuk meg az egy szálon futó módszert, és nyomban világossá válnak a hagyományos tanítási módszerek kudarcának okai. Az iskolákról készült legnagyobb felmérést John Goodland végezte 1984-ben, és arra a megállapításra jutott, hogy az órák 80 százalékában a tanárok beszélnek. Mivel a fennmaradó idő egy része a fegyelmezéssel és szervezéssel telik, ezért kevesebb, mint 20 százalékában beszélhetnek a diákok. Először nem tűnik kevésnek, hogy 50 percből 10 percig aktívak. De ha meggondoljuk, hogy ebben a 10 percben ún. sorba kapcsolt, egy szálon futó módszert alkalmazunk, vagyis a tanár egymás után szólítja fel a diákokat, s ha elosztjuk a 10 percet az átlagos osztálylétszámmal (30 fő), akkor már csak 20 másodperc jut egy tanulóra. Nem csoda, hogy a frontális módszerrel tanított diákok többsége 20

28 unatkozik. 20 másodpercet beszélhetnek, míg a fennmaradó 49 perc 40 másodpercben mások, többnyire a tanár beszédét kell hallgatniuk. Hasonlítsuk ezt össze a párhuzamos interakciót alkalmazó kooperatív tanulással! A kooperatív tanórákon a tanár sosem venne el 40 vagy 50 percet a diákoktól azzal, hogy ő beszél. Az összehasonlítás kedvéért tegyük fel, hogy a kooperatív órákon is csak 10 perc jut a diákokra. Ha az egymás utáni interakciók helyett párhuzamos interakciós óravezetést alkalmazunk, például a tanulókat párokba osztjuk, akkor egyszerre az osztály fele beszélhet. Így az egy főre jutó idő 20 másodpercről 5 percre nő, s ez az előbbinél éppen tizenötször több. A fennmaradó 5 perc is aktívabb részvétellel telik, mint az előző esetben, hiszen a tanulók sokkal érintettebbek, hogyha valaki közvetlenül szól hozzájuk, mintha a terem egy távoli pontján valaki éppen a tanárral beszélget. Lényegében, ha minden más feltétel azonos, akkor a páros munka jobb, mint a csoportmunka, az pedig hatékonyabb a frontálisnál. A kisebb csoportok jobban működnek, mint a nagyobbak. Ha azt akarjuk eldönteni, hogy az osztályban a munka során éppen egyidejű interakciók zajlanak-e, fel kell magunkban tenni a kérést Az adott pillanatban az osztály hány százaléka aktív résztvevője az eseményeknek? A pármunka során az adott pillanatban a párhuzamosság kritériuma teljesül (a tanulók 50 százaléka fejezi ki gondolatait egy időben). Azonban, ha az egész órai részvételt tekintjük, nem mondhatjuk, hogy minden tanuló a tanulási idő felében aktívan vett részt a munkában, ugyanis a legtöbb párosban általában az egyik fél jóval többet beszél, mint a másik. A kooperatív tanulási technikák között arra is találunk megoldást, hogy a pár mindkét tagja egyformán vegyen részt a munkában. Ilyenek például: A párok között megosztott idő módszere, ahol először a pár egyik, majd másik tagja szerepel előre meghatározott ideig; vagy a páros forgószínpad módszer, ahol a pár tagjai felváltva neveznek meg dolgokat, vagy nyilvánítják ki ötleteiket. A csoportmunka során akár a szóforgók, akár a csoportos interjúk alkalmasak arra, hogy az órákon a tanulóknak lehetősége legyen az aktív részvételre Építő egymásrautaltság Építő egymásrautaltságról akkor beszélünk, ha az egyének vagy az egyes csoportok fejlődése pozitívan összefügg egymással; ha az egyik diák fejlődéséhez szükséges a másik diák fejlődése, ha az egyik csoport sikere egy másik csoport sikerétől függ. Az építő egymásrautaltságnak erős és gyenge változata van. Ha az egész csoport sikere mindegyik tag sikerének a függvénye, vagyis egy tag bukása mindenki bukását jelenti, akkor az egymásrautaltság nagyon erős. Ekkor a csoporttagok maximálisan 21

29 motiváltak társaik sikerében. Ha például a csoportsiker annak a függvénye, hogy minden egyes csoporttagnak sikerült-e 80 százalék fölött teljesítenie, logikus, hogy mindenkinek érdeke, hogy valamennyien teljesítsenek. Megváltozik a helyzet, ha a csoport átlagának kell 80 százaléknak lennie, és van két olyan diák a csoportban, aki rendszeresen 100 százalékot teljesít. Ebben az esetben senki sem fog aggódni, ha akad olyan diák, aki 80 százalék alatt teljesít. Nyilvánvaló, ha olyan esetekben, amikor a csoport sikere egyenlő mértékben függ minden tagtól, erős építő egymásrautaltság érvényesül. Akkor viszont, ha a tagok hozzájárulása nem ugyannyit nyom a latba az építő egymásrautaltság gyenge. Ezekben az esetekben kisebb a valószínűsége, hogy a gyengébb teljesítményt nyújtó tagok megfelelő bátorítást kapnak. Látjuk, hogy az építő egymásrautaltság minősége jelentős mértékben befolyásolja a csapattagok egymás iránt tanúsított segítő és bátorító magatartását. Az egymásrautaltság erősödésével a kooperatív magatartás is fejlődik. Az építő egymásrautaltság kialakítható a megfelelő feladatszerkezetekkel (adott az osztály és a csapatcél, munkamegosztás van a csapatban, a segédanyag mennyisége korlátozott, az érvényben lévő szabályok értelmében az egyes csapatok nem dolgozhatnak a következő feladaton, amíg minden egyes tag be nem fejezte a saját feladatát). Építő egymásrautaltság létrehozható megfelelő értékelési módszerekkel is. Például a csapatpontszám a tagok pontszámának átlagával lehet azonos, vagy azon csapattagok pontjainak a számával, akik egy előre meghatározott kritériumot már teljesítettek. A pontszám megállapításának további lehetséges módjai: 1. a tagok befejezett munkái közül véletlenszerűen kiválasztunk egyet, és ennek a pontszámát nevezzük ki a csapat pontszámának, 2. a csapatban elért legalacsonyabb pontszámot tesszük meg a csapat pontszámának. Építő egymásrautaltság kialakítható még a szerepek, a célok, a segédanyagok megfelelő alkalmazásával is. Az építő egymásrautaltság kialakulásával párhuzamosan születik meg a diákokban a kooperatív viselkedésre késztető bajtársiasság érzése is. A negatív egymásrautaltság viszont versengést szül. Ami az egyiknek nyereség, a másiknak veszteség. Negatív egymásrautaltság legalább annyiféleképpen alakítható ki, mint építő. Ha az osztályátlaghoz viszonyítva osztályozunk, ha csak egy-két dolgozatot emelünk ki a sok közül ez a legjobb felkiáltással, ha a jelentkezők közül mindig csak egyet szólítunk fel, a negatív egymásrautaltságot hozunk létre. Ilyenkor a tanár azzal, hogy elismer egy diákot, csökkenti a többi diák esélyeit az elismerésére, s ez a diákok versengő viselkedését eredményezi. Ha tudható, hogy csak az öt legjobb dolgozatot emeli ki a tanár, nem fogok a társaimnak segíteni, hiszen ezáltal a saját esélyeimet csökkentem. Az 22

30 egymásrautaltság teljes hiányában individuális módszerről beszélünk. Ilyenkor semmiféle összefüggés nincs a különböző személyek eredményei között. Ezt szemlélteti az a példa, amikor mindenki a maga könyvében, a maga tempójában, a többiektől teljesen függetlenül dolgozik; érdemjegyeik is teljesen függetlenek mindenki másétól. A diákok az ilyen helyzetekben hajlamosak a versengésre. Ugyanis egyáltalán nem biztos, hogy mindenki a legjobb jegyet kapja. Azok a diákok, akik jó jegyet kapnak, bizonyos előnyöket élveznek azokkal szemben, akik rosszabbat. A jó jegyet szerző diákok, noha sikerük nem másnak a kárára született, mint ahogyan az a versenyeztető helyzetekben, mégis a gyengébben teljesítőket sikertelennek tüntetik fel Az egyéni felelősség Az egyéni felelősségtudat nagyban hozzájárul a kooperatív tanulási módszerek sikeréhez. Az olyan módszerek, amelyek csoportcélt tűznek ki és csoportos értékeléssel jutalmaznak, de nem teszik az egyes diákokat felelőssé azért, hogy hozzájárulnak-e a közös cél eléréséhez, nem hoznak javulást a tanulási teljesítményben. Az egyéni felelősségvállalásnak a feladat tartalmától és az alkalmazott kooperatív módszertől függően több formája is lehet. Az egyik az ún. pontfelelős módszer: A csapat valamennyi tagja egyedül megír egy tesztet, majd a csapat eredményét a tesztpontok összeadásával vagy átlagolásával számítjuk ki. A diákok tudják, hogy ki milyen mértékben járult hozzá a csoport sikeréhez a saját pontszámával, és azt is tudják, illetve érzékelik, hogy azért csak saját maguk tehetők felelőssé. Másik járható út az, ha a tagok azonos témán dolgoznak, de munkamegosztás van közöttük, és mindenki egy részfeladatért a felelős. Ezt nevezzük a részben felelős módszernek. A diákok úgy is viselhetik a közös felelősség egy részét, ha a csapat által befejezett munkát részfeladatonként osztályozzuk, tehát mindenki a feladat pontosan meghatározható részéért vonható felelősségre. Olyan szabályt is hozhatunk, amely szerint a csapat addig nem foghat hozzá a soron következő feladat megoldásához, amíg az előző feladat ráeső részét ki-ki meg nem oldotta. Bármelyik formát is választjuk a személyes felelősség kifejezésének, minden esetben fontos, hogy a csapat egyes tagjainak teljesítményét a csapat többi tagja is pontosan ismerje. Ha nem vesszük figyelembe az egyéni teljesítményeket az értékelés során, könnyen potyautasokká vagy igavonókká válhatnak a tanulók. Potyautasnak hívjuk az olyan diákot, aki elfogadja ugyan az osztályzatot, de kisujját sem mozdítja az ügy érdekében. Az igavonó ezzel éppen ellentétben jóval többet dolgozik, mint amennyi a saját feladata volna. Nyilvánvaló, hogy ha tagja vagyok egy csapatnak, amely a munka végeztével közös 23

31 jegyet kap, és nem szorongat a személyes elszámoltatás legenyhébb formája sem, akkor személyiségemtől függően alakítok ki stratégiát. Ha jófejű diák vagyok, hamar belátom, hogy a folyamatos magas színvonalért, vagyis a jó jegyekért, a legegyszerűbb, ha magam csinálok meg mindent. Ha nem vagyok lángész, akkor még hamarabb rájövök, mint jól tanuló társam, hogy egyszerűbb és biztosabb sikert jelent, ha ők dolgoznak helyettem. Őgyelgek egy kicsit, esetleg a buta magatehetetlent játszom. Az egyéni felelősség megjelenésével egy csapásra megváltozik minden. Ha a közös jegy, amit kapunk mindnyájunk személyes teljesítményétől egyformán függ, én is, csapattársaim is tudjuk, hogy nemcsak magunkat, hanem egymást is lejáratjuk. A fenti gondolatmenet világosan rámutat, hogy a csoportos tesztelést miért csak elvétve, gyakorlásként érdemes alkalmazni. A személyes felelősség nemcsak a tananyag elsajátítása érdekében fontos. Ha például a tanár az óra elején jelzi a diákoknak, hogy az óra végén mindenkinek fel kell sorolnia néhány olyan témába vágó ötletet vagy elgondolást, amelyet másoktól hallott az órán, kisebb a valószínűsége annak, hogy mindenki egyszerre csacsog és senki sem figyel. Hiszen mindenkinek egyéni felelőssége, hogy figyeljen a többiekre Egyenlő részvétel A részvétel szerves része a tanulási folyamatnak. A diákok azáltal tanulnak, hogy interakcióba lépnek egymással és a tananyaggal. A siker receptjének elengedhetetlen alkotóeleme a részvétel, ami az egész osztály sikerének titka. Ha nem készítjük megfelelően elő, magától nem jön létre az egyenlő részvétel. Előzetes átgondolás hiányában, ha megengedjük az önkéntes részvételt, egy kellően heterogén csoportban, az egészen biztosan egyenlőtlen részvételt eredményez. Az egyenlő részvétel és az egyidejű interakció nem azonos fogalmak. Annak eldöntésére, hogy éppen egyidejű interakciók zajlanak-e, fel kell tenni magunkban a kérdést: Az adott pillanatban az osztály hány százaléka aktív résztvevője az eseményeknek?. De ugyanakkor azt is meg kell vizsgálni, hogy egyenlő arányú-e a részvétel. Jó, ha feltesszük azt a kérdést is, hogy: Mennyire egyenrangú a részvétel. Párban végzett munka során a párhuzamosság kritériuma teljesül (a tanulók 50 százaléka fejezi ki gondolatait egy időben), de a részvétel egyenlőségének feltétele nem valósul meg (a legtöbb párosban általában az egyik fél jóval többet beszél, mint a másik) A hagyományos módszerek egyenlőtlen részvételt eredményeznek. Az olyan próbálkozások, melyek az osztály minden tagját megpróbálják egy központi megbeszélésbe belevonni, vagy a tipikus kérdezek, és az egész osztály felel módszer 24

32 kizárólag a jól tanuló, kellően extrovertált diákok részvételét eredményezik. Mi történik a félénk, introvertált, vagy az egyszerűen csak rosszabbul tanuló diákokkal? Nekünk nevelőknek az egész osztály egyformán fontos kell, hogy legyen. Annak a megszokott és széles körben alkalmazott módszernek, mely azon alapul, hogy a jelentkező diákok valamelyikét szólítjuk fel, az a nagy buktatója, hogy épp olyanokat szólítunk fel, akiknek épp a legkevésbé van erre szükségük, míg a leginkább rászorulókat a háttérbe szorítjuk. Hiszen mindig ugyanazok a diákok jelentkeznek. Az egyenlő részvételt általában a következő módokon lehet elérni: (1) szerepelosztással, (2) munkamegosztással. A szerepelosztás részvételi normákat alakít ki. A diákok ugyanis nemcsak megkapják a lehetőséget a szereplésre, de azt is elvárják tőlük, hogy hozzájáruljanak az óra menetéhez. Az általában alkalmazott csoportos vitákból hiányzik mind az szerepelosztás, mind a munkamegosztás, ami a legtöbb csoportban egyenlőtlen munkamegosztást eredményez. A részvétel egyenlőbbé tétele érdekében a csoportos megbeszéléseket felcserélhetjük olyan módszerekkel, mint a szóforgó vagy csoportinterjú, melyek szerepelosztást eredményező módszerek. Megoldást kínálnak az olyan módszerek is, melyek a munkamegosztás elvén működnek. A munkamegosztás leginkább feladatkörök kialakításával érhető el (például az egyik diák a kérdéses történelmi személyiség korai életpályájának néz utána, a másik a tanulmányait gyűjti össze, a harmadik a család életéről keres anyagot). Másképpen ugyan, de szintén munkamegosztást jelent a működtető szerepkörök kialakítása (például a témafelelős, az időfigyelő, a szószóló, a csendkapitány stb.). Fontos tudnunk, hogy a működtető szerepkörök a tananyag szempontjából nem biztosítanak egyenlő részvételt. A munkamegosztás sok kooperatív tanulás foglalkozásmodellnek a központi kulcseleme (lásd mozaik, partnerek módszer). A munkamegosztás mindenkit a feladat egy részletéért tesz felelőssé. Minden egyes diáknak felelősséget kell vállalnia partnere, csapattársai vagy osztálytársai előtt a neki leosztott feladatrészért. Mindazon túl, hogy a munkamegosztás erősíti a személyes felelősséget, még a részvételt is kiegyenlítettebbé teszi azzal, hogy mindenki a feladatnak más, de nagyjából egyenlő nagyságú részét oldja meg. A diákok képességei között meghúzódó különbségek miatt sokszor azonban tanácsosabb a képességek szerinti, mintsem az egyenlő szétosztásra összpontosítani. A részvétel szoros összefüggést mutat a sikerrel. Az aktív részvételt tanúsító diákok nagyobb valószínűséggel élvezik az egész folyamatot, és nagyobb valószínűséggel is tanulnak. 25

33 2.6. Módszerek Igen sok kooperatív tanulási módszer létezik, és mindegyiknek megvan a maga létjogosultsága és alkalmazási területe. Mivel mindegyik módszer egy bizonyos funkcióban működik jobban, mint a többi, ezért annak a tanárnak, aki hatékonyan kíván tanítani, minden egyes módszert ismernie kell. A módszereket több csoportba sorolhatjuk: a gondolkodás-fejlesztés módszerei, az információ-megosztás módszerei, a kommunikáció-fejlesztés módszerei. (Ezeken kívül még beszélhetünk a társas kapcsolatok és a csoportfejlesztés módszereiről, amelyekkel ez a dolgozat külön nem foglalkozik.) A gondolkodásfejlesztés módszerei Ezekkel a módszerekkel a diákokat újszerű gondolatok megalkotására tesszük képessé, mint például az alkotó gondolkodás, kérdések, következtetések megfogalmazása, új szempontok szerinti kategóriák felállítása stb. Elsősorban az információk rendezését segítik a nagymennyiségű információ tárolása helyett. Alkotó, reflexív gondolkodás Páros megbeszélés, csoportmegbeszélés, Gondolkozz! Beszéld meg! Oszd meg!, Csoportkonzultáció, Csoportmegoldások, Négyes ötletbörze Viszonyítás Sorbarendezés: egy-két-három dimenziós rejtvények Építsd fel, amit leírtam Alakzatok Elemző gondolkodás Gondolkozz! Írd le! Beszéld meg párban! Vesd össze!, Rajzold le amit leírtam! Fogalomalkotás, szabály alkalmazása Kategorizálás Kétoszlopos következtetés Csoportosítás Szabad válogatás Strukturált rendezés: Keresd meg a helyed! Egyedi és közös; Csoport-szóháló; Térképek és folyamatábrák Kérdésalkotás és válaszadás Kérdésmátrix: Rendszerező feladatlapok; Feladatlap készítése, Négykártyás gondolkodó 26

34 Az információ-megosztás módszerei Ezek a módszerek egyrészt a csoporton belül a csoporttagok közti információáramlást segítik, támogatják a csoportépítés sikerességét és fokozzák a jó társaskapcsolatok kialakítását; másrészt irányítják a csoportok közötti információ-megosztást, szerepet játszanak az osztályközösség építésében és magasabb szintű gondolkodást tesznek lehetővé a látókör bővítésével. Csoporttagok közti információ-megosztás Szóforgó Csoportinterjú Háromlépcsős, hatlépcsős, négylépcsős interjú Csoportok közti információ-megosztás Megosztás és összehasonlítás Csoportjegyzetek Osztálymappa Többen a táblánál Információmegosztás indigóval Állj fel, ha van ötleted! Kóborlás a teremben Képtárlátogatás Három megy, egy marad Egy megy, három marad Felfedező riporterek Körhinta Beszámoló forgóban Kettős kör A kommunikáció fejlesztésének módszerei Ezek a módszerek szabályozzák a csoportok és csoporttagok közötti kommunikációt, segítik a pozitív kommunikációs minták kialakulását, fejlesztik a konkrét kommunikációs készségeket és irányítják a csoportokat abban, hogy döntéseiket az egyéni vélemények szem előtt tartásával tudják meghozni. Kommunikáció szabályozók Beszélő korongok 27

35 Bátorító korongok Beszédpanel korongok Indián beszélgetés Válasz korongok Döntéshozók Szavazás Közös megegyezés Költs el egy húszast! Támogató érvelés Kommunikáció fejlesztők Véleményvonalak: Csoport véleményvonalak; Osztály véleményvonalak; Csúsztatott véleményvonalak; Becsült vonalak; Rajzold le, amit írtam! Azonos-különböző: Páros munka, Csoportmunka; Összehasonlítás emlékezetből; Tedd, amit mondok! Feldarabolt négyzetek Mesteri módszerek (képességfejlesztő módszerek) Diákkvartett Ellenőrzés párban Villámkártya Kettős kör Feladatküldés Csoportteszt Kerekasztal Dobj egy kérdést! Füllentős Találj valakit! Kérdezősdi Csoportirányítású diákkvartettek Beszámoló forgóban Kórusválasz Négyesfogat 28

36 3. Kooperatív módszerek A kooperatív tanulásszervezés maga is módszer, egyúttal módszerek együttese is. Módszerek véletlenszerű csoportalakításra: Mozaik, Keveredj, állj meg, csoportosulj! Csoportösszetartást, csoporttudatot segítő tevékenységek: Ablakok, Csoportplakát, Csoportpóló, Csoportcímer, -zászló, csatakiáltás stb. Betűk, gépek, Firka, Képtárlátogatás, Elvarázsolt csapat A kooperatív módszerek a bevezetést segítő fokozatok szerint: Páros munka, Szóforgó, Kerekasztal, Csoportszóforgó, Füllentős Háromlépcsős interjú, Diákkvartett A témafeldolgozás módszerei: Mozaik, Csoportok közti mozaik, Szakértői mozaik, Fordított szakértői mozaik Módszerek a csoportmunkák bemutatására: Három megy, egy marad, Tárlatlátogatás, Beszámoló forgóban 3.1. Kooperatív módszerek leírása A továbbiakban bemutatok kooperatív módszereket, amelyek biztosítják az alapelvek teljesülését, így a kooperatív tanulást is. [3] Ablak módszer A résztvevők, 3-4 fős csoportokban, egy-egy felosztott feladatlapon dolgoznak. Az első lépésben a résztvevők felsorolják gondolataikat a témával kapcsolatban és beírják a saját részükbe (1, 2, 3 vagy 4) vagy ábra. Ablak módszer feladatlap minta (3 vagy 4 fős csoport esetén) 29

37 A következő lépésben a vélemények cseréje valósul meg. A felsorolt gondolatok közül konszenzus alapján kiválasztják azokat amelyeket a legfontosabbnak tartanak. Ezek kerülnek a lap közepén szereplő ablakba. A kiválasztott gondolatok felkerülnek a táblára, majd ezek közös megvitatása következik Belső kör, külső kör A résztvevők két koncentrikus körben rendeződnek el. A külső és belső kör tagjai egymással szemben állnak. Az aktuális párok megbeszélnek egy adott témát (amit a pedagógus javasolt), ezután a külső kör tagjai egy lépést tesznek jobbra, ezáltal új párokat kapnak. A témát megbeszélik az új párral. A célkitűzésektől függően a párválasztás többször ismételhető Bemelegítő játék A bemelegítő játék célja, hogy játékos formában, lehetőleg mozgással összekötve megteremtsen egy kedvező hangulatot. Fontos, hogy a játékhoz valamilyen matematikai művelet kapcsolódjon, fejszámolás formájában Beszélő korongok Ha egy téma megbeszélésekor beszélő korongokat használunk, egy csoportban minden diáknak külön korongja legyen (a saját tolluk is tökéletesen megteszi)! Az utasítások egyszerűek: Ha valaki hozzá szeretne szólni a beszélgetéshez, tegye a korongját az asztal közepére! Addig senki sem kap újra szót, amíg a csoport minden tagjának korongja az asztal közepére nem kerül. Amikor már minden korong középen van, akkor azokat el lehet venni, és újra csak az kap szót, aki korongját az asztal közepére helyezi. Nagy előnye, hogy egyszerre jelent megoldást a visszahúzódó és a magukat túlságosan előtérbe toló diákok problémájára is. Szabályi biztosítékot jelentenek arra, hogy mindenki megszólal, ugyanakkor senkinek sincs alkalma teljesen magához ragadni a szót. E módszer alkalmazásával a diákok egy idő után megtanulják, hogy mindannyian egyenlő mértékben vegyenek részt a tevékenységekben. Változatok: Színes korongok: Ha minden csoporttag több különböző színű korongot kap, akkor szemléletesebb lesz az egyének részvételi aránya. A korongok vizuálisan jelenítik meg, hogy egy-egy csoporttag hányszor kapcsolódott be egy beszélgetésbe. 30

38 Nincs sok időd: Senki nem beszélhet egyszerre egy percnél többet. Minden csoport kiválaszt tagjai közül valakit, aki méri az időt Csoport szóforgó A csoport tagjai rendre, az óra járásának megfelelően (vagy egy meghatározott sorrend alapján) oldják meg az egyes feladatokat, a többi csoporttag figyelmesen hallgatja. Egy-egy tag idejét meg lehet szabni Diákkvartett A gyerekek 4-es csoportokban dolgoznak. A csoportok betűjelet, a tagok számot kapnak. A tanár feltesz egy kérdést. A csoport megbeszéli a választ, a diákok meggyőződnek arról, hogy mindegyikőjük helyesen fog válaszolni a kérdésre. Valaki kihúzza, melyik csoportból, melyik tanuló válaszol. Akinek a betűjelét és csoportnevét (számát) kihúzták, megmondja a választ Egyidejű diákkvartett A diákkvartett egy másik változata. A csoportok azonos jelű tagjai egyszerre adhatják meg a választ a táblánál vagy eldöntendő kérdéseknél a hüvelykújjuk felvagy lemutatásával Egymásnak háttal A diákok párosával háttal ülnek a székek háta érintkezzen, hogy a diákok elég közel legyenek ahhoz, hogy hallják egymást a kialakuló zajban. Döntsék el melyikük az A és melyikük a B. Az A kap egy képet, amelyet a mellkasához közel tart, a B kap egy üres lapot és egy ceruzát. Az A leírja a képet a B-nek, miközben B törekszik, arra, hogy formára, méretre és részletekre is minél tökéletesebb másolatot készítsen. Ez a feladat együtműködésre épít. A B feladata, hogy minél több kérdést tegyen fel, az A feladata, hogy a lehető legsegítőkészebb legyen. Az idő letelte után cserélődnek a feladatok. Az A rajzol, a B leírja, amit lát a lapján Ellenőrzés párban A diákok párban dolgoznak. A pár egyik tagja válaszol, megoldja a feladatot, másikuk figyeli a munkáját, segít és ellenőriz. 31

39 Ha nem tudnak a megoldásban megegyezni, segítséget kérnek a tanártól vagy a másik pártól. A következő feladatnál szerepcsere Feladatküldés Minden diák kap egy üres kartonlapot, amelynek egyik oldalára felír egy általa kitalált gyakorlatot, a másik oldalára pedig megoldja azt. A csoportok kicserélik a kártyáikat. Minden diák megoldja az adott kártyán levő gyakorlatot, majd csoporton belüli szóforgóval megbeszélik a megoldásokat, ellenőrzik a kártya hátoldalán levő megoldást, s ha nem egyezik a saját megoldásukkal kiegészítik, javítják a kártyán levő megoldást. A kártyacsomag továbbküldhető egy másik csoportnak, vagy visszakerülhet a gyakorlatot feltevőkhöz Fordított szakértői mozaik A diákok 4-es csoportokban dolgoznak, ahol a tagok az A, B, C, D jeleket kapják. Minden csoport más-más témát dolgoz fel, különböző munkalapon dolgoznak. A csoportok megoldják feladataikat és plakátot készítenek belőle. A következő lépésben összeülnek az azonos betűjelű diákok, és asztalról asztalra vándorolnak. Mindig az magyaráz a többieknek, aki az adott plakát készítésében részt vett Füllentős A résztvevőket 4-es csoportokra osztjuk. Minden csoport kap egy A4-es lapot, melyet négy egyenlő részre tépünk. Minden kapott lapot megszámozunk 1-től 4-ig, ezek lesznek a szavazólapok. Minden csoport megfogalmaz négy kijelentést egy adott témával kapcsolatban, melyek közül három igaz és egy hamis. A kijelentéseket felírják a kapott lapokra. A csapatok felmutatják a kijelentéseket, és a többi csapat pedig ki kell találja, melyik kijelentés hamis. Fel kell mutatniuk a hamis kijelentés számát. A csoport, amelyik a kijelentéseket fogalmazta elfogadja vagy elutasítja a válaszokat, majd meg is indokolja a választ. 32

40 Gyors léptek A gyors léptek módszer véleményeket ütköztet, egy témát több oldalról dolgoz fel. A módszer lényege a vélemények cseréje. A résztvevők három csoportra oszlanak. Minden csoport kap egy lapot, melyen szerepel a téma egy adott szempontból vett feldolgozása. A csoport minden tagja feljegyzi a poszterre a témával kapcsolatos gondolatait, kérdéseit. A következő lépésben, minden csoport átül egy másik csoport poszteréhez, ahol a téma egy másik szempontból való bemutatása szerepel. A csoport tagjai itt is kifejtik gondolataikat a témával kapcsolatban. A csoportok addig folytatják mozgásukat, míg eljutnak eredeti helyükre. A résztvevők ezután felolvassák az elkészült posztereket, összesítik a különböző nézőpontok szerint, kiemelik a legfontosabb gondolatokat Három megy, egy marad A résztvevők 4-es csoportokban dolgoznak. A feladat megoldása után hárman a csoport tagjai közül a szomszéd csoporthoz ülnek át, egy tag viszont marad csoportjánál, hogy bemutassa a feladat megoldását. Miután a három csoporttag visszaül eredeti csoportjához, a ciklust megismételjük, de egy másik csoporttag marad az asztalnál bemutatni a feladatot. Addig ismételjük a tevékenységet, míg minden csoporttag volt a bemutató szerepében Időkitöltő Ha valamely diák (vagy csoport) befejezte a munkáját és várnia kell a többiekre, tartalék gyakorlatot kaphat. Fontos, hogy a feladat bármikor megszakítható legyen és kapcsolódjon a többi feladathoz Igaz Hamis Minden csoport megfogalmaz a témával kapcsolatban egy vagy több állítást. (A tanár is megfogalmazhatja és átadja a csoportoknak.) A csoportok eldöntik, hogy az állítás igaz, vagy hamis és a csoportból egy kijelölt tanuló újját le vagy fel tartva mutatja csoportja döntését. 33

41 Indián beszélgetés A módszer lényege, hogy a csoport tagjai, mielőtt elmondanák véleményüket a témáról, össze kell foglalják a csoport többi tagja által elmondottakat. A módszer erőssége, hogy a csoport minden tagjának figyelnie kell a többiekre, valamint a visszacsatolás is megvalósul, az által, hogy kiderül mennyire volt érthető és világos a tagok által elmondott információ Jelzőlámpa A diákok 4-es csoportokban (melyeket véletlenszerűen választunk meg) egy adott témát dolgoznak fel. A csoport gondolataikat, ismereteiket feljegyzik. Minden csoport kap egy jelzőlámpát kartonból (piros, sárga, zöld színekkel). A pedagógus felolvassa a csoportok által feljegyzetteket és kéri a csoportok véleményét a feljegyzettekről. Minden csoport szavaz a kapott jelzőlámpával. Zöldet mutat, ha egyetért, pirosat, ha nem és sárgát, ha vannak kérdései. A gondolatok vagy ismeretek, melyek meg lettek szavazva felkerülnek a táblára vagy egy poszterre Kerekasztal A pedagógus javasol egy olyan feladatot, melynek több megoldása van. A pedagógus elindít egy listát, melyre minden résztvevő felírja megoldását a feladatra. Miután a lista mindenkihez eljutott, a pedagógus összesíti a résztvevők által adott megoldásokat. Egy másik lehetőség, ha a tanulók körben ülnek és láncszerűen végzik a műveleteket: a tanár mond egy műveletet, a mellette ülő megoldja és az eredményből kiindulva mond egy másik műveletet Keresd a helyed! A teremben előre megnevezett helyeket, sarkokat kell kijelölni. A diákok valamilyen szabály/összefüggés alapján megkeresik helyüket és odaállnak. 34

42 Képtárlátogatás A csoportok posztert készítenek munkájukból, s ezt kifüggesztik, majd adott jelre körbejárnak a teremben és megtekintik más csoportok munkáját. Megbeszélik, értékelik a látottakat Kíváncsi riporter A csoport egy adott témán dolgozik. Minden csoportból egy tag információkat gyűjt a többi csoporttól. A kíváncsi riporter visszatér csoportjához, megosztja a csoport többi tagjával a megszerzett információkat, mellyel hozzájárul a feladat megoldásához Kockázás A diákok hatos csoportokban dolgoznak. A csoportoknak egy hat feladatból álló feladatlapot kell megoldaniuk. A csoporttagok mindegyikének van egy száma. Az első gyerek dob egy dobókockával, és megoldja azt a feladatot, melynek a számát a kocka mutatja. Ezután a második játékos dob, és megoldja azt a feladatot, amelyiknek a számát dobta, és így tovább. Ha esetleg ugyanaz a szám többször kijön a dobás alkalmával, újra dobnak Kóborlás a teremben A gyerekek 3-4 fős csoportokban dolgoznak egy olyan feladaton, melynek van egy végterméke (pl. egy poszter). A termékeket (posztereket) kiállítjuk a teremben. A csoportok körbejárják a termet, megtekintik a kifüggesztett munkákat, megjegyzéseket fűznek hozzájuk. A teremben való kóborlás után a csoportok elemzik saját munkájukat, és megbeszélik a kapott véleményeket Kupactanács A felvetett problémán minden diák önállóan gondolkodik. Megbeszélik párban, majd a csoporton belüli két pár egymással is megvitatja a problémát Málnás muffin A gyerekek helyet foglalnak a székeken, egymással háttal. Húznak egy-egy számkártyát. 35

43 A tanár egy receptet olvas fel, és ebben műveleteket használ. Ha a művelet eredménye megegyezik valamelyik gyerek számával, akkor a gyerek feláll helyéről, a sor végére szalad, és helyet foglal az utolsó széken, a mellette ülők pedig egy hellyel balra csúsznak a széksorban, így üresen marad az utolsó szék. A játéknak akkor lesz vége, ha a recept befejeződött Ötletbörze Ez a módszer a spontán, teremtő gondolkodást és ötletek szabad bedobását teszi lehetővé. A tanár megnevezi a témát (kérdést, problémát). A diákok minél több ötletet gyűjtenek össze, amelyeket válogatás nélkül leírnak egy plakátra/lapra. Ezután a rendezés következik, adott esetben az előnyök és hátrányok kritikus megfontolása és mérlegelése Összerakás A diákok egyedül vagy párokban dolgoznak azon, hogy összerakjanak logikailag összetartozó anyagot, amelyet külön-külön részekre vágtak föl. Gondosan válasszuk meg az anyagot és a felosztást. Az összerakandó anyag lehet szöveg, kép, matematikai műveletek, szimbólum vagy kombináció Szakértői mozaik Egy szakértői lapot állítunk össze, melyen 4-5 téma szerepel a csoportok számára. 4-es, 5-ös csoportokat képzünk, majd a csoportok minden tagjához rendelünk egy számot 1-től 4-ig (vagy 5-ig). A csoporton belül minden tag kap egy témát a fenti listáról. Az azonos számmal rendelkező tagok az adott téma szakértői összegyűlnek, és a kapott anyagok segítségével megbeszélik a témát. Azt a módot is kidolgozzák, mely segítségével a szakértők az ismereteket átadják. A szakértők visszatérnek az eredeti csoportjukhoz, és bemutatják a csoport többi tagjának a tanult ismereteket. A csoporttagok kérdéseket tehetnek fel a szakértőknek. A csoportok bemutatják eredményeiket Szerepjáték A szerepjáték egy helyzet szimulációja, melyben a szereplők számukra ismeretlen helyzetekbe kerülnek, ez által jobban megértik az illető helyzetet és a benne szereplőket. 36

44 A szerepjáték után hasznos a történtek átbeszélése a szereplők és a megfigyelők szempontjából Tapasztalati tanulás A tapasztalati tanulás mindig a résztvevők személyes élményeire koncentrál, nem készen tálaljuk a tudást hanem a gyerekek saját élményeik alapján tanulnak. A tapasztalati tanulás jól kiegészíti a hagyományos oktatási módszereket Villámkártyák A diákok kártyalapokat kapnak, amelyek egyik oldalára felírják a kérdést, másikra a választ. (A kérdés lehet adott is.) A diákoknak páronként kb. 5-5 kártyájuk van és párban dolgoznak. Az 1. fordulóban a kérdező felolvassa a kártya mindkét oldalát a társának, utánna visszakérdezi tőle. A 2. fordulóban a kérdező megmutatja a kártyát és felteszi a kérdést, amire társának kell válaszolnia. Hibás válasz esetén segítséget kap. A 3. fordulóban a kérdező felteszi a kérdést és a társa segítség nélkül kell válaszoljon. A módszer úgy is alkalmazható, hogy az 1. forduló elmarad. 37

45 4. Pedagógiai kísérlet 4.1. A kutatás bemutatása és célja Mint hazánkban a pedagógusok zöme az oktatás szervezési módjai közül én is legtöbbször a frontális munkát alkalmazom. A frontális munka egységes sajátosságokra épít, azonos haladási tempót vár el és azonos teljesítményt feltételez. Ha csak nem egy válogatott tanulókból álló osztályról van szó, ezek a feltételek nem valósulnak meg. Mindennapi munkám során én is megtapasztalom a módszer hátrányait. Mivel az osztályok nem homogén összetételűek, ezért a tanulók egy része nem tud vagy nem akar velem együtt haladni, és ők egyre inkább leszakadnak a többiektől. Amikor viszonylag sokan haladnak együtt velem, akkor is problémát okoz, hogy a jelentkezők közül csak egy tanulót szólíthatok fel, a többiek csalódásként élik meg, hogy nem ők válaszolhattak. De előfordult már az is, hogy még mielőtt felszólítottam volna valakit, egy diák bekiabálja a választ, és innentől kezdve a többi tanuló már nem is gondolkozik el a válaszon. Talán más pedagógus is érezte már úgy, hogy ő mindent megtett, elmagyarázta a tananyagot, a diákok is látszólag figyeltek, mégsem volt olyan a teljesítményük, mint amilyenre számított. Egy megoldás lehet a frontális módszer ezen problémáira, a kooperatív technikák alkalmazása. A kooperatív tanulási módszer elméleti tanulmányozása után, elkezdtem alaposabban megismerkedni a módszerrel azért, hogy én is alkalmazhassam a gyakorlatban. A VII. osztályos tananyagból az algebrai számítások című tanulási egység néhány leckéjét dolgoztam fel kooperatív technikák alkalmazásával. Az első lecke a Rövidített számítási képletek, a második lecke pedig a Tényezőkre bontás. Iskolánkban a 2009/2010-es tanévben a VII. évfolyamon két osztály volt, így alkalmam adódott rá, hogy a kutatás során kontrollcsoportos kísérleti vizsgálatot végezzek. A kísérleti csoport (VII. A) kooperatív módszerekkel tanult, a kontrollcsoportnál (VII. B) hagyományos, frontális tananyagfeldolgozást végeztem. Ezen órák alkalmával különböző kooperatív módszereket alkalmaztam, mint például a szakértői mozaik, diákkvartett, csoport szóforgó, ellenőrzés párban, fordított szakértői mozaik. A módszereken kívül igyekeztem változatosan összeválogatni a csoportalakítási módszereket, hogy a diákoknak fejlesszem az együttműködési készségét. 38

46 Ezen órák lezárásaként, a diákok egy a kooperatív tanulással kapcsolatos kérdéseket tartalmazó kérdőívet töltöttek ki, melyben véleményüket kértem a foglalkozásokat illetően. A kutatás során a következő kérdésekre kerestem a választ: - Eredményesebben sajátította-e el a tananyagot a kooperatív módszerekkel tanuló osztály, mint a hagyományos tanulási környezetben dolgozó osztály? - Hogyan hat a kooperatív tanulás a gyenge és közepes képességű diákok teljesítményének változására? - Kooperatív tanulás hatására fejlődik-e a tanulók együttműködési készsége és javule a matematikához való viszonyuk? - Hogyan viszonyulnak a kooperatív csoportmunkához? Mi a véleményük róla? Ezen kérdésekből kiindulva a következő hipotéziseket fogalmaztam meg: 1. hipotézis: Kooperatív módszereket használva nő a tanulók tudásszintje. 2. hipotézis: A kooperatív módszerek alkalmazása matematikaórán motiválja a tanulókat a tanulásban, amely a javuló egyéni teljesítményben nyilvánul meg, ezáltal szerethetőbbé teszi a matematikát a diákok számára. 3. hipotézis: Kooperatív tanulásszervezést alkalmazva fejlődik a gyengébb és közepes képességű tanulók feladatmegoldó készsége. 4. hipotézis: Kooperatív módszereket használva a diákoknak fejlődik az együttműködési készségük és javul a matematikához való viszonyuk, mert szeretik a közös munkát, jobban mernek kérdezni és van idejük, hogy rájöjjenek a megoldásra A mintavétel és a minta A vizsgálatot a nagyváradi Lorántffy Zsuzsanna Református Gimnázium VII. A (kísérleti csoport) és VII. B (kontroll csoport) osztályos tanulóival végeztem, februárjában. A mintavétel teljes körű, a VII. A osztály létszáma 16 fő (9 lány és 7 fiú). A VII. B osztályban 26 gyerek tanul (16 lány és 10 fiú). A kísérleti csoportba 16, a kontrollba eredetileg 26 hetedikes tanuló tartozott. Az előmérés eredményei azt mutatták, hogy a kontrollcsoport feladatmegoldó készsége fejlettebb, mint a kísérleti csoporté. A kísérleti csoport teljesítménye 67,06% lett, a kontroll csoporté pedig 69,12%. Ezért a kontrollcsoportból elhagytam annyi tanulót, hogy a kísérleti- és kontrollcsoport indulószintje hozzávetőlegesen azonos legyen. Az elhagyás során figyelembe vettem azt is, hogy a kontrollcsoportban ugyanolyan arányban 39

47 maradjanak a gyengén-, közepesen-, jól- és nagyon jól tanulók, mint a kísérleti csoportban. Ebből adódóan a kontrollcsoport létszáma 20 tanulóra csökkent. A minta nem, illetve osztály szerinti megoszlását a következő táblázat szemlélteti: Minta Kísérleti csoport VII. A Kontroll csoport VII. B Kísérleti és kontroll csoport száma Fiúk 4.3. Módszerek, eszközök %-os aránya száma Lányok %-os aránya Összesen 7 43,75% 9 56,25% 16 (44,44%) 8 40% 12 60% 20 (55,56%) 15 41,67% 21 58,33% 36 (100%) 2. táblázat. A minta nem, illetve osztály szerinti eloszlása A kooperatív módszereket alkalmazó kísérletet megelőzően, valamint azt követően végeztem méréseket. A feladatmegoldó készség fejlettségét vizsgáló teszteket tartalmistrukturális elemzés alapján állítottam össze. Az elő- és utómérés során különböző teszteket alkalmaztam. A tesztekben szereplő feladatok megfelelnek az érvényes tanterv követelményeinek (M.1. és M.7. melléklet). A kísérleti csoportba tartozó tanulók a kísérlet végezetéül kérdőívet (M.8. melléklet) töltöttek ki, melyben azt vizsgáltam, hogy a gyerekeknek szükségük van-e arra, hogy csoportban dolgozzanak, jól érzik-e magukat egy ilyen kooperatív matematika órán, szerethetőbbé teszi-e a kooperatív tanulás a matematikát a diákok számára. A kérdőív során ötös fokozatú Likert skálát használtam, ahol az 1-es azt jelentette, hogy egyáltalán nem értek egyet, az 5-ös pedig azt, hogy teljesen egyetértek. A kérdőívet néhány további, a kísérlet során szerzett tapasztalatra, élményre vonatkozó kérdéssel egészítettem ki A csoportalakításban használt módszerek A kísérlet kezdetén a csoportokat én jelöltem ki, de figyelembe vettem a diákok kívánságait is, így a csoportokat társas kapcsolatok, barátságok alapján állítottam össze úgy, hogy ügyeltem arra is, hogy a képességek tekintetében is vegyesek legyenek. A csoportok összetételén a harmadik órán változtattam, habár sokan nem örültek neki. Ekkor már véletlenszerűen alakultak meg a csoportok a Számozott kártyák módszerrel. Ezzel az volt a szándékom, hogy olyan gyerekek is összekerüljenek, akik 40

48 egyébbként nem szoktak együttműködni. A csoportok összetételének változtatása a kooperativitást erősítheti, a versengést pedig gyengíti. Nagyon hasznosnak bizonyult óra elején, a csoportváltoztatás előtt az addigi csoportok működésének értékelése pár percben: ilyenkor a csoportépítés került a középpontba A tananyag feldolgozása során alkalmazott módszerek Mivel a dolgozat elméleti részében már bemutatásra kerültek a különböző kooperatív módszerek, itt csak felsorolom azokat a módszereket, amelyeket az óráim során alkalmaztam: diákkvartett, szakértői mozaik, csoport szóforgó, ellenőrzés párban, egyéni munka, villámkártya, csoportmegbeszélés, fordított szakértői mozaik, időkitöltő A tanulók értékelésére alkalmazott módszerek A legjobban dolgozó csoport minden tagja minden órán jutalmat kap. (Piros pontot, fél tízest stb.) Az elő- és utómérés között legjobban fejlődő, valamint az utómérésen legjobban teljesítő diák jutalmat kap: tízest. A kísérlet végén szavazni lehet a csoportnak legtöbbet segítőkre, a legtöbb szavazatot kapott tanulók tanári dícséretet kapnak, vagy piros pontot, esetleg tízest A kísérlet lebonyolítása A kísérlet februárjában zajlott le, a 2009/2010-es tanév második félévének elején. Korábban néhányszor már alkalmaztam a módszer egyes elemeit óráim során, hogy a kooperatív technikák bevezetése ne történjen egyik napról a másikra, hanem csak fokozatosan. Ezt az időszakot a kísérlet szempontjából azért tartottam alkalmasnak, mert ekkorára a tananyaggal mindkét osztályban ugyanahhoz a tanítási egységhez értem. A kooperatív módszert négy egymást követő tanítási órán alkalmaztam, a rövidített számítási képletek (0. és M.3. melléklet) és a tényezőkre bontás (M.4. és M.5. melléklet) című leckéknél Az előzetes felmérés eredményeinek bemutatása A minta jellemzésénél utaltam arra, hogy a kontrollcsoport feladatmegoldó készsége az előmérésnél (M.1. melléklet) 2,06 százalékponttal erősebbnek mutatkozott, 41

49 mint a kísérleti csoporté. Emiatt a kontrollcsoportot néhány tanuló elhagyásával korrigáltam figyelembe véve azt is, hogy ugyanolyan arányban maradjanak a gyengén-, közepesen-, jól- és nagyon jól tanulók, mint a kísérleti csoportban. Minden elemzést ezzel a csökkentett kontrollcsoporttal végeztem el. A kísérleti csoport és kontrollcsoport indulószintje így azonossá vált, az átlaguk között sem volt szignifikáns különbség. A következő táblázat a minta pontszám szerinti eloszlását tartalmazza csoportonként: Csoport 0 44 elégtelen Tanulók eloszlása pontszámok szerint elégséges jó nagyon jó Átlag Kísérleti csoport 2 (12,50%) 5 (31,25%) 6 (37,50%) 3 (18,75%) 67,06 Kontroll coport 3 (15%) 6 (30%) 7 (35%) 4 (20%) 67,20 3. táblázat. Az előzetes felmérés eredményei a kísérleti és a kontroll csoportnál Az utólagos felmérés eredményeinek bemutatása A kísérlet végezetével a kísérleti- és a kontroll csoport tanulói felmérő tesztet (M.7. melléklet) írtak, melynek eredményeit az alábbi táblázatban foglaltam össze: Csoport 0 44 elégtelen Tanulók eloszlása pontszámok szerint elégséges jó nagyon jó Átlag Kísérleti csoport 1 (6,25%) 5 (31,25%) 7 (43,75%) 3 (18,75%) 68,94 Kontroll coport 3 (15%) 7 (35%) 6 (30%) 4 (20%) 65,25 4. táblázat. Az utólagos felmérés eredményei a kísérleti és a kontroll csoportnál A kísérleti csoportba tartozó tanulók a kísérlet végezetéül kérdőívet (M.8. melléklet) töltöttek ki, melyben azt vizsgáltam, hogy fejlődik-e a diákok együttműködési készsége és javul-e a tanulók matematikához való viszonya. A kérdőív eredményeit a következő táblázatban foglaltam össze. A kérdések melletti rubrikákban lévő számok az adott értéket választók számát jelöli. Állítások a kooperatív órákkal kapcsolatban Diákok száma 42

50 Egyáltalán nem igaz Nem teljesen igaz Részben igaz, részben nem Nagyjából igaz Teljesen igaz Nem tudom 1 Segített társaim magyarázata a megértésben Tetszett, hogy közösen kellett dolgoznunk Zavart a nagy nyüzsgés és hangzavar Egyedül dolgozva gyorsabban haladtam volna Jobban élveztem az órát, mert csoportokban dolgoztunk Jobban megértettem az anyagot, mint amikor nem dolgozunk csoportokban Örültem, hogy olyanokkal is beszélgettem, akikkel eddig nem sokat sikerült Kevésbé tartok a matekórától, mint ezelőtt Úgy érzem el tudnám magyarázni másoknak is ezt az anyagrészt Bátrabban meg mertem kérdezni bármit, mint máskor Jobban figyeltem a matekórán és több feladatot oldottam meg mint ezelőtt Otthon kevesebb gondot okozott a házi feladat, mint máskor Elemzés 5. táblázat. A kísérleti csoport által kitöltött kérdőív eredményei A tanulók tudásszintjének fejlődése Az elemzés során különféle statisztikai mutatókat használtam, mint amilyen az átlag, módusz, medián és a szórás. Az elő- és utómérés ezen mérőszámait a két csoport esetén a következő táblázatban foglaltam össze: Csoport Előmérés Utómérés Átlag Módusz Medián Szórás Átlag Módusz Medián Szórás Kísérleti 67, ,86 68, ,56 Kontroll 67, ,58 65, ,51 6. táblázat. Az felmérések eredményei a kísérleti és a kontroll csoportnál A fenti táblázatból leolvasható, hogy a két csoport átlaga az előmérés során csak 0,14%p-tal tér el, ami nem számottevő különbség, így a két csoport kezdeti tudásszintjét azonosnak tekinthetjük. Az utómérés során viszont a kísérleti csoport átlaga 1,88 43

51 százalékponttal növekedett, a kontroll csoporté pedig 3,69 százalékponttal csökkent, ami azt mutatja, hogy a kooperatív módszerrel tanuló osztály jobban elsajátította a tananyagot mint a hagyományos módszerrel tanuló csoport. Ez a különbség a következő ábrán jobban kivehető. 70% 69% 68,94% 68% 67% 66% 65% 67,06% 67,20% 65,25% Kísérleti cs. Kontroll cs. 64% 63% Előmérés Utómérés 5. ábra. A két csoport teljesítményének összehasonlítása a mérések során Ha a leggyakrabban előforduló minősítéseket nézzük (módusz), akkor az előmérés során nem tapasztalunk különbséget a két csoport között, viszont az utómérésnél már a kontrollcsoport esetében a legtöbb pontszám a tartományban van, amely csak elégséges minősítést jelent, a kísérleti csoport jó minősítéséhez képest. A következő statisztikai mutató a medián, melynél ugyanannyi diák pontszáma nem nagyobb mint amennyi nem kisebb. Ezt azt jelenti, hogy nagyság szerint sorbarendezve a pontszámokat ez lenne a középső érték, vagy páros létszám esetén a két középső számtani közepe. Ennél a értéknél a kísérleti csoport utómérése során veszünk észre számottevő növekedést, mely szintén egy pozitívum a koopeartív módszerre nézve. Viszont ezek a statisztikai középértékek (átlag, medián és módusz) nem jellemzik igazán jól a pontszámok szóródását. Az erre legmegfelelőbb ilyen statisztikai mutató a szórás, mely az átlagtól vett négyzetes eltérést mutatja meg. Szórások tekintetében az előmérésnél nincs különbség a két csoport között, csak az utómérés mutat egy kis különbséget (0,95%p). Mivel a kísérleti csoport szórása többet csökkent mint a másik csoporté, ez azt jelenti, hogy a kooperatív tanulás eredményeként a tanulók közötti különbségek kisebbek, mint a hagyományos módszerrel tanuló diákok esetében. 44

52 A tanulók tudásszintjének fejlődését az elő- és utómérés eredményei közötti különbségek segítségével is megvizsgálhatjuk. Ezeket a különbségeket a következő táblázatban foglaltam össze, csoportokra lebontva: Kísérleti Kontroll táblázat. Az utó- és előmérés során kapott pontszámok különbsége a kísérleti és a kontroll csoport tanulóinál Első lépésben ellenőriztem, hogy a két mintában a különbségek szórása azonosnak tekinthető-e. Erre F-próbát alkalmaztam, ami nem mutatott ki szignifikáns különbséget a szórások között (lásd. 8. táblázat), így a kétmintás t-próba alkalmazásának feltételei adottak voltak. Kísérleti csoport Kontroll csoport Csoport létszáma Átlag 1,88-1,95 Korrigált szórás négyzete 12,52 8,26 Szignifikancia szint 0,05 F próba t próba 0,39 (nem szignifikáns érték) 3,58 (szignifikáns érték) 8. táblázat. A két csoport eredményeire alkalmazott statisztikai próbák eredményei A 8. táblázatbeli 3,58-as érték azt mutatja, hogy a t próba szerint a kooperatívan tanuló diákok szignifikánsan többet fejlődtek az előméréshez viszonyítva (0,05-ös szignifikancia szint mellett), mint a kontroll csoport diákjai. Az előbbiek alapján mondhatjuk, hogy beigazolódni látszik első hipotézisem, mely szerint kooperatív módszereket használva nő a tanulók tudásszintje Javuló egyéni teljesítmény Az elő- és utómérések során elért pontszámok alapján egyes diákoknak nőtt a teljesítménye, másoknak pedig csökkent. Hogy milyen arányban történtek ezek a változások a kísérleti és a kontroll csoport esetében azt a következő táblázat szemlélteti, illetve a hozzá tartozó diagramm szemlélteti: Egyéni teljesítmény Csoport nőtt csökkent nem változott diákok száma %-os aránya diákok száma %-os aránya diákok száma %-os aránya 45

53 Kísérleti 10 62,50% 6 40% 0 0% Kontroll 8 37,50% 12 60% 0 0% 9. táblázat. Az egyéni teljesítmények változása a kísérleti és a kontroll csoportnál 70% 60% 62,50% 60,00% 50% 40% 30% 20% 40,00% 37,50% Kísérleti cs. Kontroll cs. 10% 0% Nőtt Csökkent 6. ábra. Az egyéni teljesítmény változása Mint a mellékelt diagramm is mutatja a kísérleti csoport tanulóinak 62,50%-ánál vehető észre teljesítménynövekedés, míg a maradék 37,50%-ánál csökkent a tudásszint. Figyelembe véve azt is, hogy a kontroll csoportnál ugyanez fordítva történt mondhatjuk, hogy a kooperatív tanulás a tanulók nagy hányadánál pozitív hatással van az egyéni teljesítményre nézve. Ez arra enged következtetni, hogy a kooperatív módszer motiválja a diákokat a tanulásra és ez a javuló egyéni teljesítményben nyilvánul meg. Így a második hipotézisem is beigazolódott A gyenge és közepes képességű tanulók feladatmegoldó készségének fejlődése Annak érdekében, hogy megvizsgáljam hogyan hat a kooperatív tanulás a gyenge és közepes képességű diákok fejlődésére, a felmérések elemzésekor külön táblázatba soroltam azokat, akik az előzetes felmérésnel 75 pontnál kevesebbet értek el. Ezen tanulóknak szám szerinti és százalékos eloszlását a következő táblázat tartalmazza: Csoport diákok száma Gyenge és közepes képességű tanulók teljesítménye nőtt csökkent nem változott %-os aránya diákok száma %-os aránya diákok száma %-os aránya Kísérleti 7 77,78% 2 22,22% 0 0% 46

Segítünk egymásnak. A matematika nem játék? 2. ÉVFOLYAM É N É S A M Á S I K. Készítette: Lissai Katalin

Segítünk egymásnak. A matematika nem játék? 2. ÉVFOLYAM É N É S A M Á S I K. Készítette: Lissai Katalin SZKb_102_06 Segítünk egymásnak A matematika nem játék? É N É S A M Á S I K Készítette: Lissai Katalin SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. ÉVFOLYAM tanári SEGÍTÜNK EGYMÁSNAK 53 MODULVÁZLAT

Részletesebben

A kooperatív csoportok kialakítása

A kooperatív csoportok kialakítása A TANULÁSSZERVEZÉS GYAKORLATA A A kooperatív csoportok kialakítása dr. Lénárd Sándor A múlt órán heterogén csoportokat alakítottam ki, és meglepve tapasztaltam, hogy a matematikában a jobbak növelik a

Részletesebben

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN

MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN Készítette: Adorjánné Tihanyi Rita Innováció fő célja: A magyar irodalom és nyelvtan tantárgyak oktatása

Részletesebben

FELMÉRÉS A ROMÁN NYELV OKTATÁSÁRÓL

FELMÉRÉS A ROMÁN NYELV OKTATÁSÁRÓL Hargita Megye Tanácsa RO-530140 Csíkszereda, Szabadság tér 5. szám Tel.: +4-0266-207700, Fax: +4-0266-207703, info@hargitamegye, www.hargitamegye.ro FELMÉRÉS A ROMÁN NYELV OKTATÁSÁRÓL A román nyelv és

Részletesebben

A kooperatív tanulás módszereinek alkalmazása a mindennapi ismeretek tanórákon

A kooperatív tanulás módszereinek alkalmazása a mindennapi ismeretek tanórákon Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola A kooperatív tanulás módszereinek alkalmazása a mindennapi ismeretek tanórákon Készítette: Hepka Judit Budapest, 2006 Tartalomjegyzék Bevezetés...2

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben

Óravázlat Matematika. 1. osztály

Óravázlat Matematika. 1. osztály Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség

Részletesebben

Tanítási gyakorlat. 2. A tanárok használják a vizuális segítséget - képeket adnak.

Tanítási gyakorlat. 2. A tanárok használják a vizuális segítséget - képeket adnak. 1. szakasz - tanítási módszerek 1. A tananyagrészek elején megkapják a diákok az összefoglalást, jól látható helyen kitéve vagy a füzetükbe másolva mindig elérhetően, hogy követni tudják. 2. A tanárok

Részletesebben

A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI

A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A FEJLESZTÉS PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI NEVELÉSI-OKTATÁSI PROGRAMOK AZ EGÉSZ NAPOS ISKOLÁK SZÁMÁRA

Részletesebben

A tanulmányi munka értékelése. 1.1. Az iskolai beszámoltatás, az ismeretek számonkérésének követelményei és formái

A tanulmányi munka értékelése. 1.1. Az iskolai beszámoltatás, az ismeretek számonkérésének követelményei és formái A tanulmányi munka értékelése 1.1. Az iskolai beszámoltatás, az ismeretek számonkérésének követelményei és formái A pedagógus a tanuló teljesítményét, előmenetelét tanítási év közben rendszeresen érdemjeggyel

Részletesebben

Helyi tanterv a Tanulásmódszertan oktatásához

Helyi tanterv a Tanulásmódszertan oktatásához Helyi tanterv a Tanulásmódszertan oktatásához A Tanulásmódszertan az iskolai tantárgyak között sajátos helyet foglal el, hiszen nem hagyományos értelemben vett iskolai tantárgy. Inkább a képességeket felmérő

Részletesebben

Három éves szakiskolai kerettanterv. Idegen nyelv Angol

Három éves szakiskolai kerettanterv. Idegen nyelv Angol Idegen nyelv Angol Készítette: Bugyinszki Adrienn Király Endre Szakközépiskola, Szakiskola és Kollégium Forrás: Szakiskolai közismereti program Oktatáskutató és Fejlesztő Központ http://szaki.ofi.hu/tajekoztatok-a-3-eves-szakiskolai-kerettantervrol/

Részletesebben

szka102_21 É N É S A V I L Á G Készítette: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM

szka102_21 É N É S A V I L Á G Készítette: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM szka102_21 É N É S A V I L Á G Ismered Budapestet? Magyarország fővárosa Készítette: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM TANÁRI ÉN és a világ 2. évfolyam 221 MODULLEÍRÁS

Részletesebben

A GYERMEK TÁRSAS KÉSZSÉGEINEK FEJLESZTÉSE

A GYERMEK TÁRSAS KÉSZSÉGEINEK FEJLESZTÉSE Tartalom A KÖNYVRÔL 11 BEVEZETÉS 13 Kommunikációs készségek 14 Társas készségek 14 Fejleszthetôk-e tanítással a kommunikációs és a társas készségek? 15 Miért kell a gyermeknek elsajátítania a kommunikációs

Részletesebben

Az utazó és a befogadó pedagógus feladatai. MEIXNER ILDIKÓ EGYMI, Óvoda, Általános Iskola, Speciális Szakiskola és Kollégium MOHÁCS

Az utazó és a befogadó pedagógus feladatai. MEIXNER ILDIKÓ EGYMI, Óvoda, Általános Iskola, Speciális Szakiskola és Kollégium MOHÁCS Az utazó és a befogadó pedagógus feladatai MEIXNER ILDIKÓ EGYMI, Óvoda, Általános Iskola, Speciális Szakiskola és Kollégium MOHÁCS SNI tanuló ellátása Osztályfőnök Osztályban tanító pedagógusok Gyógypedagógus

Részletesebben

A NEVELÉSI-OKTATÁSI PROGRAMOK PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI

A NEVELÉSI-OKTATÁSI PROGRAMOK PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A NEVELÉSI-OKTATÁSI PROGRAMOK PEDAGÓGUSOKRA ÉS DIÁKOKRA GYAKOROLT HATÁSAI LIPPAI EDIT, MAJER ANNA, VERÉB SZILVIA,

Részletesebben

2008.01.19. Fővárosi Diákönkormányzati. A Diákakadémia célja. A tanulási folyamat

2008.01.19. Fővárosi Diákönkormányzati. A Diákakadémia célja. A tanulási folyamat Fővárosi Diákönkormányzati Akadémia Hotel Római, 2008. január 18. A Diákakadémia célja hogy a hallgatók megszerezzék mindazokat az ismereteket, készségeket és attitűdöt, amelyek szükségesek ahhoz, hogy

Részletesebben

Kulcskompetenciák kereszttüzében Az idegennyelv-tanulás és az ICT kapcsolata egy olasz multimédiás tananyagon keresztül

Kulcskompetenciák kereszttüzében Az idegennyelv-tanulás és az ICT kapcsolata egy olasz multimédiás tananyagon keresztül Kulcskompetenciák kereszttüzében Az idegennyelv-tanulás és az ICT kapcsolata egy olasz multimédiás tananyagon keresztül Istókovics Nóra KE-CSPFK Művelődésszervező szak Az előadás célja: Az ICT fontosságának

Részletesebben

TANULÁSMÓDSZERTAN 5 6. évfolyam

TANULÁSMÓDSZERTAN 5 6. évfolyam TANULÁSMÓDSZERTAN 5 6. évfolyam A tanulás tanításának elsődleges célja, hogy az egyéni képességek, készségek figyelembe vételével és fejlesztésével képessé tegyük tanítványainkat a 21. században elvárható

Részletesebben

Fejlesztőpedagógia alapjai A DIFFERENCIÁLÁS NEVELÉSELMÉLETI KÉRDÉSEI AZ ÓVODÁBAN

Fejlesztőpedagógia alapjai A DIFFERENCIÁLÁS NEVELÉSELMÉLETI KÉRDÉSEI AZ ÓVODÁBAN Fejlesztőpedagógia alapjai A DIFFERENCIÁLÁS NEVELÉSELMÉLETI KÉRDÉSEI AZ ÓVODÁBAN Az előadás vázlata A közoktatás egyik legnehezebb, megoldásra váró problémája A differenciálás Az egyének differenciált

Részletesebben

Záródolgozat Projekt a gyakorlatban

Záródolgozat Projekt a gyakorlatban 1. Mini-projektterv Záródolgozat Projekt a gyakorlatban Osztály/csoport: 6.osztály Résztvevők száma: 23 Időpont:4 óra Osztály / csoport rövid bemutatása:matematikából nálunk csoport bontás van. A 6. évfolyamon

Részletesebben

SZKB101_06 SZKB_101_06. Kippkopp és Tipptopp. Egyedül nem jó. A modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK

SZKB101_06 SZKB_101_06. Kippkopp és Tipptopp. Egyedül nem jó. A modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK Kippkopp és Tipptopp Egyedül nem jó SZKB101_06 SZKB_101_06 Kippkopp és Tipptopp Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 64 Szociális, életviteli

Részletesebben

1. ÉVFOLYAM. Én és a világ. A modul szerzõje: Nahalka István. SZKA_101_06_B Mikor tanulsz hogyan tanulsz?

1. ÉVFOLYAM. Én és a világ. A modul szerzõje: Nahalka István. SZKA_101_06_B Mikor tanulsz hogyan tanulsz? SZKA_101_06_B Mikor tanulsz hogyan tanulsz? Én és a világ A modul szerzõje: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYAM 76 Szociális, életviteli és környezeti kompetenciák

Részletesebben

Kérdőív. 1. Milyen szolgáltatásokat nyújt a vállalat, ahol dolgozik? ... ... 4. Jelenleg milyen feladatokat lát el az intézményben? ...

Kérdőív. 1. Milyen szolgáltatásokat nyújt a vállalat, ahol dolgozik? ... ... 4. Jelenleg milyen feladatokat lát el az intézményben? ... KÉRDŐÍV SZÁMA... Kérdőív A nemzetközi gyakorlathoz hasonlóan Romániában is általánossá vált, hogy egyes üzleti problémával a vállalatok Önökhöz fordulnak. A tanácsadás a professzionális szolgáltató piac

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á

Kompetencia alapú oktatás (tanári kompetenciák) 2015.04.09. NyME- SEK- MNSK N.T.Á Kompetencia alapú oktatás (tanári kompetenciák) A kompetencia - Szakértelem - Képesség - Rátermettség - Tenni akarás - Alkalmasság - Ügyesség stb. A kompetenciát (Nagy József nyomán) olyan ismereteket,

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz

Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz Nemzeti tananyagfejlesztés és országos referenciaiskola hálózat kialakítása digitális kiegészítő oktatási anyagok létrehozása az új NAT hoz TARTALOMFEJLESZTŐK FELADATAI Koczor Margit Budapest, 2013. 09.

Részletesebben

7. Óravázlat. frontális, irányított beszélgetés. projektor, vagy interaktív tábla az ismétléshez,

7. Óravázlat. frontális, irányított beszélgetés. projektor, vagy interaktív tábla az ismétléshez, 7. Óravázlat Cím: Információk feltöltése, biztonságos, jogszerű megosztása Műveltségi terület / tantárgy: Informatika Évfolyam: 7-8. évfolyam (vagy felette) Témakör: Az információs társadalom/ Az információkezelés

Részletesebben

A projekt szakmai megvalósítása

A projekt szakmai megvalósítása TÁMOP-2.2.5.B-12/1-2012-0010 pályázat Az új típusú szakképzés bevezetése a Lukács Sándor Mechatronikai és Gépészeti Szakképző Iskolában A projekt szakmai megvalósítása 1.Együttműködés partnerszervezetekkel

Részletesebben

Bókay János Humán Szakközépiskola

Bókay János Humán Szakközépiskola Beiskolázási tájékoztató a 2015-16. tanévre A tájékoztató a 35/2014. EMMI rendelet és a 20/2012. EMMI rendelet alapján készült. I. Általános adatok Az iskola neve: Bókay János címe: 1086 Budapest, Csobánc

Részletesebben

Óra-megfigyelési szempontok

Óra-megfigyelési szempontok Óra-megfigyelési szempontok Pedagógus kompetenciaterületekre épülő megfigyelési szempont gyűjtemény óralátogatáshoz Pedagógus kompetenciaterületek Megfigyelési szempontok (tanár munkakör) A pedagógus alapos,

Részletesebben

FELVÉTELI TÁJÉKOZTATÓ a 2011/2012-es tanévre

FELVÉTELI TÁJÉKOZTATÓ a 2011/2012-es tanévre FELVÉTELI TÁJÉKOZTATÓ a 2011/2012-es tanévre Hunfalvy János Fővárosi Gyakorló, Kéttannyelvű Külkereskedelemi, Közgazdasági Szakközépiskola OM azonosító: 035424 www.hunfalvy-szki.hu 2010.10.01. TANULMÁNYI

Részletesebben

A jó tankönyv az együttnevelés segítője

A jó tankönyv az együttnevelés segítője A jó tankönyv az együttnevelés segítője A tanulás aktív, konstruktív folyamat. Ez akkor is így van, ha a tanulni vágyó sajátos nevelési igényű gyermek. A gyógypedagógia specialitása abban rejlik, hogy

Részletesebben

KOOPERATÍV MÓDSZERTANRA ÉPÜLŐ EGYÜTTMŰKÖDÉS

KOOPERATÍV MÓDSZERTANRA ÉPÜLŐ EGYÜTTMŰKÖDÉS KOOPERATÍV MÓDSZERTANRA ÉPÜLŐ EGYÜTTMŰKÖDÉS A kooperáció egyik alapfeltétele a pedagógusok szemléletváltozása, de szükségesek azok a pedagógus mesterségbeli tudások is, amelyek megalapozzák a szemléletváltást.

Részletesebben

Szülői elégedettségi kérdőív 2014/15 (11 kitöltés)

Szülői elégedettségi kérdőív 2014/15 (11 kitöltés) Szülői elégedettségi kérdőív 2014/15 (11 kitöltés) 1/12 Kitöltői adatok statisztikái: 1. Kérjük, gondolja végig és értékelje azt, hogy a felsorolt állítások közül melyik mennyire igaz. A legördülő menü

Részletesebben

Értékelési útmutató a középszintű szóbeli vizsgához. Angol nyelv

Értékelési útmutató a középszintű szóbeli vizsgához. Angol nyelv Értékelési útmutató a középszintű szóbeli vizsgához Angol nyelv Általános jellemzők FELADATTÍPUS ÉRTÉKELÉS SZEMPONTJAI PONTSZÁM Bemelegítő beszélgetés Nincs értékelés 1. Társalgási feladat: - három témakör

Részletesebben

A SAJÁTOS NEVELÉSI IGÉNYŰ ÉS/VAGY A FOGYATÉKKAL ÉLŐ TANULÓK RÉSZVÉTELE A SZAKKÉPZÉSBEN SZAKPOLITIKAI TÁJÉKOZTATÓ

A SAJÁTOS NEVELÉSI IGÉNYŰ ÉS/VAGY A FOGYATÉKKAL ÉLŐ TANULÓK RÉSZVÉTELE A SZAKKÉPZÉSBEN SZAKPOLITIKAI TÁJÉKOZTATÓ A SAJÁTOS NEVELÉSI IGÉNYŰ ÉS/VAGY A FOGYATÉKKAL ÉLŐ TANULÓK RÉSZVÉTELE A SZAKKÉPZÉSBEN SZAKPOLITIKAI TÁJÉKOZTATÓ Szakpolitikai kontextus A nemzetközi adatok azt mutatják, hogy a fogyatékkal élő, valamint

Részletesebben

A kurzus célja 1. KORTÁRS SZÉPIRODALMI AKOTÁSOK OLVASÁSA

A kurzus célja 1. KORTÁRS SZÉPIRODALMI AKOTÁSOK OLVASÁSA Kortárs gyermekirodalmi alkotások olvasása és tanítása az általános iskola 10 12 éves korosztálya számára (meseregény, ifjúsági regény) Írta és összeállította: Sütő Csaba András A kurzus célja 1. KORTÁRS

Részletesebben

Kompetenciák fejlesztése az integrált tankönyvcsaláddal. Feladatötletek

Kompetenciák fejlesztése az integrált tankönyvcsaláddal. Feladatötletek Kompetenciák fejlesztése az integrált tankönyvcsaláddal Feladatötletek Milyen témákról beszélek? A kulcskompetencia és hozzá kapcsolódó fogalmak Feladatötletek 1.osztályban Milyen módszerekkel dolgozzunk?

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott

Részletesebben

AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE

AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE AZ ÚJGENERÁCIÓS TANKÖNYVEK FEJLESZTÉSE A projekt célja Tanulásra és alkotásra ösztönző tanításitanulási környezet kialakítása A tanítás és tanulás hatékonyságát elősegítő módszertani újdonságok beépítése

Részletesebben

Módszertani segédlet pedagógusoknak az első szexszel kapcsolatos órák megtartásához. Óravázlatok Projektötletek Megbeszélendő kérdések

Módszertani segédlet pedagógusoknak az első szexszel kapcsolatos órák megtartásához. Óravázlatok Projektötletek Megbeszélendő kérdések Módszertani segédlet pedagógusoknak az első szexszel kapcsolatos órák megtartásához Óravázlatok Projektötletek Megbeszélendő kérdések Első szex Javasolt évfolyam: 7 12. Időbeosztás Tanári tevékenység Tanulói

Részletesebben

TeleInformatikai rendszer a gyógypedagógus tanárok továbbképzési anyagainak folyamatos gyűjtéséhez, feldolgozásához és terjesztéséhez

TeleInformatikai rendszer a gyógypedagógus tanárok továbbképzési anyagainak folyamatos gyűjtéséhez, feldolgozásához és terjesztéséhez TeleInformatikai rendszer a gyógypedagógus tanárok továbbképzési anyagainak folyamatos gyűjtéséhez, feldolgozásához és terjesztéséhez Intézményi kérdőív Az iskola főbb adatai A. Az információs technológia

Részletesebben

SZKb_102_01. Bizalomjáték. Készítette: Lissai Katalin É N É S A M Á S I K SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2.

SZKb_102_01. Bizalomjáték. Készítette: Lissai Katalin É N É S A M Á S I K SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. SZKb_102_01 segítség, amit adhatok Bizalomjáték É N É S M Á S I K Készítette: Lissai Katalin SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. ÉVFOLYM tanári SEGÍTSÉG, MIT DHTOK MODULVÁZLT tevékenység

Részletesebben

MENTORÁLÁSI TERV. Mentor neve: Csiki Paula A mentorált tanuló neve: Sz. Á. Évfolyam/életkor: 7. évfolyam, 13 éves

MENTORÁLÁSI TERV. Mentor neve: Csiki Paula A mentorált tanuló neve: Sz. Á. Évfolyam/életkor: 7. évfolyam, 13 éves MENTORÁLÁSI TERV Mentor neve: Csiki Paula A mentorált tanuló neve: Sz. Á. Évfolyam/életkor: 7. évfolyam, 13 éves A mentorálásba való beválasztás indoklása: Á. kiváló tanuló, magatartásával sincs probléma.

Részletesebben

Partneri elégedettségmérés 2007/2008 ÖSSZEFOGLALÓ A PARTNERI ELÉGEDETTSÉGMÉRÉS EREDMÉNYEIRŐL 2007/2008. TANÉV

Partneri elégedettségmérés 2007/2008 ÖSSZEFOGLALÓ A PARTNERI ELÉGEDETTSÉGMÉRÉS EREDMÉNYEIRŐL 2007/2008. TANÉV ÖSSZEFOGLALÓ A PARTNERI ELÉGEDETTSÉGMÉRÉS EREDMÉNYEIRŐL. TANÉV 1 Bevezető Iskolánk minőségirányítási politikájának megfelelően ebben a tanévben is elvégeztük partnereink elégedettségének mérését. A felmérésre

Részletesebben

IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI

IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI IV. AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI IV/1. Az általános iskolai oktatásban és a sajátos nevelési igényű tanulók oktatásában a kerettanterv szerint oktatott

Részletesebben

A netgeneráció kihívásai Bedő Ferenc

A netgeneráció kihívásai Bedő Ferenc A netgeneráció kihívásai Bedő Ferenc www.zalai-iskola.hu www.edidakt.hu Előzmények Figyelemfelhívás pozitív optimizmus Don Tapscott Mark Prensky Helyzetértékelés negatív realitás Netgeneráció 2010. kutatás

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE

AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE 1. oldal AZ ORSZÁGOS KOMPETENCIA MÉRÉS EREDMÉNYEINEK ÉRTELMEZÉSE 2007 Matematika: AZ ELEMI SZÁMOLÁSI KÉSZSÉG KIÉPÜLÉSE GYAKORLOTTSÁGÁNAK FEJLŐDÉSE Az alábbi táblázat a 4. évfolyam százalékos eredményeit

Részletesebben

szka105_22 É N É S A V I L Á G Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5.

szka105_22 É N É S A V I L Á G Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5. szka105_22 É N É S A V I L Á G Külföldi vendéggel Magyarországon Készítette: tóth Tamás Zágon Bertalanné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 5. ÉVFOLYAM tanári Külföldi vendéggel Magyarországon

Részletesebben

Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály. Szövegértés, matematika. SIOK Balatonendrédi Általános Iskola

Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály. Szövegértés, matematika. SIOK Balatonendrédi Általános Iskola Kompetenciamérés eredményei 2011 tanév - 6. és 8. osztály Szövegértés, matematika SIOK Balatonendrédi Általános Iskola 1 Fit jelentés 2011-es tanév, 6-8. osztály (matematika, szövegértés) A 2011-es mérés

Részletesebben

Az e-portfólió dokumentumai és a védés alapján

Az e-portfólió dokumentumai és a védés alapján 1. kompetencia: Szakmai feladatok, szaktudományos, szaktárgyi, tantervi tudás 1.1. Alapos, átfogó és korszerű szaktudományos és szaktárgyi tudással rendelkezik. 1.2. Rendelkezik a szaktárgy tanításához

Részletesebben

Jövőképformálás 4. ÉVFOLYAM. Én és a világ. A modul szerzõje: Nahalka István. SZKA_104_21 30 év múlva szerintem

Jövőképformálás 4. ÉVFOLYAM. Én és a világ. A modul szerzõje: Nahalka István. SZKA_104_21 30 év múlva szerintem SZK_104_21 30 év múlva szerintem Jövőképformálás Én és a világ modul szerzõje: Nahalka István SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 4. ÉVFOLYM tanári 30 év múlva szerintem 4. évfolyam 355 MODUlVÁZLT

Részletesebben

Szülők és pedagógusok körében végzett. vezetői értékelés (2015)

Szülők és pedagógusok körében végzett. vezetői értékelés (2015) Szülők és pedagógusok körében végzett vezetői értékelés (2015) A közoktatási intézmények vezetőinek munkáját a megbízatásuk során két alaklommal kell az intézmény pedagógusainak és a tanulók szüleinek

Részletesebben

Felkészítés szakmai vizsgára. 1144-06 modulhoz. II/14. évfolyam

Felkészítés szakmai vizsgára. 1144-06 modulhoz. II/14. évfolyam Felkészítés szakmai vizsgára informatika területre Felkészítés szakmai vizsgára informatika területre 1144-06 modulhoz II/14. évfolyam tanári kézikönyv A TISZK rendszer továbbfejlesztése Petrik TISZK TÁMOP-2.2.3-07/1-2F-2008-0011

Részletesebben

Mosolyt az arcokra! Tanoda

Mosolyt az arcokra! Tanoda Mosolyt az arcokra! Tanoda NEVELÉSI-OKTATÁSI PROGRAM Készült: 2013. augusztus 08. Készítette: Nagy Anikó szakmai vezető I. Alapelvek 1 I.1. Tanodai célok megfogalmazása A Tanoda biztosítja minden gyermek

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó

Részletesebben

OKM ISKOLAI EREDMÉNYEK

OKM ISKOLAI EREDMÉNYEK OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak

Részletesebben

Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga

Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga Hogyan írjunk jól sikerült kompetenciamérést? Készítette: Kiss István 2. évf. Mérés-értékelés szakvizsga Tartalom Bevezető Kompetencia Kérdőív Eredmény Bemutatkozás A dolgozat keletkezésének körülményei

Részletesebben

Inklúziós index. Tony Booth, Mel Ainscow: A tanulás és részvétel támogatása az iskolákban Harmadik, bővített, átdolgozott kiadás

Inklúziós index. Tony Booth, Mel Ainscow: A tanulás és részvétel támogatása az iskolákban Harmadik, bővített, átdolgozott kiadás Tony Booth, Mel Ainscow: Inklúziós index A tanulás és részvétel támogatása az iskolákban Harmadik, bővített, átdolgozott kiadás Csepregi András Velence, 2015. 05. 14. A magyar változat Tény: az Educatio

Részletesebben

2. Kérjük, szíveskedjen válaszolni az alábbi kérdésekre, + jelet téve a megfelelő rubrikába! Kérdések agyon Jónak Átlagos Gyenge

2. Kérjük, szíveskedjen válaszolni az alábbi kérdésekre, + jelet téve a megfelelő rubrikába! Kérdések agyon Jónak Átlagos Gyenge 9/A 1. Milyen elvárásai vannak iskolánkkal kapcsolatban? Kérjük, állítson fel fontossági sorrendet az 1-5 skála felhasználásával. Vigyázzon arra, hogy az 1. és 2. helyre maximum két területet jelölhet!

Részletesebben

8. Óravázlat. frontális, irányított beszélgetés. projektor, vagy interaktív tábla az ismétléshez,

8. Óravázlat. frontális, irányított beszélgetés. projektor, vagy interaktív tábla az ismétléshez, 8. Óravázlat Cím: Letöltés, a letöltött anyagok felhasználása Műveltségi terület / tantárgy: Informatika Évfolyam: 7-8. évfolyam (vagy felette) Témakör: Az információs társadalom/ Az információkezelés

Részletesebben

Kérdőív a viselkedés okának feltárására tanárok és iskolai dolgozók számára ( A rész)

Kérdőív a viselkedés okának feltárására tanárok és iskolai dolgozók számára ( A rész) ( A rész) 1. lépés 2. lépés 3. lépés Tanuló neve / osztály: Dátum: Interjú készítője: Válaszadó(k): Tanuló profilja: Nevezzen meg legalább három erősséget és pozitív jellemvonást a tanulóval kapcsolatban.

Részletesebben

A pedagógus mint személyiségfejleszto

A pedagógus mint személyiségfejleszto A pedagógus mint személyiségfejleszto A pedagógus mint személyiségfejleszto zemélyiség: viselkedésnek, a gondolkodásnak és az érzelmeknek az a jellegzetes mintázata, amely meghatározza a személy környezetéhez

Részletesebben

Egészségedre! Káros szenvedélyek és egészséges életmód megismerése. Kompetenciaterület: Szociális és életviteli kompetencia 10.

Egészségedre! Káros szenvedélyek és egészséges életmód megismerése. Kompetenciaterület: Szociális és életviteli kompetencia 10. Egészségedre! Káros szenvedélyek és egészséges életmód megismerése Kompetenciaterület: Szociális és életviteli kompetencia 10. évfolyam Programcsomag: Felkészülés a felnőtt szerepekre A modul szerzője:

Részletesebben

A modul szerzője: págyor Henriett, Marsi Mónika. T o l e r a n c i á r a n e v e l é s SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 8.

A modul szerzője: págyor Henriett, Marsi Mónika. T o l e r a n c i á r a n e v e l é s SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 8. SZKC 208_07 T o l e r a n c i á r a n e v e l é s szubkultúrák a divatban modul szerzője: págyor Henriett, Marsi Mónika SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 8. ÉVFOLYM 78 szociális, életviteli

Részletesebben

DIGITÁLIS KOMPETENCIA FEJLESZTÉSE TANÍTÁSI ÓRÁKON

DIGITÁLIS KOMPETENCIA FEJLESZTÉSE TANÍTÁSI ÓRÁKON DIGITÁLIS KOMPETENCIA FEJLESZTÉSE TANÍTÁSI ÓRÁKON Juhász Gabriella A digitális kompetencia fogalma A digitális kompetencia az elektronikus média magabiztos és kritikus alkalmazása munkában, szabadidőben

Részletesebben

Tisztelt Oktató! Tisztelt Pedagógus Kolléga!

Tisztelt Oktató! Tisztelt Pedagógus Kolléga! Tisztelt Oktató! Tisztelt Pedagógus Kolléga! Az alábbi kérdőívben állításokat fogalmaztunk meg a pedagógusok, oktatók elégedettségére vonatkozóan. Örömünkre szolgálna, ha észrevételeivel, javaslataival

Részletesebben

Gyermekek Háza Alternatív Alapozó Program Jó gyakorlata

Gyermekek Háza Alternatív Alapozó Program Jó gyakorlata Gyermekek Háza Alternatív Alapozó Program Jó gyakorlata Iskolánk Gyermekek Háza Alternatív Alapozó Program 1991. óta, a Klebelsberg Kuno Általános Iskola és Gimnázium része. Önálló pedagógiai program.

Részletesebben

Minőségbiztosítás a 2009/2010. tanév felmérésének kiértékelése

Minőségbiztosítás a 2009/2010. tanév felmérésének kiértékelése Minőségbiztosítás a 2009/2010. tanév felmérésének kiértékelése a Gallup Intézet nyilvános, bemért kérdőívei és feldolgozási módszere szerint Tanulói elégedettség kérdőívének kiértékelése Törpe tanulói

Részletesebben

Középszintű szóbeli érettségi vizsga értékelési útmutatója. Olasz nyelv

Középszintű szóbeli érettségi vizsga értékelési útmutatója. Olasz nyelv Középszintű szóbeli érettségi vizsga értékelési útmutatója Olasz nyelv FELADATTÍPUS ÉRTÉKELÉS SZEMPONTJAI PONTSZÁM Bemelegítő beszélgetés 1. Társalgási feladat/interjú: három témakör interakció kezdeményezés

Részletesebben

A tanári mesterképzés portfóliója

A tanári mesterképzés portfóliója A tanári mesterképzés portfóliója TÁMOP-4.1.2.B.2-13/1-2013-0009 Szakmai szolgáltató és kutatást támogató regionális hálózatok a pedagógusképzésért az Észak-Alföldi régióban Dr. Márton Sára főiskolai tanár

Részletesebben

Kamatos kamat II. Írta: dr. Majoros Mária

Kamatos kamat II. Írta: dr. Majoros Mária Oktassunk vagy buktassunk Majoros Mária 28. április Írta: dr. Majoros Mária A számítógépek tömeges elterjedése és az internet megváltoztatták az ismeretszerzés formáit. Az iskolai oktatás mindig rendelkezett

Részletesebben

SZKB_106_04 A MODUL SZERZŐJE: N. SZABÓ ANIKÓ SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 6. ÉVFOLYAM

SZKB_106_04 A MODUL SZERZŐJE: N. SZABÓ ANIKÓ SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 6. ÉVFOLYAM É N É S M Á S I K százalék fogalma MODUL SZERZŐJE: N. SZBÓ NIKÓ SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 6. ÉVFOLYM SZKB_106_04 38 Szociális, életviteli és környezeti kompetenciák tanári MODULVÁZLT

Részletesebben

É R T É K E L É S. a program szóbeli interjúján résztvevő személyről. K é p e s s é g e k, f e j l e s z t h e tőségek, készségek

É R T É K E L É S. a program szóbeli interjúján résztvevő személyről. K é p e s s é g e k, f e j l e s z t h e tőségek, készségek É R T É K E L É S a program szóbeli interjúján résztvevő személyről K é p e s s é g e k, f e j l e s z t h e tőségek, készségek Értékelés: A terület pontozása 1-5 tartó skálán, ahol az egyes pontszám a

Részletesebben

Az első osztályosok óralátogatásának előkészítése 2013/2014

Az első osztályosok óralátogatásának előkészítése 2013/2014 Az első osztályosok óralátogatásának előkészítése 2013/2014 (az elmúlt évek tapasztalatai alapján) 1. Bevezetés Az iskolakezdéssel új korszak kezdődik minden kisgyermek életében. A játékot, mint eddigi

Részletesebben

FELVÉTELI TÁJÉKOZTATÓ a 2013/2014-es tanévre

FELVÉTELI TÁJÉKOZTATÓ a 2013/2014-es tanévre FELVÉTELI TÁJÉKOZTATÓ a 2013/2014-es tanévre Hunfalvy János Két Tanítási Nyelvű Közgazdasági és Kereskedelemi Szakközépiskola OM azonosító: 035424 www.hunfalvy-szki.hu 2012.10.30. TANULMÁNYI TERÜLETEK

Részletesebben

Polgár Judit Sakk Alapítvány SAKKPALOTA Program: Tehetségfejlesztő Sakk kerettanterv - NAT

Polgár Judit Sakk Alapítvány SAKKPALOTA Program: Tehetségfejlesztő Sakk kerettanterv - NAT Pedagógiai program módosítása Helyi tanterv 63. oldal 1. 2. 64.oldal 3. Az alábbiakkal egészül ki ( kiegészítés aláhúzással különül el ) 1. Iskolánk helyi tanterve az emberi erőforrások minisztere által

Részletesebben

CSAT projekt az egészségesebb párkapcsolatokért

CSAT projekt az egészségesebb párkapcsolatokért Program címe: CSAT projekt az egészségesebb párkapcsolatokért Tanúsítvány száma: 2/2015 Tanúsítvány érvényességi ideje: 2017. február 4. Kérelmező neve: Drogprevenciós Munkacsoport Program rövid leírása

Részletesebben

Tanulási stílus kérdőív

Tanulási stílus kérdőív Szitó Imre(1987) A tanulási stratégiák fejlesztése, Iskolapszichológiai füzetek, 2.sz. ELTE Tanulási stílus kérdőív Olvasd el figyelmesen az alábbi mondatokat. Döntsd el, hogy az öt válasz közül melyik

Részletesebben

A modul megnevezése: A modul azonosítója: Módszertani / oktatástechnikai készségek megerősítése

A modul megnevezése: A modul azonosítója: Módszertani / oktatástechnikai készségek megerősítése A modul megnevezése: Módszertani / oktatástechnikai készségek megerősítése A modul azonosítója: Szelektív hulladékgyűjtés és kezelés (képzők képzése) 620020-04 4. modul (WASTE project) A tervezett képzési

Részletesebben

MENTOROK. TÁMOP 3.4.1 Szent István Gimnázium

MENTOROK. TÁMOP 3.4.1 Szent István Gimnázium MENTOROK TÁMOP 3.4.1 Szent István Gimnázium mentor szó a következőket jelentheti: Mentór, Alkumusz fia Odüsszeia című epikus költeményben Télemakhosz atyai jóbarát A mai szóhasználatban egy olyan személyt

Részletesebben

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2015/16-os tanévre

A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2015/16-os tanévre A Tatabányai Árpád Gimnázium beiskolázási tájékoztatója a 2015/16-os tanévre OM azonosító: 031936 Székhely/telephely kódja: 001 Igazgató: Kovács Miklós Pályaválasztási felelős: Polyóka Tamás igazgatóhelyettes

Részletesebben

Programozásban kezdőknek ajánlom. SZERZŐ: Szilágyi Csilla. Oldal1

Programozásban kezdőknek ajánlom. SZERZŐ: Szilágyi Csilla. Oldal1 Milyen kincseket rejt az erdő? Kubu maci és barátai segítségével választ kapunk a kérdésre. A mesekönyv szerkesztése közben a tanulók megismerkednek a Scatch programozás alapjaival. Fejlődik problémamegoldó

Részletesebben

Bevezető. Kedves Kollégák!

Bevezető. Kedves Kollégák! Bevezető Kedves Kollégák! A tanári kézikönyv a digitális tananyag kiegészítéseként jött létre. Amennyiben Ön szívesen használja órán azokat a játékos szókincsfejlesztő és nyelvtani gyakoroltató feladatokat,

Részletesebben

FELVÉTELI TÁJÉKOZTATÓ a 2012/2013-es tanévre

FELVÉTELI TÁJÉKOZTATÓ a 2012/2013-es tanévre FELVÉTELI TÁJÉKOZTATÓ a 2012/2013-es tanévre Hunfalvy János Fővárosi Gyakorló, Kéttannyelvű Külkereskedelemi, Közgazdasági Szakközépiskola OM azonosító: 035424 www.hunfalvy-szki.hu 2011.10.01. TANULMÁNYI

Részletesebben

Óravázlat. Tantárgy: Marketing Évfolyam: 11. évfolyam Témakör: Célpiaci marketing Piacszegmentálás Tanár: Szemerédi Orsolya

Óravázlat. Tantárgy: Marketing Évfolyam: 11. évfolyam Témakör: Célpiaci marketing Piacszegmentálás Tanár: Szemerédi Orsolya Óravázlat Tantárgy: Marketing Évfolyam: 11. évfolyam Témakör: Célpiaci marketing Piacszegmentálás Tanár: Szemerédi Orsolya A tananyag rövid bemutatása A piacszegmentálás a középiskolai tananyag része a

Részletesebben

Helyzetelemzés. Elengedhetetlené vált a pedagógusok szemléletváltása. gondolkodás és gyakorlat átalakítására és módosítására törekszik.

Helyzetelemzés. Elengedhetetlené vált a pedagógusok szemléletváltása. gondolkodás és gyakorlat átalakítására és módosítására törekszik. 2008/2009. tanév Helyzetelemzés A 2004/2005-ös tanévvel kezdődően működik iskolánkban az integrációs rendszer, s ennek részeként követelmény lett a módszertani ismeretek frissítése, újítása és bővítése.

Részletesebben

Vezetői önértékelő kérdőív

Vezetői önértékelő kérdőív Vezetői önértékelő kérdőív Kérdőív megnevezése Jele, kódja Vezetői önértékelő kérdőív 10_Ovodavez_Ön_Ért sorsz Megnevezés Adat 1. Óvodavezető neve 2. Oktatási azonosítója 4. Értékelés időpontja: Kérjük,

Részletesebben

Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen a I. A program általános tartalma fejezet 11. pontjában írtakkal!

Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen a I. A program általános tartalma fejezet 11. pontjában írtakkal! II. ADATLAP - Programmodul részletes bemutatása Valamennyi programmodulra külön-külön kitöltendő 1. A programmodul azonosító adatai Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen

Részletesebben

kompetencia-alap vel ZÁRÓKONFERENCIA HEFOP-3.1.3

kompetencia-alap vel ZÁRÓKONFERENCIA HEFOP-3.1.3 A munkaerő-piaci esélyek javítása a kompetencia-alap alapú oktatás bevezetésével vel ZÁRÓKONFERENCIA HEFOP-3.1.3 3.1.3-05/1. 05/1.-2005-10-0421/1.00421/1.0 A Szemere Bertalan Szakközépiskola, Szakiskola

Részletesebben

I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE:

I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE: IKT.SZ.: 34 78 / 28 1 / 2015. O R S Z Á G O S K O M P E T E N C I A M É R É S I N T É Z K E D É S I T E R V MECSEKALJAI ÁLTALÁNOS ISKOLA JURISICS UTCAI ÁLTALÁNOS ISKOLÁJA PÉCS, 2015. MÁRCIUS 18. KÉSZÍTETTE:

Részletesebben

A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján

A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján A 2013-as kompetenciamérés eredményeinek elemzése FI T-jelentés alapján A sikeres életvitelhez, a társadalmi folyamatokba való beilleszkedéshez is folyamatosan megújuló tudásra van szükség. Tudásunk egy

Részletesebben

TI és ÉN = MI Társas Ismeretek és Érzelmi Nevelés Mindannyiunkért Érték- és értelemközpontú kísérleti program kisiskolásoknak 1 PATAKY KRISZTINA iskolapszichológus, logoterápiai tanácsadó és személyiségfejlesztő,

Részletesebben

AZ INFO-KOMMUNIKÁCIÓS TECHNOLÓGIA (IKT) HASZNÁLATA. Szövegértés-szövegalkotás területen

AZ INFO-KOMMUNIKÁCIÓS TECHNOLÓGIA (IKT) HASZNÁLATA. Szövegértés-szövegalkotás területen AZ INFO-KOMMUNIKÁCIÓS TECHNOLÓGIA (IKT) HASZNÁLATA Szövegértés-szövegalkotás területen Készítette: Horváth Erzsébet Borsos Miklós Általános Iskola Ajka A számítógép életünk része, mindenkinek aki ebben

Részletesebben

Mihályi Általános Iskola Pedagógiai Programja

Mihályi Általános Iskola Pedagógiai Programja Mihályi Általános Iskola Pedagógiai Programja Tartalomjegyzék HELYZETELEMZÉS... 5 BEVEZETÉS... 7 NEVELÉSI PROGRAM... 9 Szervezeti tagozódás... 19 Tárgyi, személyi feltételek... 20 Ellenőrzés, értékelés...

Részletesebben