HULLADÉKGAZDÁLKODÁS IV. Műanyag és gumi hulladékok feldolgozása és hasznosítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HULLADÉKGAZDÁLKODÁS IV. Műanyag és gumi hulladékok feldolgozása és hasznosítása"

Átírás

1 HULLADÉKGAZDÁLKODÁS IV. Műanyag és gumi hulladékok feldolgozása és hasznosítása Előadás anyag nappali és levelező tagozatos Környezetmérnöki MSc szakos hallgatóknak Készítette: Dr. Bodnár Ildikó, főiskolai tanár

2 Felhasznált és ajánlott szakirodalom Bodnár Ildikó: Potenciálisan biodegradábilis, politejsav bázisú polimerek szintézise és vizsgálata, Ph.D. értekezés, Debreceni Egyetem, TTK, Farkas Ferenc: A műanyagok és a környezet, Akadémiai kiadó, Budapest, HEFOP 3.3.I.-P /1.0: Hulladékgazdálkodás/6.5. Műanyag és gumi hulladékok feldolgozása és hasznosítása, elektronikus tananyag, Czvikovszky Tibor-Nagy Péter: Polimerek az orvostechnikában, egyetemi tankönyv, Műegyetemi Kiadó, Budapest, Dr. Zsuga Miklós: Bevezetés a makromolekuláris kémiába, egyetemi jegyzet, KLTE, Debrecen, Borda Jenő: Poliuretánok kémiája és előállításuk; Egyetemi kiadó, Debrecen; Pukánszky Béla: Műanyagok, Műegyetemi Kiadó, Budapest, Ollár Péter (MMSZ): A magyar műanyagipar számokban, REPLAST, Balatonfüred, április 8-9. Ollár Péter (MMSZ): Magyarország műanyagipara , Észak-Magyarországi Műanyagipari Klaszter III. Műanyagipari Konferencia, Budapest, 2011.április 27. 2

3 A MŰANYAGOKRÓL ÁLTALÁBAN 3

4 Történeti áttekintés-műanyagok A műanyagok ősei az ókorban is ismertek voltak. Ezek a különböző természetes gyanták és a bitumen. Mesterséges úton nagytömegű műanyagot az 1900-as évszázad végén kezdtek előállítani. Óriásmolekulájú vegyületeket sokszor véletlenül állítottak elő, műanyagként csak később alkalmazták őket. Pl.: polisztirolt már 1835-ben előállítottak, de műanyagként csak közel 100 év múlva kezdték alkalmazni. Teflont is előállítottak már 1936-ban és használták is már a II. Világháború alatt, de nálunk csak jóval később vált ismertté. 4

5 Történeti áttekintés A műanyagok nagyarányú termelése az 1930-as években indult meg ban Backeland belga tudós találmányával indult meg a nem természetes alapú, szintetikus felépítésű műanyagok gyártása. Backeland fenol, formaldehid kondenzációs alapú műgyantája tette lehetővé a bakelit sajtolóporok gyártását ben Pollák osztrák tudós a karbamid-formaldehid alapú kondenzációs termékek - aminoplasztok - felfedezésével vitte előbbre a szintetikus műanyagipart. E kettőt követte gyors egymásutánban az anilin, a különféle alkidok, a ftálsavas glicerin, a vinilgyanták és présporok stb. gyártása egészen napjaink legújabban birtokba vett műanyagszenzációkig. Az első műanyag felfedezésével a világ új nyersanyagforrás birtokába jutott. A műanyagok nyersanyagai megtalálhatók a növény és állatvilágban. Természetes alapú műanyagok nyersanyagai cellulóz, furfurol és a növényi olajok, továbbá a kaucsuk a természetes gyanták és a bitumenek. 5

6 MŰANYAG = POLIMER + ADALÉKANYAG 6

7 Polimer gyártástörténet cellulóz alapú műanyagok 1870-től bakelit (fenol-formaldehid) 1907 PVC 1912 szintetikus gumi 1929 polietilén (PE) 1933 nylon (PA 6.6) 1935 polisztirol (PS) 1936 teflon (PTFE) 1938 szilikon gumi 1940 polioximetilén (POM) 1945 polipropilén (PP) 1954 poliimid (aramid) Műanyag gyártás fejlődési diagramja az olajkrízisek hatására 7

8 Műanyagok és az acél termelése a világon milliárd liter Műanyag Műanyag termelés elhagyta az acél volumenét Világ termelés 2005: Acél Műanyag termelés > Acél termelés Műanyagok: 230 millió t = 230 milliárd liter Acél: 1,130 millió t =141 milliárd liter Arányok: 1 kg műanyag = 1 l 8 kg acél = 1 l Forrás: PEMRG

9 Termelés visszaesés, (Mio t) : : Forrás: PEMRG Világ 1989: : : : 200 Európa Termelés felfutás 1,5 millió t (1950) 245 millió t (2008) 2008: Visszaesés 260-ról 245 millió t/ év-re. Éves átlagos növekedés 9,0% év elejétől azonban egy óvatos, de egyenletes kilábalás jellemzi a műanyagipart! 2012-ben 288 millió t/ év

10 Műanyagok előnyei és hátrányai Előnyök: Jó víz-, lúg- és savállóság. Előnyös fizikai és mechanikai sajátságok (kis sűrűség, elektromos szigetelőképesség (általában), megmunkálhatóság). Olcsó ár, egyszerű előállítás, nagy mennyiség. Nemcsak más szerkezeti anyag helyettesítése, számos új alkalmazási lehetőség. Hátrányok: Kis mechanikai szilárdság, alaktartás, hőállóság, Öregedés, Nem javítható, Nem bomlik le. 10

11 POLIMERKÉMIAI ALAPFOGALMAK 11

12 POLIMERKÉMIAI ALAPFOGALMAK A polimer fogalma: A nagy molekulatömegű, ismétlődő egységekből álló anyagot makromolekulának, polimernek nevezzük. Az elnevezés a görög poly (sok) és meros (egység, rész) szavakból alakult ki. A makromolekula és a polimer megnevezéseket szinonimaként használják. A polimer ismétlődő építőeleme a monomeregység. Abban az esetben, amikor egyfajta monomeregység ismétlődik homopolimerről, ha pedig több, különböző ismétlődő monomeregységből épül fel a polimer, akkor kopolimerről beszélünk. 12

13 POLIMERKÉMIAI ALAPFOGALMAK Ha a monomeregységek száma kicsi: 2, 3, 4 dimerről, trimerről, tetramerről stb. beszélünk; ha akkor a makromolekulát oligomernek nevezzük. Ha 50-nél nagyobb polimer. 13

14 POLIMERKÉMIAI ALAPFOGALMAK MONOMER MONOMEREGYSÉG POLIMER 1. CH 2 CH 2 CH 2 CH 2 ETILÉN CH 2 CH 2 n POLIETILÉN (PE) 2. CH 2 CH CH 2 CH CH 2 CH n CH 3 CH 3 CH 3 PROPILÉN POLIPROPILÉN (PP) 3. CH 2 CH Cl CH 2 CH Cl CH 2 CH Cl n VINIL-KLORID POLIVINIL-KLORID (PVC) 14

15 POLIMERKÉMIAI ALAPFOGALMAK A polimerek elnevezésében kétféle módszer honosodott meg: a triviális és a szisztematikus megnevezés. Mindkét elnevezésben fontos szerepe van az ismétlődő egységnek. A gyakorlatban általában a triviális nevet használják, a nehezebben megjegyezhető szisztematikus név helyett, pl.: a triviális néven ismert polipropilén, polisztirol szisztematikus nevei: poli(1-metil-etilén), poli(1-feniletilén), stb. 15

16 A gyakorlati életben legfontosabb polimerek és jelölésük Polietilén Polipropilén Polivinilklorid Polisztirol Poliamid Polietiléntereftalát Politetrafluoretilén Poliuretán Polikarbonát Polimetilmetakrilát Poliakrilnitril PE PP PVC PS PA PET PTFE=Teflon PUR PC PMMA PAN 16

17 POLIMERKÉMIAI ALAPFOGALMAK A polimerek csoportosítása: A polimerek csoportosítása többféle szempont szerint történhet: Anyaguk szerint megkülönböztetünk szervetlen (pl. kvarc), elemorganikus (pl. polisziloxán) és szerves (pl. PVC) polimereket. Eredet szerint természetes (pl. cellulóz) és mesterséges (pl. polipropilén) polimereket. Előállítási mód szerint: polimerizációval (polietilén, polipropilén, PVC, Teflon, PS, PMMA, stb.), polikondenzációval (bakelit, PET, PA, polikarbonátok, poliészterek) és poliaddícióval (poliuretánok) előállított polimerek között 17 teszünk különbséget.

18 POLIMERKÉMIAI ALAPFOGALMAK 18

19 POLIMERKÉMIAI ALAPFOGALMAK Az alábbi ábra néhány lehetséges polimer molekula alakzatot mutat be. a b c d A polimer molekulák alakja a. fonalmolekula, b. elágazott fonalmolekula (ritka, hosszú oldalláncok), c. elágazott fonalmolekula gyakori, rövid elágazásokkal, d. térhálós molekula, 19

20 Fonalmolekulák A fonal alakú makromolekulák egyik megjelenési alakjában a molekulaláncok rendezetlen gombolyag képét mutatják. Ebben az esetben amorf szerkezetről beszélünk. (Ilyen fonalas szerkezetű műanyagok a polimerizációs műanyagok). A másik megjelenési alakjukban a molekulaláncok részben párhuzamosan rendezettek is lehetnek. Közös tulajdonságuk hogy oldószerben oldhatók, és melegítéskor megolvadnak. Ezek a hőre lágyuló műanyagok. 20

21 Térhálós molekulák A térhálós molekulákban a molekularészek sokkal inkább rögzítettek, mint a nem térhálós molekulákban. Szerves oldószerben nem oldódnak, és melegítéskor nem olvadnak meg. Ezek a hőre keményedő műanyagok. Bakelit Egy tipikus térhálós műanyag a bakelit molekulaszerkezete figyelhető meg az ábrán. 21

22 POLIMERKÉMIAI ALAPFOGALMAK A kopolimerek és szerkezetük A biner (azaz A és B monomeregységből felépülő) kopolimerek szerkezetét a következő csoportokba tudjuk sorolni: random (szabálytalan, statisztikus):...aababbaaababbba... alternáló:...ababababababab... blokk (szakaszos):...aaaaaaaabbbbbbb.. ojtott (ág):.... A A A A A A A A A A A.... B B B. 22

23 POLIMERKÉMIAI ALAPFOGALMAK POLIMOLEKULARITÁS A polimerek a képződésükhöz vezető reakciók statisztikus jellege miatt molekuláris szinten polidiszperz rendszerek. Az anyagot felépítő azonos szerkezetű, de különböző nagyságú makromolekulák polimer homológ sort alkotnak. A polimer homológok a következők: CH 2 =CHX monomer, R 1 -(CH-CHX) 2 -R 2 dimer, R 1 -(CH 2 -CHX) 3 -R 2 trimer, R 1 -(CH 2 -CHX) 4 -R 2 tetramer, R 1 -(CH 2 -CHX) n -R 2 n-mer. 23

24 POLIMERKÉMIAI ALAPFOGALMAK MOLEKULATÖMEG A polimer különböző molekulatömegű makromolekulák együttese. Éppen ezért a polimer nem jellemezhető egyetlen jól definiált molekulatömeggel. A keletkező polimert jellemezni lehet: a makromolekulák molekulatömegével, a makromolekulákat felépítő monomeregységek számával, azok tömegével és az ebből számított átlagértékekkel. 24

25 POLIMERKÉMIAI ALAPFOGALMAK Számszerinti átlagmolekulatömeg (g/mol): M n, átlag = (n 1 M 1 + n 2 M 2 + n 3 M n n M n )/(n 1 + n 2 + n n n ) Ahol: n = m/m Tömegszerinti átlagmolekulatömeg (g/mol): M w, átlag = (m 1 M 1 + m 2 M 2 + m 3 M m n M n )/(m 1 + m 2 + m m n ) 25

26 POLIMERKÉMIAI ALAPFOGALMAK Molekulatömeg átlagok: Számátlag molekulatömeg : Tömegátlag molekulatömeg : Polidiszperzitás : Z-átlag molekulatömeg: M Viszkozimetriás molekulatömeg átlag: M v Z M M M M M n w w P M 3 MP n n MP N p w P w P 2 P N 1 α P N PN 1/α p p n p A szummázások minden esetben P = 1 és P = között végezendők. 26

27 Int Int % Molekulatömeg meghatározása GPC (SEC)-vel és MALDI-TOF MS-el A 7600-as polisztirol standard MALDI TOF spektruma Retenciós idő (perc) A 7600-as polisztirol standard differenciális és integrális gélpermeációs kromatogramja 27

28 MŰANYAGOK 28

29 A műanyagok fogalma: A műanyagok egy vagy több, főleg mesterségesen előállított polimerből és (különböző célú) adalékanyagokból álló összetett rendszerek. 29

30 Műanyagok csoportosítása eredet szerint 30

31 A műanyagok azonosítására használt jelölések 01 Polietilén-tereftalát (PET) üdítős flakonok 02 Polietilén (PE-HD nagysűrűségű) műanyag flakonok, kupakok, zacskók 03 Polivinil-klorid (PVC) élelmiszercsomagoláshoz használt tálcák 04 Polietilén (PE-LD kissűrűségű) műanyag flakonok, kupakok, zacskók 05 Polipropilén (PP) vajas dobozok, csipszes zacskók 06 Polisztirol (PS) joghurtos edény, műanyag tojástartó 07 Egyéb műanyagok (OTHER) 31

32 Műanyagok egyéb csoportosítása: A műanyagok feldolgozhatóság szerinti osztályozása alapján: hőre lágyuló (termoplasztok: PE, PP, PVC, Teflon, stb.), hőre keményedő (duroplasztok vagy termoreaktív anyagok: fenoplasztok, epoxigyanták, szilikonok) és hidegen keményedő műanyagrendszerekbe sorolhatók. Tulajdonság és felhasználási cél szerint: elasztomerekről (kaucsukszerű anyagok), plasztomerekről (műgyanták) és szálképző anyagokról beszélünk. 32

33 A műanyagok felhasználói a gumiipar, a műanyagipar, a vegyiszál (textil) ipar, a lakkipar, az építőipar és a legtöbb iparág. A magyar felhasználás megoszlása nagyon hasonló a nemzetközi gyakorlathoz, meghatározó a csomagolóipar, jelentős az építőipar. A műanyag-felhasználás területenkénti megoszlása 2009-ben 33

34 Műanyaggyártás és felhasználás hazánkban Magyarország teljes ipari termelésének kb. 6%-át teszi ki a műanyagipar. A műanyag-alapanyaggyártás hagyományosan a magyar vegyipar legerősebb alágazata, amelyet az elmúlt évtized jelentős beruházásai megerősítettek. Az egy főre jutó átlagos műanyag-felhasználás Magyarországon viszonylag magas: 71 kg/év. Összehasonlításul ez a szám Nyugat-Európában 100 kg/év, Kelet- Európában 23 kg/év, míg a közép-európai régióban átlagosan 55 kg/év. Magyarországon alapanyaggyártással 4 nagy vegyipari vállalat foglalkozik (TVK, BorsodChem, Dunastyr, MOL). A hazai termelés szerkezete nem felel meg az igényeknek, nem állítunk elő pl. pasztázható PVC-t és műszaki műanyagokat sem. Magyarországon körülbelül 500 műanyag-feldolgozó cég van, beleértve az egyszemélyes vállalkozásokat is. Ezek közül kb. 300 cég dolgoz fel jelentős mennyiségű műanyag alapanyagot, azaz több mint 25 millió tonnát évente. (327 cég közül 155 nyilatkozta, hogy a csomagolóiparnak szállít, 97 az építőiparnak 34 és 82 az autóiparnak).

35 A műanyagok funkció és felhasználás szerint lehetnek: Szerkezeti anyagok Oszlopok, árbócok, gépelemek Csövek, szerelvények Habok, fóliák, műbőrök Szálas anyagok, stb. Technológiai anyagok Ragasztó- és kötőanyagok Lakkok, bevonatok Sűrítők, védőkolloidok 35

36 Egészségügyi, biológiai anyagok Protézisek Gyógyszerhordozók Eszközök (vértárolók, infúziós csövek, stb.) Használati tárgyak Konyhai eszközök (tányérok, csészék, evőeszközök, stb.) Csomagolóanyagok (flakonok, kannák, hordók, stb.) Egyéb 36

37 MŰANYAGOK FELDOLGOZÁSA A műanyag előállítás és a felhasználás segédanyagai A gyakorlati alkalmazásra kerülő műanyagok a fő polimer komponenseken kívül különböző adalékanyagokat is tartalmaznak. Ezek az anyagok a következők: Töltő és vázanyagok Kataliátorok, inhibítorok Iniciátorok Lágyítók Csúsztatók Öregedésgátlók Szálerősítők Színezőanyagok 37

38 MŰANYAGOK FELDOLGOZÁSA A műanyagok helyes alkalmazása igen sok területen mind műszaki, mind gazdasági szempontból előnyösebb, mint a hagyományos szerkezeti anyagoké. A különböző műanyagok feldolgozhatóságát döntően hőhatással szembeni viselkedésük határozza meg. A legelterjedtebb feldolgozási technológiák: Fröccsöntés Extrudálás Kalanderezés Palackfúvás Préselés 38

39 GUMIK 39

40 A gumikról általánosan A polidiének azok a polimerek, amelyek monomeregységekként egy kettős kötést tartalmaznak. A diének polimerjei és kopolimerjei a legfontosabb elasztomerek, kaucsukszerű anyagok. Elasztomereknek nevezzük az: alacsony üvegesedési hőmérsékletű széles hőmérséklettartományban nagyrugalmas állapotban lévő polimer anyagokat. Az elasztomerek nagy polimerizációs fokú, kis szekunder erőkkel összekötött, hajlékony láncú, amorf anyagok. Deformáló erők hatására maradandó deformációt szenvednek, mely térhálósítás (vulkanizálás) segítségével kiküszöbölhető. Ritka térhálós termék: lágy gumi, Sűrű térhálós termék: kemény gumi (ebonit). 40

41 A gumikról általánosan A kaucsuknövények (kaucsukfa, gumifa, gumipitypang, quayulet) fehér színű tejnedvében, a latexben finoman (diszperzen) eloszlatott kolloid részecskék alakjában található a makromolekulákból álló kaucsuk (poliizoprén), amit kisebb kénmennyiséggel (1-10 %) gumivá (elasztomerré), nagyob kénmennyiséggel (13-45 %) ebonittá (duromerré) lehet alakítani. A vulkanizálásnak nevezett kénfelvét növelt hőmérsékleten megy végbe a poliizoprén láncok kettős kötésein, aminek következtében, különböző térbeli irányokban kénhidak kötik össze a láncmolekulákat. Ma ezt az alapkezelést kémiai gyorsítók és stabilizátorok hozzáadásával egészítik ki. 41

42 Vulkanizálás 42

43 A gumikról általánosan Az izoprén szuszpenziós polimerizációjával szintetikus poliizoprén, műgumi állítható elő. Különféle olajokból (len-, repce-, ricinus- és cethalolajokból) kén vagy kénvegyületek hozzáadásával gumiadalék (töltőanyag), a fakisz (műkaucsuk) állítható elő. Lenolajból a gumi kénhidjaihoz hasonló szerepű oxigénhidak létesítésével linoxin készíthető, amihez természetes gyantákat, töltőanyagokat keverve, majd azt szövetre hengerelve linóleum nyerhető. 43

44 Egyéb fontosabb elasztomerek Polibutadién (BR): butadiénből tömb-, oldószeres vagy emúlziós polimerizációval nyerhető. Általában más kaucsukokkal keverve használják. Kopolimerek: Butadién-sztirol kopolimer (SBR): A sztiroltartalomtól függően (10-50%) fagyálló műgumi, illetve keménygumi állítható elő gyökös mechanizmusú emúlziós polimerizációval. Butadién-akrilnitril kopolimer (nitril-kaucsuk, NBR): A különböző nitrilkaucsukok AN-tartalomban és plaszticitásban különböznek egymástól. Olaj- és benzinálló csöveket készítenek belőle, illetve az ütésálló PS és PVC keverékek fontos komponense. ABS: akrilnitril-butadién-sztirol kopolimer: a termék tulajdonságai a három monomer arányával és az előállítási eljárással széles tartományban változtathatók. 44

45 Műanyagok és gumik mennyiségi viszonyai, műanyag és gumi hulladékok 45

46 A műanyagok helyzete Magyarországon, mint a világon mindenütt, egyre több helyen alkalmazzák a műanyagokat. Könnyűek, olcsóak, könnyen formázhatóak, szilárdak és a környezeti hatásoknak ellenállnak (nehezen lebomlóak), így sokféle felhasználásuk lehetséges. Évről évre több termék csomagolására használnak műanyagokat. Ennek a folyamatnak az az eredménye, hogy nő a hulladékban levő műanyagok aránya. A fent említett előnyös tulajdonságok, mihelyt a hulladékba kerülnek, egyszerre hátrányossá válnak. 46

47 A Magyarországon keletkező műanyag hulladékok megjelenési hely szerinti megoszlása Mezőgazdaság: 1% Építés és szerelés: 3% E+E ipar: 4% Gépjármű ipar: 4% Kereskedelem, ipar: 21% Települési szilárd hulladék: 67% 0% 10% 20% 30% 40% 50% 60% 70% 80% Forrás: Műanyag és Gumi, 2007./7.

48 Magyarországon a települési hulladék összetétel szerinti megoszlása (1998-ban) Hulladékösszetevő %-os aránya Papír 16,83 Műanyag 5,23 Textil 3,87 Üveg 3,75 Fém 3,55 Bomló szerves 37,50 Szervetlen 28,75 Veszélyes 0,7 Összesen 100,00 48

49 A műanyagok életútja A műanyag előállítása A műanyag feldolgozása A műanyagok használata Műanyaghulladékok Élettartamuk alapján három csoportba sorolhatók: Rövid élettartamúak (0-2 év): csomagolási és egészségügyi termékek. Közepes élettartamúak (2-15 év): autó- és bútor alkatrészek. Hosszú életűek ( év): építőanyagok, víz- és gázvezetékek, elektromos cikkek és kábelek. 49

50 Műanyagok ökomérlege A különböző műanyagok élettartamuk más és más szakaszaiban eltérő mértékben terhelik a természetet. Ezért összehasonlításuk csak a teljes életciklus vizsgálata alapján lehetséges. Ez azt jelenti, hogy az előállításukhoz szükséges nyersanyag kitermelésétől a belőlük visszamaradó hulladékok kezeléséig - beleértve az újrafeldolgozást, az égetést vagy a lerakóba helyezést - tartó időszak alatt felhasznált anyagot, energiát, és az eközben a környezetbe jutó szennyező és káros anyagokat is számba veszik. Független nyugat-európai intézetek által végzett életciklus vizsgálatok alapján a műanyagok hatékonyan használják fel a természeti erőforrásokat. 50

51 Példa: 1 kg műanyag csomagolóanyag életciklusa során fellépő környezetterhelés jellemző adatai Jellemző Egység PE PP PVC PS PET Alapanyag: - kőolaj kg víz liter oxigén kg Primer energia MJ Levegőszennyezés - szénmonoxid g kéndioxid g nitrogénoxid g illó szénhidrogén g Vízszennyezés -biológiai O2-igény g kémiai O2-igény g szerves halogének g oldott szervetlen g Szilárd hulladék g

52 A HAGYOMÁNYOS MŰANYAGOK Napjainkban a nagy mennyiségben gyártott, hagyományos műanyagok a szabadba vagy a talajba kerülve a külső körülmények (nedvesség, napfény, mikroorganizmusok) hatására szemben a bioszintézissel képződő makromolekuláris anyagokkal (cellulóz, keményítő, fehérje) nem bomlanak le, hosszú éveken át gyakorlatilag változatlanul maradva kellemetlen esztétikai látványt nyújtanak. Fajlagos térfogatuk nagy. Fogyasztják a világ kőolajkészletét. (A kőolajkészletek becslések alapján kb évre elegendők). De: A teljes olaj készlet 4%-át használjuk műanyagok gyártására. Ha csak műanyagot gyártanánk az olajból, legalább 1000 évig lenne elegendő. 52

53 Műanyag hulladékok mennyisége Hazai méretekben évente ~300 ezer tonna műanyag hulladék keletkezik évente. Anyagát tekintve a hulladékban főleg polietilén, PVC, polipropilén, polisztirol és poliuretán fordul elő. 53

54 Műanyag hulladékok keletkezési helyük szerint Gyártás során keletkező hulladékok (az előállítás helyén, tiszta, fajtaazonos formában jelentkeznek, és gyakran azonnali kezelésük valósul meg). Szállítási és tárolási csomagolások (fóliák, rekeszek, ládák, stb. - viszonylag tisztán begyűjthetők, újrafeldolgozhatóak). Fogyasztói csomagolószerek hulladékai (anyagi minőségük sokféle, ált. erősen szennyezettek, a kommunális hulladék részeként jelentkeznek - energetikai hasznosítás, szelektív hulladékgyűjtés fontossága). A csomagolóanyagok és csomagolóeszközök gyártása során keletkező tiszta és egynemű hulladékokat általában vállalaton belül, esetleg más műanyag-feldolgozó cégnél feldolgozzák, ezek meg sem jelennek a hulladékáramban. 54

55 Műanyaggyártók és a környezetvédelem Napjainkban már a műanyagot gyártó nagyvállalatok (BorsodChem, TVK, stb.) is komoly hangsúlyt fektetnek a hulladékhasznosítás és kezelés megvalósítására. Több cég külön üzemegységet hozott létre, melyek feladata a képződött és máshonnan beszállított műanyag hulladékok hasznosítása, feldolgozása. 55

56 Jogszabályok, környezetvédelmi törvények 56

57 Jogszabályok, környezetvédelmi törvények Vizek tulajdona, használata és védelme évi IV. törvény 172., évi LVII. Törvény, 32/1964. (XII.13.) kormányrendelet, 232/1996. (XII.26.) kormányrendelet, 123/1997. (VII.18.) kormányrendelet, 132/1997. (VII.24.) kormányrendelet, 178/1998. (XI.6.) kormányrendelet, 46/1999. (III.18.) kormányrendelet, 120/1999. (VIII.6.) kormányrendelet, 22/1996. (XI.29.) KHVM rendelet, 12/1997. (VIII.29.) KHVM rendelet, 21/1999. (VII.22.) KHVM- KöM együttes rendelet Környezetkárosítás évi IV. törvény 280 Szennyvíztisztítás és szennyvízelhelyezés 4/1981. (IV.4.) OVH rendelkezés 2/1982. (II.22.) KPM rendelet a veszélyes áruk nemzetközi belvízi szállításáról szóló szabályzatról megjelent: IX.12. Hulladékok -/folyékony/ tárolása és ártalmatlanítása 2/1985. (II.16.) EüM-ÉVM együttes rendelet, 4/1984. (II.1.) ÉVM rendelet Hulladékok - /szilárd/ ártalmatlanítása és hasznosítása 1/1986. (II.21.) ÉVM-EüM együttes rendelet , 31/1999. (X.30.) AB határozat Légszennyezettség mérése 5/1990. (XII.6.) NM rendelet Hulladékok - /munkahelyi/ tárolása és elszállítása évi XCIII. Törvény 25., 25/1996. (VIII.28.) NM rendelet 7. Levegő tisztaságának védelme: környezetvédelem szervezete, igazgatása évi LIII. Törvény, 21/2001. (II.14.) kormányrendelet, 4/1986. (VI.2.) OKHT rendelkezés, 37/1995. (VI.2.) AB határozat évi LIII. tövény a környezet védelmének általános szabályairól /legutóbbi módosítása: évi CXXIX. Törvénnyel/ évi LVII. Törvény a vízgazdálkodásról Szennyvízbírság 1995.évi LVII. Törvény 14., 3/1984. (II.7.) OVH rendelkezés Egyes termékek környezetvédelmi termékdíja évi LVI. Törvény, 113/1995. (IX.) kormányrendelet, 10/1995. (IX.28.) KTM rendelet Hulladékok ártalmatlanítása és hasznosítása 16/1996. (VII.15.) BM-KTM együttes rendelet, 1/1986. (II.21.) ÉVM- EüM együttes rendelet , 9/1997. (II.28.) AB határozat, 14/1997. (II.28.) AB határozat Veszélyes hulladékok keletkezésének ellenőrzése, szállítása és kezelése 102/1996. (VII.12.) kormányrendelet 57

58 Jogszabályok, környezetvédelmi törvények Környezetbarát termékek megkülönböztető jelzésének használata 29/1997. (VIII.29.) KTM rendelet Az ipari, kereskedelmi és idegenforgalmi miniszter 5/1998. (I.16.) IKIM rendelete a textíliák nyersanyag-összetételének megadásáról 12/1999. (XII.25.) nyilvánításáról KöM rendelet egyes környezetvédelmi nemzeti szabványok kötelezővé 21/1999. (VII.22.) KHVM-KöM együttes rendelet a vízminőségi kárelhárítással összefüggő üzemi tervek készítésének, karbantartásának és korszerűsítésének szabályairól, megjelenés: 32/1964. (XII.13.) kormányrendelet a vízügyről szóló évi IV. törvény végrehajtásáról Vízszennyezés 218/1999. (XII.28.) kormányrendelet Vizszennyezettségi határérték /felszín alatti vizek/ 10/2000. (VI.2.) KöM-EüM-FVM-KHVM együttes rendelet Vízszennyezési határérték 33/2000. (III.17.) kormányrendelet Hulladékok kezelése és hasznosítása évi XLIII. Törvény, 241/2000. (XII.23.) kormányrendelet, 242/2000. (XII.23.) kormányrendelet, 1/2001. (I.24.) KöM rendelet, 4/2001. (II.23.) KöM rendelet, 5/2001. (II.23.) KöM rendelet 25/2000. (IX.30.) EüM-SZCSM együttes rendelet a munkahelyek kémiai biztonságáról41/2000. (XII.20.) EüM-KöM együttes rendelet az egyes veszélyes anyagokkal, illetve veszélyes készítményekkel kapcsolatos egyes tevékenységek korlátozásáról 44/2000. (XII.27.) EüM rendelet a veszélyes anyagokkal és a veszélyes készítményekkel kapcsolatos egyes eljárások, illetve tevékenységek részletes szabályiról 46/2000. (XII.29.) EüM-FVM-KöM-GM együttes rendelet az egyes veszélyes anyagok és veszélyes készítmények behozatalával, illetve kivitelével összefüggő bejelentési és előzetes tájékoztatáson alapuló jóváhagyási (PIC) eljárásról 12/2001. (V.4.) KöM-EüM együttes rendelet a vegyi anyagok kockázatának becsléséről és a kockázat csökkentéséről 16/2001. (VII.18.) KöM rendelet a hulladékok jegyzékéről 58

59 Jogszabályok, környezetvédelmi törvények Levegőterhelés /emisszió/ 21/2001. (II.14.) kormányrendelet Légszennyezési bírság 21/2001. (II.14.) kormányrendelet, 4/1986. (VI.2.) OKHT rendelkezés 9-18., 37/1995. (VI.2.) AB határozat 98/2001. (VI.15.) kormányrendelet tevékenységek végzésének feltételeiről a veszélyes hulladékkal kapcsolatos 193/2001. (X.19.) kormányrendelet az egységes környezethasználati engedélyezési eljárás részletes szabályairól 8/2002. (III.22.) KöM-EüM együttes rendelet a zaj- és rezgésterhelési határértékek megállapításáról 94/2002. (V.5.) kormányrendelet a csomagolásról és a csomagolási hulladék kezelésének részletes szabályairól 38/2003. (VII.7.) ESZCSM-FVM-KVVM együttes rendelet a BIOCID termékek előállításának és forgalomba hozatalának feltételeiről 74/2003. (V.28.) kormányrendelet a környezetvédelmi vezetési és hitelezési rendszerben (EMAS) résztvevő szervezetek nyilvántartásáról 83/2003. (VI.7.) kormányrendelet a közösségi ÖKO-címke odaítélését ellátó szerv kijelöléséről 126/2003. (VIII.15.) kormányrendelet a hulladékgazdálkodási tervek részletes tartalmi követelményeiről 164/2003. (X.18.) kormányrendelet a hulladékkal kapcsolatos nyilvántartási és adatszolgáltatási kötelezettségekről évi CLXXXV. törvény - a hulladékról 59

60 Jogszabályok, környezetvédelmi törvények 292/2013.(VII.26.) Korm. rendeletet a nem rendszeres hulladékszállítás szabályairól és az ennek során eljáró állami szervek kijelöléséről. 310/2013. (VIII.16) Korm. rendeletet a hulladékgazdálkodási tervekre és megelőzési programokra vonatkozó részletes szabályokról. 317/2013.(VIII.28.) Korm. rendeletet közszolgáltató kiválasztásáról és a hulladékgazdálkodási közszolgáltatási szerződésről. 317/2013.(VIII.28.) Korm. rendeletet közszolgáltató kiválasztásáról és a hulladékgazdálkodási közszolgáltatási szerződésről. 318/2013.(VIII.28.) Korm. rendeletet a hulladéklerakási járulék megfizetéséről és felhasználásának céljáról. 385/2014. (XII. 31.) Korm. rendelet a hulladékgazdálkodási közszolgáltatás végzésének feltételeiről. 439/2012. (XII. 29.) Korm. rendelet a hulladékgazdálkodási tevékenységek nyilvántartásba vételéről, valamint hatósági engedélyezéséről. 309/2014 (XII.11.) Korm. rendelet a hulladékkal kapcsolatos nyilvántartási és adatszolgáltatási kötelezettségekről (440/2012. Korm. rendelet helyett). 442/2012 (XII.29.) Korm. Rendelet a csomagolásról és a csomagolási hulladékkal kapcsolatos hulladékgazdálkodási tevékenységekről. 197/2014 (VIII.1.) Korm. rendelet az elektromos és elektronikus berendezésekkel kapcsolatos hulladékgazdálkodási tevékenységekről (443/2012 Korm. rendelet helyett). 369/2014 (XII.30.) Korm. rendelet a hulladékká vált gépjárművekről (444/2012 Korm. rendelet helyett). 445/2012 (XII.29.) Korm. Rendelet az elem- és akkumulátorhulladékkal kapcsolatos hulladékgazdálkodási tevékenységekről. 246/2014. (IX. 29.) Korm. rendelet az egyes hulladékgazdálkodási létesítmények kialakításának és üzemeltetésének szabályairól január 1-től házhoz menő szelektív hulladékgyűjtés: (385/2014. (XII. 31.) Korm. rendelet a hulladékgazdálkodási közszolgáltatás végzésének feltételeiről) Műanyag hulladékoknak nincs helye a lerakókban! Visszagyűjtés: minél nagyobb tisztaságban, minél rövidebb idő alatt! 60

61 Az alábbi hulladékhierarchiát irányadó elvként kell alkalmazni a hulladékmegelőzésre! Megelőzés Újrafelhasználás Újrafeldolgozás Egyéb hasznosítás, Ártalmatlanítás

62 Műanyag hulladékok problémája A műanyaghulladék mennyiség nagymértékű növekedésének elkerülésének néhány alternatívája lehet: 1. A keletkező műanyag hulladék mennyiségének, térfogatának csökkentése. 2. A műanyagok hulladékainak feldolgozása, illetve hasznosítása. 3. Lebomló műanyagok használata, amelynek a természetbe visszakerülve azt nem károsítják. A deponálás, hulladéklerakás kerülendő!!! 62

63 I. A műanyag hulladékok mennyiségének, térfogatának csökkentési lehetőségei 63

64 A műanyag hulladékok mennyiségének, térfogatának csökkentési lehetőségei Lehetőségek: hulladékszegény vagy hulladékmentes technológiák bevezetése, a termék méretének csökkentése nagyobb kiszerelés, utántöltő csomagolás, stb. vagy termékcsere cs 64

65 II. Műanyagok és gumik újrahasznosítási lehetőségei 65

66 Műanyagok újrahasznosítási lehetőségei A műanyaghulladékok hasznosítási lehetőségeit az alábbi csoportokba soroljuk: mechanikai kezelés (reciklálás) kémiai kezelés termikus kezelés A kezelési módot elsősorban a műanyag típusa és megjelenési formája határozza meg. Ma még csak a műanyagok kis százalékát dolgozzák fel újra! 66

67 Műanyagok újrahasznosítási lehetőségei A mechanikai vagy pl. a termikus kezelés műanyag típustól függetlenül mindig ugyanazokat a lépéseket jelenti, viszont a kémiai kezelés általában műanyagfajta függő és gyakran jelentős beruházást igényel. Napjainkban a hasznosítás elterjedt módja a mechanikai kezelés, mely csak a fajtaazonos műanyag hulladékok esetén gazdaságos. Vannak műanyagok, amelyeket célszerűbb pl. kémiai lebontással feldolgozni (pl. PMMA), egyes műanyag és gumi hulladékok csak termikus úton hasznosíthatók, míg néhány típus mind a három módszerrel kezelhető. 67

68 Reciklálás, energetikai hasznosítás Reciklálás Energetikai hasznosítás Forrás: PEMRG

69 Szelektív hulladékgyűjtés szerepe 69

70 Műanyag hulladékok gyűjtése, válogatása 70

71 Műanyag hulladékok válogatása, szeparálása 71

72 1. Mechanikai kezelés (reciklálás) Válogatás Aprítás, darabolás Mosás Szárítás Granulálás, darabosítás 72

73 Reciklálás 73

74 Reciklálás Forrás: 74

75 Újrafeldolgozásból nyert műanyag termékek jelzőoszlopok, kerti bútorok, csövek, fóliák, dobozok, térburkolatok, stb. 75

76 2. Kémiai kezelés Köztudott, hogy kémiailag úton a polimerek lebonthatók monomerjeikre, de ez a hasznosítás tiszta, fajtaazonos hulladékot követel meg és sokszor a szükséges berendezések is rendkívül drágák. Az eljárás bomlástermékeiből legtöbbször újra polimert gyártanak, vagy a vegyipar más területén használják fel a kapott anyagokat (pl. olajfinomítás). Három alapvető módszert nevez meg a szakirodalom, de ismertek speciális módszerek is, melyek bizonyos műanyag típusok esetén jól alkalmazhatók (katalitikus extrakció, dehalogénezés): depolimerizáció (PMMA)-(fajtaazonos hulladék), szolvolízis (PA, PUR)-(fajtaazonos hulladék), hidrogénezés -(kevert műanyag hulladék), 76

77 PET kémiai újrahasznosítása 77

78 3. Termikus kezelés A termikus eljárás alapvetően égetést jelent, de ezen kívül többféle módszert is ismerünk: pirolízis, gázosítás, kohászati és cementipari hasznosítás. Néhány évtizeddel ezelőtt még a cél a hulladék megsemmisítése volt, de manapság már az energetikai hasznosításuk alapvető fontosságú. A módszer lényege, hogy a műanyag hulladékokat nem másodnyersanyagként hasznosítjuk, hanem nagy fűtőértékük miatt ezen anyagokat energia visszanyerésre használjuk. A termikus hasznosításnak is vannak veszélyei, ugyanis csak megfelelő füstgáz-tisztító egységgel ellátott égetőművek használhatók biztonságosan. Ha ezek az égetők nem megfelelően működnek, akkor az égetés a légkör, továbbá az ülepedés révén a talaj, növények szennyezésével veszélyt jelent a környezetre és az emberekre is. A helytelen technológiák alkalmazásával akár dioxin, furán származékok, valamint a füsttel szétszóródó nehézfémek (kadmium, cink, nikkel, ólom stb.) is kikerülhetnek a természetbe. 78

79 Műanyagok hőtartalma 79

80 Az égetés törvényi szabályozása A műanyagok égetése a 21/2001. számú kormányrendelet értelmében nyílt színen vagy bármilyen tüzelőberendezésben tilos. A jogszabály megszegői 500 ezer Ft-ig terjedő bírságra számíthatnak. A tiltás alól csak néhány, külön engedéllyel működő hulladékégető mű kapott felmentést, ahol az égetés szigorú felügyelet mellett, az engedélyben előírt korszerű technológiával történik és ahol több lépcsős füstgázszűrő rendszerekkel és speciális előírások betartásával minimálisra csökkentik a légkörbe jutó szennyezőanyagok mennyiségét (pl. Budapest). 80

81 Gumi hulladékok A használt gumiabroncsoknak vagy azok aprított hulladékainak hulladéklerakóban történő elhelyezése tiltott, ennek kapcsán fontos az újrahasznosításuk. (környezetkárosítás elkerülése, értékes anyagok visszanyerése) Újrahasznosítási lehetőségek: elkopott futófelület újrafutózása, energetikai hasznosítás, anyagában történő újrahasznosítás, pl.gumiőrlemény felhasználása az építőiparban Évente eladott gumiabroncs: kb tonna, a visszagyűjtés aránya az ábrán látható 81 Forrás: Perge P., Boros N., Gumiabroncs hulladék újrahasznosítási lehetőségei, Debreceni Műszaki Közlemények, 2012/2, pp.1-8.

82 Olaj Fenntarthatóság - MŰANYAG A műanyagok szénhidrogént vesznek kölcsön, majd az üzem-, fűtőanyag folyamatba adják vissza Műanyagok akár hatszor is újra feldolgozhatók Azon műanyagok, melyek nem reciklálhatók, energiát biztosítanak a hulladékból, energia rendszeren keresztül A használt műanyag értékes erőforrás, és soha nem kerülhet(ne) hulladéklerakóba vagy szemétbe.

83 Klímaváltozás megoldása = MŰANYAG Csomagolások, autók, repülők tömegcsökkentés A megújuló energiák éltető elemei: szélturbinák, szigetelések, napelemek,. Műanyagok helyettesítése más anyagokkal = nagyobb energia fogyasztás, a globális felmelegedés növelése Csomagolások műanyagok nélkül Tömeg x 4 - Energia x 1,5 - Ktg x 1,9 Üvegh. gázok x 2 - Hulladék x 1,9

84 Mi lesz a műanyagokkal? A műanyagipar jól működött mielőtt az olaj lett volna a nyersanyaga. Az olaj szénhidrogént biztosít, de metánból, szénből és biomasszából is nyerhetők. Ma a műanyagok 99%-a olajból származik. Műanyagok más lehetséges nyersanyagai: keményítő, cellulóz, cukor, szerves hulladék, valamint a levegőben lévő hidrogén és szén.

85 III. Lebomló műanyagok és szerepük 85

86 LEBONTHATÓ MŰANYAGOK Előnyök A hulladékkal kapcsolatos problémák enyhítésének egyik lehetséges módja LEBOMLÓ műanyagok használata. Ezek a polimerek, illetve műanyagok többnyire megújuló nyersanyagforrásokon alapulnak, így használatukkal még a kőolajforrások sem csökkennek tovább. 86

87 Elvárások a megfelelő biológiailag bontható műanyagokkal szemben A biológiailag bomló polimerek versenyképességéhez bármelyik forrásból is állítják elő azokat az alábbi feltételek szükségesek: A késztermékek minőségi, fizikai-mechanikai jellemzői hasonlóak legyenek a hagyományos műanyagtermékekéhez. Feldolgozásuk (fóliafúvás, fröccsöntés, stb.) megoldható legyen a hagyományos műanyag-feldolgozó berendezéseken. Áruk a hagyományos, nem lebomló műanyagokkal összehasonlítva versenyképes legyen. A csomagolóanyagokra vonatkozó licensdíjakból kedvezményt kapjanak, illetve fejlesztésüket ezekből a pénzekből támogassák. Felhasználási területeiket folyamatosan bővítsék, egyes 87 különleges tulajdonságaik (pl. rétegelhetőség) javításával.

88 LEBOMLÓ MŰANYAGOK Ezek az anyagok kb. két évtizede jelentek meg a műanyagipari kutatások területén. Alapvetően két csoportjukat különböztetjük meg, ezek: Fény hatására bomló műanyagok Biológiailag bontható műanyagok 88

89 1. Fény hatására bomló műanyagok 89

90 Fény hatására bomló műanyagok Ismert, hogy a poliamidból készült függönyök fény hatására viszonylag rövid idő alatt (1-2 év) elveszítették szilárdságuk zömét (így ma már nem is gyártanak ilyen anyagból függönyöket). Továbbá a stabilizálatlan PP szálasanyag halmaz egy nyáron a szabadban hagyva elporlik. Mindez annak a következménye, hogy a fény fotonenergiája elegendő az említett polimerek egyes kémiai kötéseinek a felbontásához. E = h (c/λ) 90

91 Fény hatására bomló műanyagok A képlet szerint számolva a napfény nm hullámhosszúságú, ibolyántúli sugarainak abszorpciója kj/mol gerjesztési energiának felel meg, amely elég a kémiai kötések zömének megbontásához, fotolízises disszociálódásához. Tekintettel arra, hogy az ózon szűrő hatása miatt a 290 nm-nél rövidebb hullámhosszúságú (>400 kj) sugárzás nem jut el a földfelszínre, így olyan csoportok beépítésével lehet eredményt elérni, amelyeknek az abszorpciós maximuma nagyobb mint 290 nm. Ilyen csoport pl. a karbonil-csoport, mely nm tartományban abszorbeál. 91

92 Fény hatására bomló műanyagok 1 %-nyi karbonil-csoport beépítése pl. a sztirolba, olyan PS előállítását teszik lehetővé, amelyből készült poharak a lakásban stabilak, a szabadban azonban 2-3 hét alatt kis molekulatömegű porrá esnek szét, és ezeket a mikroorganizmusok már hasznosítani tudják. A talajlakó mikroorganizmusok sejtjei a kb. 30 szénatomnál kisebb fragmentumokat már képesek lebontani. 92

93 Fény hatására bomló műanyagok A fény hatására bomló polimerek másik változatának előállításához fémkelát additívokat használnak. A vas(iii) és réz(ii) dinonil-ditio-karbamát komplexek igen kedvező hatást fejtenek ki. Kezdetben mint peroxidbontók- stabilizálnak, közben azonban fémion válik szabaddá, amely a peroxidok lánchasadásával járó reakciót katalizálja. Ilyen módon lehetővé válik meghatározott élettartamú polimerek előállítása. Pl. a 0,05 % fémkomplex tartalmú PE 2 hónapon át természetes körülmények között nem degradálódik, de 10 hónap múlva a szilárdsági tulajdonságok már %-os romlást mutatnak.

94 2. BIOLÓGIAILAG BONTHATÓ POLIMEREK 94

95 BIOLÓGIAILAG BONTHATÓ POLIMEREK FOGALMUK: Az olyan polimereket, amelyek természetes vagy mesterséges körülmények között biológiailag lebonthatók, biodegradábilis polimereknek, biopolimereknek nevezzük. 95

96 Biológiailag bontható műanyagok Fogalmuk: LEBONTHATÓ MŰANYAG = LEBONTHATÓ POLIMER (Biodegradábilis polimer) + ADALÉKANYAG (amely szintén lebomló: faliszt, sztearátok, laurátok, epoxidált szójaolaj, stb.) 96

97 BIOLÓGIAILAG BONTHATÓ POLIMEREK BEVEZETÉSÉT INDOKOLJA A környezetvédelmi törvények szigorodása, A hulladéklerakás díjának emelkedése, A műanyag csomagolóanyagok újrahasznosításának igénye, A magas kőolajárak, Valamint a megújuló forrásból származó alapanyagok árának csökkenése. (Az USA energiaügyi Minisztériuma szerint 2030-ban a vegyipari termeléshez szükséges alapanyagok 25%-a a mezőgazdaságból származik majd. Ehhez is szükséges a természetes alapokon nyugvó termékek, így a biopolimerek kínálatának bővülése.).várhatóan már a közeljövőben a tömegműanyagokéhoz 97 viszonyítva magas áruk csökkenéséhez vezet.

98 Árak 98

99 99

100 BIOLÓGIAILAG BONTHATÓ POLIMEREK JELENTŐSÉGÜK: Biológiailag lebomló műanyagokra elsősorban a: csomagolóiparban, a mezőgazdaságban, valamint a gyógyászatban van nagy igény. A gyógyászatban ezeket az anyagokat felszívódó anyagoknak nevezik, ugyanis az emberi szervezetben lebomlanak, elhidrolizálnak. 100

101 A biodegradálható műanyagok főbb felhasználási területei Csomagolás Gyógyászat Fogyasztási cikkek Mezőgazdaság Egyéb hordtáskák; tasakok; szemetes zsákok; raklapok; fóliák; palackok; tégelyek; térkitöltő csomagolás; gyógyszerhordozó kapszulák (szabályozott hatóanyag kibocsátás); mesterséges bőr és egyéb szövetek, szervek; felszívódó protézisek, implantátumok; sebkötöző anyagok; biodegradálódó varratok, kapcsok és egyéb rögzítők, sebészeti kellékek; egészségügyi törülköző; pelenka; intim higiéniás termékek; takarító cikkek; eldobható evőeszközök; műtrágyazsákok; fóliák; palántatartók; kötözőzsinórok; peszticid és herbicid szalagok, illetve adagolók; vegyszerhordozók; bevonatok; vizek denitrifikációja; 101

102 BIOLÓGIAILAG BONTHATÓ POLIMEREK I. Gyógyászati alkalmazás: A biopolimereknek számos fontos követelménynek meg kell felelniük ahhoz, hogy biztonságosan tudják őket alkalmazni az orvosi területeken. Ezek a következők: ne legyenek mérgezőek, fontos a hatékonyság és a tartósság, a sterilizálhatóság és az, hogy ne legyenek testidegenek (pl. a polietilén nem toxikus, de nem biokompatibilis). A gyógyászatban számos területen nyernek alkalmazást: megelőző kezelések, sebészeti eljárások, klinikai vizsgálatok, gyógyszerészeti kutatások, szövettervezés. 102

103 POLIMEREK ORVOSTECHNIKAI ALKALMAZÁSAI 103

104 POLIMEREK ORVOSTECHNIKAI ALKALMAZÁSAI Néhány tipikus gyógyászati alkalmazási forma: fecskendő, vér tárolására alkalmas zsák, katéter, sebészeti varrócérna, implantátum, műszerv, égési sérüléseket szenvedett betegeknél bőrpótló szövet valamint előnyösen használhatók a gyógyszerészetben, pl. gyógyszerhatóanyag kioldódásának szabályozására (retard hatású gyógyszerek). 104

105 BIOLÓGIAILAG BONTHATÓ POLIMEREK II. Ökológiai alkalmazás: mezőgazdaság, erdészet, halászat (halászháló) közszükségleti műanyagáruk előállítása (csésze, palack, evőeszköz, stb.) csomagolóipar (táskák, csomagolóanyagok, fóliák, stb.) piperecikkek, higiéniai termékek sportszerek hidraulikai folyadékok (növényolaj alapú készítmények, pl. repceolaj, mely biológiai lebonthatósága a környezetben teljes. ) elektronikai eszközök (pl. CD lemezek) 105

106 BIOLÓGIAILAG BONTHATÓ POLIMEREK 106

107 BIOLÓGIAILAG BONTHATÓ POLIMEREK 107

108 A biológiailag lebontható polimerek termelési kapacitásának alakulása a világon 1990-ben a kőolajalapú anyagok gyártókapacitása 100 t/év, a megújuló forrásból származóké 350 t/év volt. 108

109 A világ vezető biopolimer gyártói NatureWorks (USA) Novamont (Olaszország) BASF (Németország) Rodenburg-Biopolymers (Hollandia) Néhány kis kapacitású gyártó (Japán) 109

110 Biopolimerek alkalmazása Európában és Japánban a biopolimerek alkalmazása gyorsabban nő, mint az Egyesült Államokban. Ennek oka, hogy az USA-ban a szemétlerakás költségei még viszonylag alacsonyak és a törvények sem olyan szigorúak, mint Európában és Japánban. Más piackutató cégek a fenti prognózisnál jóval merészebb jövőt jósolnak a biopolimereknek. Az előrejelzések szerint 2020-ig a piac az EU-ban 3-6 millió tonnára bővül, miközben a növényi alapanyagok részesedése 70-80%-ra növekszik. 110

111 A biológiai lebomlás jellemzése 111

112 BIOLÓGIAI LEBONTÁS Biológiai lebomlás alatt a mikroorganizmusok (gombák, baktériumok) hatására végbemenő lebomlást értjük, amelynek során a mikroszervezetek feltárják és a növények számára ismét felvehető formába hozzák a szerves anyagok felépítésében, az energia raktározásában és transzportjában résztvevő biogén elemeket. A természetben a mikróbák mellett kémiai (hidrolízis, oxidáció) és fizikai, illetve mechanikai (napfény, időjárás, kimosódás, mechanikai igénybevétel) hatások is szerepet játszanak a folyamatban. 112

113 A biológiai lebomlás jellemzése BIODEGRADÁCIÓ: Ennek a folyamatnak az eredményeképpen a műanyag visszatér a természetes körfolyamatba. A lebomlás során mérgező anyagok nem keletkeznek (szén-dioxid és víz +biomassza). Adalékanyagok segítségével a bomlás sebessége is befolyásolható. 113

114 A biológiai lebomlás jellemzése 114

115 BIOLÓGIAI LEBONTÁS A lebomlásnak több típusát különbözteti meg a szakirodalom: termikus aktiválás, radioaktív lebomlás, oxidáció, hidrolízis (enzimatikus (észteráz, lipáz), nem enzimatikus). Ez utóbbi igen nagy jelentőséggel bír és a továbbiakban alapvetően ezt a módszert tárgyaljuk. Például: a politejsav nem enzimatikus úton bomlik le a természeti környezetben és az emberi testben, míg a polikaprolakton a természeti környezetben enzimatikusan bomlik, az emberi szervezetben pedig nem enzimatikus úton. 115

116 Biológiai bomlás egy lebomló műanyagból készült termék esetében Kukoricakeményítőből készült csomagolóanyag néhány hét alatt egyszerűen eltűnik: 116 széndioxidra és vízre bomlik le.

117 Lebomlás 117

118 BIOLÓGIAI LEBONTÁS Egy (mű)anyagot akkor tekintünk biológiailag lebomlónak (BLM), ha: degradációja az ismert biodegradálódó anyagok lebomlásával azonos sebességű és fokú, és nem keletkezik belőle toxikus és/vagy perzisztens maradék, szemmel nem látható, nem felismerhető részekre bomlik (CO 2, H 2 O és biomassza), nem ökotoxikus (és komposztálás esetén a bomlástermékek a keletkező komposzt minőségét nem rontják). 118

119 Új típusú műanyagok jelzései Az OK Komposzt jelzés garantálja, hogy a termék alapanyaga ipari üzemben, vagy háztartásban komposztálható. Az OK Biológiailag lebontható jelzés garantálja, hogy a termék alapanyaga meghatározott természetes környezetben (talaj, friss víz, tengervíz, stb.) biológiailag lebontható. 119

120 Természetes eredetű biológiailag bontható polimerek 120

121 Természetes polimerek és származékaik Cellulóz alapú - cellulóz acetát - cellulóz kompozitok Keményítő alapú - keményítő kompozitok, TPS - habosított keményítő Kitin, kitozán Szója alapú anyagok

122 A cellulóz és származékai 122

123 A CELLULÓZ Ez a poliszacharid -D-glükózegységekből épül fel, amelyek 1-4 glükozidos kötéssel kapcsolódnak össze. Alkoholos OH-csoport Glükozidos OH-csoport H CH 2 OH O HO O OH O HO CH 2 OH OH CH 2 OH O O HO Cellobióz egység O OH HO O CH 2 OH OH O O H A cellulóz szubmikroszkópos szerkezete (f: fibrilla; mf: mikrofibrilla; m: az elemi fibrilla micelláris része; p: paramicellás részek (amorf); c: kristályrácsba rendeződött cellulóz molekula) Cellulóz fibrillák és részben felbomlott molekulakötegek A láncmolekulák párhuzamosak a szál irányával. 123 Kb szeres nagyítás

124 A CELLULÓZ Cellulózgyártás Ha a sejtfalban található cellulózhoz hozzá szeretnénk jutni, akkor a kísérőanyagoktól el kell választani. 1. A folyamat első lépése egy mechanikai bontás (csiszolás, aprítás), mivel a növényi sejtek a növény szövetszerkezetébe vannak beágyazva. 2. A mechanikai bontás után következik a kémiai feltárás (savas, lúgos, semleges), amely során a kísérőanyagok kémiai depolimerizációja megy végbe. 124

125 A CELLULÓZ-ACETÁT 125

126 A CELLULÓZ-ACETÁT Jelenleg a cellulóz-észterek területén a kutatások nagy része biológiailag lebomló műanyagként való felhasználásuk felé irányul. A kereskedelmi szempontból legjelentősebb cellulózszármazék a cellulóz-acetát (CA). A cellulóz glükopiranóz egységein lévő szabad alkoholos hidroxilcsoportokat részben, vagy teljesen acetil-csoportok helyettesítik. Emiatt a cellulóz stabilitását okozó inter- és intramolekuláris hidrogénhidak kialakulására is kevesebb a lehetőség. O H 2 C OAc O O OH OAc H 2 C OH OAc OH H 2 C O O OAc OAc OAc O O O O CH OH 2 OAc OAc O OAc = O C CH 3 126

127 A CELLULÓZ-ACETÁT Cellulóz-acetátból készültek az első mágnesszalagok. Az ötvenes évek óta fényképészeti filmek anyaga. Manapság: cigaretták füstszűrőjeként és felületbevonóként a legelterjedtebb, de könyvek, folyóiratok papírborítójának kasírozására, valamint dobozok átlátszó anyagaként is használt, illetve szemüvegkeretek, szerszámnyelek, fésűk és hasonló tárgyak készülnek belőle. 127

128 Cellulóz-acetát alapú termékek 128

129 A CELLULÓZ-ACETÁT A CA-fólia külsőre a viszkózfóliához hasonlít, de nedvességre kevésbé érzékeny. Csillogóan fényes felületű. Papírra jól ragasztható. Bár lassan, de biodegradálódik (a 2,5-nél alacsonyabb szubsztitúciós fokú CA biológiailag lebomló, valamint ez lágyítók segítségével javítható). Közönséges környezeti körülmények között azonban a cellulóz-acetát tárgyak: igen tartósak, szívósak, ütésállók. olajoknak, zsíroknak, rothadásnak és penészedésnek ellenállnak újrafelhasználhatók, illetve maradék nélkül elégethetők. 129

130 A KEMÉNYÍTŐ 130

131 A KEMÉNYÍTŐ A természetben a másik nagy mennyiségben jelenlévő poliszacharid a keményítő, amely szinte valamennyi élőlényben megtalálható (növényekben, állatokban egyaránt), mint tartalék tápanyag. Legnagyobb mennyiségben a növényekben fordul elő (magvak, gyökerek, gyökérgumók), ugyanis a fotoszintézis során keletkező szőlőcukrot ilyen formában raktározza el a növényi szervezet. Legolcsóbban a burgonyából állíthatják elő, amely kb. 20 %-ban tartalmazza. A szeszgyártás kiindulási anyaga. Keményítő Erjeszthető cukor (maltóz) cukor oldat Alkohol Tiszta alkohol 131

132 A KEMÉNYÍTŐ A KEMÉNYÍTŐ ELŐFORDULÁSA Burgonya Kukorica Búza Rizs Nedvesség Keményítő % Fehérje 2 9,6 12 7,7 Rostanyagok 0,7 2,7 2,3 2,2 Zsiradék 0,1 5,1 1,9 0,4 Hamu 1,1 1,5 1,8 0,3 132

133 CH 2 OH CH 2 OH H H OH O H H O H H OH O H H O H OH H OH n A keményítő -D-glükóz (az OH-csoport axiális állású) egységekből épül fel. A gabonafélék és a burgonya keményítőtartalma: % amilóz és % amilopektin. n: Kristályos szerkezetű Általános képlet: (C 6 H 10 O 5 ) n n>

134 A KEMÉNYÍTŐ FELHASZNÁLÁSA A keményítőt eredeti formájában a következő területeken használják: Élelmiszeripar (diétás és gyermektápszerek készítése) Szeszgyártás (kiindulási anyag) Papíripar (sűrítő-, ragasztó- és fényezőszer) Textilipar (keményítés, textilfestékekben sűrítő) Kozmetikai ipar (púderkészítés) Gyógyszeripar (tabletták kötőanyaga) Háztartás (vászonneműk keményítése, sütés-főzés) A keményítő gyártás lényege: A tároló szövetek felszakítása után a keményítő-szemcséket vízben szuszpendálva szabaddá teszik, majd elválasztva az őket kísérő különféle rost- és sejtanyagtól, ülepítéssel különítik el. 134

135 A KEMÉNYÍTŐ A keményítő feldolgozása A nyers, természetes keményítő önmagában, hagyományos műanyag feldolgozó módszerekkel nem dolgozható fel, mivel folyási hőmérséklete (T foly = 257 o C) az anyag bomlási hőmérséklete fölé esik (T boml = o C). Ezért célszerű a keményítőt termoplasztikussá tenni. Ehhez a keményítő kristályos szerkezetét kell elbontani a feldolgozás során. Ezt a lebontást a szakirodalom egyes helyeken destrukturálásnak, más esetekben zselatinálásnak nevezi. A víz mellett egyéb egy és többértékű hidroxi-vegyületek jöhetnek még szóba. Ezek az esetek döntő többségében alkoholok (etilén-glikol, glicerin). 135

136 A TPS felhasználási területei A TPS, mint biológiailag lebomoló műanyag, már a 60-as évek elején felkeltette a kutatók figyelmét. Németországban a TPS-t biológiailag lebomló természetes alapú szálerősítéses rendszerekben használták mátrix polimernek. Mivel a TPS erősen poláros anyag, hasonlóan poláros szálas anyagot (len) használtak fel hozzá. A TPS szilárdsági értékeinek másik javítási lehetősége, hogy töltőanyagot keverünk hozzá, ezáltal kompozitot hozunk létre. Ezen társított rendszerek egyik fajtája a nanokompozitok. 136

137 TERMÉSZETES SZÁLAK MŰANYAGOK ERŐSÍTÉSÉRE 137

138 MESTERSÉGESEN ELŐÁLLÍTOTT BIODEGRADÁBILIS POLIMEREK 138

139 Mesterségesen előállított biodegradábilis polimerek politejsav (PLA) poli( -kaprolakton) (PCL) tejsav-kaprolakton alapú kopolimerek és multiblokk kopolimerek poliészter-uretánok Poliéterek polivinil-észterek polivinil-alkohol poliészter-amidok polianhidridek 139

140 A TEJSAV ÉS A POLITEJSAV 140

141 A TEJSAV MONOMER O O HO OH HO OH H 3 C H H CH 3 D-( )-tejsav L-(+)- tejsav A tejsav szénhidrátokból (cukrokból) keletkezik a tejsav-baktériumok okozta erjedés (tejsavas erjedés) során. Pl.: a tej megsavanyodásakor az édes tejben levő tejcukor a Bacterium acidi lactici hatására alakul át tejsavvá. 141

142 A TEJSAV MONOMER O O O CH 3 CH 3 O O O CH 3 O O O H 3 C H 3 C H 3 C O O O D-laktid L-laktid meso-laktid op:97 C op:97 C op:52 C racém sztereokomplex op: C A laktid szerkezete 142

143 A TEJSAV MONOMER A tejsav ipari előállítása I. Fermentáció: A tejsavat nádcukorból, vagy malátacukorból állítják elő, tejsavas erjesztéssel. Megkülönböztetünk: a homo- és heterofermentatív tejsavas erjesztést. 1. Az első eljárásnál a glükózból tiszta tejsav keletkezik az alábbi egyenlet szerint: C 6 H 12 O 6 2 CH 3 -CH(OH)-COOH Itt a cukor lebomlása először a glikolízis mechanizmusa szerint indul meg és a képződő piroszőlősav végül a laktátdehidrogenáz hatására redukálódik tejsavvá. 143

144 A TEJSAV MONOMER 2. A heterofermentáció ezzel szemben három különböző bomlásterméket ad: a tejsavat, etanolt és szén-dioxidot, a alábbi egyenlet szerint: C 6 H 12 O 6 CH 3 -CH(OH)-COOH + CH 3 CH 2 -OH + CO 2 II. Petrolkémiai alapon történő előállítás: A fermentációs módszer mellet ismert a petrolkémiai termékekből történő előállítás is, mely etilén alapon működik. III. A tejsavat hidroxikarbonsav lévén kémiai szintézissel a megfelelő halogénezett karbonsav hidrolízisével, vagy olefinkarbonsavak hidratálásával is elő lehet állítani. 144

145 A POLITEJSAV POLITEJSAV A politejsav (Polylactic-acid: PLA) a szintetikusan előállított biodegradábilis polimerek rendkívül fontos képviselője és a világ számos országában előállított mennyisége egyre növekszik, és alkalmazása nagy léptekkel halad előre. A politejsavat laktidból gyűrűfelnyílásos polimerizációval vagy tejsav monomerből (D,L- vagy L-) polikondezációval lehet előállítani. 145

146 A POLITEJSAV POLITEJSAV SZINTÉZIS CH 3 O H O CH C x CH 3 O CH 3 O - + H O CH C y OH H 2 O OH H O CH C x y + OH CH 3 O CH 3 O O O CH 3 H O CH C OH H O CH C OH z z-2 + H 3 C O O 146

147 A POLITEJSAV A Petrolkémiai úton előállított etilén B Takarmánynövények oxidáció acetaldehid + HCN laktonitril keményítő dextróz racém D, L-tejsav (optikailag inaktív) L-tejsav amorf politejsav (T g = 60 C) Nagy molekulatömegű politejsav (kristályos és amorf polimerek) 147

148 Cukorrépa Búza Kukorica 0,18 ha 0,48 ha 0,31 ha Cukorrépa Búza Kukorica 9,33 tonna 3,38 tonna 2,60 tonna Keményítő 1,69 tonna Szaharóz 1,40 tonna Glükóz 1,47 tonna 1 tonna politejsav előállításához szükséges takarmánynövénymennyiség és termőterület Tejsav 1,30 tonna Politejsav 1 tonna 148

149 A POLITEJSAV Napjainkban a világon több nagyvállalat állít elő politejsavat, amelyek közül jelenleg a NatureWorks LLC. (Minneapolis) a legnagyobb kapacitással bíró vállalat. A következő táblázat a világ nagy tejsav-gyártóit szemlélteti: 149

150 A POLITEJSAV Vállalat A gyár elhelyezkedése A tejsav előállításának módja Purac Hollandia, Spanyolország, Brazília fermentáció NatureWorks LLC (150 ezer t/év PLA granulátum) USA fermentáció Galactic Belgium fermentáció ADM USA fermentáció Musashino Japán kémiai szintézis 150

151 Elõállított mennyiség [tonna] Politejsav ára [EUR/kg] A POLITEJSAV Ez a mennyiség az elkövetkező évtizedben várhatóan az alábbiakban látható trend szerint fog változni: Mennyiség Ár Év 151

152 A POLITEJSAV A politejsav és a politejsav polimerek alkalmazási területei Kedvező tulajdonságaik alapján a politejsavat számos területen alkalmazzák. Biokompatibilitásából és lebonthatóságából adódóan alapvetően az orvostudomány és a gyógyszerészet kezdte alkalmazni előbb a politejsavat, majd polimerjeit. Emellett fontos az ökológiai alkalmazása is. Ezekről már korábban volt szó. 152

153 A POLITEJSAV Nagyon sokféle eszközt készítenek a politejsavból: fecskendőt, vér tárolására alkalmas zsákokat, katétereket, sebészeti varrócérnát, implantátumokat, műszerveket, égési sérüléseket szenvedett betegeknél bőrpótló szövetet, valamint előnyösen használhatók a gyógyszerészetben, pl. gyógyszerhatóanyag kioldódásának szabályozására (retard hatású gyógyszerek). 153

154 A POLITEJSAV A gyógyászati alkalmazás mellet fontos terület az ökológiai alkalmazás is, hiszen környezetvédelmi szempontból alapvető fontosságú a biológiailag lebomló anyagok bevezetése és alkalmazása. Itt is több alterületet különböztethetünk meg: mezőgazdaság, erdészet, halászat közszükségleti műanyagáruk előállítása (csésze, palack, evőeszköz, stb.) csomagolóipar (táskák, csomagolóanyagok, fóliák, stb.) piperecikkek, higiéniai termékek sportszerek A következő ábrák néhány politejsavból készült terméket mutatnak be: 154

155 A POLITEJSAV 155

156 A POLITEJSAV 156

157 Összefoglalás A lebomló műanyagok előnyei: A hagyományos műanyag-feldolgozó gépeken feldolgozhatóak (színezhetők, nyomtathatók). A természetben ártalmatlan anyagok keletkezése közben lebomlanak, tehát nem terhelik a környezetet. Másodlagosan is alkalmazhatóak: biogáz vagy mint komposztanyag a kertészetben. Nem használják a világ kőolajkészletét (A kőolajkészletek becslések alapján kb évre elegendők). A mezőgazdaság világszerte támogatja a biológiailag lebomló polimerek alkalmazását. A késztermék minőségi, fizikai-mechanikai jellemzői hasonlóak a hagyományos műanyagtermékekéhez. Bizonyos alkalmazási területeken jobb tulajdonságok: nagyobb lángállóság; jobb íz- és aromatartó tulajdonság; jó hőstabilitás; átlátszóbb filmek, fóliák; zsír- 157 és olajállóság; stb.

158 Összefoglalás A lebomló műanyagok hátrányai: Viszonylag magas ár (10-70 %-kal drágábbak a hagyományos műanyagoknál). A mennyiségük növekedésével árúk várhatóan tovább csökken. Speciális tulajdonság kialakításához megfelelő technológia és adalékanyag szükséges. Magyarországi helyzet: Idehaza már kaphatók ilyen anyagokból készült termékek. Néhány cég már konkrétan foglalkozik a bioműanyagok alkalmazási lehetőségeivel: 158

159 A politejsav Magyarországon? 2013-ban indul a balatonfűzfői biofinomító és biogáz üzem? A politejsav alapú csomagolóanyagok alkalmasak a jelenlegi PET, polietilén, és polisztirol alapanyagból készült csomagolóanyagok helyettesítésére, teljes értékű kiváltására, a belőle készülő vissza nem gyűjtött csomagolóanyag természetes körülmények között is széndioxidra és vízre bomlik. A politejsav előállítása során felhasznált fosszilis energia legalább 30%-kal kevesebb, mint a konkurens műanyagok energiaszükséglete. A politejsav alapú oldószerek alkalmasak a mérgező, környezetszennyező szénhidrogénekből gyártott jelenlegi oldószerek kiváltására, nincs egészségkárosító hatásuk, és a környezetbe jutva biológiailag gyorsan lebomlanak. A feldolgozás melléktermékei részben energetikai hasznosításra kerülnek (biogáz), részben mint talajjavító komposzt hasznosíthatók (érlelt biogáz iszap). 159

160 160

161 Lebontható műanyagok Jövő lehetőségek, feltételek Mindent összevetve ökológiai és ökonómiai szempontból is megérett a helyzet a biológiai úton lebomló műanyagok és elsősorban a csomagolóanyagok elterjedésére, de több támogatásra lenne szükség: pályázatok, K+F területének felzárkózása az európai szintre, hazai alapanyaggyártás megoldása, hazai mezőgazdasági termelés hasznosítása. Lebontható műanyagok: Fontosságuk növekszik Környezetvédelem Gyorsan fejlődnek gazdasági jelentőségük nő. Komolyabb kutatás-fejlesztés szükséges. Összehangolt munka és támogatás. 161

162 Gyűjtsd szelektíven a műanyag hulladékot és ha lehet használj lebontható műanyag termékeket! 162

163 MELLÉKLET KERESKEDELMI FORGALOMBAN LÉVŐ BIODEGRADÁLHATÓ TERMÉKEK 163

164 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek I. Az európai helyzetről hű képet adnak a BASF cég biológiailag lebomló Ecoflex márkanevű alifás-aromás kopoliészterével szerzett tapasztalatok. A cég 1998 óta gyártja ezt a terméket egy 8 ezer t/év kapacitású berendezésen és tervezi egy 30 ezer t/év kapacitású gyártósor üzembe állítását. Az Ecoflex gyűjtőnév, amelyen belül az egyes típusok a felhasználási céltól függően az elágazások számában és a lánchosszúságban különböznek egymástól. A jelenlegi alaptípusok és az ajánlott alkalamzási területek a következőek: Ecoflex F: fóliagyártás Ecoflex S: keverékek Ecoflex P: extrúziós bevonás Ecoflex V: nemszőtt és szőtt textilek 164

165 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek A fejlesztés során kezdettől fogva különös gondot fordítottak arra, hogy a hagyományos feldolgozógépek alkalmasak legyenek a gyártásra, emellett törekedtek a műszaki jellemzők és a biológiai lebonthatóság közötti optimumra. A biológiailag lebomló Ecoflex poliésztert ma elsősorban keményítővel keverve használják. Pontosabban termoplasztikus keményítőt és biológiailag lebomló szintetikus polimert tartalmazó keverékből granulátumot állítanak elő, amelyből fúvással, fröccsöntéssel és mélyhúzással különböző eszközök állíthatók elő. A keverék Ecoflex tartalma lehetővé teszi új alkalmazási területek megnyitását a megújuló nyersanyagok előtt. 165

166 Az Ecoflex és az LDPE összehasonlítása 166

167 Biodegradálható anyagok gyártói Földrész Gyártó Polimer Európa Avebe keményítõ keverékek Európa BASF poliészterek (Ecostar) Európa Bayer Poliészteramidok Európa Biotec keményítõ keverékek (Flunteraplast) Európa Idroplast PVA Európa Mazzucchelli cellulóz acetát Európa Neste OY Politejsav Európa Novamont keményítõ keverékek (MaterBi) Európa Solvay PCL Európa United Paper Cellulózszármazékok USA Cargill-Dow Politejsav USA Chronopol Politejsav USA Dow Poliészterek Ázsia Daicel PCL/cellulózszármazék Ázsia Dai Nippon politejsav Ázsia Japan Corn keményítõszármazék Ázsia Showa poliészter (Bionoll) 167

168 Biodegradálható polimerek piaci termékek Típus Márkanév Gyártó Ár (ECU/kg) Felhasználás Extrúziós keményítõ Mater-Bi Novamont 3 5 csomagolás, zsákok Extrúziós keményítõ Fluntera-Plast WL, Fluntera 0,5 1 csomagolás Extrúziós keményítõ Novon Novon 3 7 csomagolás, higiénia Extrúziós keményítõ Biopac Biopack 7,5 élelmiszer, vakcina Extrúziós keményítõ PE/keményítõ St. Lawrence 0,5 csomagolás, zsákok Keményítõ hab Keményítõ Sunstartke 50 ECU/m 3 csomagoló hab Cellulóz C. acetát Eastman 5 10 csomagolás Poliészter PHBV ICI/Monsanto 15 mûanyag, csomagolás Poliészter PLA/PLGA Boehringer >500 orvosi anyag Poliészter PLA Cargill 1 10 mûanyag, csomagolás Poliészter Bionoll Showa mûanyag, csomagolás Poliészter PCL Union Carbide 607 csomagolás Proteinek Zselatin Deutsche G. 5 gyógyszer bevonat PVA PVA Kuraray csomagolás, zsák 168

169 Biodegradálható polimerek Fólia/textil kompozitokban felhasználható, biológiailag lebomló fóliatípusok 169

170 Biopolimerek felhasználása alkalmazási területek szerint között, ezer tonna 170

171 A környezeti öregedést szimuláló vizsgálatok 171

172 Az Ecoflex és az LDPE összehasonlítása 172

173 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek A gyártási hulladék újrafeldolgozásakor döntő jelentősége van az alapanyagok hőstabilitásának. Magasabb hőmérsékleten stabilabb anyagok nagyobb biztonsággal hasznosíthatók az alacsonyabb hőmérsékleten végzett újrafeldolgozás során. A hőformázáshoz használt Ecoflex fólia 30-70% újrafeldolgozott polimert is tartalmazhat és itt a hőstabilitás elsőrendű fontosságú, mivel csak így lehet kielégíteni az anyagi jellemzőkkel kapcsolatos követelményeket. Az Ecoflex összetétele alapján megfelel az EC 90/128 szerinti irányelvnek, amely az Élelmiszerekkel rendeltetésszerűen érintkezésbe kerülő műanyagok és műanyag tárgyak minőségi követelményei re vonatkozik. Ez a műanyag-feldolgozót természetesen nem mentesíti egy adott élelmiszerrel kapcsolatos vizsgálatok elvégzése és a felelősség alól. 173

174 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek A biológiailag lebomló műanyagok feldolgozhatósága általában hasonló a LDPE-éhez és a LLDPE-éhez. Az Ecoflex feldolgozható a meglévő fóliafúvó és öntő, továbbá nyomtató berendezéseken. A festékek közül a gyártók az alkohol-tartalmú hagyományos festékeket ajánlják. Nyomtatás előtt a fólia előzetes koronakezelésre szorul. A szárítási hőmérséklet a PE-énél alacsonyabb, de ajánlatos kísérletileg meghatározni. 174

175 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek II. Bioflex: polilaktid/kopoliészter keverék A Bioflex 219F családot elsősorban bevásárlótasakok és különböző célú mezőgazdasági fóliák előállításához, valamint tálcák 175 laminálásához ajánlják.

176 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek III. Biograde: módosított cellulóz alapú termék A FkuR cég másik természetes alapú kompaundja módosított cellulózalapú termék, amelynek feldolgozási jellemzői és mechanikai tulajdonságai hasonlóak a polisztiroléhoz. A fehér, természetes töltőanyagokat és speciális növényi olajat tartalmazó, a szokásos gépeken fröccsönthető Biograde 300A élelmiszeripari alkalmazásra ajánlott. A Biograde 500A hőformázható típusból élelmiszeripari csomagolások készíthetők. A biograde 200C egy töltetlen cellulózalapú keverék, amely öntött fólia, fröccstermék előállítására alkalmas, de felhasználható fúváshoz (pl. palackfúváshoz) vagy hőformázáshoz is. A biopolimerek között különleges tulajdonsága, hogy kicsi a gázáteresztő képessége. A cég termékeinek ára: 2,85-3,70 EUR/kg. 176

177 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek IV. Biomer termékek Egy másik német biopolimergyártó Biomer PHB (poli-(hidroxibutirát)) és Biomer PLA (polilaktid) néven poliészterrel kevert terméket kínál. A gyártó szerint az 1,2 mm vastag termék, amely a gyártó adalékával készül, komposztálás során 6 hét alatt bomlik le. A Biomer PLA alapú termékből átlátszó gyógyászati diagnosztikai eszközök készülnek fröccsöntéssel. Felhasználják a terméket élelmiszeripari csomagolóanyagként is, pl. joghurtos pohár és italos palackok céljára. A polilaktid-kopoliészter keverék és a cellulózalapú fóliák többnyire megfelelnek a követelményeknek. A fólia- és fröccstermékek után már a biológiailag lebomló öntapadó szalagok fejlesztésével is mutatkoznak az első eredmények. 177

178 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek V. A kanadai Omniplast cég az első kanadai vállalat volt, mely környezetbarát tasakot gyártott. A vállalat a Totally Degradable Plastic Additives (TDPA) adalékot alkalmazza, amelyet az EPI (Environmental Products Inc.) technológiája biztosít. Az adalék a műanyag oxidációját indítja meg UV-fény, hő vagy nedvesség hatására. A környezeti hatások erősségével a bomlás ideje szabályozható, akár hónapra vagy évre. A bomlás során toxikus termék nem keletkezik. A Plastic Suppliers Inc. (Ohio/Columbus, USA) PS fóliafúvó extrúderén az eljárás módosításával a világon elsőként gyártott PLA alapú biopolimer fóliát. A termék teljesen komposztálható. Az egyrétegű fólia átlátszó, karcálló és ráncmentes. A fóliákat többutas palackok címkézésére és borítékablakok készítésére próbálták ki. 178

179 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek VI. Az ausztráliai Plantic Technologies cég egy ún. gyors terméket fejlesztett ki. A kukoricakeményítő alapú Plantic nevű termék néhány másodperc alatt vízben oldódik. A termék hőformázható és elsősorban édességek csomagolására készül. Jelenleg még csak Hollandiában és Angliában alkalmazzák. A biopolimerek gyártásában a NatureWorks LLC (korábban Cargill Dow, Minnesota, USA) rendelkezik a legnagyobb évi 150 ezer tonna politejsav alapú granulátumgyártó kapacitással. Ez a méret már lehetővé teszi, hogy a fajlagos gyártási költségek észrevehetően csökkenjenek. Az USA feldolgozói úgy vélik, hogy a biopolimerek tömeges elterjedése az 1 USD/font azaz kb. 2 USD/kg körüli ár esetén indulna meg. 179

180 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek VII. 180

181 Kereskedelmi forgalomban lévő népszerű biológiailag lebontható termékek VIII. 181

8. Műanyag előállítási technológiák.

8. Műanyag előállítási technológiák. 8. Műanyag előállítási technológiák. A műanyagok mesterséges úton előállított, vagy átalakított óriásmolekulájú anyagok, szerves polimerek. Széles körben alkalmazzák: építőiparban, járművekben, háztartásokban,

Részletesebben

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék

Szilárd anyagok. Műszaki kémia, Anyagtan I. 7. előadás. Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok Műszaki kémia, Anyagtan I. 7. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Szilárd anyagok felosztása Szilárd anyagok Kristályos szerkezetűek Üvegszerű anyagok

Részletesebben

Lépcsős polimerizáció, térhálósodás; anyagismeret

Lépcsős polimerizáció, térhálósodás; anyagismeret Lépcsős polimerizáció, térhálósodás; anyagismeret Bevezetés Lineáris polimerek jellemzők reakciók kinetika sztöchiometria és x n Térhálósodás Anyagismeret hőre lágyuló műanyagok térhálós gyanták elasztomerek

Részletesebben

HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk

HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk HULLADÉKGAZDÁLKODÁS IV. A vegyipar hulladékai, kezelésük és hasznosításuk Előadás anyag nappali tagozatos Környezetmérnöki MSc szakos hallgatóknak Készítette: Dr. Bodnár Ildikó, főiskolai tanár 2013. 1

Részletesebben

A tételekhez segédeszköz nem használható.

A tételekhez segédeszköz nem használható. A vizsgafeladat ismertetése: Egy kiválasztott műanyag jellemző fizikai és kémiai tulajdonságainak ismertetése Adott műanyag termék gyártásához anyag, gép és szerszám választása, majd a gyártástechnológia

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyagok a hagyományos, az elektromos és a hibrid hajtású gépkocsikban Németországban a műanyagipar növekedése meghaladja a BIP általános növekedését, ezen belül a járműgyártás műanyag-felhasználása

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka Polimerek / Műanyagok monomer egységekből,

Részletesebben

MŰANYAGOK A GÉPJÁRMŰIPARBAN

MŰANYAGOK A GÉPJÁRMŰIPARBAN MŰANYAGK A GÉPJÁRMŰIPARBAN A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKLA BUDAPESTI MŰSZAKI

Részletesebben

9. Előadás: Földgáztermelés, felhasználás fizikája.

9. Előadás: Földgáztermelés, felhasználás fizikája. 9. Előadás: Földgáztermelés, felhasználás fizikája. 9.1. Földgáz kitermelés. Földgáz összetevői. 9.2. Földgázszállítás, tárolás. 9.3. Földgáz feldolgozás termékei, felhasználásuk. 9.4. Nagyfogyasztó: Elektromos

Részletesebben

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok

Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimer kompozitok alapanyagai, tulajdonságai, kompozitmechanikai alapok DR Hargitai Hajnalka 2011.10.19. Polimerek

Részletesebben

Hulladékgazdálkodás. A hulladékgazdálkodás elméleti alapjai. A hulladékok fogalma, fajtái; környezeti hatásai

Hulladékgazdálkodás. A hulladékgazdálkodás elméleti alapjai. A hulladékok fogalma, fajtái; környezeti hatásai Hulladékgazdálkodás A hulladékgazdálkodás elméleti alapjai. A hulladékok fogalma, fajtái; környezeti hatásai "A múzeumok a múltat őrzik meg, a hulladék-feldolgozók a jövőt." (T. Ansons) 2015/2016. tanév

Részletesebben

Hulladékok újrahasznosítása VI. Előadás anyag

Hulladékok újrahasznosítása VI. Előadás anyag TÁMOP-4.1.1.F-14/1/KONV-2015-0006 Az ipari hulladékgazdálkodás vállalati gyakorlata Hulladékok újrahasznosítása VI. Előadás anyag Dr. Molnár Tamás Géza Ph.D főiskolai docens SZTE MK Műszaki Intézet Négy

Részletesebben

A természetes kaucsuk

A természetes kaucsuk A természetes kaucsuk A gumiipar legfontosabb nyersanyaga. Sok olyan növény ismeretes, amelyek sejtjei latexet termelnek. A latex 50-60 % kaucsukot tartalmaz. Latex feldolgozása ún.(füstölt) eljárásnál

Részletesebben

Tárgyszavak: polilaktid; biológiai lebomlás; komposztálhatóság; megújuló nyersanyagforrás; feldolgozás; tulajdonságok.

Tárgyszavak: polilaktid; biológiai lebomlás; komposztálhatóság; megújuló nyersanyagforrás; feldolgozás; tulajdonságok. MÛANYAGOK ÉS A KÖRNYEZET Hőformázott csomagolóeszközök politejsavból Tárgyszavak: polilaktid; biológiai lebomlás; komposztálhatóság; megújuló nyersanyagforrás; feldolgozás; tulajdonságok. A politejsav

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyagok kiválasztásának szempontjai A műanyagok típusválasztéka ma már olyan széles, hogy az adott alkalmazás követelményeit gazdaságosan teljesítő alapanyag kiválasztása komoly

Részletesebben

Curie Kémia Emlékverseny 10. évfolyam országos döntő 2011/2012 A feladatok megoldásához csak periódusos rendszer és zsebszámológép használható!

Curie Kémia Emlékverseny 10. évfolyam országos döntő 2011/2012 A feladatok megoldásához csak periódusos rendszer és zsebszámológép használható! A feladatokat írta: Kódszám: Horváth Balázs, Szeged..... Lektorálta: 2012. május 12. Szieglné Kovács Judit, Szekszárd Curie Kémia Emlékverseny 10. évfolyam országos döntő 2011/2012 A feladatok megoldásához

Részletesebben

Tejsav alapú polimérek

Tejsav alapú polimérek Tejsav alapú polimérek Majdik Kornélia, Kakes Melinda Babes Bolyai Tudományegyetem, Kolozsvár Tartalom Klasszikus polimérek Biopolimérek Politejsav Biodegradació Kutatási eredmények A jövő polimérjei Polimérek

Részletesebben

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés

1 ábra a) Kompaundálás kétcsigás extruderben, előtermék: granulátum, b) extrudált lemez vákuumformázásának technológiai lépései, c) fröccsöntés 1. Hőre lágyuló kompozitok előállítása és feldolgozása Tevékenység: A lecke áttanulmányozása után, a követelményekben meghatározottak alapján rögzítse, majd foglalja össze a lecke tartalmát, készítsen

Részletesebben

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor

Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor Szálerősített anyagok fröccsöntése Dr. KOVÁCS József Gábor 2015. november 18. Előadásvázlat 2 / 32 Fröccsöntés (szálas) Ciklus (kiemelve a száltöltés szerepét) Anyagok (mátrix, szál, adhézió) Rövidszálas

Részletesebben

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA

AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA Bevezető AZ ÉGÉSGÁTLÁS KÖRNYEZETI HATÁSAINAK VIZSGÁLATA A műanyagok felhasználási területe egyre bővül, így mennyiségük is rohamosan növekszik. Elhasználódás után csekély hányaduk kerül csak újrahasznosításra,

Részletesebben

OTKA KUTATÁS ZÁRÓJELENTÉSE Égésgátló szereket tartalmazó műanyagok hőbomlása T047377

OTKA KUTATÁS ZÁRÓJELENTÉSE Égésgátló szereket tartalmazó műanyagok hőbomlása T047377 OTKA KUTATÁS ZÁRÓJELENTÉSE Égésgátló szereket tartalmazó műanyagok hőbomlása T047377 A kutatás célja Égésgátló szerekkel társított műanyagok hőbomlását tanulmányoztuk abból a célból, hogy feltárjuk az

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Műanyag felületek módosítása különleges bevonatokkal A műanyagok felületét bevonatokkal, fóliázással, adalékolással és technológiai módszerekkel is lehet változtatni a felhasználási

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Nagy teljesítményű műszaki műanyagok A nagy teljesítményű műszaki műanyagok jelentősége sokkal nagyobb, mint az a felhasznált mennyiségekből első látásra következne. Az anyagcsoporthoz

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Lézeres felületkezelés a műanyag-feldolgozásban A lézerrel működő berendezések és technológiák ma már sokoldalú felhasználást tesznek lehetővé. A műanyagfelületek feliratozása már

Részletesebben

Háztartásunk hulladékai

Háztartásunk hulladékai Háztartásunk hulladékai Tanulói feladatlap Csoport:. Elérhetı szám:.. Elért szám:. Ssz. Feladat Pont Szám Idı Perc 1. A hulladék egyidıs az élettel. Minden élılény termel valamiféle hulladékot élete során,

Részletesebben

RAGASZTÓSZALAGOK. Transzfer ragasztószalagok Egyoldalúan öntapadó ragasztószalagok Kétoldalúan öntapadó ragasztószalagok. www.ssa-company.

RAGASZTÓSZALAGOK. Transzfer ragasztószalagok Egyoldalúan öntapadó ragasztószalagok Kétoldalúan öntapadó ragasztószalagok. www.ssa-company. RAGASZTÓSZALAGOK Transzfer ragasztószalagok Egyoldalúan öntapadó ragasztószalagok Kétoldalúan öntapadó ragasztószalagok www.ssa-company.com Impresszum: A tartalomért felelős: SSA Europe Ges.m.b.H. Mölbling-Gewerbestraße

Részletesebben

A MÛANYAGOK FELHASZNÁLÁSA. az orvostechnikában A PEEK

A MÛANYAGOK FELHASZNÁLÁSA. az orvostechnikában A PEEK A MÛANYAGOK FELHASZNÁLÁSA 4.4 1.3 A PEEK és más high-tech műanyagok az orvostechnikában Tárgyszavak: hőálló műszaki műanyag; PEEK; összehasonlítás más polimerekkel; tulajdonságok; feldolgozhatóság; sterilizálhatóság;

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Fóliagyártás versenyképesen Az öntött és a fújt fóliák közül is jelenleg a 3-rétegűek a legnépszerűbbek mind a gyártók, mind a felhasználók körében. Megkezdődött azonban az átrendeződés

Részletesebben

DIGITÁLIS TÉMAHÉT AZ ISKOLÁKBAN

DIGITÁLIS TÉMAHÉT AZ ISKOLÁKBAN 1 DIGITÁLIS TÉMAHÉT AZ ISKOLÁKBAN 2016. április 04. 08. Rakjunk rendet a környezetünkben című projekt 2016. 04. 05. 6. b osztály Projektet készítette: Jánosi Györgyné Témavezető: Jánosi Györgyné 2 TANULÓI

Részletesebben

MŰANYAGFAJTÁK ÉS KOMPOZITOK

MŰANYAGFAJTÁK ÉS KOMPOZITOK MŰANYAGFAJTÁK ÉS KOMPOZITOK Új nagy teljesítményű műanyagok megjelenése a piacon Új monomerek és polimerek kidolgozása hosszú és költséges folyamat. Napjainkban a nagy teljesítményű műszaki műanyagok csoportjában

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Önerősítő hőre lágyuló műanyag szövettermékek Műanyag fóliák nyújtásával jelentős mértékű anizotrópiát lehet elérni a mechanikai és más tulajdonságokban, és ezáltal a kiválasztott

Részletesebben

Alkalmazott kémia. Tantárgy neve Alkalmazott kémia 1.

Alkalmazott kémia. Tantárgy neve Alkalmazott kémia 1. Alkalmazott kémia A tárgy a kémia alapszak (BSC) szakmai törzsanyagának része, melynek teljesítésével két szemeszter alatt 8 kreditet lehet összegyűjteni. Az előadások száma 8. Tantárgy neve Alkalmazott

Részletesebben

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag )

2. tétel. 1. Nemfémes szerkezeti anyagok: szerves ( polimer ) szervetlen ( kerámiák ) természetes, mesterséges ( műanyag ) 2. tétel - A nemfémes szerkezeti anyagok tulajdonságai, felhasználásuk. - Vasfémek és ötvözeteik, tulajdonságaik, alkalmazásuk. - A könnyűfémek fajtái és jellemzői, ötvözése, alkalmazása. - A színesfémek

Részletesebben

Műanyagok galvanizálása

Műanyagok galvanizálása BAJOR ANDRÁS Dr. FARKAS SÁNDOR ORION Műanyagok galvanizálása ETO 678.029.665 A műanyagok az ipari termelés legkülönbözőbb területein speciális tulajdonságaik révén kiszorították az egyéb anyagokat. A hőre

Részletesebben

Merő András. A tűz oltása. A követelménymodul megnevezése: Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok

Merő András. A tűz oltása. A követelménymodul megnevezése: Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok Merő András A tűz oltása A követelménymodul megnevezése: Általános gépészeti munka-, baleset-, tűz- és környezetvédelmi feladatok A követelménymodul száma: 0110-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

31 544 03 0010 31 02 Külfejtéses bányaművelő Külszíni bányász 2/54

31 544 03 0010 31 02 Külfejtéses bányaművelő Külszíni bányász 2/54 A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A müncheni biohulladék-erjesztő teljesítményének növelése az előkezelő és víztisztító fokozatok módosításával

A müncheni biohulladék-erjesztő teljesítményének növelése az előkezelő és víztisztító fokozatok módosításával HULLADÉKOK ENERGETIKAI ÉS BIOLÓGIAI HASZNOSÍTÁSA 8.3 A müncheni biohulladék-erjesztő teljesítményének növelése az előkezelő és víztisztító fokozatok módosításával Tárgyszavak: berendezés; biohulladék;

Részletesebben

ALATTI INGATLANON TERVEZETT

ALATTI INGATLANON TERVEZETT ELŐZETES KONZULTÁCIÓS DOKUMENTÁCIÓ ÚJFEHÉRTÓ KÜLTERÜLET 08/34 HELYRAJZI SZÁM ALATTI INGATLANON TERVEZETT GTE HULLADÉK FELDOLGOZÓ PROJEKT Tervszám: K 288/2015. Készült a 314/2005. (XII. 25.) Korm. rendelet

Részletesebben

Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem

Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem Polimerek fizikai és kémiai alapjai Nagy, Roland, Pannon Egyetem Polimerek fizikai és kémiai alapjai írta Nagy, Roland Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon

Részletesebben

A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK

A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA Készítette: Szlavov Krisztián Geográfus, ELTE-TTK I. Bevezetés Ha a mai módon és ütemben folytatjuk az energiafelhasználást, 30-40 éven belül visszafordíthatatlanul

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA A jövő csomagolóanyagai a műanyagok A csomagolóiparral szemben egyre nagyobb igényeket támasztanak, egyúttal azt is elvárják, hogy csökkentse a felhasznált anyagok és a hulladék mennyiségét.

Részletesebben

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola KÖRNYEZETGAZDÁLKODÁS Vízszennyezés Vízszennyezés elleni védekezés Összeállította: Dr. Simon László Nyíregyházi Főiskola Vízszennyezés Vízszennyezés minden olyan emberi tevékenység, illetve anyag, amely

Részletesebben

A termikus hasznosítók lényegesen nagyobb mennyiséget is fel tudnának venni, mint ami rendelkezésre áll, ezért virágzik az import.

A termikus hasznosítók lényegesen nagyobb mennyiséget is fel tudnának venni, mint ami rendelkezésre áll, ezért virágzik az import. Gumiabroncs Gumiabroncs Akkumulátor A hazai hulladék jelenlegi állapota Az anyagában tekintetében jelentős kapacitások jöttek létre 2004 és 2010 között, mely fedezi a hazai igényeket. A továbbfejlesztés

Részletesebben

A4. Hőre lágyuló műanyagok melegalakítása

A4. Hőre lágyuló műanyagok melegalakítása LABORGYAKORLATOK - SEGÉDLET Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar POLIMERTECHNIKA TANSZÉK A4. Hőre lágyuló műanyagok melegalakítása A jegyzet érvényességét a tanszéki Weboldalon

Részletesebben

Környezet és egészség a hulladékhasznosítástól a címkékig

Környezet és egészség a hulladékhasznosítástól a címkékig Kiadja: Fogyasztói és Betegjogi Érdekvédelmi Szövetség (www.febesz.eu) Minden jog fenntartva. A kiadványt, illetve annak részét tilos sokszorosítani, bármely formában vagy eszközzel a Kiadó engedélye nélkül

Részletesebben

CSOMAGOLÁS. Csomagolás és csomagolóanyagok. Gyógyszertechnológiai és Biofarmáciai Intézet

CSOMAGOLÁS. Csomagolás és csomagolóanyagok. Gyógyszertechnológiai és Biofarmáciai Intézet CSOMAGOLÁS Csomagolás és csomagolóanyagok Gyógyszertechnológiai és Biofarmáciai Intézet Csomagolás Cél: a termék mennyiségének és minőségének megóvása a gyártás a szállítás a felhasználás alatti (többadagos

Részletesebben

Polimerek adalékanyagai Dr. Tábi Tamás

Polimerek adalékanyagai Dr. Tábi Tamás Polimerek adalékanyagai Dr. Tábi Tamás 2015. Szeptember 30. Mi is az a polimer és a műanyag? Polimer: Olyan hosszúláncú vegyület (makromolekula) amelyben sok ezer építőegység kapcsolódik össze egymással.

Részletesebben

MŰSZAKI LEÍRÁS. AS-NIDAPLAST Vízgyűjtő- és tároló rendszerhez. Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114. Budapest, 2005.

MŰSZAKI LEÍRÁS. AS-NIDAPLAST Vízgyűjtő- és tároló rendszerhez. Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114. Budapest, 2005. MŰSZAKI LEÍRÁS AS-NIDAPLAST Vízgyűjtő- és tároló rendszerhez Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114. Budapest, 2005. november Jelen Műszaki Leírás (ML) tárgya Magyarországon kizárólagos

Részletesebben

Mezőgazdasági és csomagolási célokra alkalmazott fóliák

Mezőgazdasági és csomagolási célokra alkalmazott fóliák A MÛANYAGOK FELHASZNÁLÁSA Mezőgazdasági és csomagolási célokra alkalmazott fóliák Tárgyszavak: mezőgazdasági fóliák; talajtakarás; hajtatóalagút; védőháló; állattenyésztés; szélfogó ponyva; biodegradálható

Részletesebben

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK

MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK MŰANYAGOK ALKALMAZÁSA, UTÓMŰVELETEK Hibrid szerkezetek szerves bádoggal A hibrid szerkezetek tömege jelentősen csökkenthető, ha a fémkomponens helyett is műanyagot, ún. szerves bádogot használnak. A szerves

Részletesebben

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 006 674 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000006674T2! (19) HU (11) Lajstromszám: E 006 674 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 7326 (22) A bejelentés napja:

Részletesebben

Műanyag- és elasztomer ragasztási útmutató

Műanyag- és elasztomer ragasztási útmutató Műanyag- és elasztomer ragasztási útmutató 3 Miért használjunk Loctite és Teroson ragasztóanyagot más kötési eljárások helyett? Ez az útmutató alapvető iránymutatásokkal ismerteti meg a felhasználókat,

Részletesebben

BEVONATOS FOGASSZÍJAK

BEVONATOS FOGASSZÍJAK BEVONATOS FOGASSZÍJAK Tartalomjegyzék: Általános információk Poliuretán bevonatok PVC bevonatok Gumi bevonatok Egyéb bevonatok Megmunkálási példák Oldalszám 68. oldal 71. oldal 74. oldal 75. oldal 78.

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Korszerű tömítések A tömítések közül a poliuretánból készülteket alig ismerik, pedig vannak speciális célokra alkalmazható, kiemelkedően jó változataik. Bizonyos alkalmazásokra a

Részletesebben

BIZTONSÁGI ADATLAP 1907/2006 sz. (EK) Rendelet (REACH) és 2015/830 sz. (EU) Rendelet szerint. ZYLAR Resin - Natural Grades Termékszám ZYL001

BIZTONSÁGI ADATLAP 1907/2006 sz. (EK) Rendelet (REACH) és 2015/830 sz. (EU) Rendelet szerint. ZYLAR Resin - Natural Grades Termékszám ZYL001 Oldal: 1 -tól 10 1.SZAKASZ: Az anyag/keverék és a vállalat/vállalkozás azonosítása 1.1 Termékazonosító Kereskedelmi név: Ez a Biztonsági adatlap a következő termékekre érvényes: ZYLAR 245 ZYLAR 550 ZYLAR

Részletesebben

Spektroszkópiai módszerek és ezek más módszerrel kombinált változatainak alkalmazása a műanyagiparban

Spektroszkópiai módszerek és ezek más módszerrel kombinált változatainak alkalmazása a műanyagiparban A MÛANYAGOK TULAJDONSÁGAI 1.3 Spektroszkópiai módszerek és ezek más módszerrel kombinált változatainak alkalmazása a műanyagiparban Tárgyszavak: műanyagok elemzése; IV spektroszkópia; termoanalízis; DSC;

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 3 AZ ÁSVÁNYTaN ÉS kőzettan TÁRGYa, alapfogalmak III. ALAPFOGALMAK 1. MI AZ ÁsVÁNY? Nem véletlen, hogy a bevezető gondolatokban a kémiai elemekkel, azok elterjedésével

Részletesebben

Műanyag kompozitok - 2. rész Csilla, Varga, Pannon Egyetem

Műanyag kompozitok - 2. rész Csilla, Varga, Pannon Egyetem Műanyag kompozitok - 2. rész Csilla, Varga, Pannon Egyetem Műanyag kompozitok - 2. rész írta Csilla, Varga Publication date 2012 Szerzői jog 2012 Pannon Egyetem A digitális tananyag a Pannon Egyetemen

Részletesebben

Veszprémi Egyetem, Vegyészmérnöki Intézet K o o p e r á c i ó s K u t a t á s i K ö z p o n t 8200 Veszprém, Egyetem u. 10., Tel.

Veszprémi Egyetem, Vegyészmérnöki Intézet K o o p e r á c i ó s K u t a t á s i K ö z p o n t 8200 Veszprém, Egyetem u. 10., Tel. Veszprémi Egyetem, Vegyészmérnöki Intézet K o o p e r á c i ó s K u t a t á s i K ö z p o n t 8200 Veszprém, Egyetem u. 10., Tel./Fax: (88) 429 073 Zárójelentés a VESZPRÉMI EGYETEM VEGYÉSZMÉRNÖKI INTÉZET

Részletesebben

INTEGRÁLT TERMÉSZETTUDOMÁNYOS VERSENY 2011

INTEGRÁLT TERMÉSZETTUDOMÁNYOS VERSENY 2011 NEMZETI TANKÖNYVKIADÓ ZRT. KRÚDY GYULA GIMNÁZIUM, KÉT TANÍTÁSI NYELVŰ KÖZÉPISKOLA, IDEGENFORGALMI ÉS VENDÉGLÁTÓIPARI SZAKKÉPZÕ ISKOLA INTEGRÁLT TERMÉSZETTUDOMÁNYOS VERSENY 2011 AZ ISKOLA NEVE:... AZ ISKOLA

Részletesebben

I. ANYAGISMERET TARTALOMJEGYZÉK

I. ANYAGISMERET TARTALOMJEGYZÉK I. ANYAGISMERET TARTALOMJEGYZÉK 1. A műanyagok mint szerves vegyületek 2. A polimerek csoportosítása 3. A műanyagok tulajdonságai 4 A polietilén (PE) és a polipropilén (PP) tulajdonságai 4.1. Kémiai tulajdonságok

Részletesebben

Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával

Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával Új kötőanyagrendszer előállítása ipari hulladékanyag mechanokémiai aktiválásával Szerző: Hullár Hanna Dóra, Anyagmérnök BSc, IV. évfolyam Témavezető: Balczár Ida Anna, PhD hallgató Munka helyszíne: PE-MK,

Részletesebben

Poli(etilén-tereftalát) (PET) újrafeldolgozása a tulajdonságok javításával

Poli(etilén-tereftalát) (PET) újrafeldolgozása a tulajdonságok javításával MÛANYAGOK ÉS A KÖRNYEZET Poli(etilén-tereftalát) (PET) újrafeldolgozása a tulajdonságok javításával Tárgyszavak: PET; újrafeldolgozás; kémiai bontás; molekulatömeg; lánchosszabbítás; reaktív extrúzió;

Részletesebben

MŰANYAGOK ALKALMAZÁSA

MŰANYAGOK ALKALMAZÁSA MŰANYAGOK ALKALMAZÁSA Újfajta vízgőzzáró és -szabályozó csomagolófóliák Az áruk főképpen az élelmiszerek csomagolásával szemben egyre nagyobbak az igények, egyúttal elvárják, hogy ehhez egyre kevesebb

Részletesebben

47. Biológiai úton lebomló hajlékonyfalú műanyag csomagolások

47. Biológiai úton lebomló hajlékonyfalú műanyag csomagolások 47. Biológiai úton lebomló hajlékonyfalú műanyag csomagolások Felfüggesztve 2011.november 30-án Környezetbarát Termék Nonprofit Kft. 1027 Budapest, Lipthay u. 5. Telefon:(36-1)-336-1156, Telefax: (36-1)-336-1157

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 4.

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 4. Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 4. MINTAFELADATSOR KÖZÉPSZINT 2015 Az írásbeli vizsga időtartama: 120 perc

Részletesebben

Lebomló polietilén csomagolófóliák kifejlesztése

Lebomló polietilén csomagolófóliák kifejlesztése Dr. Deák György *, Holup Péter **, Ferroni Liz Priscila **, Dr. Zsuga Miklós ***, Dr. Kéki Sándor *** Lebomló polietilén csomagolófóliák kifejlesztése Célul tűztük ki egy biológiailag lebomló polietilén

Részletesebben

Hulladékgazdálkodás. Regionális hulladékgazdálkodási rendszerek tervezése, létesítése, működtetése és fenntarthatósága

Hulladékgazdálkodás. Regionális hulladékgazdálkodási rendszerek tervezése, létesítése, működtetése és fenntarthatósága Hulladékgazdálkodás Regionális hulladékgazdálkodási rendszerek tervezése, létesítése, működtetése és fenntarthatósága 2015/2016. tanév I. félév Dr. Buruzs Adrienn egyetemi tanársegéd (buruzs@sze.hu) SZE

Részletesebben

Műszaki műanyagok tribológiai kutatása különböző rendszerekben

Műszaki műanyagok tribológiai kutatása különböző rendszerekben FIATALOK FÓRUMA Műszaki műanyagok tribológiai kutatása különböző rendszerekben Zsidai László Szent István Egyetem, Gépészmérnöki Kar, Gépgyártás és Javítástechnológia Tanszék, Gödöllő Tárgyszavak: súrlódás;

Részletesebben

Biopolimerek 1. Dr. Tábi Tamás Tudományos Munkatárs

Biopolimerek 1. Dr. Tábi Tamás Tudományos Munkatárs Biopolimerek 1 Dr. Tábi Tamás Tudományos Munkatárs MTA BME Kompozittechnológiai Kutatócsoport Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar, Polimertechnika Tanszék 2016. Május 3. Mi

Részletesebben

MŰANYAGOK ÉS A KÖRNYEZET

MŰANYAGOK ÉS A KÖRNYEZET MŰANYAGOK ÉS A KÖRNYEZET Bioműanyagok: immár az EU iparpolitikájának részét képezik Az EU új iparpolitikája megteremtheti a biopolimereket gyártó európai vállalatok növekedése számára. A klasszikus, általában

Részletesebben

3/3.5. Műanyag-feldolgozás munkavédelmi kérdései

3/3.5. Műanyag-feldolgozás munkavédelmi kérdései 3/3.5. A műanyag termékek alkalmazása, felhasználása az elmúlt évtizedekben rohamosan fejlődött. Kedvező tulajdonságaik alapján az élet szinte minden területén alkalmazhatók, az iparban pl. maró anyagok

Részletesebben

Hulladéklerakók tervezése, üzemeltetése

Hulladéklerakók tervezése, üzemeltetése Miskolci Egyetem Műszaki Földtudományi Kar Környezetgazdálkodási Intézet Hidrogeológiai - Mérnökgeológiai Intézeti Tanszék Hulladéklerakók tervezése, üzemeltetése I. Oktatási segédlet Készítette: Dr. Szabó

Részletesebben

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése.

Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. A MÛANYAGOK TULAJDONSÁGAI Tömítések áteresztőképessége Tárgyszavak: autógyártás; műszaki követelmények; permeáció; üzemanyag-emisszió; mérési módszer; áteresztés csökkentése. Szigorodó előírások Áteresztésnek

Részletesebben

DOMBÓVÁR 2010. Székesfehérvár

DOMBÓVÁR 2010. Székesfehérvár DOMBÓVÁR KÖRNYEZETI ÉRTÉKELÉS HELYI HULLADÉKGAZDÁLKODÁSI TERVHEZ 2010. Székesfehérvár DOMBÓVÁR KÖRNYEZETI ÉRTÉKELÉS HELYI HULLADÉKGAZDÁLKODÁSI TERVHEZ Készítette: JUGLANS ALBA Mérnöki Iroda Bt. Enyedi-Egyed

Részletesebben

Polimerek anyagszerkezettana és technológiája

Polimerek anyagszerkezettana és technológiája Polimerek anyagszerkezettana és technológiája -Javított változat- 2014/2015/2 félév vizsgakérdések kidolgozása Készítette: Mr. GMA Sziasztok! Ez az előző feltöltött polimerek kidolgozás javítása, volt

Részletesebben

ÖSSZEFOGLALÓ. A BREF alkalmazási területe

ÖSSZEFOGLALÓ. A BREF alkalmazási területe ÖSSZEFOGLALÓ A kovácsüzemek és öntödék BREF (elérhető legjobb technika referencia dokumentum) a 96/61/EK tanácsi irányelv 16. cikke (2) bekezdése szerint végzett információcserét tükrözi. Az összefoglalót

Részletesebben

Komposztálással és biológiai lebomlással hasznosítható egyszer használatos műanyag csomagolóeszközök KT 60

Komposztálással és biológiai lebomlással hasznosítható egyszer használatos műanyag csomagolóeszközök KT 60 Környezetbarát Termék Nonprofit Kft. 1027 Budapest, Lipthay utca 5. Telefon: (+36-1) 336-1156, fax: (+36-1) 336-1157 E-mail: kornyezetbarat.termek@t-online.hu http: //www.kornyezetbarat-termek.hu KT 60

Részletesebben

Légszennyezés. Légkör kialakulása. Őslégkör. Csekély gravitáció. Gázok elszöktek Föld légkör nélkül maradt 2014.11.13.

Légszennyezés. Légkör kialakulása. Őslégkör. Csekély gravitáció. Gázok elszöktek Föld légkör nélkül maradt 2014.11.13. BME -Vízi Közmű és Környezetmérnöki Tanszék Légszennyezés VÁROSI KÖRNYEZETVÉDELEM 2012 Horváth Adrienn Légkör kialakulása Őslégkör Hidrogén + Hélium Csekély gravitáció Gázok elszöktek Föld légkör nélkül

Részletesebben

Anyagismeret. Polimer habok. Hab:

Anyagismeret. Polimer habok. Hab: Polimer habok gyártása 2 Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer habok Hab: Olyan kétfázisú rendszer, amelyben statisztikus eloszlású, változó méretű gázbuborékok

Részletesebben

Tárgyszavak: statisztika; jövedelmezőség; jövőbeni kilátások; fejlődő országok; ellátás; vezetékrendszer élettartama.

Tárgyszavak: statisztika; jövedelmezőség; jövőbeni kilátások; fejlődő országok; ellátás; vezetékrendszer élettartama. A MÛANYAGOK FELHASZNÁLÁSA PE-HD csövek a vízellátásban Tárgyszavak: statisztika; jövedelmezőség; jövőbeni kilátások; fejlődő országok; ellátás; vezetékrendszer élettartama. Európában ma már a csövek többségét

Részletesebben

MŰANYAGFAJTÁK. Új olefin blokk-kopolimerek előállítása posztmetallocén technológiával

MŰANYAGFAJTÁK. Új olefin blokk-kopolimerek előállítása posztmetallocén technológiával MŰANYAGFAJTÁK Új olefin blokk-kopolimerek előállítása posztmetallocén technológiával A Dow cég, a poliolefinpolimerizációt forradalmasító metallocénes technológia egyik úttörője, a posztmetallocén katalizátorok

Részletesebben

EURÓPAI BIZOTTSÁG KKK FŐIGAZGATÓSÁG KÖZÖS KUTATÓINTÉZET Technológiai Jövőkuatási Intézet

EURÓPAI BIZOTTSÁG KKK FŐIGAZGATÓSÁG KÖZÖS KUTATÓINTÉZET Technológiai Jövőkuatási Intézet EURÓPAI BIZOTTSÁG KKK FŐIGAZGATÓSÁG KÖZÖS KUTATÓINTÉZET Technológiai Jövőkuatási Intézet A környezetszennyezés integrált megelőzése és csökkentése Referenciadokumentum a nagy mennyiségű szervetlen vegyi

Részletesebben

Tárgyszavak: természetes szálak; kompaundok; farost; szálkeverékek; fröccsöntés; műszaki műanyagok; autóipar; bútoripar.

Tárgyszavak: természetes szálak; kompaundok; farost; szálkeverékek; fröccsöntés; műszaki műanyagok; autóipar; bútoripar. MŰANYAGFAJTÁK Természetes szálakkal erősített műanyagok A természetes eredetű anyagok társítása műanyagokkal nem csak környezetvédelmi okokból egyre népszerűbb, hiszen ezek a kompaundok valódi műszaki/gazdasági

Részletesebben

Ipar. Az átütő teljesítmény purenit a meggyőző funkcionális építőanyag. PURe technology!

Ipar. Az átütő teljesítmény purenit a meggyőző funkcionális építőanyag. PURe technology! Ipar Az átütő teljesítmény purenit a meggyőző funkcionális építőanyag PURe technology! 2 purenit a gyémánt a funkcionális építőanyag között Ipar purenit mi is ez valójában? A válasz nagyon egyszerű: a

Részletesebben

VONÓELEMES HAJTÁSOK (Vázlat)

VONÓELEMES HAJTÁSOK (Vázlat) VONÓELEMES HAJTÁSOK (Vázlat) Hajtások csoportosítása Közvetlen kapcsolatú Közvetítőelemes Erővel záró hajtások Dörzskerékhajtás Szíjhajtás (laposszíj, ékszíj) Alakkal záró hajtások Fogaskerékhajtás Lánchajtás,

Részletesebben

Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai

Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai Kuti Rajmund A víz tűzoltói felhasználhatóságának lehetőségei, korlátai A tűzoltóság a bevetések 90%-ban ivóvizet használ tűzoltásra, s a legtöbb esetben a kiépített vezetékes hálózatból kerül a tűzoltó

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 13. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 13. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

BIZTONSÁGI ADATLAP 1907/2006/EK rendelet 31. cikk

BIZTONSÁGI ADATLAP 1907/2006/EK rendelet 31. cikk 1.AZ ANYAG/KEVERÉK ÉS A VÁLLALAT/VÁLLALKOZÁS AZONOSÍTÁSA 1.1 Anyag kereskedelmi neve: OTIS LENOLAJ Az anyag egyéb azonosító kódja: - 1.2 Az anyag megfelelő azonosított felhasználása: fabeeresztő, festékek

Részletesebben

Felszívódó implantátumok alapanyagai

Felszívódó implantátumok alapanyagai Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki Kar Biokompatibilis Anyagok Felszívódó implantátumok alapanyagai Szerzők: Kalmár Viktória (HNOMFV) Sélley Torda László (EBO5IB) 2012. december

Részletesebben

A hulladékgazdálkodásról szóló 2000. évi XLIII. törvény 35. és 36..-aiban foglalt felhatalmazás alapján:

A hulladékgazdálkodásról szóló 2000. évi XLIII. törvény 35. és 36..-aiban foglalt felhatalmazás alapján: Szakonyfalu Községi Önkormányzat Képviselő-testületének 5/2005. (IV.29.) számú rendelete Alsószölnök, Felsőszölnök, Szakonyfalu települések közös gazdálkodási tervéről A gazdálkodásról szóló 2000. évi

Részletesebben

POLIMEREK KEMÉNYSÉGE

POLIMEREK KEMÉNYSÉGE POLIMEREK KEMÉNYSÉGE Elméleti áttekintés A keménység olyan anyagi tulajdonság, amely azt fejezi ki, hogy egy anyag mennyire szilárd, milyen mértékben ellenálló a külső mechanikai behatásokkal szemben.

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. október 20. TERMÉSZETTUDOMÁNY KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 20. 14:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

A tételsor a 12/2013. (III. 28.) NGM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/43

A tételsor a 12/2013. (III. 28.) NGM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/43 A vizsgafeladat ismertetése: Vegyipari technikus és vegyianyaggyártó szakképesítést szerzőknek Ismerteti a vegyipari technológiák anyag és energia ellátását. Bemutatja a vegyiparban szükséges fontosabb

Részletesebben

KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT

KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK KEMÉNYÍTŐBŐL ÉS POLITEJSAVBÓL ELŐÁLLÍTOTT FRÖCCSÖNTÖTT LEBOMLÓ POLIMEREK FELDOLGOZÁSÁNAK ÉS FELHASZNÁLHATÓSÁGÁNAK

Részletesebben

A feladatsor első részében található 1 20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek.

A feladatsor első részében található 1 20-ig számozott vizsgakérdéseket ki kell nyomtatni, majd pontosan kettévágni. Ezek lesznek a húzótételek. A vizsgafeladat ismertetése: A központilag összeállított szóbeli vizsga kérdései a következő témaköröket tartalmazzák: Növényi eredetű természetes szálasanyagok ismertetése, jellemző tulajdonságai, felhasználási

Részletesebben

MŰANYAGOK FELDOLGOZÁSA

MŰANYAGOK FELDOLGOZÁSA MŰANYAGOK FELDOLGOZÁSA Lézertechnika a műanyagok megmunkálásában A lézertechnika egyre nagyobb szerepet kap a műanyagok formaadás utáni megmunkálásában; hegesztéshez, vágáshoz, a felület strukturálásához,

Részletesebben

BIZTONSÁGI ADATLAP. 1. Az anyag/készítmény és a vállalat/vállalkozás azonosítása

BIZTONSÁGI ADATLAP. 1. Az anyag/készítmény és a vállalat/vállalkozás azonosítása 1/6 Supralux Konvert rozsdaátalakító alapozó verziószám: 3-HU Utolsó nyomtatás: 2009. 02. 24. BIZTONSÁGI ADATLAP 1. Az anyag/készítmény és a vállalat/vállalkozás azonosítása A készítmény megnevezése: Supralux

Részletesebben

A poliolefinek bemutatása

A poliolefinek bemutatása A pololefnek bemutatása Poletlén és polproplén 1. Szntetkus polmerek 1.1. Osztályozás 1.2. Globáls termelés 2. Pololefnek 2.1. A pololefnek családja 2.2. PE típusok és szerkezetek 2.3. PP típusok és szerkezetek

Részletesebben

Alkímia Ma. az anyagról mai szemmel, a régiek megszállottságával. http://www.chem.elte.hu/alkimia_2015_16 KÖZÉPISKOLAI KÉMIAI LAPOK

Alkímia Ma. az anyagról mai szemmel, a régiek megszállottságával. http://www.chem.elte.hu/alkimia_2015_16 KÖZÉPISKOLAI KÉMIAI LAPOK Alkímia Ma az anyagról mai szemmel, a régiek megszállottságával KÖZÉPISKOLAI KÉMIAI LAPOK ALKÍMIA MA KVÍZ Bozi János Analitikusok a makromolekulák nyomában c. előadásához, 2016. január 28. 1.) A műanyagok

Részletesebben