MTA DOKTORA ÉRTEKEZÉS TÉZISEI. Computational Techniques of the Simplex Method. Írta: Maros István

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MTA DOKTORA ÉRTEKEZÉS TÉZISEI. Computational Techniques of the Simplex Method. Írta: Maros István"

Átírás

1 MTA DOKTORA ÉRTEKEZÉS TÉZISEI Computational Techniques of the Simplex Method Írta: Maros István Budapest, 2004

2

3 1. fejezet Az értekezés célkitűzései, tudományos előzmények A benyújtott értekezés egy kutatási monográfia, amely a Kluwer Academic Publishers kiadásában jelent meg Computational Techniques of the Simplex Method címmel 2003-ban [26]. A könyv a címben megjelölt témakör átfogó tárgyalását adja, amely a szerző idevágó saját tudományos eredményein kívül tartalmazza mások hozzájárulását is. Az új eredmények felsorolásánál (jelen tézisek 3. fejezete) természetesen csak a saját eredmények szerepelnek. Az értekezés fő célja olyan algoritmusok és algoritmikus technikák kidolgozása, amelyek lehetővé teszik igen nagyméretű és nehéz lineáris programozási feladatok megbízható és hatékony megoldását a szimplex módszer segítségével. A lineáris programozási feladatok megoldására először Dantzig adott a gyakorlatban is használható algoritmust, amely a szimplex módszer néven vált ismertté 1951-ben [4]. Ez valójában egy algoritmus család, amelynek számos konkrét realizációját lehet elkészíteni. Ezek közös tulajdonsága, hogy a nagy számításigény miatt csak számítógépre kidolgozott implementációjuk alkalmas a triviálisnál nagyobb méretű feladatok megoldására. Ma már történelmi tény, hogy a számítógépek fejlődését a korai időszakban a lineáris programozás (LP) igényei erősen motiválták. Általánosan elfogadott nézet szerint még az 1980-as évek elején is nemzetközi szinten a gépidő 40 százalékában LP feladatok megoldása folyt. Miután Dantzig módszere a ciklizálás elkerülésére kidolgozott elméleti eljárás után elvileg bármilyen LP feladat megoldására képes, világos, hogy a szimplex módszer további fejlődését elsősorban a magasszintű gyakorlati igények vezérelték. Ennek a tevékenységnek a során azonban igen szép elméleti eredmények, új algoritmusok és algoritmikus technikák születtek. Jelen tézisek szerzője 1970-től kapcsolódott be ebbe a kutatómunkába és elért eredményei 1

4 MAROS Doktori tézisek 2 of 18 alapján 1981-ben kandidátusi fokozatot szerzett. A szakmai közvélemény ekkorra a szimplex módszert érettnek tekintette és a kutatás intenzitása egy időre alábbhagyott. Az 1980-as évek második felében azonban két lényeges dolog történt. Egyrészt, megjelentek a gyakorlatilag is hatékony belsőpontos algoritmusok, másrészt tért hódítottak az egyre jobb és nagyobb kapacitású személyi számítógépek. Ezzel egyidejűleg fontos új alkalmazási területek egyre nagyobb és bonyolultabb LP feladatokkal álltak elő. A kevert egészértékű problémák (MIP) megoldásához LP feladatok sorozatos megoldásán keresztül vezet az út. Itt elsősorban az LP megoldások sebessége és megbízhatósága a követelmény. Nagyméretű LP feladatoknak gyakran van jól definiált struktúrája, főleg azoknak, amelyek dinamikus vagy térben elosztott rendszereket reprezentálnak, illetve amelyek a bizonytalanságot modellezik (sztochasztikus programozás). Az ezeknél használatos dekompozíciós eljárások is LP feladatok sokaságának megoldását igénylik. Ezek mellett sorra jelentek meg az igazi, nem dekomponálható hatalmas méretű feladatok, elsősorban az ipari alkalmazásoknál, de olyan újabb területeken is, mint például távközlés és pénzügyi számítások. Mindezek együttes hatásaként, de elsősorban a belsőpontosokkal való verseny és a MIP feladatok miatt, felélénkült a kutatási tevékenység a szimplex módszer körül. Egy sikeresen működő számítógépes optimalizáló rendszer receptje viszonylag egyszerű: jó algoritmust kell jól implementálni. Mindezt elérni viszont már korántsem ilyen egyszerű. Az implementációs technológia tele van komoly elméleti meggondolásokkal és eredményes művelése több tudományterület tevékeny ismeretét igényli. Ebben rejlik a nagy kihívás. A szerző érdeklődését hamar felkeltették a személyi számítógépekben (PC-kben, vagy ahogy eleinte hívták: mikro számítógépekben) rejlő potenciális lehetőségek az LP szempontjából. Korábbi implementációs ismereteit felhasználva, kidolgozott egy MILP nevű, PC-n működő szimplex alapú LP rendszert. Ennek a munkának sok következménye lett, amelyek bő forrása volt a megvalósítás során szerzett rengeteg tapasztalat. Egy Bokor Józseffel közös cikkben az Alkalmazott Matematikai Lapokban áttekintették a PC-k szerepét az operációkutatásban [27]. Megállapításaikat a későbbi események szépen igazolták ban a MILP részt vett egy nagy nemzetközi összehasonlító vizsgálatban és egy professzionális rendszer (XPRESS-LP) mögött a második legjobbnak bizonyult, megelőzve a többi kereskedelmi és egyetemi kutatási programcsomagot [36; 35]. MILP felkerült különféle listákra és a róla szóló kutatási beszámolókat [16; 17; 18] több helyen (köztük a Mathematical Reviewsban) is idézték. A MILP-en végzett kutatás-fejlesztés mintegy mellékterméke -ként a szerző elkészítette a MINET jelű hálózati szimplex programrendszerét, amely résztvett a DIMACS és az American Mathematical Society által 1992-ben rendezett International Implementation Challenge-en és

5 MAROS Doktori tézisek 3 of 18 ott szignifikánsan jobbnak bizonyult, mint az akkor legjobbnak tartott NETFLO program [20]. A fenti sikerek több összetevőnek voltak köszönhetők. Ebben az időben a szerző a szimplex iteráció két mozzanatát vizsgálta: a belépő változó megválasztását (pricing) és a degeneráció elleni stratégiákat. Először a hálózati szimplex esetére dolgozott ki 1991-ben egy olyan általános pricing eljárást [19], amely az addig ismert eljárásokat speciális esetként tartalmazta, ugyanakkor lehetőséget teremtett tetszőleges, akár a hálózat struktúráját is figyelembevevő új kiválasztási stratégiák megvalósítására. Ezt az eljárást később MILP-ben is adaptálta, amelyről a publikáció azonban csak 2003-ban jelent meg önállóan [23] és a jelen tézisek alapját szolgáló monográfiában [26] is. Ez utóbbiban SIMPRI néven szerepel. A módszer 1995-ben beépült a Mitra által vezetett kutatócsoportnál kidolgozott FortMP [28] programcsomagba is. A degeneráció káros hatásának kiküszöbölésére tett erőfeszítések általában a kilépő vektor (pivot sor) meghatározására koncentráltak, mint például Gal és Geue [7] 1986-ban, valamint Gill és társai [8] 1989-ben. A szerző, Greenberg [11] korábbi gondolataihoz kapcsolódva, azt vizsgálta, hogy lehet eleve olyan belépő vektorokat felismerni, amelyek jobb esélyt jelentenek nem-degenerált iterációk végzésére. Az 1986-ban publikált eredmény [14] negatív, vagyis azokat a vektorokat könnyebb jellemezni amelyekkel csak degenerált lépést lehet megtenni. Ez az ismeret azonban jól hasznosítható, mert amíg van más választás, addig ezeket az oszlopokat el lehet kerülni, mégpedig viszonylag elviselhető számítási többletmunka árán. A hálózati szimplex módszernél viszont a szerző alkalmazott először degeneráció ellenes kilépő eljárást ban [21], ami különösen az első fázisban bizonyult nagyon hatásosnak, lényegében számítási többletmunka nélkül. Ez egy fontos tényező volt a MINET sikeres szereplésében a DIMACS Challenge-en. Ezt követően a szerző az általános szimplex számára kidolgozott ismert degeneráció ellenes pivot meghatározó eljárásokat vetette vizsgálat alá, majd sorra helyezte azokat általános környezetbe és eszközölt javításokat rajtuk. Ezek: Wolfe nagyon fontos, noha többnyire figyelmen kívül hagyott ad hoc módszere 1963-ból [37], Benichou és társai perturbációs módszere 1977-ben az IBM MPSX rendszerben [1], valamint Gill és társai EXPAND eljárása 1989-ben [8]. Mindezek a javítások az értekezésben vannak publikálva először. A szerző 1993 és 1996 között Mitra-val dolgozott a fentebb már idézett ForMP programrendszer fejlesztésén. Ennek keretén belül került sor az induló bázist meghatározó eljárások revíziójára. Egy valamilyen szempontból jó kezdő megoldás jelentősége igen nagy, hiszen az kihatással van a megoldás hatékonyságára. Érdekes módon Orchard-Hays (1968) [34] óta sokáig nem történt lényeges előrelépés ezen a területen. Sőt, Gould és Reid 1989-as, egyébként szépen átgondolt munkája [10] is visszhang nélkül maradt és nem ismeretes, hogy valahol is használnák. Bixby 1993-ben publikálta a CPLEX programcsomagban alkalmazott induló el-

6 MAROS Doktori tézisek 4 of 18 járást, ami máig is szinte az egyetlen részlet, amit erről a programcsomagról tudni lehet. Maros kidolgozott egy szimbolikus triangularizáción alapuló eljárás családot, amit Mitrával több közös publikációban közölt [30; 31; 33]. A módszer lényege egy lehető legnagyobb és ugyanakkor legmegengedettebb, struktúrális oszlopokból álló trianguláris bázis megtalálása. Már az eljárás legegyszerűbb változata is hatásosságban felülmúlta a CPLEX bázist. Maros [33]-ben az eljárás család egy másik lehetséges tagját is kidolgozta, amikoris a triangularitáson kívül a degeneráltság csökkentése a cél. A társszerző hozzájárulása ezekhez a cikkekhez egy successive overrelaxation (SOR) elven alapuló iteratív eljárás, ami numerikusan nehéz feladatok esetén kecsegtet sikerrel egy induló bázis meghatározására. Az 1990-es évek elején a szerző több ízben beszélgetett Terlaky Tamással a duál szimplex módszerről és közösen úgy találták, hogy az el van maradva a primál mögött kidolgozottság és hatásosság szempontjából. Ez a nézet tovább erősödött a FortMP munka kezdeti időszakában amikor a kevert egészértékű feladatok Branch-and-Bound (B&B) módszerrel történő megoldó algoritmusának megtervezése és implementálása került napirendre. A szimplex módszer egyik legerősebb oldala a warm start képesség (indulás tetszőleges bázisról) ami primálra és duálra egyaránt igaz. B&B esetén az egy csomópontban megoldott feladat (node problem) optimális bázisa duál megengedett bázis a két al-feladat (subproblem) számára, így erről indulva rögtön duál második fázissal lehet az al-feladatokat megoldani. Miután ezek csak nagyon kicsit különböznek az aktuális csomóponti feladattól, várhatóan kevés iterációt kell elvégezni, ha a duál módszerrel oldjuk meg a feladatot. A primál módszer használata esetén erre nem lehet számítani, mert ekkor a számítások az első fázisban kezdődnek. A megoldandó feladatok jellemzője, hogy az integritás relaxációja miatt általában nagyon sok egyedi felsőkorlátos változó van bennük. A megoldásra akkoriban a Chvatal által publikált [3] felsőkorlátos duál algoritmust használták. Miután ez elég jól működött, sokáig nem látszott fontosnak egy új duál második fázis algoritmus kidolgozása. Fourer 1994-es keltezésű nem publikált megjegyzései a duálról továbblépést jelentettek volna a Chvatal platformról, de azok kidolgozatlanok voltak és a matematikai programozó közösségnek hosszú ideig nem is volt tudomása róluk. Jelen értekezés szerzője alapos vizsgálatnak vetette alá a duált és először a Chvatal változaton egy kisebb általánosítást hajtott végre (Dual-G [26]-ban), hogy az bármilyen típusú változó esetén helyesen működjön. Ezt követően kidolgozott egy olyan új duál algoritmust (BSD [24]- ben, illetve Dual-GX [26]-ban), amely a drágán előállított transzformált pivot sor többszörös felhasználásán alapul. Ez nemcsak tetszőleges típusú változókat tud algoritmikusan kezelni, hanem minden egyes iterációban a lehető legnagyobb célfüggvény javulást éri el, ami az előzetesen kiválasztott kilépő változó esetén egyáltalán lehetséges. Az algoritmusnak, amellett, hogy

7 MAROS Doktori tézisek 5 of 18 rendkívül hatásosan képes működni, van néhány egyéb kedvező tulajdonsága: igen eredményes tud lenni duál degenerált bázisok esetén és nagyobb numerikus stabilitást tud biztosítani a flexibilis pivot választási lehetőségnek köszönhetően. Az iterációnkénti többletmunka nem jelentős, ha a helyzethez hangolt transzformáló, rendező és listakezelő algoritmusokat használunk az implementáció során. Az idézett publikációkban, de főleg az értekezésben ezek az eljárások pontosan specifikálva vannak. Mindezek alapján az új algoritmus eredményesen használható nemcsak a B&B-n belül, hanem általánosan is, amennyiben ismeretes egy duál megengedett bázis. Nemzetközi fórumon először az 1996 márciusában Mátraházán tartott XIII International Conference on Mathematical Programming találkozón ismertette a szerző az BFD első változatát, ami a B&B-re volt kihegyezve, és ami 1998-ban jelent meg a konferencia proceedingsben [22]. A későbbi változatok több fórum elé kerültek és jelentek meg Research Report-ként mielőtt a szerző publikálta a legutolsó változatot 2003-ban [24], ami az értekezésben is szerepel. Az új duál második fázis eljárás nagy érdeklődést váltott ki és nemcsak FortMP-be és a MILP utódjaként létező HIPLEX-be épült be, hanem, a sok megkeresés tanúsága szerint, jó néhány egyetemi kutatási programba is. A fejlesztők minden esetben igen sikeresnek találták az algoritmust. Közvetett információk szerint a kereskedelmi rendszerek közül is többen átvették ezt az eljárást. Dual-GX sikere kapcsán felmerült a kérdés, lehet-e hasonlóan hatásos duál első fázist kidolgozni egy duál megengedett megoldás megkeresésére? Ez esetben ugyanis a duált a primállal szemben egy teljes értékű, vagy annál akár jobb alternatív algoritmusként lehetne használni tetszőleges típusú feladat esetén. A duál első fázis vizsgálatának a kiindulási pontja ugyanaz volt mint a duál második fázisé: maximálisan kihasználni a drágán meghatározott transzformált pivot sort. Ez előtt viszont még azt is tisztázni kellett, hogy az általánosan felírt feladat esetén mi jellemzi azokat a kilépő jelölteket, amelyekkel a duál megengedettség irányába lehet lépni. Több lehetőség végiggondolása után a szerző kidolgozta a GDPO (General Dual Phase One) algoritmusát, ami az összes felvetésre pozitív választ ad és főbb jellemzői hasonlítanak Dual-GX-re. GDPO minden iterációban a kiválasztott kilépő változóval a lehető legnagyobb előrehaladást teszi meg a duál megengedettség felé. Ez persze nem jelenti azt, hogy esetleg egy másik kilépő esetén nem tudna nagyobb javulást elérni. Éppen ezért fontos egy jó kilépő változó meghatározása, ami az ismert normalizáló pricing módszerekkel érhető el. GDPO is hatásos tud lenni duál degeneráció, illetve numerikusan nehéz feladatok esetén. Lényeges különbség Dual-GX és GDPO között az, hogy míg az előbbi előnyös tulajdonságai akkor mutatkoznak meg látványosan, ha a feladatban

8 MAROS Doktori tézisek 6 of 18 sok egyedi korlátos változó van, addig az utóbbinál ezek akkor jelentkeznek, ha a hagyományos nem-negatív és szabad változókból van sok. GDPO első változatai 1998-ban kezdtek működni és a legutolsó változatot a szerző 2003-ban publikálta [25]. Az értekezésben levő változat az utolsó előtti és csak annyival kevesebb, hogy nem tartalmazza a duál első fázisú árnyékárak transzformációjának opcióját, ami bizonyos körülmények közt előnyösebb lehet, mint az újraszámolás. A GDPO-vel elvégzett kisebb számítási tanulmány [25] jó egyezést mutat az elméleti elvárásokkal. Az eddig ismertetett fő csapás mellett a szerző az algoritmusok számítógépes implementációjának számos egyéb elemét is vizsgálta. A matematikai programozási algoritmusok implementációjának követelményeit először egy Mitra-val közös cikkben tárgyalta [31], amit aztán PhD hallgatójával, Khaliq-kal együtt kibővített és megfogalmazta az optimalizációs software implementációs technológiájának alapjait. Ez volt a XVII EURO konferencián 2000-ben elhangzott semi-plenary előadásának a témája, ami cikk formában is megjelent [29] és részét képezi az értekezésnek is. A szimplex algoritmusban nagyon sok pricing módszer ismeretes. Ezek különböző hatásossággal működnek különféle feladatok esetén. A szerző kidolgozott egy kooperatív parallel keret-algoritmust, aminek segítségével el lehet végezni a pricing módszerek vizsgálatát. A Mitra által biztosított háttér segítségével lefolytatott kísérletek igen érdekes eredményeket hoztak [32]. Az derült ki, hogy egy önmagában egyébként igen szerényen működő pricing módszer is képes a megoldás bizonyos szakaszaiban az összes többinél hatásosabban működni. Ez az észrevétel indokolta, hogy az értekezésbe belekerüljön gyakorlatilag minden pricing technika. A nagyméretű LP feladatok legfontosabb jellemzője a ritkásság. A nem-nullák aránya gyakran jóval 0.1% alatt van. Ezen tulajdonság kihasználása képezi az implementációk hatékonyságának az egyik alapját. Ennek elérésére jól megtervezett adatstruktúrákra és rajtuk definiált műveletekre van szükség. Ehhez a számítástudomány bizonyos eredményeinek újragondolásán és adaptálásán keresztül vezet az út. A fentebb említett, legnagyobb előrehaladást biztosító algoritmusok speciális igényei számára a szerző egy priority queue alapján működő rendező eljárást dolgozott ki és alkalmazott a programjaiban. A kétszeresen láncolt listáknak is elkészítette egy olyan változatát, amely a szimplexben előforduló igények legjobb kielégítésére van hangolva. Ez utóbbi sok algoritmikus elemben is kulcsszerepet játszik és az értekezésben részletesen tárgyalva van. A gyorsítás mértéke könnyen lehet százszoros vagy még annál is több. Megfigyelések azt mutatják, hogy gyakran bizonyos transzformált vektorok is elég ritkásak maradnak. Ezt szintén igen jól ki lehet használni például a transzformált pivot sor meghatározásának felgyorsítására, illetve az árnyékárak transzformálására, amiknek egyébként

9 MAROS Doktori tézisek 7 of 18 nagy a számításigénye. Mindezek feltétele, hogy legyen elegendő hely a feltételi mátrix sor- és oszlopfolytonos tárolására. A gyorsulás mértéke itt is elérheti a harminctól ötvenszerest. A szimplex módszer gyakorlati hatékonyságát, jobb híján, a megoldási idővel szokás jellemezni. Ez persze feltételezi, hogy a feladatot egyáltalán meg tudja oldani, ami nem is mindig nyilvánvaló. Ebből a szempontból mindegy, hogy sok olcsó, vagy kevés drága iterációval sikerült egy megoldást elérni. Miután az algoritmikus elemek legcélravezetőbb kombinációja feladatonként változhat, egy korszerű programcsomagban nagy algoritmikus gazdagságra van szükség, hogy a felmerülő feladatok széles körét hatékonyan tudja megoldani. Ez tette indokolttá, hogy az értekezés mindezekre kitérjen.

10 2. fejezet A tudományos kutatások során alkalmazott módszerek Miután az értekezés fő célja a szimplex módszer olyan változatainak a kidolgozása, amelyek lehetővé teszik igen nagyméretű és nehéz lineáris programozási feladatok megbízható és hatékony megoldását, szükséges volt a módszer minden egyes elemének az alapos vizsgálatára és revíziójára. Valójában még ennél is többről volt szó, hiszen olyan elemeket is meg kellett vizsgálni, amelyek a szimplex módszer elméleti változatában nem is szerepelnek, mint például LP előfeldolgozás (presolve), normálás, jó kezdő megoldás meghatározása. Noha az ma már általánosan elfogadott tény, hogy egy elméleti algoritmus számítógépes implementációja igen komoly intellektuális erőfeszítést igényel, az már korántsem nyilvánvaló, hogy ezt hogyan lehet megvalósítani. A kutatás során az derült ki, hogy a sikerhez az LP esetén a következő szakterületek mély ismerete és alkotó továbbművelése vagy adaptációja szükséges: (a) matematikai algoritmusok, (b) a számítástudomány néhány területe, (c) modern software engineering, (d) numerikus analízis és (e) a modern számítógépek architektúrája. A kutatás során alkalmazott vizsgálati módszerek az operációkutatás és az informatika tudományok által használt módszertant követték. Az eredmények kisebb része született deduktív úton, nagyobb részük pedig induktív módon a tapasztalat következtetés paradigma alapján, azonban ilyenkor is minden esetben matematikailag korrekt algoritmusok születtek. A vizsgálatok elvégzéséhez a szerző kifejlesztett egy MILP nevű, szimplex alapú LP programcsomagot. Ez volt az algoritmusok kipróbálásának az környezete. Az itt szerzett tapasztalatok felhasználásával fejlesztette tovább az algoritmusokat és ellenőrizte, hogy azok milyen mértékű javulást eredményeznek a korábban használt eljárásokkal szemben. A kísérleteket elsősorban az általánosan elfogadottò ØлÐÔ» Ø ésò ØлÐÔ» Ø» ÒÒ Ò ØÓÒLP teszt 8

11 MAROS Æ Ñ ÊÓÛ ÓÐ ÆÓÒÞ ÖÓ Doktori Ê tézisek ÇÔØ Ñ ÐÎ ÐÙ 9 of 18 feladattárak nagyméretű feladatain, valamint számos egyéb feladaton végezte. Ê Æ ¼ Í Æ ¾¾ ½ ¼ Néhány adat ¾ ½ ½ ¾ ¼ º ¾ ¾½ ¼ ¾ ¼ a nagyobbò ØлÐÔ» Ø feladatok ¼ ¾ ¾ ¼ ½ ¹ º¾ ¾ ¼ ¼ ¼ ¹ º ¾ ¼¼¼¼¼ ¼¾ méretének az érzékeltetésére: ÁÌ¾È Å ÊÇË¹Ê ÈÁÄÇÌ ËÌÇ ÇÊ ½ ½ ¼¼½½ ¾ ½ ¾¼ ½ ¼ ½ ½½¾¼ ¼ ¼¼ ¼ ¹ º ½ ¼ º ¾ ¾ ¾ ¼ º¼½ ½¼ ¾ ¾ ¼¾ ½º ½ ½ ¼ Æ Ñ ÖÓÛ ÓÐÙÑÒ ÒÓÒÞ ÖÓ ÓÙÒ ÓÔØ Ñ ÐÚ ÐÙ illetve à ƹ½ Ê ¹ Ê ¹ ¾ ¼ ¾ ½¾ ¾ ¾ ¾ ¾º ¼ ¼ ¾º ½¾ ¼ ¼ néhány ¾ aò ØлÐÔ» Ø» ÒÒ Ò ØÓÒfeladattárból: ÇË ¹ ¼ È Ë¹½¼ È Ë¹¾¼ ½¼¾ ½¾ ¾ ½ ½¼ ¾ ¾ ½ ¼ ½ ½ ¼¼ ¼ ½ ½ ½ ½ ¼ ¹½º¼¾ ½¼ º¼ ¼ ¾ ¼ ¾º ¾ ¼ ½¼ ¾º ¾½ ½¼ Ez utóbbiak nagyobb méretűek, de algoritmikusan valamivel könnyebbek. A vizsgálatok kiterjedtek az új matematikai algoritmusokra (operációkutatás), az adaptált rendező eljárásokra, célirányosan kifejlesztett listakezelő algoritmusokra (számítástudomány), programozástechnikai alternatívákra (software engineering), numerikus tulajdonságok ellenőrzésére (numerikus analízis), valamint a hardware lehetőségek kihasználására (hardware). A fentiek közül egyedül a speciális rendező eljárások nem szerepelnek explicit módon tárgyalva az értekezésben. A felsorolt eredmények nagy többségét a szerző egyedül érte el. Ettől eltérő esetben a társszerzők meg vannak nevezve.

12 3. fejezet Az értekezésben közölt új tudományos eredmények tételes listája A könyv a címben megjelölt témakör átfogó vizsgálatát tűzte ki célul. Ez egy új megközelítés, mivel ilyen jellegű mű, a könyvről eddig megjelent recenziók tanúsága szerint, még nem állt rendelkezésre a szakirodalomban. Az átfogó jelleg miatt szerepelnek benne olyan eredmények is, amelyeket nem a szerző ért el. Ezek nincsenek feltüntetve az alábbi felsorolásban. Vannak továbbá olyan eredmények is, amelyeket ugyan a szerző ért el, de ezek a kandidátusi fokozat megszerzésével kapcsolatosak. Ezen eredmények azonban vagy továbbfejlesztve, vagy újszerű megvilágításban jelennek meg a könyvben. Az egyértelműség érdekében ezek külön felsorolásban szerepelnek. A könyv első részében, az elméleti háttér tárgyalásakor számos tétel és bizonyítás szerepel. Ezek nem tartalmaznak új eredményeket. Ugyanakkor ezek egységes keretbe foglalása újszerű és a későbbi vizsgálatokhoz nélkülözhetetlen. Az új eredmények, amelyek nagyrészt (de nem kizárólagosan) algoritmusok formájában jelennek meg, többségében a mű második részében találhatók Új tudományos eredmények 1. A szerző eredménye a legáltalánosabban felírt LP feladatnak a számítási célokra alkalmas alakjai közül a Computational form #2 bevezetése (1.2.2 szakasz, oldal), a Computational form #1 Orchard-Hays-től eltérő definiálása (1.2.1 szakasz, 5 13 oldal) és a Yet another formulation (1.3.2 szakasz, oldal) számítástechnikai tulajdonságainak elemzése. 10

13 MAROS Doktori tézisek 11 of A szerző eredménye az Artificial Elimination Procedure (2.2.4 szakaszban, oldal), amely egy algoritmust ad arra, hogy a standard LP feladat módosított szimplex módszerrel történő megoldása során, degeneráció esetén, hogyan lehet a mesterséges változókat eliminálni a bázisból. 3. A szerző fogalmazza meg először a lineáris programozási software kívánatos tulajdonságait, amelyek azonban messze túlmutatnak ezen a körön és tetszőleges optimalizációs software esetére érvényesek (4. fejezet bevezetése és 4.1 szakasz, oldal). 4. A szerző, M. H. Khaliq PhD hallgatójával közösen [29] megmutatja, hogy néhány fontos hardware tulajdonságot hogyan lehet kihasználni az LP software hatékonyságának növelésére (cache memory, pipelining, branch prediction) és tárgyal néhány programozástechnikai megoldást is (4.2 szakasz, oldal). 5. A láncolt listák (linked lists) alapvető szerepet tudnak játszani a szimplex módszer különböző részeinek a hatékonyságában. A szerző kidolgozott és részletesen bemutat egy olyan eljárást a kétszeresen láncolt listák kezelésére, amelyet a szimplex módszeren belül (de számos egyéb optimalizáló eljárásban is) igen előnyösen lehet használni és ami egyben alapját képezi számos későbbi LP algoritmus és algoritmikus elem rendkívül gyors működésének (5.5 szakasz, oldal). 6. Az előző részekben kidolgozott technikák alapján a szerző megmutatja, hogyan lehet az inverz szorzatalakját (product form of the inverse, PFI) meghatározó algoritmust hatékonyan implementálni (8.1.3 szakasz, oldal). Ugyanez a gondolat könnyen adaptálható az inverz LU formáját meghatározó algoritmus esetére is. 7. A szakasz ( oldal) egy fontos észrevételt tartalmaz a BTRAN műveletre vonatkozóan, amely a használatával kapcsolatos számítási munka becslésének az alapjául szolgál. A szerző ennek az észrevételnek alapján a később bevezetett algoritmusokban a transzformálandó vektor ritkásságának mértékét figyelembevevő alternatív megoldásokat mutat be. 8. A szerző új tárgyalást ad a CF#1-nek megfelelő általános LP feladat optimalitási kritériumára és annak bizonyítására (9.2 szakasz, oldal). 9. A szerző új tárgyalást és algoritmikus leírást ad a primál szimplex második fázisának hányadostesztjére CF#1 esetén, majd ezt általánosítja CF#2-re (9.3, és szakaszok, oldal).

14 MAROS Doktori tézisek 12 of A primál második fázis hányadostesztjének számítástechnikai elemzése során megadja a Harris-féle hányadosteszt egy módosítását, amely numerikusan ugyanolyan kedvező, de algoritmikusan hatékonyabb (9.3.4 szakasz, oldal). 11. A szerző részletesen tárgyalja az árnyékárak transzformációjának ismert módjait, de azok számítástechnikai elemzését is megadja, majd megmutatja, hogy a műveletben szereplő vektorok gyakori ritkásságát kihasználva hogyan lehet a transzformációt jelentősen felgyorsítani (9.4.2 szakasz, oldal). 12. A szerző eddig nem publikált részletekbe menően tárgyalja a Goldfarb és Reid által javasolt, majd Forrest és Goldfarb által továbbfejlesztett steepest edge [9; 5] oszlopkiválasztási technikát. Ezáltal nemcsak a jobb megértést segíti elő, hanem jól megvilágítja a technika hasznossági feltételeit. Végül a szerző megadja a módszer számítástechnikai elemzését, ami a hatékony implemetáció alapjául szolgál ( szakasz, oldal). 13. A szakaszban a szerző egy új általános oszlopkiválasztási algoritmust (SIMPRI) mutat be, amely számos ismert oszlopkiválasztási módszert speciális esetként tartalmaz és amelynek a segítségével újabb stratégiák tervezhetők. Megadja az algoritmus helyességének a bizonyítását is ( oldal). 14. A szerző a szakaszban általánosítja és módosítja Wolfe ad hoc módszerét a degenerációs ciklizálás és stalling elkerülésére. A módosítás eredményeként a későbbi degenerált lépések valószínűsége csökken ( oldal). 15. A szakaszban a szerző általánosítja és módosítja, ezáltal hatékonyabbá teszi a Gill és társai által javasolt EXPAND eljárást [8] a degenerációs ciklizálás és stalling elkerülésére ( oldal). 16. A szakaszban a szerző megfogalmaz egy általános perturbációs sémát (242 oldal). 17. A Benichou és társai által publikált perturbációs technikát [1], amely az IBM MPSX programcsomagja számára készült, a szerző a szakaszban módosítja, ami az eljárás hatékonyságának növekedését eredményezi ( oldal). 18. A szakaszban a szerző egy új induló-bázis meghatározó algoritmust mutat be (CRASH(LTSF)), ami nemcsak a bázis triangularitására, hanem annak minél nagyobb fokú megengedettségére is törekszik. Az algoritmus rendkívül nagy sebességgel tud működni a korábban bevezetett kétszeresen láncolt listák segítségével ( oldal).

15 MAROS Doktori tézisek 13 of 18 Különféle (a műben nem részletezett) módosításokkal ez egy algoritmus családnak tekinthető, amely még a legegyszerűbb változatában is eredményesebbnek bizonyult az ún. CPLEX bázisnál, amint az a szerző Mitra-val közös cikkéből kiderül [33]. 19. A szerző újszerű, eddig még nem publikált módon tárgyalja a duál megengedettséget CF#1-re és CF#2-re (10.1 szakasz, oldal). 20. A szerző egy egyszerű általánosítását adja Chvatal felsőkorlátos duál algoritmusának, aminek eredménye a Dual-G algoritmus ( szakasz, oldal). 21. A szerző a szakaszokban ( oldal) megfogalmaz egy duál második fázis eljárást, amelyre DUAL-GX néven hivatkozik. Ez akár CF#1-re és CF#2-re is alkalmazható és a hagyományosan használt algoritmusok általánosításának tekinthető. A szerző megadja a hatékony implementáció feltételeit is. Az algoritmus jellemzője, hogy egy iterációban sok hagyományos iterációt tud elvégezni minimális számítási többlet munka árán. Sokkal hatékonyabb tud lenni duál degenerált bázisok és numerikusan nehéz feladatok esetén. Különösen a kevert egészértékű feladatok branch-and-bound típusú eljárásokkal történő megoldása esetén mutatkoznak meg előnyös tulajdonságai (amikoris sok felsőkorlátos változó van a feladatban), azonban egyéb feladatok megoldása során is rendszeresen és lényegesen felülmúlja a hagyományos verziókat. Erre vonatkozó néhány tapasztalat [24]-ben található. Az algoritmus alapjai a szerző egy korábbi cikkében [22] fogalmazódtak meg. 22. Az egész 10.4 szakasz a szerző által kidolgozott új duál első fázis eljárás részletes tárgyalásának van szentelve ( oldal). Az algoritmus, amely GDPO néven szerepel, egyaránt alkalmas CF#1-re és a bemutatott minimális kiegészítéssel CF#2-re is. A hatékony implementáció feltételei is meg vannak adva. Bár GDPO alapjaiban más, mint DUAL-GX, mégis sok hasonló tulajdonsága van. Ugyanúgy sok hagyományos iterációt tud végrehajtani egyetlen iteráció során (kevés többlet munka árán), adaptív módon képes hatékonyan működni duál degenerált, illetve numerikusan nehéz feladatok esetén. Lényeges különbség, hogy GDPO igazi ereje akkor mutatkozik meg amikor a feladatban a kevéssé korlátozott változók vannak többségben. A korlátozott változók aò ØлÐÔ» Ø kezelése ugyanis triviális a duál első fázisban. Néhány számítási tapasztalat a szerző [25] cikkében található, amelyek jó egyezésben vannak az elméleti elvárásokkal. 23. Optimalizáló algoritmusok eredményes fejlesztéséhez elengedhetetlenül fontos, hogy jó tesztfeladatok álljanak rendelkezésre. A szerző nemcsak használta

16 MAROS Doktori tézisek 14 of 18 feladatárat, hanem hozzá is járult annak tanulságos feladatokkal való bővítéséhez. Ezek a feladatokñ ÖÓ ºÑÔ,Ñ ÖÓ ¹Ö ºÑÔ ésñó Þ ½ºÑÔ néven kerültek bele a tárba és számos fejlesztő tudott javítani a rendszerén ezeknek a feladatoknak a segítségével. Néhány figyelemreméltó példa: CPLEX [2], AMPL [6], LINPROG [12]. Mindhárom feladat rendszeresen szerepel az újabb publikációk tesztelési eredményeket bemutató táblázataiban. 24. A kísérletekhez és az új eljárások ellenőrzéséhez szükség volt egy komoly programrendszer létrehozására. A szerző által kifejlesztett szimplex implementáció 1985-től 1996-ig MILP néven szerepelt, majd egy jelentősebb átdolgozás után 1996 óta HIPLEX néven ismeretes. MILP a második legjobbnak bizonyult egy R. Sharda által lefolytatott összehasonlító vizsgálat [36] eredményeként. A vizsgálatban az akkor létező minden komolyabb, PC-re készült LP programcsomag részt vett. Az eredményeket Thiriez is idézi. [35]. A MILP-pel kapcsolatos fejlesztés mintegy mellékterméke -ként készült el a MINET nevű hálózati szimplex algoritmus és program, amely a DIMACS és a American Mathematical Society által 1992-ben rendezett International Implementation Challenge-en szignifikánsan jobbnak bizonyult, mint az akkor legjobbnak tartott NETFLO program [20] Korábbi eredmények továbbfejlesztése 1. A szerző az általa korábban javasolt primal első fázis eljárást [14] a 9.6 szakaszban továbbfejleszti és általánosítja CF#2-re, részletesen bemutatja az eljárás előnyös számítástechnikai tulajdonságait és megadja a hatékony működéshez szükséges implementációs feltételeket ( oldal). 2. A szerző korábbi eredménye egy adaptíve composite első fázis eljárás [14], aminek kidolgozta egy alternatív változatát [15] és amely az értekezés szakaszában található ( oldal). 3. A szerző korábbi eredménye [13] az a degeneráció ellenes trianguláris indulóbázis meghatározó algoritmus, amely most CRASH(ADG) néven van hivatkozva. Az algoritmuson végrehajtott néhány módosítás és a használati feltételek tisztázása tekinthető újdonságnak ([33] és az értekezés szakasza, oldal).

17 Irodalomjegyzék [1] M. BENICHOU, J. GAUTIER, G. HENTGES, AND G. RIBIERE, The efficient solution of large-scale linear programming problems, Mathematical Programming, 13 (1977), pp [2] R. E. BIXBY, Private communications, [3] V. CHVÁTAL, Linear Programming, Freeman Press, New York, [4] G. DANTZIG, Maximization of a linear function of variables subject to linear inequalities, in Activity analysis of production and allocation, T. Koopmans, ed., Wiley, New York, 1951, pp [5] J. FORREST AND D. GOLDFARB, Steepest edge simplex algorithms for linear programming, Mathematical Programming, 57 (1992), pp [6] R. FOURER AND D. GAY, Experience with a Primal Presolve Algorithm, Numerical Analysis Manuscript 93 06, AT&T Bell Laboratiories, Murray Hill, NJ, USA, April [7] T. GAL AND F. GEUE, A new pivoting rule for various degeneracy problems, Operations Research Letters, 11 (1992), pp [8] P. GILL, W. MURRAY, M. SAUNDERS, AND M. WRIGHT, A Practical Anti Cycling Procedure for Linearly Constrained Optimization, Mathematical Programming, 45 (1989), pp [9] D. GOLDFARB AND J. REID, A Practicable Steepest-Edge Simplex Algorithm, Mathematical Programming, 12 (1977), pp [10] N. GOULD AND J. REID, New crash procedures for large systems of linear constraints, Mathematical Programming, 45 (1989), pp

18 MAROS Doktori tézisek 16 of 18 [11] H. GREENBERG, Pivot selection tactics, in Design and Implementation of Optimization Software, H. Greenberg, ed., NATO ASI, Sijthoff and Nordhoff, 1978, pp [12] P. KIRKEGAARD AND P. E. GRONHEIT, LINPROG A Linear Programming Solver, Research Report Risø R 707(EN), Risø National Laboratory, Roskilde, Denmark, June [13] I. MAROS, Adaptív módszerek a lineáris programozásban, II., Alkalmazott Matematikai Lapok, 7 (1981), pp [14], A general Phase I method in linear programming, European Journal of Operational Research, 23 (1986), pp [15], A multicriteria decision problem within the simplex method, in Mathematical Models for Decision Support, G. Mitra, ed., Springer Verlag, 1988, pp [16], MILP linear programming optimizer for personal computers under DOS, Preprints in Optimization, tech. report, Institute of Applied Mathematics, Braunschweig University of Technology, Braunschweig, Germany, September pages. [17], MILP Linear Programming System, User s Guide for Version V3.40, Computer and Automation Institute (MTA SZTAKI), Budapest, Hungary, January In Hungarian. [18], MILP linear programming optimizer for personal computers under DOS, Research Report 41, Computer and Automation Institute (MTA SZTAKI), Budapest, Hungary, pages. [19], A structure exploiting pricing procedure for network linear programming, Research Report 18 91, RUTCOR, Rutgers University, NJ, USA, May pages. [20], Performance evaluation of the MINET minimum cost netflow solver, in Network Flows and Matching: DIMACS Implementation Challenge, D. Johnson and C. McGeogh, eds., American Mathematical Society, 1993, pp [21], A practical anti-degeneracy row selection technique in network linear programming, Annals of Operations Research, 47 (1993), pp [22], A Piecewise Linear Dual Procedure in Mixed Integer Programming, in New Trends in Mathematical Programming, R. S. F. Giannesi and S. Komlosi, eds., Kluwer Academic Publishers, 1998, pp

19 MAROS Doktori tézisek 17 of 18 [23], A General Pricing Scheme for the Simplex Method, Annals of Operations Research, 124 (2003), pp [24], A Generalized Dual Phase-2 Simplex Algorithm, European Journal of Operational Research, 149 (2003), pp [25], A Piecewise Linear Dual Phase-1 Algorithm for the Simplex Method, Computational Optimization and Applications, 26 (2003), pp [26], Computational Techniques of the Simplex Method, vol. 61 of International Series in Operations Research and Management, Kluwer Academic Publishers, Boston, xx pages, Research monograph. [27] I. MAROS AND J. BOKOR, Személyi számítógépek hatása az operációkutatásra, Alkalmazott Matematikai Lapok, 14 (1989), pp [28] I. MAROS, E. ELLISON, M. HAJIAN, R. LEVKOVITZ, G. MITRA, AND D. SAYERS, FortMP Manual, Department of Mathematics and Statistics, Brunel University, London and NAG, Oxford, May Latest revised version: V3.0 in June [29] I. MAROS AND M. H. KHALIQ, Advances in Design and Implementation of Optimization Software, European Journal of Operational Research, 140 (2002), pp [30] I. MAROS AND G. MITRA, Finding Better Starting Bases for the Simplex Method, in Operations Research Proceedings 1995, P. K. et al., ed., Springer Verlag, 1996, pp [31], Simplex Algorithms, in Advances in Linear and Integer Programming, J. Beasley, ed., Oxford University Press, 1996, pp [32], Investigating the Sparse Simplex Algorithm on a Distributed Memory Multiprocessor, Parallel Computing, 26 (2000), pp [33], Strategies for creating advanced bases for large-scale linear programming problems, INFORMS Journal on Computing, 10 (Spring 1998), pp [34] W. ORCHARD-HAYS, Advanced Linear-Programming Computing Techniques, McGraw- Hill, New York, [35] H. THIRIEZ, OR Software, European Journal of Operational Research, 39 (1989), pp

20 MAROS Doktori tézisek 18 of 18 [36] E. WASIL, B. GOLDEN, AND R. SHARDA, Mathematical Programming Software on Microcomputers: Recent Advances, Directions and Trends, in Impact of Recent Advances in Computers on Operations Research, R. Sharda, B. Golden, E. Wasil, O. Balci, and W. Stewart, eds., Elsevier, 1989, pp [37] P. WOLFE, A technique for resolving degeneracy in linear programming, SIAM Journal of Applied Mathematics, 11 (1963), pp

Keverési modellek. Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása

Keverési modellek. Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása Illés Tibor Keverési modellek Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása Keverési modellek matematikai jellemzői Nemlineáris sokszor nem konvex optimalizálási

Részletesebben

Publikációs lista. Gódor Győző. 2008. július 14. Cikk szerkesztett könyvben... 2. Külföldön megjelent idegen nyelvű folyóiratcikk...

Publikációs lista. Gódor Győző. 2008. július 14. Cikk szerkesztett könyvben... 2. Külföldön megjelent idegen nyelvű folyóiratcikk... Publikációs lista Gódor Győző 2008. július 14. Cikk szerkesztett könyvben... 2 Külföldön megjelent idegen nyelvű folyóiratcikk... 2 Nemzetközi konferencia-kiadványban megjelent idegen nyelvű előadások...

Részletesebben

műszaki tudomány doktora 1992 Beosztás: stratégiai tanácsadó, tudományos tanácsadó Munkahelyek: Nokia -Hungary kft Veszprémi Egyetem

műszaki tudomány doktora 1992 Beosztás: stratégiai tanácsadó, tudományos tanácsadó Munkahelyek: Nokia -Hungary kft Veszprémi Egyetem Név: Tarnay Katalin Születési adatok: Nyiregyháza, 1933. május 8 Legmagasabb tudományos fokozat, és elnyerésének éve: műszaki tudomány doktora 1992 Beosztás: stratégiai tanácsadó, tudományos tanácsadó

Részletesebben

Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml

Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml Szakmai önéletrajz 1.1 Személyes adatok: Nevem: Kovács Edith Alice Születési idő, hely: 1971.05.18, Arad Drótposta: kovacsea@math.bme.hu ; edith_kovacs@yahoo.com ; Honlapom: http://www.math.bme.hu/diffe/staff/kovacse.shtml

Részletesebben

Opponensi vélemény. Fullér Róbert: Multicriteria Decision Models with Imprecise Information. című akadémiai doktori értekezéséről

Opponensi vélemény. Fullér Róbert: Multicriteria Decision Models with Imprecise Information. című akadémiai doktori értekezéséről Opponensi vélemény Fullér Róbert: Multicriteria Decision Models with Imprecise Information című akadémiai doktori értekezéséről Az értekezés témája a többkritériumú döntési modellek, a fuzzy rendszerek

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra

Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra Systeemitekniikan Laboratorio Dinamikus programozás alapú szivattyú üzemvitel optimalizálási technikák (főként) kombinatorikus vízműhálózatokra Bene József HDR, Dr. Hős Csaba HDR, Dr. Enso Ikonen SYTE,

Részletesebben

Publikációs lista. Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék

Publikációs lista. Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék Publikációs lista Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék Folyóirat cikkek: E. Miletics: Energy conservative algorithm for numerical solution of ODEs

Részletesebben

A k-szerver probléma

A k-szerver probléma Bevezetés A k-szerver probléma Imreh Csanád SZTE, Informatikai Tanszékcsoport 6720, Szeged, Árpád tér 2. Email: cimreh@inf.u-szeged.hu A gyakorlatban gyakran fordulnak elő olyan optimalizálási feladatok,

Részletesebben

Diszkrét, egészértékű és 0/1 LP feladatok

Diszkrét, egészértékű és 0/1 LP feladatok Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok

Részletesebben

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Doktori (PhD) értekezés tézisei Irányítási struktúrák összehasonlító vizsgálata Tóth László Richárd Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Témavezetők: Dr. Szeifert Ferenc Dr.

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN

SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN SZOFTVEREK A SORBANÁLLÁSI ELMÉLET OKTATÁSÁBAN Almási Béla, almasi@math.klte.hu Sztrik János, jsztrik@math.klte.hu KLTE Matematikai és Informatikai Intézet Abstract This paper gives a short review on software

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

LINEÁRIS PROGRAMOZÁSI PROGRAMOK TESZTELÉSE TESTING LINEAR PROGRAMMING SOLVERS. Illés Tibor 1, Nagy Adrienn 2

LINEÁRIS PROGRAMOZÁSI PROGRAMOK TESZTELÉSE TESTING LINEAR PROGRAMMING SOLVERS. Illés Tibor 1, Nagy Adrienn 2 LINEÁRIS PROGRAMOZÁSI PROGRAMOK TESZTELÉSE TESTING LINEAR PROGRAMMING SOLVERS Illés Tibor 1, Nagy Adrienn 2 1 Department of Management Science, University of Strathclyde, Glasgow 2 Neumann János Informatikai

Részletesebben

Logisztikai mérnök záróvizsga tételsor Módosítva 2014. június 3.

Logisztikai mérnök záróvizsga tételsor Módosítva 2014. június 3. Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)

Részletesebben

JÓVÁHAGYÁS. szervezet. Név Dr. Szakonyi Lajos KPI Oktatási Minisztérium

JÓVÁHAGYÁS. szervezet. Név Dr. Szakonyi Lajos KPI Oktatási Minisztérium Projektvezető JÓVÁHAGYÁS Közreműködő szervezet Irányító Hatóság Név Dr. Szakonyi Lajos KPI Oktatási Minisztérium Beosztás Dátum Aláírás tanszékvezető főiskolai docens 2009. április 1A. PROJEKT AZONOSÍTÓ

Részletesebben

Load-flow jellegű feladat a villamos rendszerirányításban

Load-flow jellegű feladat a villamos rendszerirányításban NASZVADI PÉTER Load-flow jellegű feladat a villamos rendszerirányításban TDK dolgozat 2006 Előszó: Adott egy (villamosenergiaellátást biztosító) villamoshálózat, és ezen hálózathoz csatlakozó energiatermelők

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások

A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások MISKOLCI EGYETEM DOKTORI (PH.D.) TÉZISFÜZETEI HATVANY JÓZSEF INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások Készítette:

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."

A tízezer mérföldes utazás is egyetlen lépéssel kezdődik. "A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:

Részletesebben

Szakmai zárójelentés

Szakmai zárójelentés Szakmai zárójelentés A csoporttechnológia (Group Technology = GT) elvi és módszertani alapjaihoz, valamint a kapcsolódó módszerek informatikai alkalmazásaihoz kötődő kutatómunkával a Miskolci Egyetem Alkalmazott

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

TÁVOKTATÁSI TANANYAGOK FEJLESZTÉSÉNEK MÓDSZERTANI KÉRDÉSEI

TÁVOKTATÁSI TANANYAGOK FEJLESZTÉSÉNEK MÓDSZERTANI KÉRDÉSEI TÁVOKTATÁSI TANANYAGOK FEJLESZTÉSÉNEK MÓDSZERTANI KÉRDÉSEI A távoktatási forma bevezetése és eredményességének vizsgálata az igazgatásszervezők informatikai képzésében DOKTORI ÉRTEKEZÉS TÉZISEI dr. Horváth

Részletesebben

Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával

Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával Pannon Egyetem Vegyészmérnöki Tudományok és Anyagtudományok Doktori Iskola Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával DOKTORI (Ph.D.) ÉRTEKEZÉS

Részletesebben

Új projekt ütemezési módszerek a termelés-tervezés támogatására

Új projekt ütemezési módszerek a termelés-tervezés támogatására OTKA szakmai beszámoló Új projekt ütemezési módszerek a termelés-tervezés támogatására ELE 046509 Témavezető: Dr. Váncza József zárójelentés 2006 1. Az elvégzett munka és az elért eredmények rövid ismertetése

Részletesebben

A KUTATÁS EREDMÉNYEI ZÁRÓJELENTÉS 2004-2006.

A KUTATÁS EREDMÉNYEI ZÁRÓJELENTÉS 2004-2006. ÖNELLENŐRZÉS ÉS FUTÁSIDEJŰ VERIFIKÁCIÓ SZÁMÍTÓGÉPES PROGRAMOKBAN OTKA T-046527 A KUTATÁS EREDMÉNYEI ZÁRÓJELENTÉS 2004-2006. Témavezető: dr. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Tevékenység szemléletű tervezés magyarországi felsőoktatási intézmények pályázataiban

Tevékenység szemléletű tervezés magyarországi felsőoktatási intézmények pályázataiban Tevékenység szemléletű tervezés magyarországi felsőoktatási intézmények pályázataiban SÜVEGES Gábor Béla Miskolci Egyetem, Gazdaságtudományi Kar, Miskolc stsuveges@uni-miskolc.hu Az utóbbi években egyre

Részletesebben

Esettanulmányok a WINGDSS szoftverrel

Esettanulmányok a WINGDSS szoftverrel Budapesti Közgazdaságtudományi és Államigazgatási Egyetem MTA Számítástechnikai és Automatizálási Kutató Intézetébe kihelyezett Gazdasági Döntések Tanszék Rapcsák Tamás Többszempontú döntési problémák

Részletesebben

E.-Nagy Marianna. Adjunktus, Differenciálegyenletek Tanszék Matematika Intézet, Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem

E.-Nagy Marianna. Adjunktus, Differenciálegyenletek Tanszék Matematika Intézet, Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem Önéletrajz E.-Nagy Marianna Személyi adatok Név: Születési név: Publikációs név: Eisenberg-Nagy Marianna Nagy Marianna E.-Nagy Marianna Születési hely, idő: Moszkva, Szovjetunió; 1981.06.05. Állampolgárság:

Részletesebben

(1939. január 3. 2008. június 11.)

(1939. január 3. 2008. június 11.) Alkalmazott Matematikai Lapok 26 (2009), 143-149. STAHL JÁNOS (1939. január 3. 2008. június 11.) Amikor Stahl János jellegzetes alakját felidézzük a kés bb született olvasó számára, akkor fel kell idéznünk

Részletesebben

A kutatás-fejlesztés minősítése a Szellemi Tulajdon Nemzeti Hivatalában

A kutatás-fejlesztés minősítése a Szellemi Tulajdon Nemzeti Hivatalában A kutatás-fejlesztés minősítése a Szellemi Tulajdon Nemzeti Hivatalában dr. Németh Gábor igazgató Szellemi Tulajdon Nemzeti Hivatala Innovációs és Tájékoztatási Központ Dunaharaszti, 2012. március 22.

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Globális optimalizálási algoritmusok intervallum korlátos feladatokra

Globális optimalizálási algoritmusok intervallum korlátos feladatokra Globális optimalizálási algoritmusok intervallum korlátos feladatokra Doktori értekezés tézisei Pál László Témavezet : Dr. Csendes Tibor egyetemi tanár Szegedi Tudományegyetem Informatika Doktori Iskola

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

1. Katona János publikációs jegyzéke

1. Katona János publikációs jegyzéke 1. Katona János publikációs jegyzéke 1.1. Referált, angol nyelvű, nyomtatott publikációk [1] J.KATONA-E.MOLNÁR: Visibility of the higher-dimensional central projection into the projective sphere Típus:

Részletesebben

A HIBRID LINEÁRIS LÉPTET MOTOR HATÉKONYSÁGÁNAK NÖVELÉSI MÓDOZATAIRÓL

A HIBRID LINEÁRIS LÉPTET MOTOR HATÉKONYSÁGÁNAK NÖVELÉSI MÓDOZATAIRÓL A HIBRID LINEÁRIS LÉPTET MOTOR HATÉKONYSÁGÁNAK NÖVELÉSI MÓDOZATAIRÓL Szabó Loránd - Ioan-Adrian Viorel - Józsa János Kolozsvári M szaki Egyetem, Villamos Gépek Tanszék 3400 Kolozsvár, Pf. 358. e-mail:

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015 A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,

Részletesebben

Kémiai és bioipari adatrendszerek és folyamatok minőségellenőrzésének informatikai eszközei. Viczián Gergely

Kémiai és bioipari adatrendszerek és folyamatok minőségellenőrzésének informatikai eszközei. Viczián Gergely Ph.D. értekezés tézisei Kémiai és bioipari adatrendszerek és folyamatok minőségellenőrzésének informatikai eszközei Viczián Gergely okleveles villamosmérnök-közgazdász Témavezető: Kollárné Dr. Hunek Klára

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 KONFERENCIA ELŐADÁSAI Nyíregyháza, 2010. május 19. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010.

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. ZÁRÓJELENTÉS szakmai beszámoló OTKA-azonosító: 63591 Típus: K Szakmai jelentés: 2010. 04. 02. Vezető kutató: Illés Béla Kutatóhely: Anyagmozgatási és

Részletesebben

A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom

A szoftver-folyamat. Szoftver életciklus modellek. Szoftver-technológia I. Irodalom A szoftver-folyamat Szoftver életciklus modellek Irodalom Ian Sommerville: Software Engineering, 7th e. chapter 4. Roger S. Pressman: Software Engineering, 5th e. chapter 2. 2 A szoftver-folyamat Szoftver

Részletesebben

MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI

MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI Mikoviny Sámuel Földtudományi Doktori Iskola A doktori iskola vezetője: Dr. h.c. mult. Dr. Kovács Ferenc egyetemi tanár, a MTA rendes tagja MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI TULAJDONSÁGAINAK VIZSGÁLATA,

Részletesebben

A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál

A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál 1 A szárazmegmunkálás folyamatjellemzőinek és a megmunkált felület minőségének vizsgálata keményesztergálásnál A keményesztergálás, amelynél a forgácsolás 55 HRC-nél keményebb acélon, néhány ezred vagy

Részletesebben

A kutatás-fejlesztés minősítése a Szellemi Tulajdon Nemzeti Hivatalában

A kutatás-fejlesztés minősítése a Szellemi Tulajdon Nemzeti Hivatalában A kutatás-fejlesztés minősítése a Szellemi Tulajdon Nemzeti Hivatalában Németh Gábor Szellemi Tulajdon Nemzeti Hivatala A kutatás-fejlesztési tevékenység rejtelmei Budapest, 2012. május 24. Bizonytalanság

Részletesebben

VÁLTOZTATÁSMENEDZSMENT A HAZAI GYAKORLATBAN

VÁLTOZTATÁSMENEDZSMENT A HAZAI GYAKORLATBAN Nyugat-magyarországi Egyetem Közgazdaságtudományi Kar Széchenyi István Gazdálkodás- és Szervezéstudományok Doktori Iskola Vállalkozásgazdaságtan és menedzsment program VÁLTOZTATÁSMENEDZSMENT A HAZAI GYAKORLATBAN

Részletesebben

Koordináció Termelési Hálózatokban

Koordináció Termelési Hálózatokban Koordináció Termelési Hálózatokban PhD értekezés tézisei Egri Péter Témavezető: Váncza József, PhD Eötvös Loránd Tudományegyetem Informatikai Kar Informatikai Doktori Iskola Az informatika alapjai és módszertana

Részletesebben

A nyugdíjban, nyugdíjszerű ellátásban részesülők halandósága főbb ellátástípusok szerint

A nyugdíjban, nyugdíjszerű ellátásban részesülők halandósága főbb ellátástípusok szerint SZENT ISTVÁN EGYETEM, GÖDÖLLŐ Gazdálkodás és Szervezéstudományok Doktori Iskola Doktori (PHD) értekezés tézisei A nyugdíjban, nyugdíjszerű ellátásban részesülők halandósága főbb ellátástípusok szerint

Részletesebben

GÉPI ÉS EMBERI POZICIONÁLÁSI, ÉRINTÉSI MŰVELETEK DINAMIKÁJA

GÉPI ÉS EMBERI POZICIONÁLÁSI, ÉRINTÉSI MŰVELETEK DINAMIKÁJA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM MŰSZAKI MECHANIKAI TANSZÉK PhD Tézisfüzet GÉPI ÉS EMBERI POZICIONÁLÁSI, ÉRINTÉSI MŰVELETEK DINAMIKÁJA Szerző MAGYAR Bálint Témavezető Dr. STÉPÁN Gábor Budapest,

Részletesebben

Akilencvenes évek elejétõl a magyar gazdaság és társadalom gyors átrendezõdésen. tanulmány

Akilencvenes évek elejétõl a magyar gazdaság és társadalom gyors átrendezõdésen. tanulmány Csapó Benõ Molnár Gyöngyvér Kinyó László SZTE, Neveléstudományi Intézet, MTA-SZTE Képességkutató Csoport SZTE, Neveléstudományi Doktori Iskola A magyar oktatási rendszer szelektivitása a nemzetközi összehasonlító

Részletesebben

MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI

MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI MIKOVINY SÁMUEL FÖLDTUDOMÁNYI DOKTORI ISKOLA Doktori értekezés tézisei MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI Írta: SZABÓ NORBERT PÉTER Tudományos vezető: DR. DOBRÓKA MIHÁLY

Részletesebben

Kvartó elrendezésű hengerállvány végeselemes modellezése a síkkifekvési hibák kimutatása érdekében. PhD értekezés tézisei

Kvartó elrendezésű hengerállvány végeselemes modellezése a síkkifekvési hibák kimutatása érdekében. PhD értekezés tézisei Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola Kvartó elrendezésű hengerállvány végeselemes modellezése a síkkifekvési hibák kimutatása érdekében PhD értekezés tézisei KÉSZÍTETTE: Pálinkás

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Történet John Little (1970) (Management Science cikk)

Történet John Little (1970) (Management Science cikk) Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn

Részletesebben

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet

Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei. kisszámítógépes rendszerekben. Kutató Intézet Nagy adattömbökkel végzett FORRÓ TI BOR tudományos számítások lehetőségei Kutató Intézet kisszámítógépes rendszerekben Tudományos számításokban gyakran nagy mennyiségű aritmetikai művelet elvégzésére van

Részletesebben

VÁLLALATI INFORMÁCIÓS RENDSZEREK, INTERNETES TECHNIKÁK

VÁLLALATI INFORMÁCIÓS RENDSZEREK, INTERNETES TECHNIKÁK VÁLLALATI INFORMÁCIÓS RENDSZEREK, INTERNETES TECHNIKÁK A digitális gyár mint a termékéletciklusmenedzsment megvalósításának központi eleme A termékéletciklus-menedzsment lényege az üzleti folyamatok olyan

Részletesebben

BIZTONSÁGI AUDIT. 13. óra

BIZTONSÁGI AUDIT. 13. óra 13. óra BIZTONSÁGI AUDIT Tárgy: Szolgáltatás menedzsment Kód: NIRSM1MMEM Kredit: 5 Szak: Mérnök Informatikus MSc (esti) Óraszám: Előadás: 2/hét Laborgyakorlat: 2/hét Számonkérés: Vizsga, (félévi 1db ZH)

Részletesebben

OTKA ZÁRÓJELENTÉS Józsa Krisztián Kritériumorientált képességfejlesztés 2007.07.01. 2011.07.31. 68798

OTKA ZÁRÓJELENTÉS Józsa Krisztián Kritériumorientált képességfejlesztés 2007.07.01. 2011.07.31. 68798 OTKA ZÁRÓJELENTÉS Témavezető neve: Józsa Krisztián A téma címe: Kritériumorientált képességfejlesztés A kutatás időtartama: 2007.07.01. 2011.07.31. OTKA Nyilvántartási szám: 68798 Az OTKA kutatás keretében

Részletesebben

Telefonszám(ok) +36-93-502-916 Mobil +36-30-396-8675 Fax(ok) +36-93-502-900. Egyetem u. 10., 8200 Veszprém. Tehetséggondozás (matematika)

Telefonszám(ok) +36-93-502-916 Mobil +36-30-396-8675 Fax(ok) +36-93-502-900. Egyetem u. 10., 8200 Veszprém. Tehetséggondozás (matematika) Europass Önéletrajz Személyi adatok Vezetéknév(ek) / Utónév(ek) Bujtás Csilla Telefonszám(ok) +36-93-502-916 Mobil +36-30-396-8675 Fax(ok) +36-93-502-900 E-mail(ek) Szakmai tapasztalat bujtas@dcs.vein.hu

Részletesebben

OTKA nyilvántartási szám: T047198 ZÁRÓJELENTÉS

OTKA nyilvántartási szám: T047198 ZÁRÓJELENTÉS MESTERSÉGES INTELLIGENCIA MÓDSZEREK ALKALMAZÁSA A FOLYAMATMODELLEZÉSBEN című OTKA pályázatról 2004. jan. 01 2007. dec. 31. (Vezető kutató: Piglerné dr. Lakner Rozália) A mesterséges intelligencia eszközök

Részletesebben

A KLASSZIKUS NELDER-MEAD ÉS EGY ÚJONNAN KIFEJLESZTETT OPTIMUMKERESİ ELJÁRÁS TELJESÍTMÉNYÉNEK ÖSSZEHASONLÍTÁSA

A KLASSZIKUS NELDER-MEAD ÉS EGY ÚJONNAN KIFEJLESZTETT OPTIMUMKERESİ ELJÁRÁS TELJESÍTMÉNYÉNEK ÖSSZEHASONLÍTÁSA A KLASSZIKUS NELDER-MEAD ÉS EGY ÚJONNAN KIFEJLESZTETT OPTIMUMKERESİ ELJÁRÁS TELJESÍTMÉNYÉNEK ÖSSZEHASONLÍTÁSA Kıházi-Kis Ambrus Kecskeméti Fıiskola GAMF Kar Természet és Mőszaki Alaptudományi Intézet Fizika

Részletesebben

A KVADRATIKUS SZIMPLEX ALGORITMUS VÉGESSÉGE INDEXVÁLASZTÁSI SZABÁLYOK ALKALMAZÁSA ESETÉN

A KVADRATIKUS SZIMPLEX ALGORITMUS VÉGESSÉGE INDEXVÁLASZTÁSI SZABÁLYOK ALKALMAZÁSA ESETÉN Alkalmazott Matematikai Lapok 3 (213), 1-21. A KVADRATIKUS SZIMPLEX ALGORITMUS VÉGESSÉGE INDEXVÁLASZTÁSI SZABÁLYOK ALKALMAZÁSA ESETÉN ILLÉS TIBOR, NAGY ADRIENN Dolgozatunkban bebizonyítjuk a kvadratikus

Részletesebben

Hibatűrő TDMA ütemezés tervezése ciklikus vezeték nélküli hálózatokban. Orosz Ákos, Róth Gergő, Simon Gyula. Pannon Egyetem

Hibatűrő TDMA ütemezés tervezése ciklikus vezeték nélküli hálózatokban. Orosz Ákos, Róth Gergő, Simon Gyula. Pannon Egyetem Hibatűrő TDMA ütemezés tervezése ciklikus vezeték nélküli hálózatokban Orosz Ákos, Róth Gergő, Simon Gyula Pannon Egyetem Rendszer- és Számítástudományi Tanszék Email: {orosz, roth, simon}@dcs.uni-pannon.hu

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Beszámoló IKT fejlesztésről

Beszámoló IKT fejlesztésről Kompetencia alapú oktatás, egyenlő hozzáférés Innovatív intézményekben TÁMOP-3.1.4/08/2-2008-0010 Beszámoló IKT fejlesztésről Piarista Általános Iskola, Gimnázium és Diákotthon Kecskemét Tartalomjegyzék

Részletesebben

MAGASÉPÍTÉSI PROJEKT KOCÁZATAINAK VIZSGÁLATA SZAKMAI INTERJÚK TÜKRÉBEN 1 CSERPES IMRE 2

MAGASÉPÍTÉSI PROJEKT KOCÁZATAINAK VIZSGÁLATA SZAKMAI INTERJÚK TÜKRÉBEN 1 CSERPES IMRE 2 MAGASÉPÍTÉSI PROJEKT KOCÁZATAINAK VIZSGÁLATA SZAKMAI INTERJÚK TÜKRÉBEN 1 CSERPES IMRE 2 Összefoglalás A konferencia kiadványhoz készített cikk a fejlesztés alatt álló építőipari kockázatelemző szoftver

Részletesebben

MATEMATIKA - STATISZTIKA TANSZÉK

MATEMATIKA - STATISZTIKA TANSZÉK MATEMATIKA - STATISZTIKA TANSZÉK 1. A Kodolányi János Főiskolán végzett kutatások Tananyagfejlesztés A kutatási téma címe, rövid leírása Várható eredmények vagy célok; részeredmények Kutatás kezdete és

Részletesebben

OTKA T048849 LEHETŐSÉGEINEK KULTURÁLIS ALAPJAI. Fejlesztési javaslatunk alapja egy empirikus tapasztalatok alapján kiigazított értékelési módszertan.

OTKA T048849 LEHETŐSÉGEINEK KULTURÁLIS ALAPJAI. Fejlesztési javaslatunk alapja egy empirikus tapasztalatok alapján kiigazított értékelési módszertan. OTKA T048849 A KÖRNYEZETTUDATOS VÁLLALATI MAGATARTÁS KIALAKÍTÁSÁNAK ÉS FEJLESZTÉSI LEHETŐSÉGEINEK KULTURÁLIS ALAPJAI KUTATÁSI ZÁRÓJELENTÉS 1. KUTATÁSI CÉLKITŰZÉSEK A kutatási tervben empirikus vizsgálatokkal

Részletesebben

Doktori Tézisek. dr. Osman Fares

Doktori Tézisek. dr. Osman Fares Az uréter motilitásának ellenőrzése, a körkörös és a hosszanti izomlemezek összehangolása, egy új videomikroszkópos módszer Doktori Tézisek dr. Osman Fares Semmelweis Egyetem Urológiai Klinika és Uroonkológiai

Részletesebben

Honlap szerkesztés Google Tudós alkalmazásával

Honlap szerkesztés Google Tudós alkalmazásával Dr. Mester Gyula Honlap szerkesztés Google Tudós alkalmazásával Összefoglaló: A közlemény tematikája honlap szerkesztés Google Tudós alkalmazásával. A bevezetés után a tudományos teljesítmény mérésének

Részletesebben

KÖLTSÉG-HASZON ELEMZÉS A 2014-2020 PROGRAMOZÁSI IDŐSZAKBAN 2015.05.26.

KÖLTSÉG-HASZON ELEMZÉS A 2014-2020 PROGRAMOZÁSI IDŐSZAKBAN 2015.05.26. KÖLTSÉG-HASZON ELEMZÉS A 2014-2020 PROGRAMOZÁSI IDŐSZAKBAN 2015.05.26. A KÖLTSÉG-HASZON ELEMZÉS (CBA) CÉLJAI A strukturális és beruházási alapok (ESB alapok) felhasználásának feltétele: a támogatás indokoltsága.

Részletesebben

Hogyan írjunk szakdolgozatot? v1.1

Hogyan írjunk szakdolgozatot? v1.1 Hogyan írjunk szakdolgozatot? v1.1 A szakdolgozat megírásának javasolt menete Algoritmus: 1. ötletelés, jegyzetelés 2. témavezető keresés 3. ötletelés, jegyzetelés 4. egyeztetések a témavezetővel 5. olvasás

Részletesebben

Bírálat. Farkas András

Bírálat. Farkas András Bírálat Farkas András Közlekedési rendszerek fejlesztése és értékelése többtényezős döntési eljárások felhasználásával (Appraisal and Development of Transportation Systems Using Multiple Criteria Decision

Részletesebben

Karbantartási játék. Dr. Kovács Zoltán, egyetemi tanár, Pannon Egyetem Kovács Viktor, PhD hallgató, Budapest Műszaki és Gazdaságtudományi Egyetem

Karbantartási játék. Dr. Kovács Zoltán, egyetemi tanár, Pannon Egyetem Kovács Viktor, PhD hallgató, Budapest Műszaki és Gazdaságtudományi Egyetem Karbantartási játék Dr. Kovács Zoltán, egyetemi tanár, Pannon Egyetem Kovács Viktor, PhD hallgató, Budapest Műszaki és Gazdaságtudományi Egyetem 1. Bevezetés A játékoknak komoly szerepük van az oktatásban.

Részletesebben

BIZONYTALANSÁG A KOCKÁZATBECSLÉSBEN 1. BEVEZETÉS

BIZONYTALANSÁG A KOCKÁZATBECSLÉSBEN 1. BEVEZETÉS Pokorádi László BIZONYTALANSÁG A KOCKÁZATBECSLÉSBEN A műszaki menedzsment döntései különböző pozitív vagy negatív előjelű eredményeket eredményezhetnek. A döntéshozóknak mind morális, mind szakmai szempontokat

Részletesebben

MULTIMÉDIA ALAPÚ OKTATÁSI TECHNOLÓGIÁK GYAKORLATI ALKALMAZÁSÁNAK VIZSGÁLATA A KATONAI SZAKNYELVOKTATÁSBAN

MULTIMÉDIA ALAPÚ OKTATÁSI TECHNOLÓGIÁK GYAKORLATI ALKALMAZÁSÁNAK VIZSGÁLATA A KATONAI SZAKNYELVOKTATÁSBAN Zrínyi Miklós Nemzetvédelmi Egyetem Kossuth Lajos Hadtudományi Kar Hadtudományi Doktori Iskola Tick Andrea MULTIMÉDIA ALAPÚ OKTATÁSI TECHNOLÓGIÁK GYAKORLATI ALKALMAZÁSÁNAK VIZSGÁLATA A KATONAI SZAKNYELVOKTATÁSBAN

Részletesebben

LÉTRADIAGRAM FORDÍTÓK ELMÉLETE PLC VEZÉRLÉSEK SZÁMÁRA II.

LÉTRADIAGRAM FORDÍTÓK ELMÉLETE PLC VEZÉRLÉSEK SZÁMÁRA II. V. Évfolyam 1. szám - 2010. március Deák Ferenc deak@nct.hu LÉTRADIAGRAM FORDÍTÓK ELMÉLETE PLC VEZÉRLÉSEK SZÁMÁRA II. Absztrakt A létradiagram egyszerű, programozási képzettséggel nem rendelkező szakemberek

Részletesebben

Süle Zoltán publikációs listája

Süle Zoltán publikációs listája Süle Zoltán publikációs listája Statisztikai összegzés Referált nemzetközi folyóiratcikkeim száma: 3 (+1) Nemzetközi konferenciakiadványban megjelent publikációim száma: 14 Hazai konferenciakiadványban

Részletesebben

Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$

Kapacitív áramokkal működtetett relés áramkörök 621.316.92S:621.318.B7:S21.3S2.$ DR. GÁL JÓZSEF Budapesti Műszaki Egyetem Kapacitív áramokkal működtetett relés áramkörök BTO 621.316.92S:621.318.B7:S21.3S2.$ A cikk cím szerinti témáját két, egymástól időben nagyon távoleső kapcsolási

Részletesebben

A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol

A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol A CAN mint ipari kommunikációs protokoll CAN as industrial communication protocol Attila FODOR 1), Dénes FODOR Dr. 1), Károly Bíró Dr. 2), Loránd Szabó Dr. 2) 1) Pannon Egyetem, H-8200 Veszprém Egyetem

Részletesebben

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat 6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Termékgyártási

Részletesebben

19. P RIVÁT SZFÉRÁT ERŐ SÍTŐ

19. P RIVÁT SZFÉRÁT ERŐ SÍTŐ 19. P RIVÁT SZFÉRÁT ERŐ SÍTŐ TECHNOLÓGIÁK (PET-EK) Székely Iván A személyiségi jogokat technológiai eszközökkel is védő újabb egyedi módszerek kifejlesztését felváltja a PET-ek rendszerszerű alkalmazása

Részletesebben

Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010)

Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) Pap Gyula Születési hely és idő: Debrecen, 1954 Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) TANULMÁNYOK, TUDOMÁNYOS FOKOZATOK Gimnáziumi

Részletesebben

2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 1/22. feladatok megoldásában. Csendes Tibor

2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 1/22. feladatok megoldásában. Csendes Tibor 2007. június 8. XXVII. Magyar Operációkutatási Konferencia, Balatonőszöd 1/22 Megbízható optimalizálás matematikai feladatok megoldásában Csendes Tibor 2007. június 8. XXVII. Magyar Operációkutatási Konferencia,

Részletesebben

Étkezési javaslat automatizált generálása táplálkozási és életmód-tanácsadó rendszerhez

Étkezési javaslat automatizált generálása táplálkozási és életmód-tanácsadó rendszerhez Étkezési javaslat automatizált generálása táplálkozási és életmód-tanácsadó rendszerhez Gaál Balázs, Vassányi István, Dr. Kozmann György, Veszprémi Egyetem A dolgozat egy automatizált menügeneráló modul

Részletesebben

Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei

Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei Tettamanti Tamás, Varga István, Bokor József BME Közlekedésautomatikai

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012 MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

Hét, páronként érintkező végtelen henger

Hét, páronként érintkező végtelen henger Hét, páronként érintkező végtelen henger Bozóki Sándor 1,2, Rónyai Lajos 1,3, Tsung-Lin Lee 4 1 MTA SZTAKI 2 Budapesti Corvinus Egyetem 3 Budapesti Műszaki és Gazdaságtudományi Egyetem 4 National Sun Yat-sen

Részletesebben

Pszichometria Szemináriumi dolgozat

Pszichometria Szemináriumi dolgozat Pszichometria Szemináriumi dolgozat 2007-2008. tanév szi félév Temperamentum and Personality Questionnaire pszichometriai mutatóinak vizsgálata Készítette: XXX 1 Reliabilitás és validitás A kérd ívek vizsgálatának

Részletesebben

Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások

Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások Pannon Egyetem Informatikai Tudományok Doktori Iskola Tézisfüzet Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások Kovács Levente Képfeldolgozás és Neuroszámítógépek Tanszék Témavezet

Részletesebben

PUBLIKÁCIÓS ÉS ALKOTÁSI TEVÉKENYSÉG ÉRTÉKELÉSE, IDÉZETTSÉG Oktatói, kutatói munkakörök betöltéséhez, magasabb fokozatba történı kinevezéshez.

PUBLIKÁCIÓS ÉS ALKOTÁSI TEVÉKENYSÉG ÉRTÉKELÉSE, IDÉZETTSÉG Oktatói, kutatói munkakörök betöltéséhez, magasabb fokozatba történı kinevezéshez. FARKAS GABRIELLA PUBLIKÁCIÓS ÉS ALKOTÁSI TEVÉKENYSÉG ÉRTÉKELÉSE, IDÉZETTSÉG Oktatói, kutatói munkakörök betöltéséhez, magasabb fokozatba történı kinevezéshez. könyv, könyvrészlet oktatási anyag folyóiratcikkek

Részletesebben

Többszempontú döntési problémák. II. Esettanulmányok a WINGDSS szoftverrel

Többszempontú döntési problémák. II. Esettanulmányok a WINGDSS szoftverrel Budapesti Közgazdaságtudományi és Államigazgatási Egyetem MTA Számítástechnikai és Automatizálási Kutató Intézetébe kihelyezett Gazdasági Döntések Tanszék Rapcsák Tamás Többszempontú döntési problémák

Részletesebben