FILMHANG RESTAURÁLÁS: A NEMLINEÁRIS KOMPENZÁLÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "FILMHANG RESTAURÁLÁS: A NEMLINEÁRIS KOMPENZÁLÁS"

Átírás

1 FILMHANG RESTAURÁLÁS: A NEMLINEÁRIS KOMPENZÁLÁS EGY GYAKORLATI ALKALMAZÁSA Bakó Tamás, dr. Dabócz Tamás Budapest Mszak és gazdaságtudomány Egyetem, Méréstechnka és Informácós Rendszerek Tanszék e-mal: Bevezet A rég flmfelvételek hanga gyakran gyenge mnség. Ennek egyk oka a hang nemlneárs torzulása. A professzonáls flmtechnkában a hangot optka úton rögzítk a flmszalagra; erre szolgál a flmszalag szélén, a perforácó mellett található hangsáv. Jelenleg a transzverzáls felvétel technkát használák, ahol a hangnformácót a fekete és fehér részek egymáshoz vszonyított aránya ada (. ábra, bal oldal. Ez a módszer azért elnyös, mert a flm elhívás körülménye vagy a felvételhez használt fényforrás erssége nem nagyon befolyásola a flm hangmnségét. Azonban egészen az 95-es évekg az ntenztás alapú hangkódolást használták (. ábra, obb oldal []. Ebben az esetben a hangnformácót a hangcsík sötétsége, azaz a feketedés ntenztása hordozza. Ez a technka nagyon érzékeny az elhívásra, a megvlágításra és a hang kvezérlésére, mert a flm feketedés görbée egy nemlneárs függvény (. ábra. Nagy hangersségeknél vagy rosszul megválasztott megvlágítás munkapontnál a hang kléphet a feketedés görbe lneárs tartományából, és ertelesen eltorzulhat. Ennek hatására csökken a szöveg érthetsége és élvezhetsége.. ábra: Flmfelvételek hangsáva transzverzáls (bal oldal és ntenztás alapú kódolással (obb oldal.. ábra: Flmek tpkus feketedés karaktersztkáa. Ha a torzítás sznte nem fogadható el, a hang mnségén dgtáls elfeldolgozással avíthatunk és a hangot egy "nverz" karaktersztkával korrgálhatuk. Ez a korrgálás azonban összetett feladat, mvel a torzító függvény pontos alakát nem smerük. A másk nehezít tényez, hogy a torz hang zaal terhelt és a vsszaalakítás során a za túlságosan felersödhet, akár el s nyomhata az eredet elet. Számos tanulmány foglalkozk nemlneartások dentfkácóával és korrekcóával. Ezen tanulmányok legtöbbe azonban nem foglalkozk a fellép za hatásaval [-6]. Más algortmusok, amelyek zaos elek helyreállításával foglalkoznak, rendkívül számításgényesek, mert teratív algortmusokat használnak [7, 8]. Ebben a ckkben egy ú módszert írunk le, am képes a flmfelvételek statkus nemlneárs karaktersztkáa által okozott torzulást kompenzáln, nem gényel terácót és képes a za hatásat kezeln. A módszer két lépésbl áll: els lépés a statkus nemlneartás meghatározá-

2 sa. A nemlneárs függvény alakát ugyan smerük, mert a flm feketedés karaktersztkáa smert, azonban egy adott flmtekercsnél a munkapont és a berendezések ersítés tényeze a nemlneartás eltt és után nem smert. Ezeket a paramétereket nekünk kell automatkusan becsülnünk a rögzített hangfelvétel alapán. Erre mutatunk be módszert a másodk feezetben. A következ lépés a torz el kompenzálása. Ehhez egy megfelel kompenzáló karaktersztkát kell elállítan. Az dentfkált karaktersztka egzakt nverze esetünkben nem megfelel, mert a el kompenzálásával egyben a za s felersödk. Egy olyan karaktersztkát kell ezért elállítan, am kompromsszumot nyút a zamentes torz és a zaos, torzítatlan el között. Erre a problémára mutatunk be egy megoldást a harmadk feezetben.. A nemlneartás dentfkálása A flmszalagoknál a hang torzulását a flm nemlneárs feketedés karaktersztkáa okozza. Ezt a nemlneárs karaktersztkát a következ analtkus függvény ól közelít: y ( G + O, ( Φ( G x( + O ahol x( az eredet, torzítatlan el, ( Φ az smertnek feltételezett feketedés karaktersztka. G és O az ersítés és offszet paraméterek a nemlneartás eltt, G és O pedg az ersítés és offszet paraméterek a nemlneartás után, amt a felvev és leátszó berendezések okoznak. Ezeket a paramétereket konstansnak tételezhetük fel a leátszás során. A megfgyelt el szélessávú zaal terhelt, amt addtívnak és nulla középértéknek tételezhetünk fel: y a torzított el, és ( o ( y( + n(, ( ahol o( a megfgyelt el n ( pedg a za. Ahhoz, hogy helyre tuduk állítan az eredet elet, pontosan smernünk kell a G, O és O paramétereket. ( G nem annyra fontos, mert ez a paraméter csak a kmen el hangereét állíta. A paraméterek megtalálásának nehézségét az okozza, hogy ehhez csupán az o (, megfgyelt elet smerük. Azonban khasználhatuk a elnek azt a tuladonságát, hogy fleg beszédelbl áll, am perodkus részleteket s tartalmaz. Ha a felvett elrészlet perodkus, akkor felírhatuk az alapfrekvencáú és egész számú többszörös frekvencáú sznuszelek összegeként: s ( a sn( π f t + φ, (3 ahol s ( az eredet perodkus el, f az alapfrekvenca, a és φ pedg az. sznuszel ampltúdó és fázs paramétere. (Itt feltételezzük, hogy az alap el nem tartalmaz DC komponenst. Ha ezt a elet keresztülvezetük egy statkus nemlneartáson egy úabb perodkus el ön létre: u( G π ϕ b. (4 Φ( G s( + O + O b sn( f t + + (3 és (4 alapán felírható egy transzformácó, am az smeretlen paraméterek egy adott értékéhez hozzárendel egy u ( elet: ( v( f, u ( T t, (5

3 ahol v ( f, az smeretlen változók halmaza: v { G, O, O, a...,φ... φ } ( f, a N N. (6 Ha a T ( transzformácó egyértelm leképezést nyút, akkor az smeretlen paraméterek értéke meghatározható. Egy elégséges feltétel, ha az a és φ paraméterek száma korlátozott, Φ ( szgorúan monoton és s ( nem rendelkezk egyenáramú komponenssel. A flmfelvételek esetén ezek a feltételek általában telesíthetek: a beszédrészletekben található magánhangzók tartalmaznak perodkus részeket, a felvételre kerül elnek nncs egyenáramú komponense, a felvétel sávkorlátozott és a feketedés görbe általunk használt szakasza szgorúan monoton. A flmfelvétel zaal terhelt, ezért a paraméterek pontos értékének megtalálása nem egyértelm. A paraméterek értékének becslésére ezért a megfgyelt perodkus elrészlet és az általunk elállított perodkus elbecsl különbségének négyzetes értelemben vett mnmumát érdemes venn: t mn Cost. (7 v( f, ( ( ( mn u( T vˆ( f, dt v( f, t 3. Az optmáls nverz karaktersztka elállítása 3. A rekonstrukcós modell A torzult el helyreállításának modelle a 3. ábrán látható: n( Φ ( x + Κ( o x ( y ( o( (, 3. ábra: Az eredet el torzulásának és helyreállításának blokkvázlata. Itt Φ (x az eredet nemlneárs rendszer statkus nemlneartás-függvénye, x ( az eredet, y ( a torzított el ( y( Φ( x(. A megfgyelt o( el szélessávú n ( zaal terhelt. Κ (o az nverz nemlneárs függvény és x ˆ( az eredet elrl alkotott becsl. Ennek a modellnek a matematka elemzése nehéz, mert a nemlneárs egyenleteket nem tuduk analtkus úton megoldan. Azonban egy adott munkapontban, x ( és o( ks változásara a nemlneárs egyenletet közelíthetük Taylor-sorának els tagaval, így egy lneárs közelítést kapunk: x o o + o Φ( x + x. (8 dx Az o ( el megváltozására pedg felírhatuk: x x x( o( x(. (9 dx( Ezt a lneárs egyenletet alkalmazhatuk az eredet karaktersztka mnden pontában. Ily módon egy szakaszonként lneárs modellt állítunk el, amvel megfelel számú szakaszt használva kell pontossággal ábrázolhatuk az eredet karaktersztkát.

4 3.. Regularzált kompenzálás Ha az eredet nemlneartás egzakt nverzét alkalmazzuk a el helyreállításához, akkor a za rendkívül felersödhet. A za felersödését ól láthatuk, ha a nemlneartást Taylorpolnomal íruk fel: Φ ( y + n x + x n ( dx A za nagymértékben felersödk, ha a nemlneárs függvény derválta óval ksebb mnt. Éppen ezért az egzakt nverz karaktersztka számunkra nem alkalmas. Ahhoz, hogy az optmáls karaktersztkát meg tuduk találn, elbb defnálnunk kell egy arra alkalmas mértéket a torzítás mértékének kszámításához. Ehhez a legobb lenne az eredet el és a becsl különbségének a normáát használn: ( x x x Cost, ( azonban ez az egyenlet közvetlenül nem oldható meg, mvel az eredet el nem smert. Ilyen problémákra Tyhonov [9] adott megoldást, ak rosszul kondconált ntegrálegyenletekre dolgozta k a regularzácós operátorokon alapuló módszert. Az tt felírt hbafüggvény általunk használható formáa a következképpen néz k: ( o oˆ + Cost λ. ( A gyakorlatban az eukldesz (négyzetes normát érdemes használn, mert ekkor a hba energáát mnmalzáluk. Ekkor a függvény formáa a következ: Cost ( o oˆ + λ (3 ahol ô a mért el becsle, amt -bl számítunk k úgy, hogy keresztülvezetük a elet úra a torzítás modellén. λ a regularzácós paraméter, am a zaos és és a torzított el között ad egy megoldást. A (3-as egyenlet megoldása ˆ x o -ra (azaz a kompenzácós függvény derváltára a következ: dκ( o o do o o d d Φ ( d + λ. (4 A (4-es képlet alapán a Κ (o kompenzácós függvény numerkus ntegrálással számítható. (Az ntegrácós konstans értéke nem annyra fontos, mert az egyenáramú komponens nem befolyásola a hang mnségé. Az így kapott karaktersztka közvetlenül használható a el helyreállítására, mndenféle tovább terácó nélkül, tehát a rekonstrukcó maga egy egylépéses mvelet. A megfelel karaktersztka megtalálásához meg kell határozn a λ paraméter optmáls értékét, am függ a bemen eltl, a za mértékétl és a torzító függvény formáától. Ha a bemen el értéke konstans és a za P n (ν valószínség-srségfüggvénye smert, a (-es egyenlet a következképpen írható fel:

5 { e x, } E{ ( x } E{ Κ( o, x } E ( Pn ( ν Κ(( Φ( x + ν, x dν, (5 ahol E { } a várható értéket elent. { e( x, } E értéke kszámítható mnden szóba öhet x ( értékre. Ha smerük a bemen el P x (χ valószínség-srségfüggvényét, a hba várható értéke a helyreállítás után felírható: { ε } P ( χ E{ e( x, λ } E ( x dχ. (6 Ennek a függvénynek a mnmalzálásával megkaphatuk a regularzácós paraméter optmáls értékét. A gyakorlatban P n (ν a csak zat tartalmazó elrészletekbl becsülhet, P x (χ pedg teratívan állítható el. Els lépésként Px (χ -et a torzult el valószínségsrségfüggvényével becsülhetük. Ekkor egy durva becsl számítható λ és az eredet el értékére. A durva becsl alapán egy pontosabb közelítése állítható el Px (χ -nek. Kísérletenk során 3 terácó mnden esetben elegend volt λ értékének megfelel közelítésére [,]. 4. Összefoglalás A ckkben egy ú módszert mutattunk be rég flmfelvételek nemlneársan torzult hangának kompenzálására. A feketedés görbe ellegét smertnek feltételeztük, de az ersítés és offszet paramétereket nem. Ezekre a paraméterekre a torz el perodkus elrészlete alapán adtunk becslt. Ahhoz, hogy elkerülük a helyreállítás során a za túlzott mérték felersödését, egy ú módszert mutattunk be, am a Tyhonov-féle regularzácós technkán alapul. A módszer elnye, hogy nem teratív algortmus, ezért rendkívül gyors. A Tyhonov-féle regularzácós operátor értékét egy terácós technkával határoztuk meg. Az elárás nagyon gyorsan konvergál; 3 terácó elegend a megfelel pontosságú becsl kszámításához. Irodalomegyzék [] Kádár Péter - Amatr flmhangosítás, "Elektronka", Mszak Könyvkadó, 98 [] Gl M. Raz and Barry D. Van Veen, "Blnd Equalzaton and Identfcaton of Nonlnear and IIR Systems - A Least Squares Approach," IEEE Trans. Sgnal Processng, vol. 48., pp. 9-, Jan. [3] Robert D. Nowak and Barry D. Van Veen, "Volterra Flter Equalzaton: A Fxed Pont Approach," IEEE Trans. Sgnal Processng, vol. 45., pp , Febr 997. [4] Wolfgang Klppel, "Compensaton for Nonlnear Dstorton of Horn Loudspeakers by Dgtal Sgnal Processng," J. Audo Eng. Soc., vol. 44, No 6, pp , June 996. [5] S. Kerry Wlson and Patrck Delay, "A Method to Improve Cathode Ray Osclloscope Accuracy," IEEE Trans. on Instrumentaton and Measurement, vol. 43, No 3, pp , June 994. [6] Stanley A. Whte, "Restoraton of Nonlnearly Dstorted Audo by Hstogram Equalzaton," J. Audo Eng. Soc., vol. 3, No, pp , November 98. [7] D. Pres and H. Polchlopek, "Restoraton of Nonlnearly Dstorted Magnetc Recordngs," J. Audo Eng. Soc., vol. 3, No /, pp. 6-3, January/February 984. [8] Paul T. Troughton and Smon J. Godsll," Restoraton of Nonlnearly Dstorted Audo usng Markov Chan Monte Carlo Methods," Presented at the 4 th Conventon of the Audo Engneerng Socety, preprnt 4679, Amsterdam, May 998 [9] Tkhonov, A. N. and Arsenn, V. Y. "Solutons of ll-posed problems," New York, John Wley & Sons, Inc [] Tamás B. Bakó, Balázs Bank, Tamás Dabócz, "Restoraton of Nonlnearly Dstorted Audo wth the Applcaton to Old Moton Pctures," AES th Internatonal Conference on Archvng, Restoraton and New Methods of Recordng, Budapest, Hungary, Oct 5-7, No ,, pp [] Tamás B. Bakó, Tamás Dabócz and B. A. Bell, "Automatc Compensaton of Nonlnear Dstortons," IMTC, Anchorage, USA, May -3,. Proceedngs of the IEEE Instrumentaton and Measurement Technology Conference, No. CH3776,, pp

REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL

REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL NEMLINEÁRISAN TORZULT OPTIKAI HANGFELVÉTELEK HELYREÁLLÍTÁSA REGULARIZÁLT INVERZ KARAKTERISZTIKÁKKAL Ph.D. értekezés tézisei Bakó Tamás Béla okleveles villamosmérnök Témavezető: dr. Dabóczi Tamás aműszaki

Részletesebben

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,

Részletesebben

1. Holtids folyamatok szabályozása

1. Holtids folyamatok szabályozása . oltds folyamatok szabályozása Az rányított folyamatok jelentés részét képezk a lassú folyamatok. Ilyenek például az par környezetben található nagy méret kemencék, desztllácós oszlopok, amelyekben valamlyen

Részletesebben

OPTIMALIZÁLT LÉPÉSKÖZŰ NEWTON-RAPHSON ALGORITMUS EHD FELADAT MEGOLDÁSÁHOZ

OPTIMALIZÁLT LÉPÉSKÖZŰ NEWTON-RAPHSON ALGORITMUS EHD FELADAT MEGOLDÁSÁHOZ Multdszcplnárs tudományok, 3. kötet. (013) 1. sz. pp. 97-106. OPTIMALIZÁLT LÉPÉSKÖZŰ NEWTON-RAPHSON ALGORITMUS EHD FELADAT MEGOLDÁSÁHOZ Száva Szabolcs egyetem adjunktus, Mskolc Egyetem, Anyagszerkezettan

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található

Philosophiae Doctores. A sorozatban megjelent kötetek listája a kötet végén található Phlosophae Doctores A sorozatban megjelent kötetek lstája a kötet végén található Benedek Gábor Evolúcós gazdaságok szmulácója AKADÉMIAI KIADÓ, BUDAPEST 3 Kadja az Akadéma Kadó, az 795-ben alapított Magyar

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése

MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA. Napkollektorok üzemi jellemzőinek modellezése MŰSZAKI TUDOMÁNYI DOKTORI ISKOLA Napkollektorok üzem jellemzőnek modellezése Doktor (PhD) értekezés tézse Péter Szabó István Gödöllő 015 A doktor skola megnevezése: Műszak Tudomány Doktor Iskola tudományága:

Részletesebben

KAPILLÁRIS NYOMÁS GÖRBE MEGHATÁROZÁSA HIGANYTELÍTÉSES POROZITÁSMÉRÉS ADATAIBÓL DETERMINATION OF CAPILLARY PRESSURE CURVE FROM MERCURY POROSIMETRY DATA

KAPILLÁRIS NYOMÁS GÖRBE MEGHATÁROZÁSA HIGANYTELÍTÉSES POROZITÁSMÉRÉS ADATAIBÓL DETERMINATION OF CAPILLARY PRESSURE CURVE FROM MERCURY POROSIMETRY DATA Műszak Földtudomány Közlemények, 84. kötet,. szám (03), pp. 63 69. KAPILLÁRIS NYOMÁS GÖRBE MEGHATÁROZÁSA HIGANYTELÍTÉSES POROZITÁSMÉRÉS ADATAIBÓL DETERMINATION OF CAPILLARY PRESSURE CURVE FROM MERCURY

Részletesebben

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika

Fuzzy rendszerek. A fuzzy halmaz és a fuzzy logika Fuzzy rendszerek A fuzzy halmaz és a fuzzy logka A hagyományos kétértékű logka, melyet évezredek óta alkalmazunk a tudományban, és amelyet George Boole (1815-1864) fogalmazott meg matematkalag, azon a

Részletesebben

Egyenáramú szervomotor modellezése

Egyenáramú szervomotor modellezése Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet

Részletesebben

1.Tartalomjegyzék 1. 1.Tartalomjegyzék

1.Tartalomjegyzék 1. 1.Tartalomjegyzék 1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet

Részletesebben

A pályázat címe: Új elméleti és numerikus módszerek tartószerkezetek topológiaoptimálására

A pályázat címe: Új elméleti és numerikus módszerek tartószerkezetek topológiaoptimálására 00. év OKA zárójelentés: Vezetı kutató:lóó János A pályázat címe: Új elmélet és numerkus módszerek tartószerkezetek topolóaoptmálására determnsztkus és sztochasztkus feladatok esetén. (Részletes jelentés)

Részletesebben

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek

A bankközi jutalék (MIF) elő- és utóélete a bankkártyapiacon. A bankközi jutalék létező és nem létező versenyhatásai a Visa és a Mastercard ügyek BARA ZOLTÁN A bankköz utalék (MIF) elő- és utóélete a bankkártyapacon. A bankköz utalék létező és nem létező versenyhatása a Vsa és a Mastercard ügyek Absztrakt Az előadás 1 rövden átteknt a két bankkártyatársasággal

Részletesebben

IT jelű DC/DC kapcsolóüzemű tápegységcsalád

IT jelű DC/DC kapcsolóüzemű tápegységcsalád IT jelű DC/DC kapcsolóüzemű tápegységcsalád BALOGH DEZSŐ BHG BEVEZETÉS A BHG Híradástechnka Vállalat kutató és fejlesztő által kdolgozott napjankban gyártásban levő tárolt programvezérlésű elektronkus

Részletesebben

Darupályák ellenőrző mérése

Darupályák ellenőrző mérése Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza

Részletesebben

Szerven belül egyenetlen dóziseloszlások és az LNT-modell

Szerven belül egyenetlen dóziseloszlások és az LNT-modell Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls

Részletesebben

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat

Optikai elmozdulás érzékelő illesztése STMF4 mikrovezérlőhöz és robot helyzetérzékelése. Szakdolgozat Mskolc Egyetem Gépészmérnök és Informatka Kar Automatzálás és Infokommunkácós Intézet Tanszék Optka elmozdulás érzékelő llesztése STMF4 mkrovezérlőhöz és robot helyzetérzékelése Szakdolgozat Tervezésvezető:

Részletesebben

The original laser distance meter. The original laser distance meter

The original laser distance meter. The original laser distance meter Leca Leca DISTO DISTO TM TM D510 X310 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - -

Részletesebben

MEZŐGAZDASÁGI TERMÉKEK FELVÁSÁRLÁSI FOLYAMATÁNAK SZIMULÁCIÓJA, KÜLÖNÖS TEKINTETTEL A CUKORRÉPÁRA OTKA

MEZŐGAZDASÁGI TERMÉKEK FELVÁSÁRLÁSI FOLYAMATÁNAK SZIMULÁCIÓJA, KÜLÖNÖS TEKINTETTEL A CUKORRÉPÁRA OTKA MEZŐGAZDASÁGI TERMÉKEK FELVÁSÁRLÁSI FOLYAMATÁNAK SZIMULÁCIÓJA, KÜLÖNÖS TEKINTETTEL A CUKORRÉPÁRA OTKA Kutatás téma 2002 2005. Nylvántartás szám: T0 37555 TARTALOMJEGYZÉK 1. Kutatás célktűzések... 2 2.

Részletesebben

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek

A mágneses tér energiája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája, állandó mágnesek, erőhatások, veszteségek A mágneses tér energája Egy koncentrált paraméterű, ellenállással és nduktvtással jellemzett tekercs Uáll feszültségre kapcsolásakor az

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Leica DISTOTMD510. X310 The original laser distance meter. The original laser distance meter

Leica DISTOTMD510. X310 The original laser distance meter. The original laser distance meter TM Leca DISTO Leca DISTOTMD510 X10 The orgnal laser dstance meter The orgnal laser dstance meter Tartalomjegyzék A műszer beállítása - - - - - - - - - - - - - - - - - - - - - - - - - 2 Bevezetés - - -

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

ÓZON A TROPOSZFÉRÁBAN

ÓZON A TROPOSZFÉRÁBAN ÓZON A TROPOSZFÉRÁBAN CHRISTIAN FRIEDRICH SCHÖNBEIN, kéma professzor, Basel 1839: elektromos ksüléseknél, vízbontásnál szagos anyag keletkezését észlel felfedez az ózont 1850-es évek: mérés módszert dolgoz

Részletesebben

CRT Monitor gammakarakteriszikájának

CRT Monitor gammakarakteriszikájának Budapest Műszak és Gazdaságtudomány Egyetem Mechatronka, Optka és Gépészet Informatka Tanszék CRT Montor gammakarakterszkájának felvétele 9. mérés Mérés célja: Számítógéppel vezérelt CRT montor gamma karaktersztkájának

Részletesebben

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN

VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN VIII. ELEKTROMOS ÁRAM FOLYADÉKOKBAN ÉS GÁZOKBAN Bevezetés: Folyadékok - elsősorban savak, sók, bázsok vzes oldata - áramvezetésének gen fontos gyakorlat alkalmazása vannak. Leggyakrabban az elektronkus

Részletesebben

RENDSZERSZINTŰ TARTALÉK TELJESÍTŐKÉPESSÉG TERVEZÉSE MARKOV-MODELL ALKALMAZÁSÁVAL I. Rendszerszintű megfelelőségi vizsgálat

RENDSZERSZINTŰ TARTALÉK TELJESÍTŐKÉPESSÉG TERVEZÉSE MARKOV-MODELL ALKALMAZÁSÁVAL I. Rendszerszintű megfelelőségi vizsgálat ENDSZESZINTŰ TATALÉK TELJESÍTŐKÉPESSÉG TEVEZÉSE MAKOV-MODELL ALKALMAZÁSÁVAL I. endszerszntű megfelelőség vzsgálat Dr. Fazekas András István okl. gépészmérnök Magyar Vllamos Művek Zrt. Budapest Műszak és

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék az MTA Közgazdaságtudomány

Részletesebben

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

vállalatok esetén Technológia és költségek, Árdiszkrimináció és monopólium: A vállalati árbevétel megoszlása Számviteli költségek + számviteli profit

vállalatok esetén Technológia és költségek, Árdiszkrimináció és monopólium: A vállalati árbevétel megoszlása Számviteli költségek + számviteli profit 3. Elõadás Technológa és költségek, Árdszkrmnácó és monopólum: lneárs árképzés Kovács Norbert SZE KGYK, GT vállalat árbevétel megoszlása Gazdaság költség + gazdaság proft Számvtel költségek + számvtel

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

HIBAJEGYZÉK az Alapvető fizikai kémiai mérések, és a kísérleti adatok feldolgozása

HIBAJEGYZÉK az Alapvető fizikai kémiai mérések, és a kísérleti adatok feldolgozása HIBAJEGYZÉK az Alapvető fzka kéma mérések, és a kísérlet adatk feldlgzása címü jegyzethez 2008-070 Általáns hba, hgy a ktevőben lévő negatív (-) előjelek mndenhnnan eltűntek a nymtatás srán!!! 2. Fejezet

Részletesebben

Integrált rendszerek n é v; dátum

Integrált rendszerek n é v; dátum Integrált rendszerek n é v; dátum.) Az dentfkálás (folyamatdentfkácó) a.) elsődleges feladata absztrahált leírás fzka modell formában b.) legfőbb feladata a struktúradentfkálás (modellszerkezet felállítása)

Részletesebben

11. előadás PIACI KERESLET (2)

11. előadás PIACI KERESLET (2) . előadás PIACI KERESLET (2) Kertes Gábor Varan 5. feezete erősen átdolgozva . Állandó rugalmasságú kereslet görbe Olyan kereslet görbe, amt technkalag könnyű kezeln. Ezért szeretk a közgazdászok. Hogyan

Részletesebben

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL

2.2.36. AZ IONKONCENTRÁCIÓ POTENCIOMETRIÁS MEGHATÁROZÁSA IONSZELEKTÍV ELEKTRÓDOK ALKALMAZÁSÁVAL 01/2008:20236 javított 8.3 2.2.36. AZ IONKONCENRÁCIÓ POENCIOMERIÁ MEGHAÁROZÁA IONZELEKÍ ELEKRÓDOK ALKALMAZÁÁAL Az onszeletív eletród potencálja (E) és a megfelelő on atvtásána (a ) logartmusa özött deáls

Részletesebben

Kálmán-szűrés. Korszerű matematikai módszerek a geodéziában 2014.03.10.

Kálmán-szűrés. Korszerű matematikai módszerek a geodéziában 2014.03.10. Kálmánzűré Korzerű matemata módzere a geodézában 4.3.. A Kálmánzűré defnícója Olyan algortmu, amely valamely lneár dnamu rendzerben egzat övetezetét tez lehetővé, amely a rejtett Marovmodellhez haonló

Részletesebben

Szigorúan visszacsatolásos alakban adott n relatív fokszámú rendszer: x

Szigorúan visszacsatolásos alakban adott n relatív fokszámú rendszer: x VIII. Autonóm járművek, formácó rányítás 1. Autonóm robotok rányításánál alkalmazott nemlneárs rányítás módszerek áttekntése. A bemenet/kmenet lnearzálás, a backsteppng és a mozgó horzontú predktív rányítás

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2014. november 06. A közgazdaságtan játékelméleti megközelítései

Műszaki folyamatok közgazdasági elemzése Előadásvázlat 2014. november 06. A közgazdaságtan játékelméleti megközelítései Műzak folyamatok közgazdaág elemzée Előadávázlat 04. november 06. A közgazdaágtan átékelmélet megközelítée a Története: - Táraátékok elmélete (Zermelo - Neumann Jáno (mnmax-tétel, azaz mkor létezk megoldá

Részletesebben

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II. NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa

Részletesebben

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár

Balogh Edina Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetemi tanár Balogh Edna Árapasztó tározók működésének kockázatalapú elemzése PhD értekezés Témavezető: Dr. Koncsos László egyetem tanár Budapest Műszak és Gazdaságtudomány Egyetem Építőmérnök Kar 202 . Bevezetés,

Részletesebben

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor

ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET. Összeállította: Dr. Szabó Sándor MISKOLCI EGYETEM Gépgyártástechnológa Tanszék Mskolc - Egyetemváros ALAKOS KÖRKÉS PONTOSSÁGI VIZSGÁLATA EXCEL ALAPÚ SZOFTVERREL OKTATÁSI SEGÉDLET Összeállította: Dr. Szabó Sándor A orgácsoló megmunkálásokhoz

Részletesebben

Környezetvédelmi analitika

Környezetvédelmi analitika Az anyag a TÁMOP-4...A/- /--89 téma keretében készült a Pannon Egyetemen. Környezetmérnök Tudástár Sorozat szerkesztő: Dr. Domokos Endre XXXIV. kötet Környezetvédelm analtka Rezgés spektroszkópa Blles

Részletesebben

A neurális hálózatok alapjai

A neurális hálózatok alapjai A neuráls hálózatok alapja (A Neuráls hálózatok és mszak alkalmazásak cím könyv (ld. források) alapján) 1. Bológa alapok A bológa alapok megsmerése azért fontos, mert nagyon sok egyed neuráls struktúra,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

ELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE

ELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE EVÉEES KONENZÁCIÓS ÉS EENNYOMÁSÚ GŐZURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHAÓSÁGI MOEEZÉSE r. Fazekas Anrás Isván Magyar Vllamos Művek Zr. / Buapes Buapes Műszak és Gazaságuomány Egyeem Energeka Gépek és Renszerek

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intellgens Rendszerek Elmélete Dr. Kutor László A mesterséges neuráls hálózatok alapfogalma és meghatározó eleme http://mobl.nk.bmf.hu/tantargyak/re.html Logn név: re jelszó: IRE07 IRE 7/1 Neuráls hálózatok

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Biostatisztika e-book Dr. Dinya Elek

Biostatisztika e-book Dr. Dinya Elek TÁMOP-4../A/-/-0-005 Egészségügy Ügyvtelszervező Szakrány: Tartalomfejlesztés és Elektronkus Tananyagfejlesztés a BSc képzés keretében Bostatsztka e-book Dr. Dnya Elek Tartalomjegyzék. Bevezetés a mátrok

Részletesebben

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek Szennyvíztsztítás technológa számítások és vízmnőség értékelés módszerek Segédlet a Szennyvíztsztítás c. tantárgy gyakorlat foglalkozásahoz Dr. Takács János ME, Eljárástechnka Tsz. 00. BEVEZETÉS Áldjon,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

A korlátozás programozás alapjai

A korlátozás programozás alapjai A korlátozás programozás alapa Kovács András akovacs@mt.bme.hu Bevezetés Ez a segédlet a Mesterséges Intellgenca Labor c. tárgyat felvett hallgatókhoz szól, és feltételez a logka programozás elmélet alapanak,

Részletesebben

Reaktivitás on-line digitális mérhetősége virtuális méréstechnikával

Reaktivitás on-line digitális mérhetősége virtuális méréstechnikával Szeged Tudományegyetem Természettudomány Kar Reaktvtás on-lne dgtáls mérhetősége vrtuáls méréstechnkával TDK dolgozat Készítette: Bara Péter fzkus szakos hallgató IV-V. évfolyam Témavezető: Dr. Korpás

Részletesebben

Die Sensation in der Damenhygiene Hasznos információk a tamponokról www.123goodbye.com

Die Sensation in der Damenhygiene Hasznos információk a tamponokról www.123goodbye.com nokról tampo a k ácó form n s no Hasz Mért használnak tamponokat? A tampon szó francául és a szó szernt fordításban dugó. Már a szó s sokat mond. A tamponok körülbelül öt centméteres rudak, amely közel

Részletesebben

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció

Békefi Zoltán. Közlekedési létesítmények élettartamra vonatkozó hatékonyság vizsgálati módszereinek fejlesztése. PhD Disszertáció Közlekedés létesítmények élettartamra vonatkozó hatékonyság vzsgálat módszerenek fejlesztése PhD Dsszertácó Budapest, 2006 Alulírott kjelentem, hogy ezt a doktor értekezést magam készítettem, és abban

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Variációs módszerek a gépi látásban

Variációs módszerek a gépi látásban Varácós módszerek a gép látásban MOLNÁR JÓZSEF Doktor értekezés Témavezetı: Prof. Csetverkov Dmtrj Eötvös Loránd Tudományegyetem Informatka Doktor Iskola Az nformatka alapja és módszertana A doktor program

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. Felhasznált eszközök. Mérési feladatok

MÉRÉSI JEGYZŐKÖNYV. Felhasznált eszközök. Mérési feladatok MÉRÉSI JEGYZŐKÖNYV A mérés tárgya: Tranzisztoros erősítő alapkapcsolások vizsgálata (5. mérés) A mérés időpontja: 2004. 03. 08 de A mérés helyszíne: BME, labor: I.B. 413 A mérést végzik: Belso Zoltan KARL48

Részletesebben

MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI

MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI Mikoviny Sámuel Földtudományi Doktori Iskola A doktori iskola vezetője: Dr. h.c. mult. Dr. Kovács Ferenc egyetemi tanár, a MTA rendes tagja MEDDŐHÁNYÓK ÉS ZAGYTÁROZÓK KIHORDÁSI TULAJDONSÁGAINAK VIZSGÁLATA,

Részletesebben

ELLÁTÁSI LÁNC VALÓS IDEJŰ OPTIMALIZÁLÁSA ABSZTRAKT

ELLÁTÁSI LÁNC VALÓS IDEJŰ OPTIMALIZÁLÁSA ABSZTRAKT Bánya Tamás ELLÁTÁSI LÁNC VALÓS IDEJŰ OPTIMALIZÁLÁSA ABSZTAKT Jelen kutatómunka céla egy olyan, az ellátás láncok valós deű optmalzálását és analízsét támogató módszer kdolgozása, amely alkalmas az ellátás

Részletesebben

A poliolefinek bemutatása

A poliolefinek bemutatása A pololefnek bemutatása Poletlén és polproplén 1. Szntetkus polmerek 1.1. Osztályozás 1.2. Globáls termelés 2. Pololefnek 2.1. A pololefnek családja 2.2. PE típusok és szerkezetek 2.3. PP típusok és szerkezetek

Részletesebben

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

RAMAN SZÓRÁS NANOSZERKEZET KALKOGENID ÜVEGEKBEN

RAMAN SZÓRÁS NANOSZERKEZET KALKOGENID ÜVEGEKBEN MITSA V., HOLOMB R., VERES M., KOÓS M. RAMAN SZÓRÁS NANOSZERKEZET KALKOGENID ÜVEGEKBEN Ungvár Budapest 009 Lektorok: Dr. Fékesházy István professzor, osztályvezet, Ukrán Nemzet Tudományos Akadéma Félvezetk

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

vállalatok esetén Technológia és költségek, Árdiszkrimináció és monopólium: A vállalati árbevétel megoszlása Számviteli költségek + számviteli profit

vállalatok esetén Technológia és költségek, Árdiszkrimináció és monopólium: A vállalati árbevétel megoszlása Számviteli költségek + számviteli profit 3. Elõadás Technológa és költségek, Árdszkrmnácó és monopólum: lneárs árképzés Kovács Norbert SZE KGYK, GT vállalat árbevétel megoszlása Gazdaság költség + gazdaság proft Számvtel költségek + számvtel

Részletesebben

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme

4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató

Részletesebben

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc.

Villamosságtan. Dr. Radács László főiskolai docens A3 épület, II. emelet, 7. ajtó Telefon: 12-13 elkrad@uni-miskolc.hu www.uni-miskolc. Vllamosságtan Dr. adács László főskola docens A3 épület,. emelet, 7. ajtó Telefon: -3 e-mal: Honlap: elkrad@un-mskolc.hu www.un-mskolc.hu/~elkrad Ajánlott rodalom Demeter Károlyné - Dén Gábor Szekér Károly

Részletesebben

KARSZTFEJLŐDÉS XVI. Szombathely, 2011. pp. 247-260. A MISKOLCI EGYETEMI KÚT MÉRT PARAMÉTEREINEK ELEMZÉSE MODERN GEOMATEMATIKAI MÓDSZEREKKEL

KARSZTFEJLŐDÉS XVI. Szombathely, 2011. pp. 247-260. A MISKOLCI EGYETEMI KÚT MÉRT PARAMÉTEREINEK ELEMZÉSE MODERN GEOMATEMATIKAI MÓDSZEREKKEL KARSZTFEJLŐDÉS XVI. Szombathely, 011.. 47-60. A MISKOLCI EGYETEMI KÚT MÉRT PARAMÉTEREINEK ELEMZÉSE MODERN GEOMATEMATIKAI MÓDSZEREKKEL DARABOS ENIKŐ-SZŰCS PÉTER Mskolc Egyetem, Műszak Földtudomány Kar,

Részletesebben

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR DOKTORI ISKOLA VEZETŐ: MTA rendes tagja TÉMACSOPORT VEZETŐ: MTA rendes tagja TÉMAVEZETŐ: egyetemi docens

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR DOKTORI ISKOLA VEZETŐ: MTA rendes tagja TÉMACSOPORT VEZETŐ: MTA rendes tagja TÉMAVEZETŐ: egyetemi docens MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR ÚJ ELJÁRÁS AUTOKLÁV GÉPCSOPORTOK EXPOZÍCIÓJÁNAK MEGHATÁROZÁSÁRA PhD értekezés KÉSZÍTETTE: Szees L. Gábor okleveles géészmérnök SÁLYI ISTVÁN GÉPÉSZETI TUDOMÁNYOK DOKTORI

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Visual motion based Human-Computer Interface

Visual motion based Human-Computer Interface Project 4: Vsual moton based Human-Computer Interface Számítógépes Látás kurzus 2007/08. 3. ellenırzés pont (2007-12-11) Számítógépes látás 2007 Project 4. 2 / 12 Tartalomjegyzék Csapattagok...3 Feladat...3

Részletesebben

Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján

Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján BME Hdak és Szerkezetek Tanszék Magasépítés acélszerkezetek tárgy Gyakorlat útmutató Nyeregetetős csarnokszerkezetek terhe az EN 1991 alapján Összeállította: Dr. Papp Ferenc tárgyelőadó Budapest, 2006.

Részletesebben

Régi filmek hangjánál fellépő Donner-torzítás számítógépes szimulációja

Régi filmek hangjánál fellépő Donner-torzítás számítógépes szimulációja Régi filmek hangjánál fellépő Donner-torzítás számítógépes szimulációja Bevezető Mozifilmek esetén a hang rögzítése optikai úton történik: a hangfelvételt optikai változásokká alakítják és a filmszalag

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 161 ÉRETTSÉGI VIZSGA 016. május. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás

Töréskép optimalizálás Elmélet, megvalósítás, alkalmazás Elmélet, megvalósítás, alkalmazás Készítették: Borbély Dánel Szerkezet-építőmérnök Msc hallgató Borbély Gábor Alkalmazott matematka Msc hallgató Koppány Zoltán Földmérő- és Térnformatka mérnök Msc hallgató

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

2. személyes konzultáció. Széchenyi István Egyetem

2. személyes konzultáció. Széchenyi István Egyetem Makroökonóma 2. személyes konzultácó Szécheny István Egyetem Gazdálkodás szak e-learnng képzés Összeállította: Farkas Péter 1 A tananyag felépítése (térkép) Ön tt áll : MAKROEGENSÚL Inflácó, munkanélkülség,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B AGGLOMERÁCIÓ ÉS TERMELÉKENYSÉG Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s: Békés Gábor 2011. július

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Kockázati folyamatok. Sz cs Gábor. Szeged, 2012. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Kockázati folyamatok Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2012. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Kockázati folyamatok 2012. szi félév 1 / 48 Bevezetés A kurzus céljai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 17 XVII A HATÁROZATLAN INTEGRÁL 1 PRImITÍV FÜGGVÉNY, ALApINTEGRÁLOk A (nagy) F függvényt a (kis) f függvény primitív függvényének nevezzük valamely nyílt intervallumon, ha itt

Részletesebben