SZOMSZÉDSÁGI SZEKVENCIÁK ÉS ALKALMAZÁSAIK A KÉPFELDOLGOZÁSBAN ÉS KÉPI ADATBÁZISOKBAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZOMSZÉDSÁGI SZEKVENCIÁK ÉS ALKALMAZÁSAIK A KÉPFELDOLGOZÁSBAN ÉS KÉPI ADATBÁZISOKBAN"

Átírás

1 SZOMSZÉDSÁGI SZEKVENCIÁK ÉS ALKALMAZÁSAIK A KÉPFELDOLGOZÁSBAN ÉS KÉPI ADATBÁZISOKBAN NEIGHBORHOOD SEQUENCES AND THEIR APPLICATIONS IN IMAGE PROCESSING AND IMAGE DATABASES András Hajdu, János Kormos, Tamás Tóth, Krisztián Veréb Debreceni Egyetem, Informatika Kar, Információ Technológia Tanszék 1. Bevezetés A különböz célú adatbázisokból való képek kinyerése napjainkban egy fontos alkalmazási és így egyúttal kutatási irány is. Ha egy adott képhez hasonlókat akarunk kinyerni az adatbázisból, akkor ezt több olyan tulajdonság vizsgálata alapján tehetjük meg, mint például a szín, a textúra (mintázat) vagy a képen lév objektumok alakja. Az általános eljárás, hogy ezekhez a tulajdonságokhoz tulajdonságvektorokat rendelünk, majd valamilyen távolságmér függvénnyel kiszámítjuk ezek normáját. Ez lesz a vizsgált kép és az adatbázisban lév képek közti távolság az adott tulajdonságra nézve. A különböz tulajdonságértékek kombinálásával pedig egy összevont távolságértéket definiálhatunk. Erre a célra az alkalmazások leggyakrabban a (súlyozott) euklideszi metrikát használják (lásd például Oracle 9i). Ebben a dolgozatban az összevont távolságmér függvények új megközelítését adjuk a szomszédsági szekvenciákon alapuló távolságmérés használatával. Megmutatjuk, hogy ez a megközelítés a klasszikus eljárásoknál rugalmasabb lekérések készítésére is alkalmas. A szomszédsági szekvenciák elméleténél maradva, a képi lekérdezések mellett bemutatunk néhány színeskép szegmentáló módszert is. A bemutatott módszerek klasszikus szegmentációs technikákra épülnek, azzal a különbséggel, hogy ismét a szomszédsági szekvenciák rugalmasabb távolságmérését használjuk az egyes színek hasonlóságának megállapításában. Mivel a színek koordinátái nemnegatív egészek (RGB), az ilyen távolságfogalmakra épül alkalmazások itt természetes módon használhatóak. A szomszédsági szekvenciák további érdekes tulajdonsága, hogy nem mindig generálnak metrikát, így lehet ség nyílik nem metrikus tulajdonságú távolságfüggvények alkalmazására is. A módszerünk az RGB modellen kívül kiterjeszthet más színreprezentációkra, illetve tetsz leges dimenzióra is. 2. Szomszédsági szekvenciák Ebben a fejezetben egy rövid összefoglalót közlünk a szomszédsági szekvenciákról. Az olvasó további elméleti és gyakorlati eredményeket találhat a [1,2,3,4,5,6,8,9,17,19] közleményekben. Legyen n egy tetsz leges pozitív egész. Legyen q és r két pont ZZ n -ben, Pr i (q) pedig jelölje a q pont i-edik koordinátáját. Legyen m egy egész, hogy 1 m n. A q és r pontok m-szomszédok, ha a következ két feltétel teljesül: Pri (q) Pr i (q) 1 (1 i n), n i= 1 Pr ( p) Pr ( q) m. i i

2 Az A=(A i ) i=1 sorozatot, ahol A i {1,, n} minden i IN, n-dimenziós szomszédsági szekvenciának nevezzük. Ha létezik valamilyen l IN, hogy A i+l = A i (i IN), akkor A periodikus szomszédsági szekvencia l periódushosszal. Ezt röviden az A = (A 1 A 2 A l ) formában írjuk. Például az A = {12} az {1,2,1,2,1,2, } szomszédsági szekvenciát jelenti. A q = q 0,q 1,,q m = r, pontsorozatot, ahol q i-1 és q i pontok A(i)-szomszédok ZZ n -ben (1 i m), q és r közti m-hosszú A-útnak nevezzük. A q és r közti A-utak közül a legrövidebb a két pont A-távolsága, melyet d(q,r;a)-val jelölünk. Ha egy szomszédsági szekvencia elejér l véges számú elemet eltávolítva periodikus szekvenciát kapunk, akkor ezt a sorozatot végén-periodikus szomszédsági szekvenciának nevezzük, és a következ jelölést használjuk: N = N 1 N 2 N k (N k+1 N k+2 N l ), vagyis az els k elem elvétele után l-k periódusú szomszédsági szekvenciát kapunk. A szomszédsági szekvenciák által generált távolságmér függvények nem mindig metrikák. Ez a tulajdonság egy egyszer feltétel segítségével könnyen ellen rizhet [12]. Az alkalmazásokban a nem metrikus távolságmér függvények is jó eredményt adhatnak, ezért nem indokolt a kizárásuk a további vizsgálatokból. 3. Szomszédsági szekvenciák képi adatbázisokhoz A szomszédsági szekvenciák adatbázis-lekérésekben való használhatóságának demonstrálásához három képi jellemz t rögzítünk: szín, textúra, alak. A három tulajdonságban való független hasonlóságok kvantitatív ismeretét feltételezve, egy összevont hasonlósági értéket készítünk a szomszédsági szekvenciák segítségével. Ehhez a háromdimenziós szekvenciák három két speciális családját és azok kombinációját tekintjük. Az els a klasszikus szomszédsági szekvenciák családja: B 1 = {(0, 0, ±1), (0, ±1, 0), (±1, 0, 0)} B 2 = B 1 {(0, ±1, ±1), (±1, 0, ±1), (±1, ±1, 0)} B 3 = B 2 {(±1, ±1, ±1)} A B 1, B 2 és B 3 szomszédságok a jól ismert 6-, 18- és 26-szomszédságnak felelnek meg. A fenti szomszédságok elméleti vizsgálatát lásd: [1,2,4,8]. Ezt a családot CNS 3 -nak nevezzük. A szomszédsági szekvenciák másik családjához tartoznak azok, amik explicit módon megadják, hogy két pont milyen koordináta-eltérés esetén szomszédja egymásnak. B x = {(±1, 0, 0)}, B y = {(0, ±1, 0)}, B z = {(0, 0, ±1)}, Bxy = {(±1, ±1, 0)}, B yz = {(0, ±1, ±1)}, B xz = {(±1, 0, ±1)}, B xyz = {(±1, ±1, ±1)} A megfelel szomszédságok 1, 2, illetve 3 dimenziós altereket feszítenek fel ZZ 3 -ban, ezért ezt a családot SNS 3 -nak nevezzük. SNS 3 szekvenciákkal megmondhatjuk, hogy egy lépés alatt melyik koordináták változhatnak, míg CNS 3 esetén azt, hogy hány koordináta változhat meg. Megjegyzend, hogy sem CNS 3 SNS 3 sem a fordított irány nem teljesül, továbbá, hogy B 3 = B xyz. A harmadik család a már bemutatott két család kombinációja, a használható szomszédságok: B 1, B 2, B 3, B x, B y, B z, B xy, B yz, B xz, B xyz. Ezt a családot MNS 3 -nak nevezzük. 4. Képadatbázis Oracle-ban

3 Hogy az elképzelésünket kipróbálhassuk a Hemera PhotoObjects képadatbázisból készítettünk egy több mint 1200 képet tartalmazó képadatbázist. Az Oracle segítségével generáltuk le a képek közti viszonyokat jellemz tulajdonságvektorokat (függetlenül a színre/textúrára/alakra vonatkozóan), és ezek segítségével valósítottuk meg a képkinyerést. Az Oracle-nak saját eszközrendszere van multimédiás anyagok tárolására és adatbázisból való elérésére. A képek színhisztogramját (c), textúrait (t), alakjait (s) és ezek elhelyezkedését (l) használja hasonlóságok leírására. Az elhelyezkedés (l) önmagában nem hordoz értékelhet információt, ezért ezt itt nem tekintjük érvényes keresési paraméterként. Egy adott lekérdezés esetén az Oracle kiszámolja a c, t, s hasonlósági értékeket az adatbázis minden képéhez, meghatározva így azokhoz (c, s, t) tulajdonságvektorokat, amelyek három, 0 és 100 közé es valós számból állnak. A független értékek összevont összehasonlíthatóságához 0 és 1 közé es súlyokat (W c, W s, W t ) rendelhetünk az egyes tulajdonságértékekhez. Ezzel megadhatjuk hogy az adott tulajdonság mennyire fontos a vizsgálat szempontjából: 0 jelzi, ha a tulajdonság elhanyagolható, 1, ha a legfontosabb. Az összevont távolságot az Oracle a következ módon számolja: c*w c + s*w s + t*w t. Hogy összehasonlíthassuk Oracle-t a saját technikánkkal, rendre hozzárendeltük az x, y és z koordinátákat a c szín, t textúra és s alak tulajdonságokhoz. A szomszédsági szekvenciák segítségével megválaszolható lekérdezésekre, illetve az Oracle esetén kapott válaszokkal való összehasonlításokra az Alkalmazás részben mutatunk példákat. 5. RGB távolságmérésen alapuló alkalmazások A színes képek szegmentálása els dlegesen a pixelek színének összehasonlításán alapul. Vizsgálatainkban a színek közti távolság mérésénél az RGB színkockát tekintjük, ami a fekete = (0, 0, 0) és a fehér = (255, 255, 255) szín közötti egész koordinátájú 3D-s tartományt jelenti. A színek közötti távolsáméréshez a szomszédsági szekvenciákat gondosan kell megválasztani, mivel a különböz szekvenciák alapvet en különböz eredményeket adhatnak [8]. Három szegmentációs módszert mutatunk be: els nek a fuzziness-t, (lásd Adobe Photoshop), majd a területnövelést, végül egy klaszterez módszert. Ismertetünk továbbá egy technikát, ami segítséget nyújthat a felhasználónak a megfelel távolságmér függvény kiválasztásában. Fuzziness. A módszer kiválogatja azokat a pixeleket, amelyeknek egy vagy több el re megadott színt l mért távolsága az adott távolságmér függvénnyel el re megadott korláton belül marad. A 1. ábra mutatja a módszer eredményének függését a távolságmér függvényt l. k = 50, {1} k = 50, {3} k = 50, {311111} 1. ábra Fuzziness, k = 50

4 Területnövelés. A fuzziness eredményeként több egymáshoz nem kapcsolódó tartományt kapunk. Hogy ezt kiküszöböljük, és csak egyetlen összefügg tartományt kapjunk, megadunk egy szomszédságot. A módszer ekkor azokat a pixeleket keresi, amelyeknek az el re kiválasztott pixel színét l az adott távolságmér függvénnyel mért távolsága az adott határon belül marad, és a pixelek egymásnak a megadott szomszédság szerint szomszédai, 2. ábra. Eredeti k = 70, {1} k = 100, {1} k = 40, {3} 2. ábra Területnövelés Szegmentálás. A módszerünk a klaszter-analízisre, mint statisztikai módszerre épít. Az RGB kocka elemeit vonjuk össze csoportokba. Két módszert használunk, a hierarchikus osztályozást és a k-közép módszert. Mindkét módszer esetében a színek közt szomszédsági szekvenciák által generált távolságmér függvényeket használunk, 3. ábra. Eredeti {1} {3} 3. ábra Szegmentálás Fuzziness hisztogram. Ez a fuzziness-hez közel álló módszer a fuzziness-hez és a területnöveléshez nyújthat segítséget. Egy hisztogramot készítünk, ahol az i-edik oszlop magassága arányos azoknak a pixeleknek a számával, amik az el re megadott színt l vagy színekt l a megadott távolságmér függvény szerint i lépés távolságra vannak. Természetesen a hisztogram alakja nagyban függ a kezd színekt l és a távolságmér függvényt l. Például egy gyorsabb függvény rövidebb hisztogramot eredményez, de fontos különbségek adódhatnak a hisztogram modalitására nézve is, 4. ábra. {1} {3} { } 4. ábra Fuzziness hisztogram 6. Alkalmazás Mivel az Oracle tulajdonságvektorai szín, alak és textúra alapján készülnek, képek kinyerésénél megmondhatjuk, hogy a fenti három tulajdonság közül melyik fontosabb a

5 többinél. Ha olyan képeket szeretnénk kapni, amik színben és textúrában hasonlítanak az eredeti képünkhöz, akkor ezeknek a tulajdonságokhoz nagyobb súlyt kell rendelnünk. Viszont ha a szomszédsági szekvenciákkal akarjuk a kérdést végrehajtani, meg kell adnunk, hogy melyik tulajdonság irányában hány lépést tehetünk meg, 5. ábra. Eredeti ábra {N xz 3 }{N y 40 } Megtehetjük, hogy id rendbe szedjük a tulajdonságokat, pl. ugyanannyi lépést tehetünk meg a szín irányában, mint textúra irányában, csak az egyik lekérdezésnél a szín irányába megyünk el bb, a másiknál a textúra irányába, és teljesen más eredményt kapunk, 6. ábra és 7. ábra. (Fels indexben jelezzük, hogy az adott szomszédság hányszor ismétl dik a szekvenciában) Eredeti ábra {N y 40 }{N x 4 }{N z 4 } Eredti ábra {N y 40 }{N z 4 }{N x 4 } Eredmények közlése nélkül bemutatunk egy példát. Szeretnénk karácsonyi képeket kiválogatni, vagyis azokat, amiken található egy karácsonyfa, vagy pedig sok rajtuk a zöld szín. Ha van egy zöld karácsonyfát tartalmazó képünk, akkor olyan képeket kell keresnünk, amik színben vagy alakban hasonlítanak hozzá, a textúra ebben az esetben nem érdekes. Mivel a tulajdonságvektorok két kép összehasonlításában az eltéréseket jelentik, tudjuk, hogy azokat a képeket keressük, ahol a vektorban a színhez és a textúrához tartozó érék kicsi. A szekvencia a következ lehet: {N x 10 }{N z 10 }{N y 100 } 7. Konklúzió A módszerünk, a szomszédsági szekvenciák képadatbázisokban való használata kiterjeszthet további dimenziókra, azaz további tulajdonságok vizsgálatára, és természetesen alkalmazható egyéb alkalmazásokban, ahol tulajdonságok alapján mérhet távolság objektumok között. Az alkalmazásunk Java nyelven íródott, adott képhez a megadott szekvencia alapján a legközelebb es 50-b l egy HTML fájl generál. Futási ideje egy 1GHz-es Pentium-on kb. 1 perc.

6 Irodalomjegyzék [1] P.E. Danielsson, 3D octagonal metrics, Eighth Scandinavian Conf. Image Process., pp , [2] P.P. Das, P.P. Chakrabarti, and B.N. Chatterji, Generalised distances in digital geometry Inform. Sci. 42, pp , [3] A. Fazekas, Lattice of distances based on 3D-neighbourhood sequences, Acta Mathematica Academiae Paedagogicae Nyiregyháziensis 15 (1999), [4] A. Fazekas, A. Hajdu, L. Hajdu, Lattice of generalized neighbourhood sequences in nd and D Publ. Math. Debrecen 60, pp , [5] A. Hajdu and L. Hajdu, Analytical and approximation properties of neighborhood sequences, KÉPAF 4 (2003), Miskolc-Tapolca. [6] A. Hajdu, L. Hajdu, R. Tijdeman, General neighborhood sequences in Z n Discrete Appl. Math., submitted. [7]András Hajdu, János Kormos, Benedek Nagy, Zoltán Zörg : Choosing appropriate distance measurement in digital image segmentation, Annales Univ.Sci. Budapest. Sect. Comp. 24 (2004), [8] A. Hajdu, B. Nagy, Z. Zörg, Indexing and segmenting colour images using neighbourhood sequences, IEEE ICIP 2003, Barcelona, Spain, pp. I/ [9] C. Kiselman, Regularity of distance transformations in image analysis, Computer Vision and Image Understanding 64, pp , [10] J. Kormos, K. Veréb, Recognition of Chain-Coded Patches with Statistical Methods, Mathematical and Computer Modelling, Vol.: 38, 7-9, 2003, [11] Lew, M.S., Principles of Visual Information Retrieval (ed.), Springer, [12] B. Nagy, Distance functions based on neighbourhood sequences, Publicationes Mathematicae Debrecen 63/3 (2003), [13] Oracle intermedia User's Guide and Reference, Release Part Number A , [14] Oracle Visual Information Retrieval User's Guide and Reference, Release 8.1.7, Part No. A , [15] Gy. E. Révész, Introduction To Formal Languages McGraw-Hill Book, Singapore, [16] A. Rosenfeld, and R.A. Melter, Digital geometry The Mathematical Intelligencer 11, pp , [17] A. Rosenfeld, and J.L. Pfaltz, Distance functions on digital pictures Pattern Recognition 1, pp , [18] Santini, S., Exploratory Image Databases Academic Press, [19] M. Yamashita, and T. Ibaraki, Distances defined by neighbourhood sequences Pattern Recognition 19, pp , 1986.

Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások

Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások Pannon Egyetem Informatikai Tudományok Doktori Iskola Tézisfüzet Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások Kovács Levente Képfeldolgozás és Neuroszámítógépek Tanszék Témavezet

Részletesebben

optimalizált vizuális adatstruktúra is erőteljesen épít a redundáns vizuális információ veszteséges

optimalizált vizuális adatstruktúra is erőteljesen épít a redundáns vizuális információ veszteséges JPEG és fraktál alapú képtömörítő eljárások összehasonlítása és alkalmazási lehetőségei multimédia alapú anyagok fejlesztésénél (Comparison and Using Possibilities of JPEG and Fractal Based Image Compressing

Részletesebben

T Ö. Irodalom http://www V Á

T Ö. Irodalom http://www V Á T Ö BB V Á T O Z Ó TAT I Z T I K A Irodalom http://www www.szit.bme.hu/~kela/ind2 - Bolla-Krámli: tatisztikai következések elmélete, Typotex, 2005 - Vargha A.: Matematikai statisztika, Pólya, 2000 - Bryman,

Részletesebben

Informatikai alapképzésben vizsgázó hallgatók eredményei a kreativitás tükrében

Informatikai alapképzésben vizsgázó hallgatók eredményei a kreativitás tükrében Informatikai alapképzésben vizsgázó hallgatók eredményei a kreativitás tükrében VARGA Andrea Pécsi Tudományegyetem, Természettudományi Kar, Pécs andyka92@gamma.ttk.pte.hu Felmérésem célkitűzése, hogy több

Részletesebben

Anatómiai régiók automatikus felismerése

Anatómiai régiók automatikus felismerése Anatómiai régiók automatikus felismerése Kutatási beszámoló 2015. június Készítette: Tóth Márton József Bevezetés A mai klinikai gyakorlatban a háromdimenziós orvosi képalkotó rendszerek használata igen

Részletesebben

ENCARNACAO, J.L. PEITGEN, H.-O. SAKAS, G. ENGLERT, G. editors (1992): Fractal Geometry and Computer Graphics, Springer- Verlag, Berlin Heidelberg. EAR

ENCARNACAO, J.L. PEITGEN, H.-O. SAKAS, G. ENGLERT, G. editors (1992): Fractal Geometry and Computer Graphics, Springer- Verlag, Berlin Heidelberg. EAR Irodalomjegyzék ACM Multimedia'95 Proceedings, (1995): Addison-Wesley Publishing Company, ACM Press, USA. ADOBE Photoshop 4.0 User Guide for Macintosh and Windows. ADOBE Photoshop 3.5 User Guide for UNIX.

Részletesebben

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév Tartalom Pont Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Egyenes Sík Háromszög Gömb 2010/2011. tavaszi félév Descartes-koordináták Geometriai értelmezés

Részletesebben

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÍRTA: SZABÓ LAJOS OKLEVELES IPARI TERMÉK- ÉS FORMATERVEZŐ MÉRNÖK KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI MÉRÉSTECHNIKÁK CÍMŰ TÉMAKÖRBŐL, AMELLYEL

Részletesebben

D é n e s T a m á s matematikus-kriptográfus

D é n e s T a m á s matematikus-kriptográfus D é n e s T a m á s matematikus-kriptográfus e-mail: tdenest@freemail.hu Gondolatok a társadalomkutatás módszertanáról és oktatásáról (Társadalom-holográfia) 1. Elméleti elızmények A társadalomkutatás

Részletesebben

SZAKKÉPZÉSI KERETTANTERV a(z) 55 213 05 MULTIMÉDIA-ALMAZÁSFEJLESZTŐ SZAKKÉPESÍTÉS-RÁÉPÜLÉSHEZ

SZAKKÉPZÉSI KERETTANTERV a(z) 55 213 05 MULTIMÉDIA-ALMAZÁSFEJLESZTŐ SZAKKÉPESÍTÉS-RÁÉPÜLÉSHEZ SZAKKÉPZÉSI KERETTANTERV a(z) 55 213 05 MULTIMÉDIA-ALMAZÁSFEJLESZTŐ SZAKKÉPESÍTÉS-RÁÉPÜLÉSHEZ I. A szakképzés jogi háttere A szakképzési kerettanterv a nemzeti köznevelésről szóló 2011. évi CXC. törvény,

Részletesebben

Hazánkban jelentõs múlttal rendelkeznek a klasszikus tesztelméleti módszerekkel

Hazánkban jelentõs múlttal rendelkeznek a klasszikus tesztelméleti módszerekkel Iskolakultúra 2008/1 2 Molnár Gyöngyvér SZTE, Pedagógia Tanszék, MTA-SZTE Képességkutató Csoport A Rasch-modell kiterjesztése nem dichotóm adatok elemzésére: a rangskálás és a parciális kredit modell A

Részletesebben

A DIGITÁLIS KÉPFELDOLGOZÁS OKTATÁSÁNAK EREDMÉNYEI ÉS NÉHÁNY AKTUÁLIS KÉRDÉSE A DEBRECENI EGYETEMEN

A DIGITÁLIS KÉPFELDOLGOZÁS OKTATÁSÁNAK EREDMÉNYEI ÉS NÉHÁNY AKTUÁLIS KÉRDÉSE A DEBRECENI EGYETEMEN A DIGITÁLIS KÉPFELDOLGOZÁS OKTATÁSÁNAK EREDMÉNYEI ÉS NÉHÁNY AKTUÁLIS KÉRDÉSE A DEBRECENI EGYETEMEN CURRENT QUESTIONS AND RESULTS ABOUT THE EDUCATION OF DIGITAL IMAGE PROCESSING AT THE UNIVERSITY OF DEBRECEN

Részletesebben

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet PAPP ZSOLT Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék 2003 1 Bevezetés A lézerek megjelenését

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

VI. Magyar Földrajzi Konferencia 524-529

VI. Magyar Földrajzi Konferencia 524-529 Van Leeuwen Boudewijn Tobak Zalán Szatmári József 1 BELVÍZ OSZTÁLYOZÁS HAGYOMÁNYOS MÓDSZERREL ÉS MESTERSÉGES NEURÁLIS HÁLÓVAL BEVEZETÉS Magyarország, különösen pedig az Alföld váltakozva szenved aszályos

Részletesebben

A képfeldolgozás matematikája I.

A képfeldolgozás matematikája I. 1 A képfeldolgozás matematikája I. Bevezetés Dr. Fazekas Attila Attila.Fazekas@inf.unideb.hu Polányi Mihály: A személyes tudás A sikeres kommunikáció kedvéért az üzenet feladója 2 Polányi Mihály: A személyes

Részletesebben

E-LEARNING ALAPÚ TÁVOKTATÁS A SZÉCHENYI ISTVÁN EGYETEMEN

E-LEARNING ALAPÚ TÁVOKTATÁS A SZÉCHENYI ISTVÁN EGYETEMEN E-LEARNING ALAPÚ TÁVOKTATÁS A SZÉCHENYI ISTVÁN EGYETEMEN E-LEARNING BASED DISTANCE EDUCATION AT SZÉCHENYI ISTVÁN UNIVERSITY Nyéki Lajos, nyeki@sze.hu Széchenyi István Egyetem 1. Bevezetés A Széchenyi István

Részletesebben

KÉPI INFORMÁCIÓK KEZELHETŐSÉGE. Forczek Erzsébet SZTE ÁOK Orvosi Informatikai Intézet. Összefoglaló

KÉPI INFORMÁCIÓK KEZELHETŐSÉGE. Forczek Erzsébet SZTE ÁOK Orvosi Informatikai Intézet. Összefoglaló KÉPI INFORMÁCIÓK KEZELHETŐSÉGE Forczek Erzsébet SZTE ÁOK Orvosi Informatikai Intézet Összefoglaló Tanórákon és az önálló tanulás részeként is, az informatika világában a rendelkezésünkre álló óriási mennyiségű

Részletesebben

Diagnosztikai szemléletű talajtérképek szerkesztése korrelált talajtani adatrendszerek alapján

Diagnosztikai szemléletű talajtérképek szerkesztése korrelált talajtani adatrendszerek alapján Diagnosztikai szemléletű talajtérképek szerkesztése korrelált talajtani adatrendszerek alapján Bakacsi Zsófia 1 - Szabó József 1 Waltner István 2 Michéli Erika 2 Fuchs Márta 2 - Laborczi Annamária 1 -

Részletesebben

Újdonságok. Release 2

Újdonságok. Release 2 ARCHLine.XP 2009 Windows Újdonságok Release 2 A dokumentációban levı anyag változásának jogát a CadLine Kft fenntartja, ennek bejelentésére kötelezettséget nem vállal. A szoftver, ami tartalmazza az ebben

Részletesebben

Dr. Pétery Kristóf: AutoCAD LT 2002 Blokkok, Xrefek

Dr. Pétery Kristóf: AutoCAD LT 2002 Blokkok, Xrefek 2 Minden jog fenntartva, beleértve bárminemű sokszorosítás, másolás és közlés jogát is. Kiadja a Mercator Stúdió Felelős kiadó a Mercator Stúdió vezetője Lektor: Gál Veronika Szerkesztő: Pétery István

Részletesebben

4. sz. Füzet. A hibafa számszerű kiértékelése 2002.

4. sz. Füzet. A hibafa számszerű kiértékelése 2002. M Ű S Z A K I B I Z O N S Á G I F Ő F E L Ü G Y E L E 4. sz. Füzet A hibafa számszerű kiértékelése 00. Sem a Műszaki Biztonsági Főfelügyelet, sem annak nevében, képviseletében vagy részéről eljáró személy

Részletesebben

Önálló laboratórium beszámoló

Önálló laboratórium beszámoló Önálló laboratórium beszámoló BME-TMIT Készítette: Sümeghy Tamás Pál Neptun-kód: GFHSRE Szak: műszaki informatikus Szakirány: Internet és infokommunikációs alkalmazásai E-mail cím: schumy@sch.bme.hu Konzulens(ek):

Részletesebben

A rádióelektronikai háború új eszközei: a széttelepített rádiólokátor

A rádióelektronikai háború új eszközei: a széttelepített rádiólokátor A rádióelektronikai háború új eszközei: a széttelepített rádiólokátor DR. SERES GYÖRGY mérnök alezredes, a hadtudományok (haditechnika) kandidátusa A korszerű rádióelektronikai harc egyik nagy dilemmája:

Részletesebben

Fókuszált fénynyalábok keresztpolarizációs jelenségei

Fókuszált fénynyalábok keresztpolarizációs jelenségei Fókuszált fénynyalábok keresztpolarizációs jelenségei K házi-kis Ambrus, Klebniczki József Kecskeméti F iskola GAMF Kar Matematika és Fizika Tanszék, 6000 Kecskemét, Izsáki út 10. Véges transzverzális

Részletesebben

Közlekedési események képi feldolgozása

Közlekedési események képi feldolgozása Közlekedési események képi feldolgozása Max Gyula Budapest Műszaki és Gazdaságtudományi Egyetem, Automatizálási és Alkalmazott Informatikai Tanszék 1521 Budapest, Pf. 91, { e-mail: max@aut.bme.hu} Abstract.

Részletesebben

Doktori PhD értekezés

Doktori PhD értekezés Doktori PhD értekezés Békési Bertold 2006 ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM BOLYAI JÁNOS KATONAI MŰSZAKI KAR KATONAI MŰSZAKI DOKTORI ISKOLA Békési Bertold okl. mk. őrnagy A KATONAI REPÜLŐGÉPEK ÜZEMELTETÉSÉNEK,

Részletesebben

Diplomamunka. Koczka László

Diplomamunka. Koczka László Diplomamunka Koczka László Debrecen 010 Debreceni Egyetem Informatikai Kar Közgazdasági Modellek Számítógépes Szimulációja Témavezető: Dr. Földvári Péter Egyetemi adjunktus Készítette: Koczka László Gazdaságinformatikus

Részletesebben

Online kérd íves felmérés a Gazdálkodás olvasóinak és szerz inek körében

Online kérd íves felmérés a Gazdálkodás olvasóinak és szerz inek körében 389 V ITA Online kérd íves felmérés a Gazdálkodás olvasóinak és szerz inek körében FEHÉR ANDRÁS SZABÓ G. GÁBOR SZAKÁLY ZOLTÁN Kulcsszavak: elégedettség, vélemények, olvasók, szerz k, Gazdálkodás. ÖSSZEFOGLALÓ

Részletesebben

Tervezett erdőgazdálkodási tevékenységek bejelentése

Tervezett erdőgazdálkodási tevékenységek bejelentése Tervezett erdőgazdálkodási tevékenységek bejelentése ERDŐGAZDÁLKODÁSI HATÓSÁGI BEJELENTÉSEK/ TERVEZETT ERDŐGAZDÁLKODÁSI TEV. BEJELENTÉSE A Tervezett erdőgazdálkodási tevékenységek bejelentése a fakitermelési

Részletesebben

Optikai karakterfelismerés

Optikai karakterfelismerés Optikai karakterfelismerés Az optikai karakterfelismerés feladata A különböző formátumú dokumentumok kezelésének egyik speciális esete, amikor a kezelendő dokumentumok még nem állnak rendelkezésre elektronikus

Részletesebben

elektronmikroszkóppal

elektronmikroszkóppal JÖVÕNK ANYAGAI, TECHNOLÓGIÁI ROVATVEZETÕK: dr. Buzáné dr. Dénes Margit és dr. Klug Ottó SZABÓ PÉTER JÁNOS A lokális szemcseorientáció meghatározása pásztázó elektronmikroszkóppal A pásztázó elektronmikroszkópos

Részletesebben

ERserver. iseries. Szolgáltatási minőség

ERserver. iseries. Szolgáltatási minőség ERserver iseries Szolgáltatási minőség ERserver iseries Szolgáltatási minőség Szerzői jog IBM Corporation 2002. Minden jog fenntartva Tartalom Szolgáltatási minőség (QoS)............................ 1

Részletesebben

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

Brooklyn Credit Risk Monitoring System

Brooklyn Credit Risk Monitoring System Brooklyn Credit Risk Monitoring System Mi a célja, küldetése a rendszernek Az egyébként kényszerű adatszolgáltatási kötelezettség adatáramára építve olyan rendszer biztosítása, amely 1. Lényegi (mat.stat.)

Részletesebben

Veszteséges képtömörítő eljárások pszichovizuális összehasonlítása

Veszteséges képtömörítő eljárások pszichovizuális összehasonlítása Veszteséges képtömörítő eljárások pszichovizuális összehasonlítása Berke József 1 - Kocsis Péter 2 - Kovács József 2 1 - Pannon Agrártudományi Egyetem, Georgikon, Mezőgazdaságtudományi Kar, Szaktanácsadási,

Részletesebben

VEZETÉS- ÉS SZERVEZÉSTUDOMÁNYI PROGRAM KÖTELEZİEN VÁLASZTHATÓ TANTÁRGYAI

VEZETÉS- ÉS SZERVEZÉSTUDOMÁNYI PROGRAM KÖTELEZİEN VÁLASZTHATÓ TANTÁRGYAI VEZETÉS- ÉS SZERVEZÉSTUDOMÁNYI PROGRAM KÖTELEZİEN VÁLASZTHATÓ TANTÁRGYAI TANTÁRGYI TEMATIKA ÉS KÖVETELMÉNYRENDSZER Tantárgy: neve (magyar) Vezetés- szervezéselmélet és vizsgálati módszerei neve (angol)

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

A Debreceni Egyetem és a Nagyváradi Egyetem WiFi alapú helymeghatározó rendszere

A Debreceni Egyetem és a Nagyváradi Egyetem WiFi alapú helymeghatározó rendszere A Debreceni Egyetem és a Nagyváradi Egyetem WiFi alapú helymeghatározó rendszere Gál Zoltán 1 Marius Onic 2 1 IT igazgató, Debreceni Egyetem TEK, zgal@unideb.hu 2 IT vezet, Nagyváradi Egyetem, omar@uoradea.ro

Részletesebben

A hierarchikus adatbázis struktúra jellemzői

A hierarchikus adatbázis struktúra jellemzői A hierarchikus adatbázis struktúra jellemzői Az első adatbázis-kezelő rendszerek a hierarchikus modellen alapultak. Ennek az volt a magyarázata, hogy az élet sok területén első közelítésben elég jól lehet

Részletesebben

TÁMOP 4.1.1 VIR alprojekt VIR felhasználói kézikönyv

TÁMOP 4.1.1 VIR alprojekt VIR felhasználói kézikönyv 1. sz. melléklet TÁMOP 4.1.1 VIR alprojekt Készítette: Aloha Informatika Kft. Tartalomjegyzék 1. A Vezetői Információs Rendszer, mint a stratégiai gondolkodás eszköze...4 1.1 Elméleti háttér...4 1.2 VIR

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

Széchenyi István Szakképző Iskola

Széchenyi István Szakképző Iskola A SZAKKÖZÉPISKOLAI SZAKMACSOPORTOS ALAPOZÓ OKTATÁS EMELT SZINTŰ ISKOLAI PROGRAMJA 11-12. évolyam Érvényes a 2003-2004-es tanévtől felmenő rendszerben Átdolgozva, utolsó módosítás: 2004. április 26. Az

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

Mérési sorozatok tanulságai

Mérési sorozatok tanulságai Kovács Tibor - Reményi Tibor Mérési sorozatok tanulságai A cikkben olyan valós eszközökkel ténylegesen végrehajtott mérési sorozatokat mutatunk be, amelyek arra szolgálhatnak, hogy helyesen vegyük fel

Részletesebben

AutoCad RAJZFELÜLET BEÁLLÍTÁSAI

AutoCad RAJZFELÜLET BEÁLLÍTÁSAI AutoCad RAJZFELÜLET BEÁLLÍTÁSAI Ajánlott klasszikus munkaterület beállítása (menüsor, ikonok egyszerre jelennek meg) Tipp!!! JOBB egérgomb használatával aktuális munkafelületek, menüsorok tulajdonságait

Részletesebben

Gazdasági informatika vizsga kérdések

Gazdasági informatika vizsga kérdések Gazdasági informatika vizsga kérdések 1. Mi az adatbázis? Adatbázisnak a valós világ egy részhalmazának leírásához használt adatok összefüggı, rendezett halmazát nevezzük. 2. Mit az adatbázis-kezelı rendszer?

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat

Részletesebben

FERROMÁGNESES ANYAGOK RONCSOLÁSMENTES VIZSGÁLATA MÁGNESESHISZTERÉZIS-ALHURKOK MÉRÉSE ALAPJÁN. Mágneses adaptív teszt (MAT) Vértesy Gábor

FERROMÁGNESES ANYAGOK RONCSOLÁSMENTES VIZSGÁLATA MÁGNESESHISZTERÉZIS-ALHURKOK MÉRÉSE ALAPJÁN. Mágneses adaptív teszt (MAT) Vértesy Gábor FERROMÁGNESES ANYAGOK RONCSOLÁSMENTES VIZSGÁLATA MÁGNESESHISZTERÉZIS-ALHURKOK Vértesy Gábor MÉRÉSE ALAPJÁN MTA TTK Műszaki Fizikai és Anyagtudományi Intézet Olyan új, gyorsan elvégezhetô, megbízható és

Részletesebben

A számítógép felhasználása a modern fizika BSc szintű oktatásában

A számítógép felhasználása a modern fizika BSc szintű oktatásában DOKTORI ÉRTEKEZÉS TÉZISEI A számítógép felhasználása a modern fizika BSc szintű oktatásában Nagy Péter Témavezető: Dr. Tasnádi Péter egyetemi tanár Eötvös Loránd Tudományegyetem Természettudományi Kar

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41 Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt

Részletesebben

Stratégiai menedzsment

Stratégiai menedzsment Fülöp Gyula Stratégiai menedzsment Elmélet és gyakorlat Perfekt Kiadó Tartalom Bevezetés... 9 1. A stratégia lényege, stratégiai alapfogalmak... 11 1.1. Katonai gyökerek... 11 1.2. Stratégia az üzleti

Részletesebben

A DRHE MARÓTHI GYÖRGY KÖNYVTÁR SZERVEZETI ÉS MŰKÖDÉSI SZABÁLYZATA

A DRHE MARÓTHI GYÖRGY KÖNYVTÁR SZERVEZETI ÉS MŰKÖDÉSI SZABÁLYZATA A DEBRECENI REFORMÁTUS HITTUDOMÁNYI EGYETEM SZERVEZETI ÉS MŰKÖDÉSI SZABÁLYZATÁNAK Ikt. szám: 1425/1300/19-2/2014. 13/B. SZ. MELLÉKLETE A DRHE MARÓTHI GYÖRGY KÖNYVTÁR SZERVEZETI ÉS MŰKÖDÉSI SZABÁLYZATA

Részletesebben

MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA

MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA Multidiszciplináris tudományok 3. kötet (2013) 1. sz. pp. 21-26. MECHANIZMUSOK KINEMATIKAI VIZSGÁLATA Nándoriné Tóth Mária egyetemi docens, ME GÉIK Ábrázoló Geometriai tanszék 3515 Miskolc-Egyetemváros,

Részletesebben

Produkció mérések. Gyakorlati segédanyag a Mezőgazdasági- és Környezettudományi Kar hallgatóinak

Produkció mérések. Gyakorlati segédanyag a Mezőgazdasági- és Környezettudományi Kar hallgatóinak SZENT ISTVÁN EGYETEM MEZŐGAZDASÁG- ÉS KÖRNYEZETTUDOMÁNYI KAR NÖVÉNYTANI ÉS ÖKOFIZIOLÓGIAI INTÉZET 2103 GÖDÖLLŐ, PÁTER KÁROLY U. 1 TEL:(28) 522 075 FAX:(28) 410 804 Produkció mérések Gyakorlati segédanyag

Részletesebben

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László

Részletesebben

INFORMATIKA HELYI TANTERV

INFORMATIKA HELYI TANTERV INFORMATIKA HELYI TANTERV Az alsó tagozatos informatikai fejlesztés során törekedni kell a témához kapcsolódó korosztálynak megfelelő használatára, az informatikai eszközök működésének bemutatására, megértésére

Részletesebben

AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS

AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS AKADÉMIAI LEVELEZŐ TAGSÁGRA TÖRTÉNŐ AJÁNLÁS I. ADATLAP Név: CSÁKI ENDRE Születési hely, év, hó, nap: Budapest, 1935 január 7 Tudomány doktora fokozat megszerzésének éve: 1989 Szűkebb szakterülete: valószínűségszámítás

Részletesebben

Bevezetés. Berke Virág - Tóth: Számítógépes grafika és prezentáció

Bevezetés. Berke Virág - Tóth: Számítógépes grafika és prezentáció Berke Virág - Tóth: Számítógépes grafika és prezentáció Bevezetés A XX. század végén földünk fejlett és fejlődő társadalmai jelentős változáson esnek át, amelyet elsősorban az informatika generál. Hazánk

Részletesebben

ESETTANULMÁNY II. A nagyváros és környéke területpolitikai sajátosságai a kistérségi rendszer működése szempontjából. című kutatás

ESETTANULMÁNY II. A nagyváros és környéke területpolitikai sajátosságai a kistérségi rendszer működése szempontjából. című kutatás ESETTANULMÁNY II. A nagyváros és környéke területpolitikai sajátosságai a kistérségi rendszer működése szempontjából című kutatás A program vezetője: Kovács Róbert A kutatás vezetője: Zsugyel János Készítette:

Részletesebben

FELHASZNÁLÓI LEÍRÁS a DIMSQL Integrált Számviteli Rendszer Készlet moduljának használatához

FELHASZNÁLÓI LEÍRÁS a DIMSQL Integrált Számviteli Rendszer Készlet moduljának használatához FELHASZNÁLÓI LEÍRÁS a DIMSQL Integrált Számviteli Rendszer Készlet moduljának használatához - 1 - www.dimenzio-kft.hu Tartalomjegyzék A. BEVEZETÉS... 4 I. BEÁLLÍTÁSOK, PARAMÉTEREK, NAPLÓFORMÁTUMOK... 4

Részletesebben

A HEVES-BORSODI-DOMBSÁG MORFOMETRIAI ELEMZÉSE TÉRINFORMATIKAI MÓDSZEREKKEL. Utasi Zoltán 1. A terület elhelyezkedése

A HEVES-BORSODI-DOMBSÁG MORFOMETRIAI ELEMZÉSE TÉRINFORMATIKAI MÓDSZEREKKEL. Utasi Zoltán 1. A terület elhelyezkedése Földrajz Konferencia, Szeged 2001. A HEVES-BORSODI-DOMBSÁG MORFOMETRIAI ELEMZÉSE TÉRINFORMATIKAI MÓDSZEREKKEL Utasi Zoltán 1 A terület elhelyezkedése A Heves-Borsodi-dombság a Mátra és a Bükk vonulatától

Részletesebben

1. Katona János publikációs jegyzéke

1. Katona János publikációs jegyzéke 1. Katona János publikációs jegyzéke 1.1. Referált, angol nyelvű, nyomtatott publikációk [1] J.KATONA-E.MOLNÁR: Visibility of the higher-dimensional central projection into the projective sphere Típus:

Részletesebben

PONTASÍTÁSOK a 2015/S 126-230625 számú közbeszerzés belvízi csatorna-modellek előállítására vonatkozó Műszaki Dokumentációjához

PONTASÍTÁSOK a 2015/S 126-230625 számú közbeszerzés belvízi csatorna-modellek előállítására vonatkozó Műszaki Dokumentációjához PONTASÍTÁSOK a 2015/S 126-230625 számú közbeszerzés belvízi csatorna-modellek előállítására vonatkozó Műszaki Dokumentációjához A dokumentum célja Jelen dokumentum a 2015/S 126-230625 számú közbeszerzési

Részletesebben

A.26. Hagyományos és korszerű tervezési eljárások

A.26. Hagyományos és korszerű tervezési eljárások A.26. Hagyományos és korszerű tervezési eljárások A.26.1. Hagyományos tervezési eljárások A.26.1.1. Csuklós és merev kapcsolatú keretek tervezése Napjainkig a magasépítési tartószerkezetek tervezése a

Részletesebben

Információtartalmú elemzések a közlekedéseredetű szennyezőanyagok hatásvizsgálatánál

Információtartalmú elemzések a közlekedéseredetű szennyezőanyagok hatásvizsgálatánál Információtartalmú elemzések a közlekedéseredetű szennyezőanyagok hatásvizsgálatánál Kozma-Bognár Veronika 1 Szabó Rita 2 Berke József 2 1 ügyvivő szakértő, Pannon Egyetem, Meteorológia és Vízgazdálkodás

Részletesebben

A controlling integrálódása az oktatási szférában

A controlling integrálódása az oktatási szférában Dr. Tóth Antal - Dr. Zéman Zoltán A controlling integrálódása az oktatási szférában 1. CONTROLLING ALKALMAZÁSA A FELSŐOKTATÁSI INTÉZMÉNYEKNÉL A controlling hasznossága mindaddig nem fog érvényre jutni

Részletesebben

Számítástechnikai és Automatizálási Kutatóintézet (MTA SZTAKI), 1111, Budapest, Kende utca 13 17, email:{vezetéknév.keresztnév}@sztaki.mta.

Számítástechnikai és Automatizálási Kutatóintézet (MTA SZTAKI), 1111, Budapest, Kende utca 13 17, email:{vezetéknév.keresztnév}@sztaki.mta. Mozgó személyek követése és 4D vizualizációja Lidar-alapú járáselemzéssel Nagy Balázs 1, Benedek Csaba 1 és Jankó Zsolt 2 1 Elosztott Események Elemzése Kutatólaboratórium, Magyar Tudományos Akadémia,

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Aronic Főkönyv kettős könyvviteli programrendszer

Aronic Főkönyv kettős könyvviteli programrendszer 6085 Fülöpszállás, Kiskunság tér 4. Internet: www.cin.hu E-mail: software@cin.hu Tel: 78/435-081, 30/9-573-673, 30/9-593-167 kettős könyvviteli programrendszer v2.0 Szoftverdokumentáció Önnek is jár egy

Részletesebben

kontroll környezetet folyamatokat és a folyamatgazdákat; célkitűzéseit; belső ellenőrzési Általános felmérés: külső és belső kontroll környezetének

kontroll környezetet folyamatokat és a folyamatgazdákat; célkitűzéseit; belső ellenőrzési Általános felmérés: külső és belső kontroll környezetének PÁTY KÖZSÉG ÖNKORMÁNYZATA STRATÉGIAI BELSŐ ELLENŐRZÉSI TERVE 2014-2018 Készítette: Majláth Konrád Konstantin okl. pénzügyi adó - pénzügyi ellenőrzési szakértő, költségvetési gazdasági szakértő, közbeszerzési

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012 MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér 30. 031154. HELYI TANTERV Informatika 4. osztály 2013

Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér 30. 031154. HELYI TANTERV Informatika 4. osztály 2013 Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér 30. 031154 HELYI TANTERV Informatika 4. osztály 2013 Informatika az általános iskola 4. évfolyama számára (heti 1 órás változat) Az alsó tagozatos

Részletesebben

Élpont osztályozáson alapuló robusztus tekintetkövetés

Élpont osztályozáson alapuló robusztus tekintetkövetés KÉPFELDOLGOZÁS Élpont osztályozáson alapuló robusztus tekintetkövetés HELFENBEIN TAMÁS Ipari Kommunikációs Technológiai Intézet, Bay Zoltán Alkalmazott Kutatási Közalapítvány helfenbein@ikti.hu Lektorált

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Földtani térképek kartografálásának segítése térinformatikai módszerekkel

Földtani térképek kartografálásának segítése térinformatikai módszerekkel A Magyar Állami Földtani Intézet Évi Jelentése, 2004 139 Földtani térképek kartografálásának segítése térinformatikai módszerekkel Aiding the cartographic process of geological maps with GIS-methods Magyar

Részletesebben

2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs

2013.03.11. Az SPC alapjai. Az SPC alapjai SPC 5. 5. Az SPC (Statistic Process Control) módszer. Dr. Illés Balázs SPC 5 5. Az SPC (Statistic Process Control) módszer Dr. Illés Balázs BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ELEKTRONIKAI TECHNOLÓGIA TANSZÉK Az SPC alapjai SPC (Statistical Process Controll) =

Részletesebben

A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN

A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 61 70. A SZEMCSEALAK ALAPJÁN TÖRTÉNŐ SZÉTVÁLASZTÁS JELENTŐSÉGE FÉMTARTALMÚ HULLADÉKOK FELDOLGOZÁSA SORÁN SIGNIFICANCE OF SHAPE SEPARATION

Részletesebben

TERMIR PROGRAM (Termelés-irányítási program)

TERMIR PROGRAM (Termelés-irányítási program) TERMIR PROGRAM (Termelés-irányítási program) Bevezető A XXI. században a vállalatoknak elengedhetetlen a termelés hatékonyságának növelése. Manapság a gyorsan fejlődő informatika kulcs fontosságú szerepet

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

MPEG-4 alapú átvitel megvalósítása a DVB-T technikában

MPEG-4 alapú átvitel megvalósítása a DVB-T technikában MPEG-4 alapú átvitel megvalósítása a DVB-T technikában ENYEDI BALÁZS, KONYHA LAJOS, SZOMBATHY CSABA, TRAN MIN SON, DR.GSCHWINDT ANDRÁS, DR. SZOKOLAY MIHÁLY, DR. FAZEKAS KÁLMÁN Budapesti Mûszaki és Gazdaságtudományi

Részletesebben

Kezelési kézikönyv. A következő fülekre kattintva a kézikönyv megfelelő szakaszához ugorhat. ImageBrowser EX. CameraWindow

Kezelési kézikönyv. A következő fülekre kattintva a kézikönyv megfelelő szakaszához ugorhat. ImageBrowser EX. CameraWindow Kezelési kézikönyv A következő fülekre kattintva a kézikönyv megfelelő szakaszához ugorhat. ImageBrowser EX CameraWindow EOS fényképezőgép-felhasználók: Ezekhez a műveletekhez a CameraWindow program helyett

Részletesebben

DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI SZAFNER GÁBOR

DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI SZAFNER GÁBOR DOKTORI (PHD) ÉRTEKEZÉS TÉZISEI SZAFNER GÁBOR MOSONMAGYARÓVÁR 2014 NYUGAT-MAGYARORSZÁGI EGYETEM Mezőgazdaság- és Élelmiszertudományi Kar Mosonmagyaróvár Matematika, Fizika és Informatika Intézet Ujhelyi

Részletesebben

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,

Részletesebben

LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN

LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp. 11-20. LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN Illés Béla tanszékvezető egyetemi tanár Miskolci Egyetem, Anyagmozgatási

Részletesebben

Csigatisztítók hatékonyságának minősítési módszere

Csigatisztítók hatékonyságának minősítési módszere Csigatisztítók hatékonyságának minősítési módszere Török Dániel, Suplicz András, Kovács József Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépészmérnöki Kar, Polimertechnika Tanszék, Műegyetem

Részletesebben

SZENT ISTVÁN EGYETEM

SZENT ISTVÁN EGYETEM SZENT ISTVÁN EGYETEM A magyar mezőgazdasági gépgyártók innovációs aktivitása Doktori (PhD) értekezés tézisei Bak Árpád Gödöllő 2013 A doktori iskola Megnevezése: Műszaki Tudományi Doktori Iskola Tudományága:

Részletesebben

Látványos oktatás egyszerő multimédiás elemek programozásával Delphiben

Látványos oktatás egyszerő multimédiás elemek programozásával Delphiben Látványos oktatás egyszerő multimédiás elemek programozásával Delphiben Menyhárt László Gábor menyhart@elte.hu ELTE IK Absztrakt. A cikkben bemutatok egy ötletes megoldást arra, hogy hogyan lehet egyszerően

Részletesebben

Sz-2/14 Belső ellenőrzési Kézikönyv

Sz-2/14 Belső ellenőrzési Kézikönyv 3. kiadás 0. módosítás 2 (78). oldal Tartalom I. Bevezetés... 3 II. A belső ellenőrzés hatáskörét, feladatait és céljait meghatározó belső ellenőrzési alapszabály (Charta)... 5 III. A belső ellenőrzési

Részletesebben

Végeselem módszer 3. gyakorlat

Végeselem módszer 3. gyakorlat b SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 3. gyakorlat (kidolgozta: Dr.Molnár Zoltán egyetemi adjunktus,szüle Veronika egyetemi tanársegéd) Feladat: Saját síkjában terhelt

Részletesebben

A szakképző iskolát végzettek iránti kereslet és kínálat várható alakulása 2011

A szakképző iskolát végzettek iránti kereslet és kínálat várható alakulása 2011 A szakképző iskolát végzettek iránti kereslet és kínálat várható alakulása 2011 Az elemzés a Szakiskolai férőhelyek meghatározása 2011, a regionális fejlesztési és képzési bizottságok (RFKB-k) részére

Részletesebben

A TALAJVÍZSZINT SZTOCHASZTIKUS SZIMULÁCIÓJA EGY TISZAI ÖVZÁTONY PÉLDÁJÁN. Mucsi László 1 Geiger János 2

A TALAJVÍZSZINT SZTOCHASZTIKUS SZIMULÁCIÓJA EGY TISZAI ÖVZÁTONY PÉLDÁJÁN. Mucsi László 1 Geiger János 2 BEVEZETÉS A TALAJVÍZSZINT SZTOCHASZTIKUS SZIMULÁCIÓJA EGY TISZAI ÖVZÁTONY PÉLDÁJÁN Mucsi László 1 Geiger János 2 A talajban lejátszódó térbeli folyamatok elemzéséhez a kutatók egyre többet használják a

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i )

P (A) = i. P (A B i )P (B i ) P (B k A) = P (A B k)p (B k ) P (A) i P (A B i)p (B i ) 6. A láncszabály, a teljes valószínűség tétele és Bayes-tétel Egy (Ω, A, P ) valószín ségi mez n értelmezett A 1,..., A n A események metszetének valószín sége felírható feltételes valószín ségek segítségével

Részletesebben

Adatszerkezetek és algoritmusok Geda, Gábor

Adatszerkezetek és algoritmusok Geda, Gábor Adatszerkezetek és algoritmusok Geda, Gábor Adatszerkezetek és algoritmusok Geda, Gábor Publication date 2013 Szerzői jog 2013 Eszterházy Károly Főiskola Copyright 2013, Eszterházy Károly Főiskola Tartalom

Részletesebben

Access 2010 Űrlapok és adatelérés

Access 2010 Űrlapok és adatelérés 2 Minden jog fenntartva, beleértve bárminemű sokszorosítás, másolás és közlés jogát is. Kiadja a Mercator Stúdió Felelős kiadó a Mercator Stúdió vezetője Lektor: Gál Veronika Szerkesztő: Pétery István

Részletesebben

Szakmai beszámoló 1. Automataelméleti kutatások 2. Formális nyelvészeti kutatások

Szakmai beszámoló 1. Automataelméleti kutatások 2. Formális nyelvészeti kutatások Szakmai beszámoló Kutatásaink öt fő területre csoportosíthatók : automataelméleti kutatások, formális nyelvészeti kutatások, logikai kutatások, új elvű számítási modellek kutatása, egyéb kutatások. 1.

Részletesebben

HIDASNÉMETI KÖZSÉG ÖNKORMÁNYZATA POLGÁRMESTERI HIVATALÁNAK SZERVEZETFEJLESZTÉSE. Informatikai tanulmány

HIDASNÉMETI KÖZSÉG ÖNKORMÁNYZATA POLGÁRMESTERI HIVATALÁNAK SZERVEZETFEJLESZTÉSE. Informatikai tanulmány Tel.: 06-1-212-2070,, Fax: HIDASNÉMETI KÖZSÉG ÖNKORMÁNYZATA POLGÁRMESTERI HIVATALÁNAK SZERVEZETFEJLESZTÉSE Informatikai tanulmány Készült az Új Magyarország Fejlesztési terv Államreform Operatív Program

Részletesebben

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási

Részletesebben