3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás"

Átírás

1 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 1a. Bevezetés Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék 1

2 Tartalom Bevezetés Számítógépes tervezés és alakzatrekonstrukció A tárgy oktatása és a követelményrendszer 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 2

3 Bevezetés Két tudományág: (i) Computer Aided Geometric Design (CAGD) Számítógéppel segített geometriai tervezés (ii) Digital Shape Reconstruction (DSR) Számítógépes alak(zat)-rekonstrukció (Reverse Engineering Mérnöki visszafejtés) 3D-s geometria - digitális reprezentáció - számítógépes algoritmusok - alkalmazások Bevezetés 3

4 Számítógéppel segített geometriai tervezés koncepció, mérnöki dokumentáció műszaki rajz, formatervezői vázlat tervezés absztrakt, pontos geometriai elemek számítógépes modell alkalmazások: megjelenítés, virtuális valóság paraméterek számítása újratervezés, módosítás, variánsok végeselem-analízis (FEA) - szilárdságtan, termodinamika, áramlástan numerikusan vezérelt (NC) megmunkálás fizikai objektum Bevezetés 4

5 Számítógépes tervezés: input-output formatervezői vázlatok műszaki rajz paraméterek módosítása, alkatrész családok végeselemes analízis automatikus megmunkálás Bevezetés 5

6 Digitális alakzat rekonstrukció létező fizikai objektum 3D mérés, szkennelés mért, zajos, strukturálatlan elemek nagyméretű ponthalmazok alakzat rekonstrukció számítógépes modell alkalmazások Bevezetés 6

7 Digitális informatika Digital Signal Processing 1970 Fő technológiai komponensek: Digital Image Processing Digital Shape Processing 2000 érintésmentes 3D-s szkennerek nagyteljesítményű grafikus számítógépek digitális alakrekonstrukciós szoftver rendszerek 3D nyomtatás Bevezetés 7

8 Rekonstrukció - alkalmazások - nem létezik digitális modell - nem CAD technológiával készült, nincs gyártási dokumentáció - egyéni organikus felületek, testre kell szabni ; illeszkedő felületek használata: térdprotézis, fogsor, hallókészülék, bukósisak stb. - egyedi művészeti alkotások; a kulturális örökség megőrzése - van digitális referencia modell, de ellenőrizni kell a minőségét Bevezetés 8

9 A New York-i Szabadságszobor Geomagic, Inc. : 16 millió adatpont digitális modell a szobor rekonstruálása lehetővé vált 9

10 Az űrsikló biztonságos visszatérése Geomagic, Inc. : minőségellenőrzés a hőálló csempék esetleges károsodásának felismerése Bevezetés 10

11 3D nyomtatás Bevezetés 11

12 Tervezés és alakzat rekonstrukció KONCEPCIÓ TERVEZÉS SZÁMÍTÓGÉPES MODELL ALKALMAZÁSOK DIGITÁLIS ALAKZAT REKONSTRUKCIÓ GYÁRTÁS 3D-s MÉRÉS FIZIKAI OBJEKTUM Bevezetés 12

13 Digitális reprezentációk pontok, pontfelhők háromszögek, háromszöghálók görbék, görbehálózatok, drótvázak felületek, felület-csoportok tömör (merev) testek Reprezentációk 13

14 Digitális reprezentációk 1 1 Pontok, pontfelhők 2 5 Háromszöghálók, (poligonok) 3 Görbék, görbehálózatok 4 Tömör testek Felületek 1. pontfelhők egyesítése, szűrése, egyszerűsítése háromszögelés (háló generálás) 3. görbe interpoláció és approximáció 4. felület interpoláció és approximáció 5. celluláris (voxel) reprezentáció Reprezentációk 14

15 Digitális reprezentációk 2 Pontok, pontfelhők 1 5 Háromszöghálók, (poligonok) Görbék, görbehálózatok Tömör testek Felületek 1. decimálás, simítás, újraháromszögelés, deformálás 2. szegmentálás, jellegzetes görbék kiemelése 3. felület approximáció, rekurzív felosztásos felületek 4. digitális alakzat rekonstrukció 5. mintavételezés Reprezentációk 15

16 Digitális reprezentációk 3 Pontok, pontfelhők 4 Háromszöghálók, (poligonok) 5 1 Görbék, 2 görbehálózatok 3 Tömör testek Felületek 1. görbehálózat építés, speciális műveletek, simítás felületek létrehozása profilgörbékből (eltolás, forgatás), görbeháló interpoláció, testek él struktúrája 4. mintavételezés 5. törött vonalak, poligonok Reprezentációk 16

17 Digitális reprezentációk 4 Pontok, pontfelhők Háromszöghálók, (poligonok) Görbék, görbehálózatok Tömör testek 2 Felületek 1 1. speciális műveletek offszet, lekerekítő felületek, simítás, metszések, trimmelt lapok (felületdarabok), primitív testek mintavételezés 4. tesszelláció (poligonközelítés) 5. felület-felület metszés, felületen futó görbék,... Reprezentációk 17

18 Digitális reprezentációk 5 Pontok, pontfelhők Háromszöghálók, (poligonok) 3 2 Tömör testek 1 Görbék, görbehálózatok 4 5 Felületek 1. Bool műveletek, primitív testek mintavételezés 3. tesszelláció (poligon közelítés) határolóelem-reprezentáció előállítása, élek, hurkok, trimmelt lapok Reprezentációk 18

19 A tárgy felépítése Tematika: Oktatás: Elméleti órák: slide-ok, ujjgyakorlatok, - applet-ek, demó videók Két gyakorlati blokk ( hét, ~ hét): - 3D modellezés (public domain rendszerek) - grafikus keretrendszer ismertetése - algoritmusok fejlesztése (háromszöghálók, görbék és felületek) - demók (ipari és prototípus rendszerek) A tárgy felépítése 19

20 Követelményrendszer 2 kis házi feladat (kötelező, kb. 6-6 óra) C++ tesztkörnyezet, egyszerű számítási feladatok a) háromszöghálók, b) görbék-felületek vizsga - szóbeli: 2 tétel önálló projektek megajánlott jegy: szakirodalom feldolgozása programfejlesztés - demó rövid szeminárium (10-15 perc) utolsó vállalási lehetőség: 10. hét Követelmények 20

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

A Margit híd pillérszobrának 3D-s digitális alakzatrekonstrukciója Nagy Zoltán 1 Túri Zoltán 2

A Margit híd pillérszobrának 3D-s digitális alakzatrekonstrukciója Nagy Zoltán 1 Túri Zoltán 2 A Margit híd pillérszobrának 3D-s digitális alakzatrekonstrukciója Nagy Zoltán 1 Túri Zoltán 2 1 hallgató, Debreceni Egyetem TTK, e-mail: zoli0425@gmail.com 2 egyetemi tanársegéd, Debreceni Egyetem Természetföldrajzi

Részletesebben

Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése E U R Ó P A I U N I Ó STRUKTURÁLIS ALAPOK Építész-informatika 3 építészeti CAD Segédlet a BME Építészmérnöki Kar hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

Részletesebben

Foglalkozási napló. CAD-CAM informatikus 14. évfolyam

Foglalkozási napló. CAD-CAM informatikus 14. évfolyam Foglalkozási napló a 20 /20. tanévre CAD-CAM informatikus 14. évfolyam (OKJ száma: 54 41 01) szakma gyakorlati oktatásához A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu Gyártórendszerek mechatronikája Termelési folyamatok II. 01 Alapfogalmak Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu miko.balazs@bgk.uni-obuda.hu 1 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai

Részletesebben

Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Dr. Kovács Zoltán, a mat. tud. kandidátusa Tantárgyfelelős beosztása főiskolai tanár

Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Dr. Kovács Zoltán, a mat. tud. kandidátusa Tantárgyfelelős beosztása főiskolai tanár Fejezetek a geometriából MT2401 Meghirdetés féléve 4 Kreditpont 3 Összóraszám (elm+gyak) 2+0 Kollokvium Előfeltétel (tantárgyi kód) Tantárgyfelelős neve Dr. Kovács Zoltán, a mat. tud. kandidátusa Tantárgyfelelős

Részletesebben

AutoCAD alapozó tanfolyam

AutoCAD alapozó tanfolyam AutoCAD alapozó tanfolyam Tematika Tanfolyam hossza: 3 nap Az AutoCAD/AutoCAD LT alapozó tanfolyam célja, hogy a résztvevő a tanfolyam elvégzése után képes legyen 2D rajzok előállítására, módosítására

Részletesebben

Felfedezés. Elemzés. Optimalizálás. AutoCAD. Civil 3d

Felfedezés. Elemzés. Optimalizálás. AutoCAD. Civil 3d Felfedezés. Elemzés. Optimalizálás. AutoCAD Civil 3d Innovatívabb megoldásokat tehet le az asztalra Az AutoCAD Civil 3D szoftver jobb módszert kínál az építőmérnöki projektek tervezési, elemzési és dokumentálási

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI

KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÍRTA: SZABÓ LAJOS OKLEVELES IPARI TERMÉK- ÉS FORMATERVEZŐ MÉRNÖK KÉPALKOTÁSRA ALAPOZOTT RUHAIPARI MÉRÉSTECHNIKÁK CÍMŰ TÉMAKÖRBŐL, AMELLYEL

Részletesebben

Jegyzet tervezet Összeállította: Dr. Boza Pál fıiskolai tanár 2009

Jegyzet tervezet Összeállította: Dr. Boza Pál fıiskolai tanár 2009 Tartalomjegyzék 1. Alkatrészek dokumentálása számítástechnikai eszközökkel... 3 1.1. Az alkatrészt leíró geometriai modellek... 3 1.2. Síkbeli geometriai alakzatok leírása... 5 1.3. Felületek leírása...

Részletesebben

ŰRTECHNOLÓGIA GYAK. Általában a műszaki rajzokról A forgácsoló gépek áttekintés Konstrukciós szemelvények (GEKKO, BioDOS)

ŰRTECHNOLÓGIA GYAK. Általában a műszaki rajzokról A forgácsoló gépek áttekintés Konstrukciós szemelvények (GEKKO, BioDOS) ŰRTECHNOLÓGIA GYAK. Általában a műszaki rajzokról A forgácsoló gépek áttekintés Konstrukciós szemelvények (GEKKO, BioDOS) ea: dr. Bánfalvi Antal V1/105 Műszaki rajz Ha egy dokumentáció nem szöveges részéről

Részletesebben

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA 5 8. ALAPELVEK, CÉLOK MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

ÉPÍTÉSZ MESTERKÉPZÉSI SZAK

ÉPÍTÉSZ MESTERKÉPZÉSI SZAK ÉPÍTÉSZ MESTERKÉPZÉSI SZAK 1. A mesterképzési szak megnevezése: építész mesterképzési szak /Architecture (a képesítési jegyzékről szóló 139/2015 kormányrendelet 3. melléklet 147. szerint). 2. A mesterképzési

Részletesebben

Ipari termék- és formatervezői alapszak

Ipari termék- és formatervezői alapszak Kecskeméti Főiskola GAMF Kar Tanulmányi tájékoztató Ipari termék- és formatervezői alapszak Kecskemét 2012 2013 A tantárgyleírásokat a KF GAMF Kar munkatársai állították össze. Szerkesztette: Dr. Kovács

Részletesebben

Tájékoztató levél és tematika Tűzvédelmi tervezési szakmérnöki képzés

Tájékoztató levél és tematika Tűzvédelmi tervezési szakmérnöki képzés Tájékoztató levél és tematika Tűzvédelmi tervezési szakmérnöki képzés A Budapesti Műszaki és Gazdaságtudományi Egyetem Épületenergetikai és Épületgépészeti Tanszéke és e 2015. februári kezdéssel indítja

Részletesebben

Mart gránitfelület-élek minősítése és kitöredezéseinek vizsgálata technológiai optimalizálás céljából

Mart gránitfelület-élek minősítése és kitöredezéseinek vizsgálata technológiai optimalizálás céljából Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki kar Gyártástudomány és technológia Tanszék DOKTORI TÉZISFÜZET Mart gránitfelület-élek minősítése és kitöredezéseinek vizsgálata technológiai

Részletesebben

A számítógépes termeléstervezés alapjai. Fundamentals of Production Information Engineering. Felsőfokú műszaki végzettség

A számítógépes termeléstervezés alapjai. Fundamentals of Production Information Engineering. Felsőfokú műszaki végzettség Kurzus neve: A számítógépes termeléstervezés alapjai Rövid név: Termeléstervezés Kód: HEFOP 3.3.1-ME-IAK 4.1 Angol név: Intézmény: Tanszék: Kurzusfelelős: Szükséges előképzettség: Előtanulmányként javasolt

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

A TÉRINFORMATIKA OKTATÁSA ÉS ALKALMAZÁSI LEHETÕSÉGEI

A TÉRINFORMATIKA OKTATÁSA ÉS ALKALMAZÁSI LEHETÕSÉGEI A TÉRINFORMATIKA OKTATÁSA ÉS ALKALMAZÁSI LEHETÕSÉGEI Katona Endre, katona@inf.u-szeged.hu JATE, Alkalmazott Informatikai Tanszék Abstract Geographer students learn how to apply GIS, but for programmer

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 8. 3D modellek alkalmazása Magasságmodell Raszteralapú Vektoralapú Objektumok modellje Doborzatmodell

Részletesebben

INFORMATIKA 1-4. évfolyam

INFORMATIKA 1-4. évfolyam INFORMATIKA 1-4. évfolyam Célok - A számítógépes munkaszabályainak és a legfontosabb balesetvédelmi előírások megismerése. - A számítógép és perifériáinak kezelési tudnivalóinak megismerése. - Az életkoruknak

Részletesebben

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet PAPP ZSOLT Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék 2003 1 Bevezetés A lézerek megjelenését

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Számítástechnikai és Automatizálási Kutatóintézet (MTA SZTAKI), 1111, Budapest, Kende utca 13 17, email:{vezetéknév.keresztnév}@sztaki.mta.

Számítástechnikai és Automatizálási Kutatóintézet (MTA SZTAKI), 1111, Budapest, Kende utca 13 17, email:{vezetéknév.keresztnév}@sztaki.mta. Mozgó személyek követése és 4D vizualizációja Lidar-alapú járáselemzéssel Nagy Balázs 1, Benedek Csaba 1 és Jankó Zsolt 2 1 Elosztott Események Elemzése Kutatólaboratórium, Magyar Tudományos Akadémia,

Részletesebben

Számítógépes adatbiztonság

Számítógépes adatbiztonság Számítógépes adatbiztonság IN11 Tematika Bevezetés Informatikai biztonság, adat- és információvédelemi alapfogalmak Zajos csatornák Hibadetektáló és javító kódolások Kriptográfia - alap algoritmusok I.

Részletesebben

Távérzékelés Távérzékelt felvételek értelmezése (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési

Részletesebben

A projekt keretében elkészült tananyagok:

A projekt keretében elkészült tananyagok: MÉRÉSTECHNIKA A projekt keretében elkészült tananyagok: Anyagtechnológiák Materials technology Anyagtudomány Áramlástechnikai gépek CAD tankönyv CAD Book CAD/CAM/CAE elektronikus példatár CAM tankönyv

Részletesebben

Godzilla a CAD rendszerek között Univerzális Pro/ENGINEER csomag 750.000, -Ft-ért!

Godzilla a CAD rendszerek között Univerzális Pro/ENGINEER csomag 750.000, -Ft-ért! Godzilla a CAD rendszerek között Univerzális Pro/ENGINEER csomag 750.000, -Ft-ért! Al Dean, a Develop3D.com CAD/CAM/CAE szaklap publicistája a lap 2009. novemberi számában négy oldalon elemezte a Pro/ENGINEER

Részletesebben

E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003.

E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003. E L T E I K I N F O R M A T I K A T A N Á R I S Z A K N A P P A L I T A G O Z A T B U D A P E S T, 2003. I. A képzés általános leírása Az Informatika tanár szakképzettség megszerzése a 166/1997.(X.3.)

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometria II. 1. Bevezetés http://cg.iit.bme.hu/portal/3dgeo2 https://www.vik.bme.hu/kepzes/targyak/viiiav16 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki és Informatikai Kar Irányítástechnika

Részletesebben

ÉPÍTŐMÉRNÖKI SZAK. (BSc) ALAPKÉPZÉS

ÉPÍTŐMÉRNÖKI SZAK. (BSc) ALAPKÉPZÉS ÉPÍTŐMÉRNÖKI SZAK (BSc) ALAPKÉPZÉS Az alapképzési szak megnevezése: építőmérnöki Az oklevélben szereplő szakképzettség megnevezése: építőmérnök A specializációk megnevezése: Szerkezetépítő mérnök ágazaton:

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:

Részletesebben

Kezdjen el 3D-ben gondolkodni. AutoCAD

Kezdjen el 3D-ben gondolkodni. AutoCAD Kezdjen el 3D-ben gondolkodni. AutoCAD Civil 3d 2009 Jobb vele dolgozni Az AutoCAD Civil 3D szoftver egyszerűen jobb módszert kínál az építőmérnöki projektek tervezési, elemzési és dokumentálási feladatainak

Részletesebben

Digitális terminológus

Digitális terminológus Digitális terminológus Prószéky Gábor MorphoLogic http://www.morphologic.hu A terminológia modellezése Terminus technicus: szakszövegben olyan szó vagy kifejezés, amelyeket konzisztensen kell fordítani

Részletesebben

Mérnöki Optimálás Példatár

Mérnöki Optimálás Példatár Mérnöki Optimálás Példatár A példa megnevezése: A példa száma: A példa szintje: A feladat rövid leírása: Autó tetőbokszának optimálása több célfüggvény alkalmazásával OPT-BME-3 alap A mérnöki optimálás

Részletesebben

Mechatronikai mérnöki alapképzési szak tanterve Érvényes a 2010/11. tanévtől

Mechatronikai mérnöki alapképzési szak tanterve Érvényes a 2010/11. tanévtől Mechatronikai mérnöki alapképzési szak tanterve Érvényes a 2010/11. tanévtől 1 2 3 4 5 6 7 Σ NEPTUN kód Tantárgy e g l kr v/f e g l kr v/f e g l kr v/f e g l kr v/f e g l kr v/f e g l kr v/f e g l kr v/f

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4

Részletesebben

Rövid tantárgyi leírás. Előfeltétel. A tantárgy neve SZABV31 Szorobán. 2 3 m SZV I-VIII.

Rövid tantárgyi leírás. Előfeltétel. A tantárgy neve SZABV31 Szorobán. 2 3 m SZV I-VIII. Rövid tantárgyi leírás SZABV31 Szorobán Cél: A hallgatók megismertetése a japán számolóeszköz történetével, használatával. A négy alapművelet tanítási módszereinek, lehetőségeinek elsajátíttatása. Felkészítés

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

ő ő ő ő ű Ó ő ő ű ű ő ő Ó ő ő ő ő ő ő ű ő ő ű ű ő ő ű Ó ő ő ő Ó ő ű ő ő ő ű ű ű ő ő ő ő ő ő ő Ó ő ő ő ű ő ő ő ő ő ű ő ő Ó ő ő ű ő ő ő ő ő ő ő ű ű ő ő ő ű ű ő ű ő ő Ó Ó ő Ó Ó ő Ó ű ő ő ő ő ő ű ő ű ű ű ű

Részletesebben

Műszaki Dokumentáció

Műszaki Dokumentáció Műszaki Dokumentáció Vállalkozási szerződés térinformatikai felmérések, feldolgozások beszerzése tárgyú közbeszerzési eljáráshoz 1. A FELADAT MEGFOGALMAZÁSA Az Árvízi veszély- és kockázati térképezés és

Részletesebben

Zsakó László Informatikai képzések a ELTE-n ELTE Informatikai Kar zsako@ludens.elte.hu

Zsakó László Informatikai képzések a ELTE-n ELTE Informatikai Kar zsako@ludens.elte.hu Zsakó László Informatikai képzések a -n Informatikai Kar zsako@ludens.elte.hu Informatikai képzések az Informatikai karán Felsőfokú szakképzések Informatikai alapszakok Informatikai mesterszakok Szakirányú

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat

Részletesebben

NAPPALI ÉPÍTÉSZMÉRNÖK SZAK

NAPPALI ÉPÍTÉSZMÉRNÖK SZAK NAPPAI ÉPÍÉSZMÉRNÖK SZAK (BSc) AAPKÉPZÉS Az alapképzési szak megnevezése: nappali építészmérnök Az oklevélben szereplő szakképzettség megnevezése: építészmérnök alapdiploma (BSc) A szakirányok megnevezése:

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

INFORMATIKA HELYI TANTERV

INFORMATIKA HELYI TANTERV INFORMATIKA HELYI TANTERV Az alsó tagozatos informatikai fejlesztés során törekedni kell a témához kapcsolódó korosztálynak megfelelő használatára, az informatikai eszközök működésének bemutatására, megértésére

Részletesebben

Mérnök informatikus alapképzési szak

Mérnök informatikus alapképzési szak Dunaújvárosi Főiskola Mérnök informatikus alapképzési szak Tanterv. július 29. 2 Tartalomjegyzék Szakleírás:... 7 Óraterv:... 10 Mérnök informatikus alapképzési szak tantárgyainak rövid ismertetése...

Részletesebben

Összehasonlító módszerek kızetek felületi érdesség mérésére laboratóriumi körülmények között

Összehasonlító módszerek kızetek felületi érdesség mérésére laboratóriumi körülmények között Mérnökgeológia-Kızetmechanika 2011 (Szerk: Török Á. & Vásárhelyi B.) 283-289. Összehasonlító módszerek kızetek felületi érdesség mérésére laboratóriumi körülmények között Buocz Ildikó BME Építıanyagok

Részletesebben

Gépészmérnöki alapképzési szak

Gépészmérnöki alapképzési szak Dunaújvárosi Főiskola Gépészmérnöki alapképzési szak Tanterv. július 25. 2 Tartalomjegyzék Tartalomjegyzék... 3 Szakleírás... 5 Óraterv:... 8 tantárgyainak rövid ismertetése... 12 Mérnöki fizika... 12

Részletesebben

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Top art technológiai megoldások a műemlékvédelemben, építészetben. Fehér András Mensor 3D

Top art technológiai megoldások a műemlékvédelemben, építészetben. Fehér András Mensor 3D Top art technológiai megoldások a műemlékvédelemben, építészetben Fehér András Mensor 3D PROLÓG 40-50 % tudja mi a szkennelés 44% nem akarja a 3D digitalizálást 68% akarja a 3D digitalizálást LÉZERSZKENNEREL

Részletesebben

Létesítmények felmérése 3D szkenner segítségével

Létesítmények felmérése 3D szkenner segítségével Létesítmények felmérése 3D szkenner segítségével TDK dolgozat Csizmadia Tamás Nagy András Redele Márk Konzulens: Kondor Tamás DLA, dr.habil PTE-PMMIK 2011.11.20. Pécs Létesítmények felmérése 3D szkenner

Részletesebben

Óraterv. Természetismeret, Informatika, Az óra témája: Írásbeli műveletek gyakorlása.

Óraterv. Természetismeret, Informatika, Az óra témája: Írásbeli műveletek gyakorlása. Óraterv A pedagógus neve: FEKETÉNÉ PÓRÉ MÁRIA Évfolyam: 5. Műveltségi terület: Matematika Tantárgyi kapcsolatok: Magyar nyelv és irodalom Tantárgy: Matematika Természetismeret, Informatika, Az óra témája:

Részletesebben

Ete elpusztult középkori mezőváros régészeti feltárásainak térinformatikai feldolgozása. Ete elhelyezkedése

Ete elpusztult középkori mezőváros régészeti feltárásainak térinformatikai feldolgozása. Ete elhelyezkedése Ete elpusztult középkori mezőváros régészeti feltárásainak térinformatikai feldolgozása Ete elhelyezkedése Lelőhely Objektum (gödör, ház, sír) Lelet Régészeti alapfogalmak lelőhelyek objektum objektum

Részletesebben

Kitöltési útmutató Agrár-környezetgazdálkodási kifizetés (AKG- VP)

Kitöltési útmutató Agrár-környezetgazdálkodási kifizetés (AKG- VP) Kitöltési útmutató Agrár-környezetgazdálkodási kifizetés (AKG- VP) intézkedésben támogatott területek teljes vagy részleges visszavonás webes beadó felülethez. Tartalom Bevezetés... 2 Elérési útvonal...

Részletesebben

Új tehetséggondozó programok és kutatások

Új tehetséggondozó programok és kutatások Pályázat azonosítója: TÁMOP-4.2.2/B-10/1-2010-0009 Budapesti Műszaki és Gazdaságtudományi Egyetem Egyesült Innovációs és Tudásközpont 1 Műegyetemi Tudományos Műhelyek és Tehetséggondozás Projektiroda BME

Részletesebben

DIPLOMÁS LOGISZTIKAI SZAKREFERENS SZAKIRÁNYÚ TOVÁBBKÉPZÉSI SZAK. A szak képzéséért felelős szervezeti egység: Nemzetközi Gazdálkodási Tanszék

DIPLOMÁS LOGISZTIKAI SZAKREFERENS SZAKIRÁNYÚ TOVÁBBKÉPZÉSI SZAK. A szak képzéséért felelős szervezeti egység: Nemzetközi Gazdálkodási Tanszék DIPLOMÁS LOGISZTIKAI SZAKREFERENS SZAKIRÁNYÚ TOVÁBBKÉPZÉSI SZAK A szak képzéséért felelős szervezeti egység: Nemzetközi Gazdálkodási Tanszék DIPLOMÁS LOGISZTIKAI SZAKREFERENS SZAKIRÁNYÚ TOVÁBBKÉPZÉSI SZAK

Részletesebben

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

Anyagmérnöki alapképzési szak

Anyagmérnöki alapképzési szak Dunaújvárosi Főiskola Anyagmérnöki alapképzési szak Tanterv. július 29. 2 Tartalomjegyzék Szakleírás...5 Óraterv:...8 tantárgyainak rövid ismertetése...10 Közgazdaságtan I....10 Mechanika I....11 Matematika

Részletesebben

SALGÓTARJÁNI MADÁCH IMRE GIMNÁZIUM 3100 Salgótarján, Arany János út 12. Pedagógiai program. Vizuális kultúra tantárgy kerettanterve

SALGÓTARJÁNI MADÁCH IMRE GIMNÁZIUM 3100 Salgótarján, Arany János út 12. Pedagógiai program. Vizuális kultúra tantárgy kerettanterve SALGÓTARJÁNI MADÁCH IMRE GIMNÁZIUM 3100 Salgótarján, Arany János út 12. Pedagógiai program Vizuális kultúra tantárgy kerettanterve VIZUÁLIS KULTÚRA A vizuális nevelés legfőbb célja, hogy hozzásegítse a

Részletesebben

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium)

Érettségi eredmények 2005-től (Békéscsabai Andrássy Gyula Gimnázium és Kollégium) 2005/db közép 2005/db emelt 2005/db összes 2005/jegy közép 2005/jegy emelt 2005/jegy összes 2005/% közép 2005/% emelt 2005/% összes 51 119 170 3,53 5,00 4,42 59,90 99,17 84,27 22 17 39 4,45 4,94 4,7 75,68

Részletesebben

54 582 03 MAGASÉPÍTŐ TECHNIKUS SZAKKÉPESÍTÉS SZAKMAI PROGRAMJA a XVI. ÉPÍTŐIPAR ÁGAZATHOZ

54 582 03 MAGASÉPÍTŐ TECHNIKUS SZAKKÉPESÍTÉS SZAKMAI PROGRAMJA a XVI. ÉPÍTŐIPAR ÁGAZATHOZ 54 582 03 MAGASÉPÍTŐ TECHNIKUS SZAKKÉPESÍTÉS SZAKMAI PROGRAMJA a XVI. ÉPÍTŐIPAR ÁGAZATHOZ I. A szakképzés jogi háttere A szakképzési kerettanterv a nemzeti köznevelésről szóló 2011. évi CXC. törvény, a

Részletesebben

Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér 30. 031154. HELYI TANTERV Informatika 4. osztály 2013

Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér 30. 031154. HELYI TANTERV Informatika 4. osztály 2013 Irinyi József Általános Iskola 4274 Hosszúpályi Szabadság tér 30. 031154 HELYI TANTERV Informatika 4. osztály 2013 Informatika az általános iskola 4. évfolyama számára (heti 1 órás változat) Az alsó tagozatos

Részletesebben

Matematika. 5-8. évfolyam. tantárgy 2013.

Matematika. 5-8. évfolyam. tantárgy 2013. Matematika tantárgy 5-8. évfolyam 2013. Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről

Részletesebben

Élpont osztályozáson alapuló robusztus tekintetkövetés

Élpont osztályozáson alapuló robusztus tekintetkövetés KÉPFELDOLGOZÁS Élpont osztályozáson alapuló robusztus tekintetkövetés HELFENBEIN TAMÁS Ipari Kommunikációs Technológiai Intézet, Bay Zoltán Alkalmazott Kutatási Közalapítvány helfenbein@ikti.hu Lektorált

Részletesebben

Széchenyi István Szakképző Iskola

Széchenyi István Szakképző Iskola A SZAKKÖZÉPISKOLAI SZAKMACSOPORTOS ALAPOZÓ OKTATÁS EMELT SZINTŰ ISKOLAI PROGRAMJA 11-12. évolyam Érvényes a 2003-2004-es tanévtől felmenő rendszerben Átdolgozva, utolsó módosítás: 2004. április 26. Az

Részletesebben

RÖVID TÁJÉKOZTATÓ A SZAKKÉPESÍTÉSEKRŐL

RÖVID TÁJÉKOZTATÓ A SZAKKÉPESÍTÉSEKRŐL 54 525 01 AUTÓELEKTRONIKAI MŰSZERÉSZ a gépjármű akkumulátorokat azok tulajdonságainak ismeretében összehasonlítani, a járműspecifikus kiválasztást elvégezni, diagnosztikai vizsgálatát végrehajtani, megfelelő

Részletesebben

INFORMATIKA OKTATÁS ISKOLÁNKBAN

INFORMATIKA OKTATÁS ISKOLÁNKBAN INFORMATIKA OKTATÁS ISKOLÁNKBAN Iskolánkban az idegen nyelv emelt szintű oktatása mellett az informatika oktatása is emelt szinten történik. Amit kínálunk: a Helyi Kerettanterv alapján megvalósuló emelt

Részletesebben

MATEMATIKA 1-12. ÉVFOLYAM

MATEMATIKA 1-12. ÉVFOLYAM MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési

Részletesebben

Korszerű tervezési módszerek villamosipari alkalmazásai

Korszerű tervezési módszerek villamosipari alkalmazásai Szakmai nap, Budapest, 2015 06 03 Korszerű tervezési módszerek villamosipari alkalmazásai Bevezető gondolatok Dr. Madarász György A. szakosztályelnök Ki is a (tervező) mérnök? Egy félművelt matematikus

Részletesebben

SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN

SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN Dr. Vadász Dénes, vadasz@iit.uni-miskolc.hu Miskolci Egyetem, Informatikai Intézet, Általános Informatikai Tanszék Abstract Our recently established

Részletesebben

Loványi István vizsgakérdései kidolgozva (béta)

Loványi István vizsgakérdései kidolgozva (béta) Loványi István vizsgakérdései kidolgozva (béta) 1. Morfológiai képfeldolgozás elmélete 1. Alapvető halmazműveletek, tulajdonságaik Műveletek: egyesítés (unió) metszet negált összetett műveletek... Tulajdonságok:

Részletesebben

TANTÁRGYI ÚTMUTATÓ ELMÉLETI FIZIKA BSc/BA alapképzés B-VI-ELMFIZ

TANTÁRGYI ÚTMUTATÓ ELMÉLETI FIZIKA BSc/BA alapképzés B-VI-ELMFIZ TANTÁRGYI ÚTMUTATÓ ELMÉLETI FIZIKA BSc/BA alapképzés B-VI-ELMFIZ 2014/2015 tanév Tartalomjegyzék 1. A tantárggyal kapcsolatos fontosabb adatok... 2 2. A tantárgy célkitűzése és tematikája... 2 3. A felkészülést

Részletesebben

Matematika. 1-4. évfolyam. tantárgy 2013.

Matematika. 1-4. évfolyam. tantárgy 2013. Matematika tantárgy 1-4. évfolyam 2013. Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási,

Részletesebben

ÁROP-2.2.22-2013-2013-0001 KÉPZÉS A KONVERGENCIA RÉGIÓKBAN LÉVŐ ÖNKORMÁNYZATOKNAK FENNTARTHATÓ ÖNKORMÁNYZAT E-TANANYAGOKAT BEMUTATÓ KONFERENCIA

ÁROP-2.2.22-2013-2013-0001 KÉPZÉS A KONVERGENCIA RÉGIÓKBAN LÉVŐ ÖNKORMÁNYZATOKNAK FENNTARTHATÓ ÖNKORMÁNYZAT E-TANANYAGOKAT BEMUTATÓ KONFERENCIA ÁROP-2.2.22-2013-2013-0001 KÉPZÉS A KONVERGENCIA RÉGIÓKBAN LÉVŐ ÖNKORMÁNYZATOKNAK FENNTARTHATÓ ÖNKORMÁNYZAT E-TANANYAGOKAT BEMUTATÓ KONFERENCIA HOSSZÚ TÁVÚ ADATTÁROLÁS PROBLÉMÁI PROF. DR. IVÁNYI PÉTER

Részletesebben

Medical Imaging 11 2009.04.22. 1. Regisztrációs probléma. Regisztrációs feladatok osztályozása

Medical Imaging 11 2009.04.22. 1. Regisztrációs probléma. Regisztrációs feladatok osztályozása Regisztrációs probléma Geometriai viszony meghatározása képek között. Megnevezései: kép regisztráció (image registration), kép illesztés (image matching), kép fúzió (image fusion). Regisztrációs feladatok

Részletesebben

Anyagmérnöki alapképzési szak

Anyagmérnöki alapképzési szak Dunaújvárosi Főiskola Anyagmérnöki alapképzési szak Tanterv. július 25. 2 Tartalomjegyzék Szakleírás...5 Óraterv:...8 tantárgyainak rövid ismertetése...10 Vállalatgazdaságtan II....10 Informatika...11

Részletesebben

Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007

Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu 2.Előadás Generalizálás Hagyományos és

Részletesebben

3. gyakorlat. 1/7. oldal file: T:\Gyak-ArchiCAD19\EpInf3_gyak_19_doc\Gyak3_Ar.doc Utolsó módosítás: 2015.09.17. 22:57:26

3. gyakorlat. 1/7. oldal file: T:\Gyak-ArchiCAD19\EpInf3_gyak_19_doc\Gyak3_Ar.doc Utolsó módosítás: 2015.09.17. 22:57:26 3. gyakorlat Kótázás, kitöltés (sraffozás), helyiségek használata, szintek kezelése: Olvassuk be a korábban elmentett Nyaraló nevű rajzunkat. Készítsük el az alaprajz kótáit. Ezt az alsó vízszintes kótasorral

Részletesebben

2016.05.05 Pozíció. személyi asszisztens Helyszín

2016.05.05 Pozíció. személyi asszisztens Helyszín 2016.05.05 személyi asszisztens JOBINFO/JOBLINE.HU Kelly Service Kft. http://www.kellyservices.hu/ http://www.jobinfo.hu/allas/szemelyi-asszisztens Kontakt személy Pintér Edina Elérhetőség +36 1 301 7881

Részletesebben

A kutatási projekt keretében a következő feladatokat tűztük ki:

A kutatási projekt keretében a következő feladatokat tűztük ki: Szakmai zárójelentés a Hibakorrekciós algoritmusok a koordináta méréstechnikában című T 042935 számú kutatási projekt keretében elvégzett feladatokról és azok tudományos eredményeiről A kutatási projekt

Részletesebben

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Informatikai Diákköri Kutatások. Szemináriumi Füzetek. Széchenyi István Egyetem. Műszaki Tudományi Kar. 1. évfolyam 1. szám 2004.

Informatikai Diákköri Kutatások. Szemináriumi Füzetek. Széchenyi István Egyetem. Műszaki Tudományi Kar. 1. évfolyam 1. szám 2004. A fejlődés ellen nincs gyógymód vallotta Neumann János fél évszázaddal ezelőtt. Az idő őt igazolta. Az elmúlt évtizedek eredményei, a tudományos teljesítmények arra sarkallnak bennünket, hogy aktív részesei

Részletesebben

KÖTŐ- ÉS VARRÓGÉP MŰSZERÉSZ SZAKKÉPESÍTÉS SZAKMAI ÉS VIZSGAKÖVETELMÉNYEI

KÖTŐ- ÉS VARRÓGÉP MŰSZERÉSZ SZAKKÉPESÍTÉS SZAKMAI ÉS VIZSGAKÖVETELMÉNYEI KÖTŐ- ÉS VARRÓGÉP MŰSZERÉSZ SZAKKÉPESÍTÉS SZAKMAI ÉS VIZSGAKÖVETELMÉNYEI I. ORSZÁGOS KÉPZÉSI JEGYZÉKEN SZEREPLŐ ADATOK 1. A szakképesítés azonosító száma: 31 521 18 0000 00 00 2. A szakképesítés megnevezése:

Részletesebben

Gyártási folyamatok tervezése

Gyártási folyamatok tervezése Gyártási folyamatok tervezése Dr. Kardos Károly, Jósvai János 2006. március 28. 2 Tartalomjegyzék 1. Gyártási folyamatok, bevezetés 9 1.1. Gyártó vállalatok modellezése.................. 9 1.1.1. Számítógéppel

Részletesebben

6. MEZŐGAZDASÁGI ÉS ÉLELMISZER-IPARI GÉPÉSZMÉRNÖK FELSŐOKTATÁSI SZAKKÉPZÉS

6. MEZŐGAZDASÁGI ÉS ÉLELMISZER-IPARI GÉPÉSZMÉRNÖK FELSŐOKTATÁSI SZAKKÉPZÉS 6. MEZŐGAZDASÁGI ÉS ÉLELMISZER-IPARI GÉPÉSZMÉRNÖK FELSŐOKTATÁSI SZAKKÉPZÉS 1. A felsőoktatási szakképzés megnevezése: mezőgazdasági és élelmiszer-ipari gépészmérnök felsőoktatási szakképzés (Agricultural

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás Önálló projektek - 2015. február 6. http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

AZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN

AZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN AZ INFORMATIKA OKTATÁSÁNAK MÚLTJA ÉS JELENE A KOLOZSVÁRI EGYETEMEN Kása Zoltán, kasa@cs.ubbcluj.ro Robu Judit, robu@cs.ubbcluj.ro Varga Ibolya, ivarga@cs.ubbcluj.ro Babes-Bolyai Tudományegyetem, Matematika

Részletesebben

Informatika-érettségi_emelt 11.-12. évfolyam Informatika

Informatika-érettségi_emelt 11.-12. évfolyam Informatika 11. évfolyam A tanév célja a középszintű érettségire való felkészítés, az emelt szintű érettségire való felkészülésnek a megalapozása. A középszintű érettségi elősegíti az eligazodást és a munkába állást

Részletesebben

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,

Részletesebben

Vida János. Geometriai modellezés III. Görbék és felületek

Vida János. Geometriai modellezés III. Görbék és felületek Vida János Geometriai modellezés III. Görbék és felületek Oktatási segédlet Piszkozat Budapest, 2010 1 E segédletet az ELTE Informatikai Karának azok a beiratkozott hallgatói használhatják, akik A geometriai

Részletesebben

ELTE TTK Multimédiapedagógia és Oktatástechnológia Központ Budapest, Pázmány P. sétány 1.

ELTE TTK Multimédiapedagógia és Oktatástechnológia Központ Budapest, Pázmány P. sétány 1. Számítógépes prezentáció Prezentáció (bemutató) alatt vizuális segédeszköz felhasználásával történő információ átadására irányuló tevékenységet értünk. A bemutatókat az alábbi csoportokba soroljuk Előadás

Részletesebben

Ismeretanyag Záróvizsgára való felkészüléshez

Ismeretanyag Záróvizsgára való felkészüléshez Ismeretanyag Záróvizsgára való felkészüléshez 1. Információmenedzsment az információmenedzsment értelmezése, feladatok különböző megközelítésekben informatikai szerepek, informatikai szervezet, kapcsolat

Részletesebben

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják Helyi tanterv matematika általános iskola 5-8. évf. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben