Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak"

Átírás

1 Fizika I. (Mecanika, áamlástan, eológia, fénytan) előadási jegyzet Élelmiszeménök, Szőlész-boász ménök és Bioménök BSc allgatóknak Tatalom D. Fita Feenc Fizika-Automatika Tanszék 05. Statika, kinematika ismétlés (deivált) Dinamika: meev testek Munka, enegia (integál) Hidosztatika, aeosztatika Hidodinamika, aeodinamika Súlódásos áamlásmodellek Reológia alapmennyiségei, alapmodellek Viszkoelasztikus eológiai modellek (diffeenciálegyenlet) Egyéb összetett modellek, eometia Geometiai optika, fotometia Hullámoptika, spektofotometia Színméés Képfeldolgozás, spektális képfeldolgozás Ábák, diagammok, táblázatok Ajánlott iodalom... 8

2 Bevezetés Jelen jegyzet, a Budapesti Covinus Egyetem, élelmisze-, szőlész-boász BSc Fizika I. tágy és a bioménök BSc Fizika I. tágy első felének elméleti segédanyaga. A tágy célja alapvető középiskolai fejezetek ismétlése, összefoglalása után, a ménöki munkában előfoduló témaköök, méések megismeése, tecnológia tágyak megalapozása. További fizika tágyak a BSc és MSc képzésben: BSc : Fizika I. Mecanika: sztatika, kinematika (deivált), dinamika, munka (integál), enegia Hidosztatika, felületi feszültség, Hidodinamika, veszteséges áamlások, asonlóság Reológia: alap-, összetett modellek (diffeenciálegyenlet), eometia Fénytan: geometiai, fotometia, színméés, spektoszkópia, egyéb optikai méések BSc : Temodinamika Sztatika: axiómák, ideális gáz, köfolyamatok, kopuszkuláis modellek, fázisátalakulás: foás, gázelegy, páolgás, fajő méése, elegyek, kémiai eakciók nedves levegő: állapotjelzői, -állapotváltozásai; űtőköfolyamatok Dinamika: mélegegyenletek, Onsage-elmélet, ővezetés esetei, dinamikai modellek temoelektomos jelenségek, diffúzió, őmésékleti sugázás BSc 3: Elektotecnika Villamosságtan: egyen- és váltóáamú köök, Gépek, motook, akkumulátook BSc 5: Mééstecnika és automatizálás Ézékelők, jelfeldolgozók, vezéléstecnika MSc : Mééselmélet és kísélettevezés MSc : Folyamatiányítás MSc : Számítógépes adatfeldolgozás és tevezés A Fizika I. tágy célja teát új elméleti ismeetek és alkalmazási készség elsajátítása folyadékmecanika, eológia és fénytan témaköökben. A középiskolás oktatásoz képest a tágyak célja nem az átfogó temészettudományos szemlélet kialakítása, anem a ménöki gyakolatban való alkalmazatóság. Ez atáozza meg a témaköök kiválasztását, valamint azt, ogy az elmélete igyekszünk gyakolati alkalmazást is mutatni. Ugyanakko a ménöki oktatás sem jelenti tételek összefüggéstelen magolását. Az anyag stuktuálásáoz igyekszünk a témakööket az axiómáktól felépíteni, a bizonyítások alapjait ismetetni, de inkább empiikus példákkal igazoljuk az egyes tételek elyességét. A középiskolai tágyalásmódoz képest további újdonságot jelent, ogy a má tanult mecanikai tövényeket, itt a deiválás és integálás ismeetében tudjuk megfogalmazni. A tágy igyekszik támaszkodni a allgatók középiskolai és a páuzamos matematika oktatás soán elsajátított matematikai tudásáa. Számítástecnikai eszközök alkalmazásával is eősítve a ménök feladat megoldási készségét. A félév soán alkalmazott matematikai eszközöke példák: deiválás, integálás, alapvető diffeenciál egyenletek megoldása, tanszcendens egyenletek iteációs megoldása. A középiskolákból vegyes fizikai és matematikai ismeetekkel, olyko alapvető számtani iányosságokkal endelkező allgatók felzákóztatása édekében a félév elején összefoglaljuk a mecanika alapfogalmait is, de a kevés óaszám miatt, iányos alaptudás esetén javasolt az ottoni munka, esetleg nagyobb tudású allgató vagy magántaná segítségének kéése. Fita Fizika I. - -

3 Tágy előfeltételei Első óák előtt otton átnézendő középiskolai matematikai- és fizikai fogalmak: Számalmazok, adattípusok, műveletek: - temészetes-, egész-, acionális-, valós számok - skalá, vekto - vekto-műveletek: összeadás, skaláis szozás Függvényanalízis: - ozzáendelés, függvény, kölcsönösen egyételmű függvény, ÉT, ÉK - számfüggvények: ábázolása, zát/nyílt intevallum, invez függvény képe - fv. tulajdonságok: folytonos, zéus ely, lokális./globális szélsőéték, monotonitás Fontosabb függvények: - konstans, x, lineáis, másod- és amadfokú polinom - exponenciális, logaitmus - tigonometikus: sin, cos, tg, ctg Függvény műveletek: - tanszfomációk: eltolás és nyújtás x és f(x) iányban - függvények összeadása Számsoozatok: - számtani, métani soozat, egyéb példák, soozat ábázolása - tulajdonságok: kolátosság, konvegencia / divegencia - atáéték, alapműveletek, endőelv Kinematika: - Alapmennyiségekből (elmozdulás, elfodulás, idő) a sebesség, gyosulás számaztatása - Egyenes vonalú-, kö-, amonikus ezgőmozgás leíása - Elmozdulás, sebesség, gyosulás, mint vekto Dinamika: - Newton axiómák, eők összeadása, fogatónyomaték, fede ajítás leíása - Impulzus (lendület), Impulzus-nyomaték (pedület), -tételek - Munka számítása, enegia, enegia-megmaadás tövénye Rugalmas test, Folyadék-mecanika: - Rugótövény, Hooke-test - Pascal-, Acimedes tövénye, felületi feszültség - Folytonossági tövény, szánya ató felajtóeő, közegellenállás Hőtan - Főtételek, Pepetuum mobilék - Ideális gázmodell: Boyle-Maiotte I-II., Gay-Lussac, egyesített gáztöv., állapotegyenlet - Speciális állapotváltozások: izoco, izoba, izotem, adiabatikus, Canot-köfolyamat Fénytan: - Geometiai optika: vékony lencsék töése, tükök (tágy-, kép-, fókusztávolság, dioptia) - Töésmutató, teljes visszaveődés, fény sebessége közegekben - Fény ullámtemészete: elajlás, töés, intefeencia (e.mágneses spektum tatományai) Fita Fizika I. - -

4 . Statika, kinematika ismétlés (deivált) Az eő fogalmának sztatikus oldalát elsőként a testek súlyán keesztül ézékeletjük. Kétkaú mélege elyezett testek súlya összeasonlítató, összeadódó és omogén közeg, pl. gabona mééseko a téfogattal aányos. A súly másik közismet atása, ogy pl. a ugót defomálja. Rugós méleg defomációjának météke is egyenesen aányos a ugót teelő test súlyával. Homogén közeg súlyát a téfogattal aányosnak tekintették. Az aányossági tényező volt a fajsúly, amelye G = g V Megfigyelendő, ogy pl. különböző anyagok összekeveéseko a súly összeadódó mennyiség, a téfogat viszont nem. Ma ezt a leíást NEM asználjuk. Később, a "Dinamika" fejezetben ismetetett Newton-féle axióma endsze abból indul ki, ogy szabadesésko a testek súlya és gyosulása állandó. Ezt általánosítva egy test gyosulása aányos a áató eővel: F = m a A test súlyáa teát kapjuk: G = m g A tömeg teát egyszee fejezi ki a testek súlyát ( súlyos tömeg ), dinamikai feladatban pedig a gyosító eővel szembeni ellenállását ( teetetlen tömeg ). Ez a leíás magyaázza azt a tényt is, ogy a testek súlya nem csak a tömegtől, de a gavitációs téeő nagyságától is függ.. ába: Kétkaú méleg. Rugós méleg Eők összeadása: Pontban ató eők vektoként, paalelogamma-szabály alapján adatók össze (.a. ába). Kitejedt meev teste síkban ató eők (kifeszített kötél mintájáa) atásvonaluk mentén eltolatók. a.) Amennyiben közös kezdőpontba tolatók, alkalmazató a paalelogamma-szabály. b.) Ha páuzamosak és megegyező iányúak, úgy segédeők felasználásával adatók össze és a súlypontoz asonlóan leet kiszámítani az eedő eő kezdőpontját (.b. ába). F + F s = + c.) Egymással páuzamos, ellentétes iányú, azonos nagyságú eők eőpát alkotnak (.c. ába). Ennek fogatónyomatékát adott ponta nézve, a atásvonal távolságának, azaz az eőkanak és az eőnek szozataként számítatjuk (M=k F). Az eőpá fogatónyomatéka tetszőleges ponta nézve ugyanaz (M= k F). Több eő esetén a fogatónyomatékok előjelesen adódnak össze. Kétkaú méleg egyensúlyánál például a fogatónyomatékok eedője nulla. Fita Fizika I

5 . ába: Síkban ató eők összegzésének szabályai d.) Nem egy síkban ató eők is összegezetők segédeők felasználásával. Eők adott ponta vonatkoztatott fogatónyomatékát ebben az esetben az eő támadáspontjába mutató elyvekto és az eő vektoiális szozataként kapjuk: M = F Matek: A vektoiális, avagy keesztszozat eedménye vekto, amelynek nagysága egyenlő a két vekto által kifeszített paalelogamma teületével: F = F sin(j) Iánya meőleges a két vekto által megatáozott síka és iányultságát a jobbkéz-szabály atáozza meg. A keesztszozat teát nem kommutatív (nem felcseélető). 3. ába: Vektoiális szozás. Jobbkéz-szabály Meev teste ató eők tetszőleges endszee egyételműen egyszeűsítető egyetlen F eőe és egy vele azonos iányú M fogatónyomatéka, un. eőcsavaa. Cales tétele alapján pedig a meev test pillanatnyi mozgásállapota leíató egy tanszlációval és egy vele azonos tengelyű otációval, azaz csavamozgásként. Az eedő eő a tanszlációa, a fogatónyomaték a otációa van atással. Sztatikus esetben az eők és a fogatónyomatékok eedője is nulla. F = 0 M = 0  i  i Súlypont: Súlypontjában alátámasztott, egyébként csak a omogénnek tekintető neézségi eő atása alatt lévő meev test bámely elyzetben egyensúlyban van, azaz a test súlyának a súlyponta vonatkozó fogatónyomatéka bámely elyzetben zéus. Ez a pont tetszőleges test esetén bizonyítatóan létezik. Pontendsze esetén a tömegpontokba mutató elyvektook súlyozott összegeként számítató ki (4.a. ába):  mi i s =  mi Folytonos omogén közeg súlypontja a tövény segítségével integálással számítató ki (az egyes geometiai testek súlypontja a függvénytáblázatban találató meg). Elemi alakzatokból összetett testek súlypontja a tövény ismételt alkalmazásával úgy számítató, minta az egyes alakzatok teljes súlya azok súlypontjában lenne koncentálva. Fita Fizika I

6 Példa: Számítsuk ki a 0 métet átidaló kötélben ébedő eőt, a annyia megfeszítjük, ogy 50kg tömegű teelő test esetén 0cm belógást engedünk meg! Megoldás: A kötélben két oldala ató eők függőleges komponenseinek összege ( F/sin(α)) tat egyensúlyt a test G=m g súlyával (4.b. ába). A megfeszített kötél ossza közel egyenlő az eedeti osszával (sin(α) ~ /(l/)). Így a kötélben ébedő eő megfelel,5 tonna súlyának. G / l G sin( a ) = = F = = = 500N l / F 4 4 0, 4. ába: Súlypont kiszámítása összetett objektuma (a). Kötélben ébedő eő számítása (b). Fita Fizika I

7 Kinematika A kinematika mennyiségei pontszeű, vagy meev test mozgását, pozíciójának időbeli változását íják le, annak magyaázata, azaz az eőkkel való kapcsolat vizsgálata nélkül. Alapmennyiségei az elmozdulás és az eltelt idő, amelyek méetősége alapvető tapasztalataink közé tatozik. A klasszikus mecanikában a távolságot méő úd osszát tétől és időtől függetlennek tekintjük, szemben a elativisztikus modelltől, aol a megfigyelő sebessége miatt elatív az idő, a gavitációtól göbül a té. A ossz SI météke a méte: s [s] = m Az eltelt időt klasszikus köülmények között szintén méetőnek gondoljuk, aminek alapja az, ogy egyes jelenségek sebessége, pl. a omokóában naponta lepegő omokszemek mennyisége állandó. Az idő SI météke a másodpec (secundum): t [t] = s Ezen alapmennyiségekből számítatunk további számaztatott mennyiségeket. A sebesség métékének középiskolás definíciója, az adott idő alatt megtett utat az eltelt idővel osztva, az egységnyi idő alatt megtett utat adja meg. Ds v = [v] = m/s Dt Ez az intevalluma jellemző átlagos sebesség. Út-idő diagammon ábázolva egy egyenes meedeksége, azaz iánytangense (5. ába) annál nagyobb, minél nagyobb az elmozdulás az idő szeint. 5. ába: Átlagsebesség definíciója Az intevalluma jellemző átlagsebességből úgy kapatjuk a t időponta jellemző pillanatnyi sebességet, a a t t közelítjük t ez, az intevallum osszát a nulláoz. Az intevallum osszának csökkentése után úja és úja kiszámítva az iánytangenst, egye inkább az időponta jellemző pillanatnyi sebességet kapjuk. A számsoozat atáétékeként, a létezik, egyben a pontban úzott éintő meedekségét nyejük (6. ába). 6. ába: Éintő meedekségének megatáozása atáétékként Fita Fizika I

8 A pillanatnyi sebesség így definiált atáétéke akko nem létezik, a az út-idő függvény nem folytonos (7.a. ába), vagy az éintő adott pontban más bal- és jobb oldalól (7.b. ába). Az út-idő függvény szakadása azt jelentené, ogy egy test végtelen övid idő alatt másik elyen teemne. Az éintő meedekségének, azaz a pillanatnyi sebességnek végtelen gyos változása szintén nem tapasztalató. Még a pillanatnyinak tűnő ütközésnél is megfigyelető megfelelő lassításnál, ogy az út göbe meedeksége, így a sebesség, folyamatosan változik. A klasszikus fizika keetei között teát a pontszeű test pillanatnyi sebessége mindenütt véges és egyételműen megatáozató. Így a pillanatnyi sebesség definíciója: Ds v( t) = lim Dt DtÆ0 7. ába: Út-idő függvényben szakadás (a) vagy töés (b) MATEK (deiválást később allgatják, mint aogy má az első fizika előadáson asználjuk): A sebesség fenti definíciója, az éintő meedekségének atáétékként való kiszámítása általánosítató. Hasonlóan leet jellemezni tetszőleges f(x) függvény x szeinti megváltozását. Az éintő meedekségét közelítő atáéték neve diffeenciálányados és övidített jele (8.a. ába): df Df = lim dx DxÆ0 Dx A diffeenciálányados számlálója és nevezője is nulláoz tató mennyiségek, mégis a ányadosuk konvegálat valamely valós számoz. A továbbiakban olyan függvényekkel foglalkozunk, amelyeknek, az út-idő függvényez asonlóan, minden pontban létezik diffeenciálányadosa (folytonosak és nincs bennük töés). 8. ába: Diffeenciál ányados és deivált függvény Fita Fizika I

9 Az éintő meedekségének atáétékként való megatáozása a gyakolatban nem kivitelezető. Amennyiben azonban adott f(x) függvényez ismenénk az annak meedekségét leíó függvényt, akko a meedekség bámely pontban egyszeű beelyettesítéssel kiszámítató lenne. Egy ilyen f (x) függvény ábázolásánál a meedekség étéke nulla a lokális szélsőétékeknél, pozitív, a nő a függvény és negatív, a csökken (8.b. ába). Adott függvény meedekségét leíó függvényt ívjuk deivált függvénynek. A deiválandó függvény vagy kifejezés mögé tett felső vesszővel jelöljük. Az idő szeinti deiválást speciálisan, a függvény feletti pont jelzi: df df f ( x) = f & ( t) = dx dt x t A atáéték-definíció alapján szabályokat leet levezetni például függvények összegée, szozatáa, ányadosáa és összetett függvények deiválásáa, stb. Az alapvető függvények (konstans, x, exponenciális, logaitmus, tigonometikus, stb.) deiváltjai szintén levezetetők. A jelentősebbeket a függvénytáblázat tatalmazza: A továbbiakban pedig nem is asználjuk a atáéték definíciót, ugyanis a szabályokkal és alapesetekkel le leet vezetni bámely összetett függvény deiváltját. A deiválás olyan, mint a agymapucolás: kívülől befelé aladsz és közben sísz. A deivált függvényből végül egyszeű beelyettesítéssel megatáozató az eedeti függvény változása (éintő meedeksége) bámely pontban, aol az éintő egyételműen létezik. Pontszeű test egyenes vonalú mozgásának kinematikai mennyiségei: elmozdulás s(t) alapmennyiség [s] = m sebesség d s v ( t) = = s& ( t) dt [v] = m/s gyosulás d v d s a ( t) = = v& ( t) = = & s ( t) dt dt [a] = m/s A táblázatban bemutatott vektoegyenletek mindegyike a té x-y-z iányainak megfelelő 3 daab skalá egyenletnek felel meg. Fita Fizika I

10 Meev test egyenes vonalú mozgását tanszlációnak, tengely köüli fogását pedig otációnak nevezzük. Meev test elfodulásának kinematikai mennyiségei: elfodulás φ(t) alapmennyiség [φ] = ad szögsebesség dj w ( t) = = j& ( t) dt [ω] = /s szöggyosulás dw d j b t) = = w& ( t) = = & j ( t) [β] = /s ( dt dt A táblázatban szeeplő mennyiségek ebben az esetben is vektook, mivel az elfodulás vekto iányát a tengely adja meg a jobbkéz-szabállyal megatáozott pozitív iánnyal. Casles tétele (830): Meev test tetszőleges elemi elmozdulása összeteető egy tanszlációból és egy otációból. A tengely egyételműen választató úgy, ogy a tanszláció és a otáció iánya azonos legyen, azaz csavamozgást kapjunk. MATEK: A szög météke a kö középpontos asonlóságán alapul. A méendő szög csúcsa köé ajzolt különböző sugaú kööknél, a szög által kimetszett ívossz aányos a kö sugaával. Az ívossz és a sugá ányadosa teát független a sugától, csak a szög nagyságáa jellemző (9.a. ába). Mivel adott sugánál az ív ossza és a szög közötti kapcsolat monoton és lineáis (9.b. ába), a ányados megfelelő météke leet a szögnek. A méendő szög köé ajzolt köből kimetszett ív ossza és a sugá ányadosaként definiálatjuk. A szög métékegysége adián [ad], amit általában nem íunk ki. A teljes kö météke pl. π. 9. ába: Kimetszett ív adott szögnél a sugáal (a), adott sugánál a szöggel aányos (b) Megfigyelésből okok: Az időben változó endszeek leíásának egyik módszee a deiváláson alapul. Egy jelenség megfigyeléseko méetjük például egy test s(t) pillanatnyi pozícióját. Ezután a diszkét s(t) méési étékeket vagy egesszióval (közelítő függvény a pontok között fut) vagy intepolációval (közelítő függvény átmegy a méési pontokon) közelítik (0. ába). 0. ába: Méési adatok közelítése egesszióval és intepolációval (négyzetes) A közelítő s(t) analitikus függvény deiválásával má kiszámítató a pillanatnyi sebesség, majd újbóli deiválással a gyosulás. A Newton-féle eőtövények (F=m a) ismeetében a gyosulásból megatáozatók a jelenséget kiváltó eők. Így a deiválás segítségével eljutatunk a jelenségtől annak magyaázatáig: s v a F A gondolatmenet asonlóan alkalmazató a fogó mozgás mennyiségeie is. Az elfodulás-idő függvényből deiválással és az eőtövény alapján (M=Θ β) megatáozató a fogatónyomaték: φ ω β M Fita Fizika I

11 Példák: A módsze alkalmazásaként vizsgáljuk meg a szabadon eső test gyosulását. A tapasztalat szeint a megtett út az esés idejének négyzetével aányos. Ebből kétszei deiválással kapjuk, ogy a test gyosulása állandó: s( t) = c t v( t) = c t a( t) = c Fede ajítás paabola pályájáa az x vízszintes komponense állandó sebességű, a z függőleges komponense pedig állandó gyosulású mozgást kapunk: s t) v t v t) = v ( t) = 0 x ( = x 0 x( x0 s z g ( t) t = - v z t) = -g t a x ( a z ( t) = -g. ába: Elmozdulás, sebesség és gyosulás függőleges komponense Hamonikus ezgőmozgást végző objektum (pl. ugó, inga) kitéése az idő szinuszos függvénye, aol az ω köfekvencia a T peiódusidőből számítató, A pedig az amplitúdó. x( t) = A sin( wt) w = p T Ebből deiválással levezetető, ogy a ugótövénynek (F = m a = - D x) megfelelően, a gyosulása egyenesen aányos a kitééssel (. ába). x( t) = A sin( wt) v( t) = w A cos( wt) a( t) = -w A sin( wt) a( t) = -w x( t). ába: Hamonikusan mozgó test kitéése, sebessége és gyosulása az idő szeint Fita Fizika I

12 . Dinamika: meev testek Az eő mozgásállapota való atását a Newton axiómák íják le:. Inecia endszeben minden test megtatja mozgásállapotát, amíg más testek atásai állapotának megváltoztatásáa nem kényszeítik. Mozgásállapotnak nevezzük a test nyugalmi állapotát, vagy adott v sebességű egyes vonalú mozgását. Inecia endsze az a vonatkoztatási endsze, amelyben nincsenek méető kényszeeők. Gyosuló koodinátaendsze (gépjámű) például nem az, iszen benne a tágyak látszólag ok nélkül gyosulnak.. Pontszeű test gyosulása azonos iányú és egyenesen aányos a teste ató eővel és fodítva aányos a test m tömegével. A második axióma fogalmazza meg a dinamika alapegyenletét, eőtövényét: F=m a Olyan veszteséges folyamatoknál, aol a súlódás a sebességgel aányos, az eő és a végsebesség között találunk aányosságot. Súlódásmentes folyamatoknál viszont, az axióma szeint, az eőatás a testek gyosulásával aányos. A tömeg, a súly mellett, kifejezi a testek teetetlenségét is. 3. Kölcsönatás: Ha egy pontszeű A teste egy pontszeű B test eőt gyakool, akko az A test ugyanakkoa, de ellentétes iányú eővel at a B teste. Séülne ez az axióma, a lenne egy kitüntetett, fix pontja a világegyetemnek. Ekvivalens megfogalmazás, ogy belső eők nem változtatják meg az impulzust és az impulzusnyomatékot se. 4. Szupepozíció: Egy tömegponta ató több eő egymástól függetlenül fejti ki atását, teát az eő vektoként kezelető. Ennek következtében leet az eőket, a gyosulásoz asonlóan vektoként kezelni. Összeadni, illetve koodinátánként, egymástól független skalá eőtövényeket felíni: F x =m a x F y =m a y F z =m a z A tömeg SI alapmennyiség, métékegysége [kg]. Az eő métékegységét a Newton-féle eőtövény definiálja: F = m a métékegysége: kg m [F] = = N s A testek mozgásállapotát kifejező impulzus, azaz lendület segítségével szintén megfogalmazató az eőtövény: I = m v pontendszee: I = Â m i v métékegysége: kg m [I] = i s Az impulzustövény szeint mecanikai endszee ató külső eők eedője egyenlő a teljes impulzus idő szeinti diffeenciál-ányadosával, azaz a mozgásállapot idő szeinti megváltozásával: F = I& Az impulzustövény csak akko ekvivalens a Newton-féle eőtövénnyel, a a tömeget állandónak tekintjük, azaz kiemelető az idő szeinti deiválás alól. Relativisztikus köülmények között, nagy sebességeknél az impulzus-tövényt fogadjuk el igaznak. d I d m v dv F = I& ( ) = = = m = m a dt dt dt Az impulzus-megmaadás tövénye ennek egyszeű alkalmazása. Ha külső eők eedője nulla (pl. biliádgolyók ütközése: 4.a. ába), a endsze teljes impulzusa nem változik: F = 0 Ë I = Â m i vi = állandó Súlypont-tétel: Pontendsze tömegközéppontja úgy mozog, minta a endsze egész tömege ebben a pontban lenne egyesítve és a endsze külső eőinek eedője ee a ponta atna. Ennek következtében a felobbanó tűzijáték daabjainak súlypontja továbba is paabola-pályán mozog. Fita Fizika I. - -

13 Példa : v=m/s sebességgel süllyedő liftben az utas súlya látszólag megnő a fékezés közben. Mekkoa a fékút, a a súlynövekedés nem aladatja meg a 0%-ot? m a = 0, m g m a = s v = a t v t = a v s = = 50 s = a t cm a Példa : Lejtőn csúszó szánkóa ató külső eők (F t éintő iányú μ F n súlódási eő) eedője eedményezi a szánkó gyosulását. Állandó gyosulást feltételezve a idő méésével megatáozató a súlódási együttató (3.a. ába). Felasznált egyenletek: m a = (sin j - m cosj) m g s = a t Példa 3: Állandó szögsebességű kömozgás esetén a tömegponta sugá mentén ató eő nem a sebesség-vekto nagyságát, anem az iányát változtatja meg (3.b. ába). A tömegpont keületi sebessége, centipetális gyosulása és a pályán tató centipetális eő (ennek ellentéte a kifelé mutató kényszeeő, a centifugális eő): v k = w v a cp = F = m cp a cp 3. ába: Szánkó gyosulása (a). Centipetális gyosulás (b). Példa 4: Matematikai inga (súlytalan kötél, pontszeű test) mozgásáa felít eőtövényt (4.a. ába) összeasonlítva a amonikus ezgőmozgása kapott diffeenciál-egyenlettel (8. ába) számítató a ezgés ω köfekvenciája és a T lengésidő. Példa 5: Rugóa függesztett tömeg mozgásáa felít eőtövényt (4.b. ába) szintén összevetve a amonikus ezgőmozgása kapott egyenlettel szintén kiszámítató a ezgés köfekvenciája és a peiódus idő. 4. ába: Matematikai inga (a). Rugóval csatolt tömeg ezgése (b). Fita Fizika I. - -

14 Meev teste ató eők eedőjének fogatónyomatéka, az eőtövényből levezetetően, a test szöggyosulásával aányos. M = q b A teetetlenségi nyomaték, a testek fogatással szembeni teetetlenségét fejezi ki, jele Θ (teta). Étéke adott geometiai alakzata és fogástengelye, a tömegpontok fogástengelytől való távolságaiból számítató: Q = Â m i i métékegysége: [Θ] = kg m Az alapvető geometiai objektumok (gömb, téglatest, stb.) adott, súlyponton átmenő tengely köüli teetetlenségi nyomatéka függvénytáblázatokból keesető ki. Összetett alakzat teetetlenségi nyomatéka additív. A Steine-tétel alapján számítató a súlyponttól s távolsága lévő, páuzamos fogás-tengelye vonatkozó nyomaték: = ( x - s) dm = x dm- s xdm+ s dm = Q ms Q Ú Ú Ú Ú A s + 5. ába: Fogó mozgás alapmennyiségei A fogómozgás eőtövénye a fogási állapotot kifejező impulzusnyomaték, azaz pedület segítségével is megfogalmazató: N = I pontendszee: N = Â i I i métékegysége: kg m [N] = s Az impulzusnyomaték-tövény szeint mecanikai endsze bámely ponta vonatkoztatott impulzusnyomatékának idő szeinti megváltozása egyenlő a endszee ató külső eők a ponta vonatkoztatott fogatónyomatékainak eedőjével. Belső eők fogatónyomatékainak vektoi összege, a atás-ellenatás elve alapján zéus, teát nem változtatják meg a teljes impulzusnyomatékot. M = N & Impulzusnyomaték-megmaadás tövény: Külső eők fogatónyomatékainak iánya vagy egyensúlya esetén a endsze impulzusnyomatéka állandó: M = 0 Ë N = Â i I i = állandó A tövény egyszeű szemléltetése, amiko a pögő kocsolyázó kezeit beúzva ( csökken) szögsebessége megnő (I nő). 6. ába: Impulzusnyomaték megmaadása pögő kocsolyázóa Fita Fizika I

15 Összefoglalva: Meev teste ató eők tetszőleges endszee egyételműen egyszeűsítető egyetlen F eőe és egy vele azonos iányú M fogatónyomatéka, un. eőcsavaa. Cales tétele alapján a meev test pillanatnyi mozgásállapota leíató egy tanszlációval és egy vele azonos tengelyű otációval, azaz csavamozgásként. A fent vázolt eőtövények alapján az eedő eő a tanszlációa, a fogatónyomaték a otációa van atással.  F i = m a  M i =Q b Szabad tengely köüli fogás: Eőmentes meev test stabilan foogat, bizonyos nem ögzített, un. szabad tengelyek köül. A súlyponton átmenő iányok közül a legstabilabb az a tengely, amelyiknek legnagyobb a teetetlenségi nyomatéka. Általános esetben egy meev testnek áom, a súlyponton átmenő, egymása meőleges szabad tengelye van (Segne, 755; Eule, 765). A második legstabilabb az, amelyiknek legkisebb a teetetlenségi nyomatéka. Labilis a fogás a középső teetetlenségi nyomatékú tengely köül. Pögettyű: Szabad tengely köüli fogó test külső eők atásáa is igyekszik megtatani fogástengelyét. Ennek közismet példái, ogy a megpögetett és eldobott diszkosz vagy fizbi tengelye változatlan maad, így a pálya második szakaszában a koong szányként fekszik fel a levegőe és a paabola pályánál tovább jutat (7.a. ába). Vontcsövű lőfegyveből kilőtt pögő lövedék fogástengelye változatlan maad, a csúcsával é célba. A mesteséges oizontot is ilyen kényszementes, áom szabadságfokú gioszkóp (Foucault, Spey) jelzi a epülőgép pilótájának. A pögettyű elfodulásának méése alapján vezéli a kományműveket a obotpilóta. A pögettyűs iánytűnél a vízszintes tengelyű gioszkóp tengelyét a Föld fogásából számazó Coiolis-eő észak-dél iányba állítja be. Az így működő iánytű előnye a mágneses iánytűvel szemben, ogy mentes a közeli vas tágyak, mágneses écek zavaó teének atásaitól. A epülőgépeken alkalmazott pögettyűs kompasz felépítése ennél bonyolultabb. Pögettyű-nyomaték: Édekes tulajdonsága a tengely stabilitásának, ogy a tengelye meőlegesen ató eő, a tengelyt, az eőe meőleges iányban póbálja kitéíteni (7.b. ába). Az N pedület és M fogatónyomaték atásáa létejövő ω elfodulása a jobb-kézszabállyal számítató. Pl. a bicikli első keeke, jobba dőlésko kományzás nélkül is jobba kanyaodik. Az elfoduló tengelyű malomkeék, a kanyaodó jámű külső keekéez asonlóan, a pögettyűnyomaték miatt, súlyánál lényegesen nagyobb eővel nyomja a talajt (7.c. ába). Több tonnás vízszintes tengelyű pögettyűvel ajó oldaliányú billegése is így gátolató (7.d. ába). Máa, 95-óta az óceánjáók stabilizátoa víz alatti uszony-páokkal csillapítja a nemkívánatos mozgást). Kényszementes gioszkóppal, a fogástengely stabilitása alapján méik a ajó bólogató-, dülöngélő mozgásait és ennek megfelelően vezéeli az uszonyokat. 7. ába: Pögettyű alkalmazásai Fita Fizika I

16 3. Munka, enegia (integál) A munkavégzés definíciója, eő szoozva iányába eső elmozdulás, azaz az elmozdulás- és eő-vektook skaláis szozataként számítatjuk (8. ába): L = F s = F s cos(j) métékegysége: [L] = N m = J, Joule 8. ába: Munkavégzés számítása Homogén gavitációs tében egy test felemeléséez szükséges munka a test súlyából és függőleges elyzetének változásából számítató: L = G s = mg Nyugalomban lévő test v sebessége töténő gyosításáoz, állandó gyosulás esetén, a következő munkát kell végezni: L = F s = ma at = m( at) = mv Állandó fogatónyomatékkal szöggyosított test megfogatásáoz szükséges munka bizonyítatóan: L = M j = Qb bt = Q( bt) = Qw Tapasztalataink szeint a munka független a folyamat köülményeitől, csak a kezdeti és végállapottól függ. Az emelés töténet gyosan vagy lassan, a test súlyát emelve, vagy csigával, emelővel (kisebb eővel, de nagyobb kötélosszal, eőkaal), ugyanannyi munkát kell végezni. A test sebességének vagy szögsebességének növelése is töténet gyosan vagy lassan, a szükséges munka csak a végsebességtől ill. a végső szögsebességtől függ. A befektetett munka sok esetben visszanyeető. Felemelt test munkavégző képességével másik test felemelető (pl. budavái sikló), vagy leejtve a test sebessége nő (pattogó labda), vagy a szögsebessége nő meg (jojó). Objektum könyezetez képesti sebessége és szögsebessége szintén munkavégző képesség leet. A testek elyzetéből, mozgási- vagy fogási állapotából számazó munkavégző képességet nevezzük enegiának. A mecanikai endszeen végzett munka növeli a endsze enegiáját, a endsze által végzett munka pedig csökkenti. Az enegia állapotjelző, azaz olyan fizikai mennyiség, amelynek megváltozása csak a kezdeti és végállapottól függ. 9. ába: Mecanikai enegia példái Fita Fizika I

17 A kinetikai enegia tétele szeint, pontendsze kinetikai (mozgási) enegiájának megváltozása egyenlő a endszee ató külső és belső eők munkájával. A külső eők munkája, a súlypontban egyesítve gondolt m tömegű endsze, a belső eők munkája pedig a súlypontoz viszonyított mozgás kinetikus enegiáját változtatja meg. A mecanikai enegia megmaadásának tövénye szeint, konzevatív endsze kinetikai és potenciális enegiájának összege állandó. Konzevatív egy endsze, a a külső eők (téeők) időben nem változnak. Konzevatív, veszteségmentes endszeben az enegia megmaadó mennyiség. Az enegia ugyanakko elatív, a munkavégző képesség az objektum és könyezetének viszonyát fejezi ki. Helyzeti enegiáól csak valamely önkényesen kiválasztott szintez képest beszélünk, iszen a tee munkavégző képessége megnőet, a alá gödöt ásunk. Nyugalomban lévő testnek nincs mozgási enegiája saját koodináta-endszeünköz képest, mégis egy elobogó vonat utasai, az ablakon kiajolva mozgási enegiáját asznosítatják. További ismet, fontosabb enegia-táolási módok, a ugó enegiája, elektosztatikus té, mágneses té enegiája. A ugó enegiája például, mivel az eő nem állandó, anem aányos a defomációval, csak a későbbiekben ismetetett integálás műveletével számítató: E = Dx Az enegia a különböző enegiák összegeként számítató, megváltozása egyenlő a munkával: E E + E + E +... D E = L de = dl = elyzeti mozgási ugalmas Az enegia-megmaadás tövénye csak veszteségmentesnek tekintett endszeben igaz. Valójában minden folyamat veszteséges, a súlódás soán a mecanikai enegia egy észe őközlésként a endsze és könyezete belső enegiáját (U) növeli, őmésékletét emeli. A munka (J: 0,kg tömeg emelése m-e) és a kaloimetiában bevezetett ő (cal: g víz ºC-kal való melegítéséez szükséges ő) egyenétékűek (cal=4,84j). kg víz ºCkal való felmelegítése teát ekvivalens 48 m-el való felemelésével. zsemle enegiájával (50kcal) például 75 kg vizet ºC-kal melegítetünk fel, vagy 836 m-e emeletjük (6 Gellét-egy). E U + E + E + E +... D E = L+ Q de = d L + dq = elyzeti mozgási ugalmas Az egységnyi idő alatt végzett munkát fejezi ki a teljesítmény. Például az állandó F eővel, v sebességgel mozgó autó teljesítménye, a a közegellenállás négyzetes függvénye a sebességnek: L F d s 3 P = d J = = F v ª v métékegysége: [P] = = W, Watt dt dt s Példa: A megmaadó mennyiségek (tömeg, anyagmennyiség, töltés, enegia, külső eők egyensúlya esetén az impulzus, fogatónyomaték iányában az impulzusnyomaték), a megmaadási tövények segítségével sok esetben egyszeűbb egy feladat megoldása, mint eőtövények alkalmazásával. Enegiaméleggel, egyetlen egyenlettel kiszámítató például, ogy mekkoa lejtőől kell leguítani egy kocsit aoz, ogy az utána egy sugaú köpályán maadjon (0. ába). A. pont mozgási enegiája feltétele a köpályának. Amennyiben a centifugális eő kisebb lenne a kocsi súlyánál, úgy a test má koábban paabola-pályáa téne. 0. ába: Enegia-megmaadás alkalmazása Fita Fizika I

18 A munkavégzés számításának bemutatott példái esetén az eő az elmozdulás soán állandó volt. A ugó esetén viszont az eő az elmozdulással aányos (F=D x). Ilyen esetben a munkát csak közelíteni leet, például az elmozdulást n észelmozdulása bontva. A észelmozdulásokon például mindenütt a legkisebb eővel számolva a észmunkavégzések összege közelíti a munkavégzést. L ª n  i= F i Dx i Minél több és keskenyebb észintevalluma bontjuk az elmozdulást, annál kisebb ibával számítató ki a munka. Ennek algoitmizálató fomája leet, a ciklikusan, adott felosztásnál számítjuk ki a munkát közelítő szozatösszeget, majd a következő lépésben minden cellát tovább felezünk. Egye több és kisebb észelmozdulása bontva, egy soozat atáétékeként kapjuk a végzett munkát. A soozat, a beít téglalapok teületének atáétéke egyben közelíti az F(x) göbe alatti teületet is, azaz akko létezik, a a göbe alatt ételmezető a teület. L = lim n  F Dx i Dxi Æ0 i = i. ába: Munka kiszámítása állandó eőnél és a ugó esetében Matek: Egy függvény göbéje alatti teület számításáa kaptunk az előzőekben eceptet. Adott f(x) függvény göbéje alatti teület x -től x -ig közelítető a beít téglalapok teületösszegével (a minden észelmozdulásnál a függvény minimumával számolunk), a köülít téglalapokkal (a mindenütt az f maximumát asználjuk a téglalapok magasságaként), vagy egy olyan egyszeűen algoitmizálató módszeel, ogy minden Δx i észelmozdulásnál a baloldali F i étékkel számolunk. A felosztás finomításával mindegyik esetben a kiszámítandó teületez közelítünk, a az egyételműen létezik. Adott intevallumon, adott függvény göbéje alatti teület atáétékként való definícióját nevezik atáozott integálnak, amelynek jelölése: T ( x, x ) = lim ( n  Dxi Æ0 i= f Dx ) = i i x Ú x f ( x) dx. ába: Hatáozott integál számítása és a atáozatlan integál függvény Fita Fizika I

19 A atáozott integál atáétékként való számítása megleetősen köülményes lenne. A gyakolati alkalmazatóságoz definiáljuk az f(x) függvény teületét leíó g(x) függvényt. Önkényesen választott x 0 -oz, a teület-függvény bámely x-e adja vissza a fenti f(x) függvény göbéje alatti teületet x 0 -tól x-ig. g( x) : = x Ú x0 f ( x) dx Az így definiált teület-függvény ábázolásánál g(x 0 )=0, iszen a göbe alatti teület nulla egy nulla szélességű intevallumon. A teület-függvény monoton nő, az ábázolt pozitív étékeket felvevő f(x) függvény esetén, de csökkenet, mivel negatív f(x) esetén a teület is negatív. A teület-függvény növekedése gyosabb, azaz meedeksége nagyobb ott, aol az f(x) étéke nagyobb, és lassabb a változás ott, aol az f(x) étéke kisebb. Egy ilyen teület-függvény ismeetében egyszeű beelyettesítéssel leetne számolni a atáozott integált, iszen az x 0 -tól x -ig tejedő teületből kivonva az x 0 -tól x -ig tejedő teületet megkapjuk az x -től x -ig tejedő teületet: x Ú x f ( x) dx = g( x) - g( x) Ráadásul ez a tulajdonság, ogy a teület-függvényből megatáozató a atáozott integál, nem függ az x 0 választásától. Másik x 0 (az ábán x 0 ) esetén a teület-függvény feljebb tolódna, iszen minden elyen ozzáadódna az x -től x -ig tejedő teületet, de a g(x) függvényből is ugyanígy ki leetne számítani a atáozott integált. A teület-függvény alkalmazásánál nem kell tudnunk, ogy ol van a választott x 0, az egymással páuzamos, eltolt teület-függvények közül melyiket tudjuk. Egy ilyen, az f(x) teületét leíó g(x) függvényt atáozatlan integál függvénynek nevezzük és jelölése: f ( x) dx Ú Az integál-függvény megatáozásáoz az a megfigyelés vezet, ogy aol az f(x)-nek nagy az étéke, ott az integál meedeksége nagy. Fodítva kimondva, aol az integál meedeksége, azaz deiváltja nagy, ott az f(x) étéke nagy. Bizonyítatóan egy f(x) függvény integáljának deiváltja maga az f(x) függvény. Az integálás és deiválás egymás invez művelete. Az alapvető elemi függvények integálja függvénytáblázatból keesető ki. Összetett függvények integálásáa, a deiválásoz asonlóan leet szabályokat levezetni, pl.: de az integálása csak euisztikus módszeek vannak. Az integálásnál keesünk egy olyan függvényt, aminek deiváltja az integandusz. Sejtésünket deiválással ellenőizetjük. Példaként a deiváltak alapján néány gyakan asznált függvény integálja: n+ n n- n ( x ) x = n x Ú x dx = n + (sin( x )) = cos( x) cos( x ) dx = sin( x) (cos( x)) = - sin( x) sin( x) dx = - cos( x) x x x x ( e = e ) Ú Ú Ú e dx = e A kinematika mennyiségeit az elmozdulás és elfodulás deiválásával számítatjuk, azaz deiválással eljutatunk egy megfigyelt jelenségtől a gyosulásig, az eőtövényeken keesztül pedig a jelenség magyaázatáig. Az integálás leetőséget ad aa, ogy egy deteminisztikus endsze viselkedését megjósoljuk. A endszeben ató eőkből kiszámítató a gyosulás és a szöggyosulás. A gyosulás integálásával kapjuk a pillanatnyi sebességet, újbóli integálással pedig az elmozdulást idő szeint, azaz, ogy mi fog töténni. Példaként kiszámítató egy állandó gyosulással mozgó test elmozdulás-függvénye. Az integálás soán a atáozatlan integál függvényez konstans éték is ozzáadató, amely a deiválásnál eltűnik és adott feladatnál fizikai jelentéssel bíat (v 0, s 0 ): a ( t) = a 0 v ( t) = a0 t + v 0 s ( t) = a0 t + v0 t + s0 Fita Fizika I

20 4. Hidosztatika, aeosztatika A nyomás fogalmát pl. egy tűsakú cipő, a kocsolya vagy a csípőfogó élének atása szemlélteteti. A nyomás az egységnyi felületen ató nyomóeő. Felület adott pontjában az eő felület szeinti diffeenciál ányadosaként számítjuk. df p = métékegysége: [p] = N = Pa, Pascal da m A Pascal tövény szeint (659) súlytalannak tekintett, nyugvó folyadék (vagy légnemű közeg) belsejében a nyomás mindenütt ugyanakkoa és független az iánytól. A nyomás leet ugyanakko izotóp, azaz iányfüggő áamló folyadékban, gázokban (lásd. tolónyomás, vagy Benoulli) vagy nyugvó, de nem ideális folyadékban (pl. viszkoplasztikus közeg aká nyugvó állapotában is leetnek éintő iányú, azaz nyíóeők). Szilád, defomált közeg esetén a nyomás jelentősen iányfüggő leet. Ebben az esetben az un. feszültség-tenzo íja le a különböző iányokban ualkodó nyomó- és nyíófeszültségeket. Súlyos, összenyomatatlan folyadék belsejében ualkodó nyomás a felülete neezedő nyomás és a idosztatikai nyomás összegeként számítató. Több, különböző sűűségű folyadékéteg esetén (koktél) a folyadékoszlopok idosztatikai nyomásai összeadódnak. p = p0 + g Az un. idosztatikai paadoxon alapján, egy edény alján a nyomás csak a folyadékoszlop magasságától függ, az edény alakjától, az edényben lévő folyadék súlyától nem. A tövénynek megfelelően omogén gavitációs tében az izobá felületek vízszintes síkok, az un. közlekedő edények mindkét száában, pl. a kőművesek szintezőjében ugyanaz a vízszint. További alkalmazások: szivonya, atézi kút, sűűség méése U alakú csőben. A folyadékok összenyomatóságával csak nagy nyomás esetén édemes számolni. Hidaulikus pés vagy gépjámű fékendszee esetén kell számolni a folyadék kompesszibilitásával. Ugyanakko a pés esetében nem édemes a folyadék súlyával számolni, iszen a idosztatikai nyomás nagyságendekkel kisebb, mint a endszeben léteozott nyomás. Tipikusan a feladat atáozza meg, ogy adott esetben el leet-e anyagolni a folyadék súlyosságát vagy összenyomatóságát.. ába: Hidaulikus pés, idosztatikai paadoxon, szivonya, atézi kút Összenyomató, súlyos közeg nyomásának szinttől való függése jóval bonyolultabb. Például levegőe, izotem légköt feltételezve a baometikus magasságfomulával közelítető a nyomás és a sűűség: p 0 - p0 = p e aol p 0 és ρ 0 a tengeszinten mét nyomás és sűűség 0 g Az izentóp toposzféa modell (n=,4) má leíja a őméséklet változását. A gadiense 0 C/km számolató. A politóp modell n=,34 mellett ad a valóságosoz közeli 6,48 C/km étéket (kb.km-ig, aol -5 C köüli). A tengeszinten mét átlagos légköi nyomás ( atm) étéke különböző métékendszeekben: atm = 0 35 Pa kg-m-s alapmennyiségekből számaztatott nyomás (SI méték) ~ 0 5 Pa = 0, MPa = 00 kpa = 000 Pa = ba atm =.033 at tecnikai atmoszféa, 0 méte magas vízoszlop sztat. nyomása atm = 760 to igany-milliméte, egy milliméte iganyoszlop sztat. nyomása A tengeszint feletti magasság nyomásméésen alapuló becslése pl. időjáás-függő. A méés koszeűbb eszköze a GPS alapú magasság-megatáozás, amelynek pontossága aká -3 cm leet. Fita Fizika I

Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak

Fizika I. (Mechanika, áramlástan, reológia, fénytan) előadási jegyzet Élelmiszermérnök, Szőlész-borász mérnök és Biomérnök BSc hallgatóknak Fizika I. (Mecanika, áamlástan, eológia, fénytan) előadási jegyzet Élelmiszeménök, Szőlész-boász ménök és Bioménök BSc allgatóknak D. Fita Feenc Fizika-Automatika Tanszék Tatalom 0 (- 05..). Statika, kinematika

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Elektrosztatika (Vázlat)

Elektrosztatika (Vázlat) lektosztatika (Vázlat). Testek elektomos állapota. lektomos alapjelenségek 3. lektomosan töltött testek közötti kölcsönhatás 4. z elektosztatikus mezőt jellemző mennyiségek a) elektomos téeősség b) Fluxus

Részletesebben

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István

FIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,

Részletesebben

f r homorú tükör gyűjtőlencse O F C F f

f r homorú tükör gyűjtőlencse O F C F f 0. A fény visszaveődése és töése göbült hatáfelületeken, gömbtükö és optikai lencse. ptikai leképezés kis nyílásszögű gömbtükökkel, és vékony lencsékkel. A fő sugámenetek ismetetése. A nagyító, a mikoszkóp

Részletesebben

0. Teszt megoldás, matek, statika / kinematika

0. Teszt megoldás, matek, statika / kinematika 0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

4. STACIONÁRIUS MÁGNESES TÉR

4. STACIONÁRIUS MÁGNESES TÉR 4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt

Részletesebben

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre

ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE. Írta: Hajdu Endre ELLIPSZISLEMEZ MÁSODRENDŰ RÖGZÍTÉSE Íta: Hajdu Ende Egy pénzémének vagy egyéb lemezidomnak saját síkjában töténő elmozgathatósága meggátolható oly módon, hogy a lemez peeme mentén, alkalmasan megválasztott

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

A FÖLD PRECESSZIÓS MOZGÁSA

A FÖLD PRECESSZIÓS MOZGÁSA A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása

Numerikus módszerek. A. Egyenletek gyökeinek numerikus meghatározása Numeikus módszeek A. Egyenletek gyökeinek numeikus meghatáozása A1) Hatáozza meg az x 3 + x = egyenlet (egyik) gyökét éintı módszeel. Kezdje a számítást az x = helyen! Megoldás: x 1, Megoldás 3 A függvény

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Szuszpenziók tisztítása centrifugálással

Szuszpenziók tisztítása centrifugálással Szuszpenziók tisztítása centiugálással 1. Elméleti bevezető A centiugálás művelete a centiugális eőté kihasználásán alapuló hidodinamikai szepaációs művelet. A centiugális eőtében a centipetális eőnek

Részletesebben

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög. 17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

a domború tükörrıl az optikai tengellyel párhuzamosan úgy verıdnek vissza, meghosszabbítása

a domború tükörrıl az optikai tengellyel párhuzamosan úgy verıdnek vissza, meghosszabbítása α. ömbtükök E gy gömböt síkkal elmetszve egy gömbsüveget kapunk (a sík a gömböt egy köben metsz). A gömbtükök gömbsüveg alakúak, lehetnek homoúak (konkávok) vagy domboúak (konvexek) annak megfelelıen,

Részletesebben

1. TRANSZPORTFOLYAMATOK

1. TRANSZPORTFOLYAMATOK 1. TRNSZPORTFOLYMTOK 1.1. halmazállapot és az anyagszekezet kapcsolata. folyadékállapot általános jellemzése - a szilád, folyadék és gáz halmazállapotok jellemzése (téfogat, alak, endezettség, észecskék

Részletesebben

Szuszpenziók tisztítása centrifugálással

Szuszpenziók tisztítása centrifugálással Szuszpenziók tisztítása centiugálással Vegyipai mveletek labogyakolat 1. Elméleti bevezető A centiugálás mvelete a centiugális eőté kihasználásán alapuló hidodinamikai szepaációs mvelet. A centiugális

Részletesebben

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI

IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI IVÁNYI AMÁLIA HARDVEREK VILLAMOSSÁGTANI ALAPJAI POLLACK PRESS, PÉCS HARDVEREK VILLAMOSSÁGTANI ALAPJAI Lektoálta D. Kuczmann Miklós, okl. villamosménök egyetemi taná Széchenyi István Egyetem, Győ A feladatokat

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Alapvető mechanikai elvek

Alapvető mechanikai elvek Mi a biomechanika? Biomechanika Mechanika: a testek mozgásával, a testeke ható eőkkel foglalkozó tudományág Biomechanika: a mechanika tövényszeűségeinek alkalmazása élő szevezeteke, elsősoban az embei

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap

Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

Mérnöki alapok 1. előadás

Mérnöki alapok 1. előadás Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek

Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007

ELEKTROMÁGNESSÉG. (A jelen segédanyag, az előadás és a számonkérés alapja:) Hevesi Imre: Elektromosságtan, Nemzeti Tankönyvkiadó, Budapest, 2007 ELEKTROMÁGNESSÉG (A jelen segédanyag, az előadás és a számonkéés alapja:) Hevesi Ime: Elektomosságtan, Nemzeti Tankönyvkiadó, Budapest, 7 ELEKTROMOSSÁGTAN A. Elektosztatikai té vákuumban. Az elektomos

Részletesebben

1687: Newton, Principiamathematica

1687: Newton, Principiamathematica 1687: Newton, Principiamathematica Ismétlés 0. Statika súly -> erő: erők felbontása, összeadása merev test: -> erőrendszer redukciója erőcsavarra nyugalom feltételei, súlypont 1. Kinematika Pillanatnyi

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ.

( X ) 2 összefüggés tartalmazza az induktív és a kapacitív reaktanciát, amelyek értéke a frekvenciától is függ. 5.A 5.A 5.A Szinszos mennyiségek ezgıköök Ételmezze a ezgıköök ogalmát! ajzolja el a soos és a páhzamos ezgıköök ezonanciagöbéit! Deiniálja a ezgıköök hatáekvenciáit, a ezonanciaekvenciát, és a jósági

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok

Részletesebben

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens

Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK AZ ÉGIG ÉŐ PASZULY JAC AND HE BEANSAL Honyek Gyula ELE adnóti Miklós Gyakolóiskola ÖSSZEFOGLALÁS Csodálkoznunk kellene, a a Föld valaely pontján eglátnánk egy kötelet, aelynek az alja ajdne leé a talaja,

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus

Részletesebben

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra)

FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra) FIZIKA NYEK reál (gimnázium, 2 + 2 + 2+2 óra) Tantárgyi struktúra és óraszámok Óraterv a kerettantervekhez gimnázium Tantárgyak 9. évf. 10. évf. 11. évf. 12. évf. Fizika 2 2 2 2 1 9. osztály B változat

Részletesebben

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót

Részletesebben

Speciális relativitás

Speciális relativitás Bevezetés a modern fizika fejezeteibe 3. (b) Speciális relativitás Relativisztikus dinamika Utolsó módosítás: 2013 október 15. 1 A relativisztikus tömeg (1) A bevezetett Lorentz-transzformáció biztosítja

Részletesebben

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11. Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:

Részletesebben

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)

A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r) Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q

Részletesebben

dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = ["#,#]

dr 2 # r 2 d* 2 # r 2 sin 2 *d+ 2 t = [#,#] Gömbszimmetikus, M tömegű test köüli téidő vákuumban: 1) Vákuum: T " = 0 2) Ügyes koodinátaendsze-választással ki lehet használni a gömbszimmetiát. Az Einstein-egyenlet analitikusan is megoldható, a megoldás,

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

205 00 00 00 Mûszertan

205 00 00 00 Mûszertan 1. oldal 1. 100710 205 00 00 00 Mûszertan A sebességmérõ olyan szelencés mûszer, mely nyitott Vidi szelence segítségével méri a repülõgép levegõhöz viszonyított sebességét olyan szelencés mûszer, mely

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

Alkalmazott fizika Babák, György

Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Alkalmazott fizika Babák, György Publication date 2011 Szerzői jog 2011 Szent István Egyetem Copyright 2011, Szent István Egyetem. Minden jog fenntartva, Tartalom Bevezetés...

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Az előző részek tartalmából

Az előző részek tartalmából Az előző részek tartalmából. Statika: erő, forgatónyom. F M r x F Kinematika: deriválás -> s v a ϕ ω β. Dinamika: Newton erőtv: F ma M θ β impulzus törvény: F di/dt M dn/dt Energia: munka állandó erőre

Részletesebben

Mobilis robotok irányítása

Mobilis robotok irányítása Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

2011. november 2. Dr. Vincze Szilvia

2011. november 2. Dr. Vincze Szilvia 20. novembe 2. D. Vincze Szilvia Tatalomjegyzék.) Számtani és métani soozatok Métani soozatok alkalmazásai: 2.) Kamatos kamat számítás a.) Egyszeű kamatszámítás b.) Kamatos kamat számítás c.) Kamatszámítás

Részletesebben

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása

Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Fizika 1i (keresztfélév) vizsgakérdések kidolgozása Készítette: Hornich Gergely, 2013.12.31. Kiegészítette: Mosonyi Máté (10., 32. feladatok), 2015.01.21. (Talapa Viktor 2013.01.15.-i feladatgyűjteménye

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

FIZIKA Tananyag a tehetséges gyerekek oktatásához

FIZIKA Tananyag a tehetséges gyerekek oktatásához HURO/1001/138/.3.1 THNB FIZIKA Tananyag a tehetséges gyerekek oktatásához Készült A tehetség nem ismer határokat HURO/1001/138/.3.1 című projekt keretén belül, melynek finanszírozása a Magyarország-Románia

Részletesebben

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév Folyadékok és gázok mechanikája Fizika 9. osztály 2013/2014. tanév Szilárd testek nyomása Az egyenlő alaplapon álló hengerek közül a legsúlyosabb nyomódik legmélyebben a homokba. Belenyomódás mértéke a

Részletesebben

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013 2. Kísérleti feladat (10 pont) B rész. Rúdmágnes mozgásának vizsgálata fémcsőben (6 pont)

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június

FIZIKA KÖZÉPSZINTŐ SZÓBELI FIZIKA ÉRETTSÉGI TÉTELEK Premontrei Szent Norbert Gimnázium, Gödöllı, 2012. május-június 1. Egyenes vonalú mozgások kinematikája mozgásokra jellemzı fizikai mennyiségek és mértékegységeik. átlagsebesség egyenes vonalú egyenletes mozgás egyenes vonalú egyenletesen változó mozgás mozgásokra

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben