4. Oszcillációk Első észlelések

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4. Oszcillációk Első észlelések"

Átírás

1 4. Oszcillációk Első észlelések A Nap felszíni oszcillációinak vizsgálata 1960-ban indult Leighton észleléseivel, aki egy szellemes spektrohelioszkópos eljárást követett. Az ionizált bárium 4554 Angström hullámhosszúságú vonalának vörös és kék szárnyára hangolta a műszert, így a napfelület minden pontját aszerint észlelte az átlagosnál fényesebbnek, vagy halványabbnak, hogy milyen látóirányú mozgás történt, tehát melyik irányba tolódott el a vonal. A két szárnyban a fényesedés-halványodás természetesen ellentétes volt, a két képet egymásból kivonva megkapta a látóirányú mozgások térképét. Ő figyelt fel arra, hogy ez a mintázat kb 5 perces periódussal fluktuál. A vizsgálatot az évek során egy sor hasonló követte. Többek között például vizsgálták egyes spektrumvonalak időbeli viselkedését, illetve a granulációs mintázat felvételsorozatának keresztkorrelációját, ez utóbbira azt gondolnánk, hogy aszimptotikusan lecseng, de erre a lecsengésre ráül egy kb 5 perces fluktuáció, és így tovább. Az oszcilláció frekvenciája kb 5 perces volt, de helyesebb azt mondani, hogy a 3-8 perces tartományba esett. Ez csak a nyugodt fotoszférára vonatkozik, a kromoszférában, H-alfa vonalban, valamint napfoltokban ennél rövidebb periódusokat mértek. Ennek ellenére a jelenséget mindenki úgy hívta, hogy az ötperces oszcillációk és senki nem értette. Ha egy nagy felület kisebb darabjai periodikus fel-le mozgást végeznek, akkor ez legegyszerűbb esetben (a hullámzó vízfelület analógiájára) egy teljesen kaotikus folyamat lehet, ahol az egyes felle mozgó felületdarabok fizikailag nincsenek egymással kapcsolatban. A Nap esetében az áttörést Roger Ulrich (1970) munkája jelentette, melyben felvetette azt, hogy e felületdarabok fel-le mozgása fizikailag kapcsolatban lehet azáltal, hogy a lefelé mozgás által kiváltott nyomáshullámok bizonyos értelemben összehangolják őket. A folyamatot a következőképpen lehet elképzelni ábra. Nyomáshullámok trajektóriái a Nap belsejében Tekintsük a sematikus 4.1. ábrát, ahol a Nap metszetében azt szemléltetjük, hogy mi történik egy felületdarab lefelé mozgásakor. Az összenyomás hatására nyomáshullám keletkezik, mely terjedéséhez befelé haladva változó feltételeket talál. Képzeljük el a gömhullám egyes trajektóriáit, ezek befelé haladva növekvő sűrűséget találnak, ami növekvő hangsebességet jelent, és ez az optikai törés mintájára minden egyes trajektóriát eltérít, mégpedig úgy, hogy a radiális iránnyal egyre növekvő szöget fog bezárni, egy adott mélységben arra merőleges lesz, majd visszafordul és valahol kibukkan a felszínre. Ha itt olyan felületdarabot talál, mely éppen megfelelő fázisban mozog ahhoz, hogy mozgásuk összeadódjon, akkor e felületdarab mozgását segíti, egyébként energiája disszipálódik. Könnyen belátható, hogy erősítés akkor lép fel, ha a trajektória futási ideje a fel-le mozgás periódusának n+1/2 számú többszöröse. Ilyen módon egy adott sűrűségi rétegződéshez a felszíni tér- és időbeli periódusok adott struktúrája tartozik. A Nap-oszcillációk kutatásának másik úttörője Franz Ludwig Deubner volt, aki a felvetést követően 1975-ben megvizsgálta annak jogosságát. A napfelszín egy kisebb darabját scannelte a Franuhofer intézet Anacapri-beli távcsövével (ez ma már nem üzemel), és a hozzá kapcsolt magnetográf segítségével tudta követni a felületdarab különböző pontjainak látóirányú mozgását és ezek térbeli korrelációit. Mérésének eredményét a 4.2. ábra mutatja. A vízszintes tengelyen a térbeli

2 mintázatot leíró hullámszám (k), a függőlegesen pedig az időbeli körfrekvencia (ω) látható. Az ábrán egy görbesereg rajzolódik ki, melyre rárajzolták azt is, hogy az Urlich felvetése nyomán kiszámolt tér- és időbeli periódusok az elméletileg ismert sűrűségrétegődés esetén hogyan függenek össze egymással. E görbéket angolul ridge-knek, barázdáknak nevezik és az összetartozó k-ω értékeket jelölik. Ezen korai próbálkozás ilyen sikere egész elképesztő. A mintázat léte azt igazolja, hogy a felületdarabok oszcillációi koherens sokaságot alkotnak, tehát nem úgy hullámzanak, mint a vízfelület, hanem a 4.1.ábra által bemutatott módon. Az eredmény hatalmas új távlatokat, szinte új tudományágat nyitott a napbelső tanulmányozásában.. Az oszcillációk spektruma 4.2. ábra F.L.Deubner k-ω diagramja Periodikus jelenségek tanulmányozásához különböző matematikai eszközök állnak rendelkezésre. A legegyszerűbb esetben egyetlen paraméter mutat periodikus változást, ezt pl autokorrelációs elemzéssel, vagy Fourier analízissel lehet feltárni. A cél általában annak eldöntése, hogy egy adott adatsorban milyen periódusok és milyen súllyal (angol szóhasználatban power-rel) vannak jelen, ezt fejezi ki a power spectrum vagy teljesítményspektrum fogalma. Egy egyszerű példaként említhető egy hangszer felhangspektrumának vizsgálata: az, hogy egyes frekvenciák milyen erősen vannak jelen, meghatározza a hangszer hangszínét. Ha fel akarunk tárni valamilyen periodicitást, akkor az adatsornak teljesíteni kell bizonyos kritériumokat, egyrészt a keresett periódus nyilván csak rövidebb lehet, mint a teljes adatsor, másrészt csak hosszabb lehet, mint az adatok vételének gyakorisága, vagyis a mérés felbontása, ez utóbbi határt nevezik Nyquistfrekvenciának. A napfelület rezgéseinek tárgyalása sokkal összetettebb, mint a hangszerek akusztikai leírása, hiszen a felszíni összetartozó térbeli és időbeli periódusokat kell feltárni (leginkább az ütőhangszerek membránjának viselkedése hasonlít a mi esetünkhöz). A 4.2. ábra mérésénél még közelítőleg síknak lehetett tekinteni a napfelület kicsiny darabját, de a teljes gömbfelület eloszlásainak leírása már csak az ún. gömharmonikus függvényekkel, a Legendre függvények alkalmazásával történhet. A Fourier-analízistől eltérően a sebességteret szinuszos rezgések összege helyett az alábbi sorfejtéssel írhatjuk le. v θ, ϕ,t = l l=0 m= l a lm t Y l m θ,ϕ (4.1)

3 a sebesség tehát függvénye a t időnek és a θ és ϕ polárkoordinátáknak. A sorfejtés függvényei a következő alakúak: Y l m θ,ϕ =P l m θ e imϕ (4.2) m ahol a P l az ún. asszociált Legendre függvények sorozata. Ennek tagjai meglehetősen bonyolultak, összetettek, de jelentésük igen szemléletes. Tekintsük a 4.3. ábrát, melyen e függvények néhány l,m paraméterkettőssel jellemzett esetének térbeli megjelenítése látható. A rajzolatokat úgy kell elképzelni, hogy a gömbfelület egy lehetséges rezgési módját - más néven módusát - képviselik, a vonalak csomóvonalakat jelentenek, melyek nem oszcillálnak, a vonalak közötti tartományok közepe pedig maximális kitérést végez. A paraméterek jelentése: l mutatja a gömbfelületen található összes csomóvonal számát, m pedig azon csomóvonalak számát, melyek áthaladnak a forgástengely pólusain, az l-et más néven a módus rendjének is nevezzük (ez helyettesíti a fenti sík, kétdimenziós eset k hullámszámát), az m neve pedig azimutális hullámszám ábra A gömharmonikus függvényekkel leírt csomóvonalak a gömfelületen. Figyeljük meg az l és m paraméterek jelentését. A napfelület pontjainak első ránézésre kiismerhetetlenül bonyolult oszcillációi úgy írhatók le, hogy a fenti függvényekkel leírt módusok mindegyike részt vesz benne valamilyen frekvenciával - ezt hívjuk a módus sajátfrekvenciájának - illetve erősséggel (power). A mondottak alapján az észlelési feladatot úgy lehet megfogalmazni, hogy mindegyik módusnak keressük a sajátfrekvenciáját és azt, hogy milyen intenzitással oszcillál. A power megállapítása matematikailag úgy történik, hogy a (4.1.) sorfejtés időtől függő együtthatóinak képezzük az a l ν (frekvenciafüggő) Fourier-transzformáltját, és ebből képezzük az alábbi kifejezést (itt megfelelő szimólum híján -val jelöltük a komplex konjugáltat). P l,ν = a l ν a l ν (4.3) Észlelési programok A fentiek alapján látható, hogy részletes teljesítményspektrumot csak nagy felbontással valamint térben és időben kiterjedt méréssorozattal lehet elérni, ami azt jelenti, hogy a teljes napfelület (t.i. a látható félgömb) pontjainak fel-le mozgását kell minél hosszabb ideig regisztrálni. Az első mérések még mindkét szempontból korlátozottak voltak, ezért a 4.2. ábrán még meglehetős zajjal jelentkeznek a jellegzetes barázdák. A földi telepítésű műszerek esetében azonban további probléma is jelentkezett: a nappalok és éjszakák váltakozása miatti hamis jelek (és azok felharmonikusai) a frekvenciaspektrumban. Az első kísérlet, mely ezt kiküszöbölte, egy déli sarki kutatóállomáson valósult meg a déli félteke nyarán, ekkor a Nap nem nyugszik le, hanem körbemegy az égbolton, és folyamatosan lehet észlelni. Ez a mérés látványosan megerősítette a korábbiakat, nyilvánvaló azonban, hogy igazán hosszú észlelések így sem gyűjthetők, hiszen a sarkvidéki nyár elég rövid. A problémára két megoldás született, a GONG és az MDI, melyek párhuzamosan valósultak meg, egymástól függetlenül mérnek, és ez igen megbízhatóvá teszi eredményeiket.

4 GONG (Global Oscillation Network Group) A kísérlet nevében a Global nemcsak a Napra, hanem a Földre is vonatkozik, mivel egy hat állomásból álló obszervatórium-hálózatot jelent. Az obszervatóriumok helyének kiválasztása igen gondos előkészítés után történt meg, hiszen maximalizálni kellett a napsütéses órák számát. A műszerek földrajzi szélességben kb 60 fokonként helyezkednek el, tehát teljes napsütés esetén három műszer is látja a Napot. Az asztroklimatológia Murphy-törvénye miatt azonban így is előfordulhatnak kieső időszakok. Az állomások: Mauna Loa (Hawaii), Big Bear (Kalifornia), Cerro Tololo (Chile), Teide (Tenerife, Kanári szigetek), Udaipur (India), Learmonth (Ausztrália). A hat tökéletesen azonos műszeregyüttest egyszerre gyártották le és telepítették a hat helyen. Az észlelőműszernek az a feladata, hogy az elérhető legnagyobb gyakorisággal (időbeli Nyquistfrekvencia) egyszerre regisztrálja a látható félgömb felületdarabjait minél nagyobb térbeli felbontással (térbeli Nyquist-frekvencia). Ezt a feladatot a hangolható Michelson-interferométerrel oldották meg. A műszer működéséhez idézzük fel a Lyot-szűrőnél mondottakat. Ott arról volt szó, hogy a kettőstörő kristályba olyan poláros fényt engedünk, melynek síkja 45 -os szöget zár be az (egymásra merőleges) ordinárius és extraordinárius tengelyjel, ezért a két irányra vett komponenseinek különböző terjedési sebességei miatt a kristály mentén a polarizáció síkja körbefordul és adott hullámhossz esetén a kristály hosszának megválasztásával lehet elérni, hogy a kilépő sík milyen irányú. A hangolható Michelson-interferométernél (4.4. ábra) ennek a trükknek a módosított változatát alkalmazzák. A műszer két, különböző (l 1 és l 2 ) hosszúságú karjában két különböző törésmutatójú közeg van, az egyikben üveg, a másikban levegő, úgy hogy teljesüljön az l 1 /n 1 =l 2 /n 2 feltétel, és ekkor a két kar optikai úthosszkülönbsége: Δ=2 n 1 d 1 n 2 d 2 =2 n n 2 d n 1 1 (a kettes faktor amiatt lép fel, mert a sugár oda-vissza megteszi az utakat), a két kart befutó sugarak fáziskülönbsége pedig a kilépéskor: δ= 2πΔ λ (4.4) 4.4. ábra A hangolható Michelson-interferométer sematikus rajza Ez azt jelenti, hogy a fáziskülönbség hullámhosszfüggő, akárcsak a Lyot-szűrőnél, tehát a továbbiakban is igen hasonló stratégiát lehet alkalmazni. A Napról érkező sugarakat egy igen kis - 8 cm objektívátmérőjű - távcsővel az ábra közepén lévő blokkba vezetjük, itt az interferencia- és Lyot-szűrők kiválasztanak egy szűk tartományt a 6768 Angström hullámhosszúságú nikkelvonal körül, továbbá átmennek a polarizátorokon, melyek síkja az ábra síkjával 45 -os szöget zár be. Ez a sugár esik a Michelson-interferométerre. Ennek fényosztó felülete speciális többrétegű bevonattal van ellátva, melynek az a funkciója, hogy a beesési síkkal párhuzamos illetve arra merőleges

5 polarizációs síkokat átengedje illetve visszaverje, ilymódon a két ágban ortogonális polarizációjú sugarak haladnak. A kilépéskor fellépő (4.4. fáziskülönbség) tehát a Lyot-szűrőhöz hasonlóan a polarizációs síknak a hullámhosszal arányos elfordulását eredményezi. A detektor (CCD) előtt elforgatott polarizátorral tehát egy szűk hullámhossztartományt szkennelünk, és minden képpontban meg tudjuk mondani azt, hogy adott hullámhosszakon (a forgó polarizátor adott állásainál) mennyit változott az intenzitás, vagyis, hogy mennyit tolódott el látóirányban a nikkelvonal. A módszer hatalmas előnye, hogy az egész napkép összes felbontható pontjának látóirányú sebessége egyszerre állapítható meg. A spektrális tisztaságot két egymás után helyezett Michelson-interferométerrel tovább is lehet növelni. A hat GONG műszer szinkronban működik, adataik egy központba futnak be, a gyűjtött adatmennyiség terabyte nagyságrendű ábra a. A GONG egy napos mérése alapján az l=100 módusokra kapott power spectrum, b. az MDI 144 napos méréssorozata alapján nyert l-ν diagram. SOHO/MDI A SOHO napfizikai űrszonda MDI (Michelson Doppler Interferometer) nevű műszere természetesen nincs kitéve a nappalok-éjszakák váltakozásának. A két program közül ezért ez tűnhet előnyösebbnek, hiszen a GONG-gal is előfordul, hogy kimaradnak időszakok mivel egyszerre több állomáson is rossz idő van. A GONG haszna akkor mutatkozott meg, amikor a SOHO mesterséges hold hónapokra eltűnt az irányítók szeme elől, ami nagy veszteség volt, bár szerencsére sikerült újra megtalálni. A 4.5.b. ábra az MDI 144-napos méréssorozatának eredményét mutatja egy l-ν diagramon. Látható a jelentős előrelépés a 4.2. ábrához képest tér-és időbeli felbontásban egyaránt. Alacsony rendszámú módusok Több észlelési program is célozza az alacsony rendszámú módusokat, a SOHO műszeregyüttesben két ilyen kísérlet is található. A VIRGO (Variabillity of soral IRradiance and Gravity Oscillations) program elsősorban a Nap irradianciájának - a szoláris energiaáram földtávolságban vett sűrűségének - mérésére szolgál, de LOI (Luminosity Oscillation Imager) nevű egysége a napkorongot tíz tartományra osztva kis térbeli felbontású, tehát alacsony rendszámú észlelésekre is képes. A SOHO/GOLF (Global Oscillations at Low Frequencies) egyáltalán nem bontja fel a napképet, a teljes napkorongról érkező fényt egyszerre méri, ezért csak olyan alacsony rendszámú módusok vizsgálatára alkalmas, melyeknél a látható napkorongon egyetlen összefüggő felületdarab mozgása érvényesül. A magasabb rendszámú módusok esetén a műszerhez képes közeledő és

6 távolodó felületdarabok hatásai kioltják egymást és ilyen integráló mérés számára észlelhetetlenek. A 4.6. ábrán a GOLF által készített spektrum látható ábra A GOLF által készített spektrum Helioszeizmológia Az említett programok (és egy sor, itt nem is említett program) teljesen új betekintést enged a Nap belsejébe. Ha egy rendszert belső működését elméletileg le tudjuk írni, és ennek alapján meg tudjuk jósolni azt, hogy e működés milyen külső ismérveket idéz elő, akkor e külső ismérvek észlelése alapján vissza tudunk következtetni arra, hogy a belső működésnek mik a pontos paraméterei. Ezt nevezik inverz problémának és a hélioszeizmológia éppen ilyen inverz problémamegoldást követ. Amint a bevezetőben említettük, a felszíni hullámmintázatot meghatározza a nyomásrétegződés, ezért az első számú inverz feladat a Nap nyomásstruktúrájának meghatározása. Erre mutat egy példát a 4.7. ábra, ahol a hangsebesség (mely a sűrűség függvénye) eloszlását mutatja a mélység függvényében. Az adatok 2 havi MDI méréssorozat eredményei, a vízszintes tengely a centrumtól a napfelszínig mutatja a mélységet. látható, hogy kb 0,7 napsugárnál egy kiugró csúcs van, ami azt mutatja, hogy az a mélység, ahol elméletileg a konvektív zóna alját sejtjük, valóban kitüntettet hely ábra A hangsebesség értéke különböző mélységekben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

A NAPSUGÁRZÁS MÉRÉSE

A NAPSUGÁRZÁS MÉRÉSE A NAPSUGÁRZÁS MÉRÉSE A Napból érkező elektromágneses sugárzás Ø Terjedéséhez nincs szükség közvetítő közegre. ØHőenergiává anyagi részecskék jelenlétében alakul pl. a légkörön keresztül haladva. Ø Időben

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Mérés spektroszkópiai ellipszométerrel

Mérés spektroszkópiai ellipszométerrel Mérés spektroszkópiai ellipszométerrel Bevezetés Az ellipszometria egy igen sokoldalú, nagypontosságú optikai módszer vékonyrétegek dielektromos tulajdonságainak meghatározására. Mivel optikai módszer,

Részletesebben

A mintavételezéses mérések alapjai

A mintavételezéses mérések alapjai A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

SZE, Fizika és Kémia Tsz. v 1.0

SZE, Fizika és Kémia Tsz. v 1.0 Fizikatörténet A fénysebesség mérésének története Horváth András SZE, Fizika és Kémia Tsz. v 1.0 Kezdeti próbálkozások Galilei, Descartes: Egyszerű kísérletek lámpákkal adott fényjelzésekkel. Eredmény:

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál

A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál A napenergia magyarországi hasznosítását támogató új fejlesztések az Országos Meteorológiai Szolgálatnál Nagy Zoltán, Tóth Zoltán, Morvai Krisztián, Szintai Balázs Országos Meteorológiai Szolgálat A globálsugárzás

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6. Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az

Részletesebben

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése

Kutatási beszámoló. 2015. február. Tangens delta mérésére alkalmas mérési összeállítás elkészítése Kutatási beszámoló 2015. február Gyüre Balázs BME Fizika tanszék Dr. Simon Ferenc csoportja Tangens delta mérésére alkalmas mérési összeállítás elkészítése A TKI-Ferrit Fejlsztő és Gyártó Kft.-nek munkája

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3)

Jegyzőkönyv. hangfrekvenciás mechanikai rezgések vizsgálatáról (3) Jegyzőkönyv a hangfrekvenciás mechanikai rezgések vizsgálatáról () Készítette: Tüzes Dániel Mérés ideje: 2008-11-19, szerda 14-18 óra Jegyzőkönyv elkészülte: 2008-11-26 A mérés célja A feladat két anyag

Részletesebben

24. Fénytörés. Alapfeladatok

24. Fénytörés. Alapfeladatok 24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza

Részletesebben

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk

Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk 1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

A kettősbelű fatörzs keresztmetszeti rajzolatáról

A kettősbelű fatörzs keresztmetszeti rajzolatáról 1 A kettősbelű fatörzs keresztmetszeti rajzolatáról Az idők során már többször eszünkbe jutott, hogy foglalkozni kellene a címbeli témával. Különösen akkor, amikor olyan függvényábrákat találtunk, melyek

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

Távérzékelés, a jöv ígéretes eszköze

Távérzékelés, a jöv ígéretes eszköze Távérzékelés, a jöv ígéretes eszköze Ritvayné Szomolányi Mária Frombach Gabriella VITUKI CONSULT Zrt. A távérzékelés segítségével: különböz6 magasságból, tetsz6leges id6ben és a kívánt hullámhossz tartományokban

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

A digitális képfeldolgozás alapjai

A digitális képfeldolgozás alapjai A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

Ultrarövid lézerimpulzusban jelenlevő terjedési irány és fázisfront szögdiszperzió mérése

Ultrarövid lézerimpulzusban jelenlevő terjedési irány és fázisfront szögdiszperzió mérése Ultrarövid lézerimpulzusban jelenlevő terjedési irán és fázisfront szögdiszperzió mérése I. Elméleti összefoglaló Napjainkban ultrarövid, azaz femtoszekundumos nagságrendbe eső fénimpulzusokat előállító

Részletesebben

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ

RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ RÖVID ÚTMUTATÓ A FELÜLETI ÉRDESSÉG MÉRÉSÉHEZ Referencia útmutató laboratórium és műhely részére Magyar KIADÁS lr i = kiértékelési hossz Profilok és szűrők (EN ISO 4287 és EN ISO 16610-21) 01 A tényleges

Részletesebben

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet

Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet 1. A téma célkitűzés Növények spektrális tulajdonságának vizsgálata Kovács László, Dr. Borsa Béla, Dr. Földesi István FVM Mezőgazdasági Gépesítési Intézet A kutatási téma célja különböző haszon- és gyomnövények,

Részletesebben

72-74. Képernyő. monitor

72-74. Képernyő. monitor 72-74 Képernyő monitor Monitorok. A monitorok szöveg és grafika megjelenítésére alkalmas kimeneti (output) eszközök. A képet képpontok (pixel) alkotják. Általános jellemzők (LCD) Képátló Képarány Felbontás

Részletesebben

11. Orthogonal Frequency Division Multiplexing ( OFDM)

11. Orthogonal Frequency Division Multiplexing ( OFDM) 11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott

Részletesebben

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása:

N I. 02 B. Mágneses anyagvizsgálat G ép. 118 2011.11.30. A mérés dátuma: A mérés eszközei: A mérés menetének leírása: N I. 02 B A mérés eszközei: Számítógép Gerjesztésszabályzó toroid transzformátor Minták Mágneses anyagvizsgálat G ép. 118 A mérés menetének leírása: Beindítottuk a számtógépet, Behelyeztük a mintát a ferrotestbe.

Részletesebben

Fényvezető szálak és optikai kábelek

Fényvezető szálak és optikai kábelek Fényvezető szálak és optikai kábelek Fizikai alapok A fénytávközlés alapvető passzív elemei. Ötlet: 1880-as években Alexander Graham Bell. Optikai szálak felhasználásának kezdete: 1960- as évek. Áttörés

Részletesebben

A levegő törésmutatójának mérése Michelsoninterferométerrel

A levegő törésmutatójának mérése Michelsoninterferométerrel XI. Erdélyi Tudományos Diákköri Konferencia Kolozsvár, 008. május 3 4. A levegő törésmutatójának mérése Michelsoninterferométerrel Szerző: Kovács Anikó-Zsuzsa, Babes-Bolyai Tudoányegyetem Kolozsvár, Fizika

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

MUNKAANYAG. Dr. Engler Péter. A mérőfénykép. A követelménymodul megnevezése: Fotogrammetria feladatai

MUNKAANYAG. Dr. Engler Péter. A mérőfénykép. A követelménymodul megnevezése: Fotogrammetria feladatai Dr. Engler Péter A mérőfénykép A követelménymodul megnevezése: Fotogrammetria feladatai A követelménymodul száma: 2241-06 A tartalomelem azonosító száma és célcsoportja: SzT-009-50 A MÉRŐFÉNYKÉP ESETFELVETÉS

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

Térbeli struktúra elemzés szél keltette tavi áramlásokban. Szanyi Sándor szanyi@vit.bme.hu BME VIT. MTA-MMT konferencia Budapest, 2012. június 21.

Térbeli struktúra elemzés szél keltette tavi áramlásokban. Szanyi Sándor szanyi@vit.bme.hu BME VIT. MTA-MMT konferencia Budapest, 2012. június 21. Térbeli struktúra elemzés szél keltette tavi áramlásokban Szanyi Sándor szanyi@vit.bme.hu BME VIT MTA-MMT konferencia Budapest, 2012. június 21. 1 Transzportfolyamatok sekély tavakban Transzportfolyamatok

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

vmax A részecskék mozgása Nyomás amplitúdó értelmezése (P) ULTRAHANG ULTRAHANG Dr. Bacsó Zsolt c = f λ Δt = x/c ω (=2π/T) x t d 2 kitérés sebesség

vmax A részecskék mozgása Nyomás amplitúdó értelmezése (P) ULTRAHANG ULTRAHANG Dr. Bacsó Zsolt c = f λ Δt = x/c ω (=2π/T) x t d 2 kitérés sebesség ULTRAHANG Dr. Basó solt kitérés A részeskék mozgása x y Asinω t Δt x/ ω (π/t) sebesség gyorsulás d y x v Aω osω t d t d v x a Aω sinω t d t ULTRAHANG Hang mehanikai rezgés longitudinális hullám inrahang

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Mé diakommunika cio MintaZh 2011

Mé diakommunika cio MintaZh 2011 Mé diakommunika cio MintaZh 2011 Mekkorára kell választani R és B értékét, ha G=0,2 és azt akarjuk, hogy a szín telítettségtv=50% és színezettv=45 fok legyen! (gammával ne számoljon) 1. Mi a különbség

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE 2.9.1 Tabletták és kapszulák szétesése Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:20901 2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE A szétesésvizsgálattal azt határozzuk meg, hogy az alábbiakban leírt kísérleti körülmények

Részletesebben

Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

A regionális gazdasági fejlődés műszaki - innovációs hátterének fejlesztése

A regionális gazdasági fejlődés műszaki - innovációs hátterének fejlesztése A regionális gazdasági fejlődés műszaki - innovációs hátterének fejlesztése TÁMOP- 4.2.1/B-09/1/KONV-2010-0006 Energetika, környezetvédelem alprojekt Fókuszáló napkollektor fejlesztése Divós Ferenc, Németh

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel

Környezetvédelmi mérések fotoakusztikus FTIR műszerrel Környezetvédelmi mérések fotoakusztikus FTIR műszerrel A légszennyezés mérése nem könnyű méréstechnikai feladat. Az eszközök széles skáláját fejlesztették ki, hagyományosan az emissziómérésre, ezen belül

Részletesebben

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés.

Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. Sugárzáson, és infravörös sugárzáson alapuló hőmérséklet mérés. A sugárzáson alapuló hőmérsékletmérés (termográfia),azt a fizikai jelenséget használja fel, hogy az abszolút nulla K hőmérséklet (273,16

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

Az ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT NAPENERGIÁS TEVÉKENYSÉGÉNEK ÁTTEKINTÉSE. Major György 2013. Október

Az ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT NAPENERGIÁS TEVÉKENYSÉGÉNEK ÁTTEKINTÉSE. Major György 2013. Október Az ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT NAPENERGIÁS TEVÉKENYSÉGÉNEK ÁTTEKINTÉSE Major György 2013. Október Vázlat 1. Bevezetés 1.1 A meteorológia szerepe: napsugárzási adatsorok, napsugárzás mérések más meteorológiai

Részletesebben

Mérések a piszkés tetői kis és közepes felbontású spektrográffal

Mérések a piszkés tetői kis és közepes felbontású spektrográffal Mérések a piszkés tetői kis és közepes felbontású spektrográffal MTA CSFK CSI szeminárium 2012. december 13 http://www.konkoly.hu/staff/racz/spectrograph/ Medium resolution.html http://www.konkoly.hu/staff/racz/spectrograph/

Részletesebben

1. ábra a függvénygenerátorok általános blokkvázlata

1. ábra a függvénygenerátorok általános blokkvázlata A függvénygenerátorok nemszinuszos jelekből állítanak elő kváziszinuszos jelet. Nemszinuszos jel lehet pl. a négyszögjel, a háromszögjel és a fűrészjel is. Ilyen típusú jeleket az úgynevezett relaxációs

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Fénytechnika A szem, a látás és a színes látás Dr. Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013 Mi a szín? (MSz 9620) Fizika: a szín meghatározott hullámhosszúságú

Részletesebben

KISFESZÜLTSÉGŰ KÁBELEK

KISFESZÜLTSÉGŰ KÁBELEK BME Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Budapesti Műszaki és Gazdaságtudományi Egyetem KISFESZÜLTSÉGŰ KÁBELEK DIAGNOSZTIKÁJA TELJES FESZÜLTSÉGVÁLASZ MÓDSZERREL

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása Összeállította: dr. Szuhay Péter Budapest, 2013 Filename, 1 Hang és zaj 1. rész Dr. Szuhay Péter B & K Components Kft

Részletesebben

Elektromágnesség tesztek

Elektromágnesség tesztek Elektromágnesség tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078

Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Nemlineáris és femtoszekundumos optika Szakmai záróbeszámoló OTKA K 47078 Az ultrarövid, 100 fs hosszú fényimpulzusokat előállító lézerek 90-es évek elején, a 10 fs és rövidebb impulzusú lézerek a 90-es

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk. 37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

A napenergia felhasználása Vecsési Oktatási Konferencia Nemzetközi Szeminárium

A napenergia felhasználása Vecsési Oktatási Konferencia Nemzetközi Szeminárium A napenergia felhasználása Vecsési Oktatási onferencia Nemzetközi Szeminárium József Attila Gimnázium és özgazdasági Szakközépiskola Monor Vecsési Oktatási onferencia Nemzetközi Szeminárium Az előadás

Részletesebben

Mikrohullámok vizsgálata. x o

Mikrohullámok vizsgálata. x o Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia

Részletesebben

A csúszóvágásról, ill. - forgácsolásról

A csúszóvágásról, ill. - forgácsolásról A csúszóvágásról, ill. - forgácsolásról A vágás, ill. a forgácsolás célja: anyagi részek egymástól való elválasztása. A vágás, ill. a forgácsolás hagyományos eszköze: a kés. A kés a v haladási irányhoz

Részletesebben

Attól, hogy nem inog horizontális irányban a szélességi- és hosszúsági tengelye körül sem.

Attól, hogy nem inog horizontális irányban a szélességi- és hosszúsági tengelye körül sem. Konkrét tanácsok a Salgó-dexion polcrendszer összeszereléséhez Vásárlásunk során a Salgó-dexion polcokat, polcrendszereket sokféle módon állíthatjuk össze az igénybe vételnek, felhasználásnak, valamint

Részletesebben

Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia

Kamarás Katalin. Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia Bevezetés Fourier-transzformációs infravörös spektroszkópia Kamarás Katalin MTA Szilárdtestfizikai Kutató Intézet Minden optikai spektroszkópiai mérés lényege fényintenzitás meghatározása a frekvencia

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

Biofizika és orvostechnika alapjai

Biofizika és orvostechnika alapjai Biofizika és orvostechnika alapjai Ultrahang diagnosztika 1. Egy kevés fizika 2. Az ultrahang élettani hatásai 3. Egyszerű kísérletek fejben 4. Az ultrahang létrehozása 5. A mód 6. B mód 7. M mód 8. A

Részletesebben

REZGÉSDIAGNOSZTIKA ALAPJAI

REZGÉSDIAGNOSZTIKA ALAPJAI TÁMOP-4.1.1.F-14/1/KONV-2015-0006 SZTE Mérnöki Kar Műszaki Intézet, Duális és moduláris képzésfejlesztés alprogram (1a) A rezgésdiagnosztika gyakorlati alkalmazása REZGÉSDIAGNOSZTIKA ALAPJAI Forgács Endre

Részletesebben

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével

Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Fénysugarak visszaverődésének tanulmányozása demonstrációs optikai készlet segítségével Demonstrációs optikai készlet lézer fényforrással Az optikai elemeken mágnesfólia található, így azok fémtáblára

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben