A Deligne-Simpson Problémáról (folyamatban lévő munka O. Biquard-ral)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Deligne-Simpson Problémáról (folyamatban lévő munka O. Biquard-ral)"

Átírás

1 (folyamatban lévő munka O. Biquard-ral) Magyar Tudomány Napja Fiatal Kutatói Ülésszak Rényi Alfréd Matematikai Kutatóintézet november 17.

2 Deligne kérdése Legyenek C 0,...,C n konjugálási osztályok Gl r (C)-ben. Kérdés (P. Deligne, 1989) Mikor léteznek olyan A j C j mátrixok minden j-re, amelyekre A 0 A 1 A n = I?

3 Deligne kérdése Legyenek C 0,...,C n konjugálási osztályok Gl r (C)-ben. Kérdés (P. Deligne, 1989) Mikor léteznek olyan A j C j mátrixok minden j-re, amelyekre A 0 A 1 A n = I? Megjegyzés Triviális szükséges feltétel: det(c 0 )det(c 1 ) det(c n ) = 1.

4 Motiváció Legyenek p 1,...,p n C különböző pontok a síkon, és p 0 = CP 1. Legyen P = {p 0, p 1,...,p n } és x 0 CP 1 \ P. Ekkor π 1 (CP 1 \ P, x 0 ) = F n, az n-elemű szabad csoport. Generátorok: γ j = pozitív irányítású hurok p j körül, minden 1 j n-re.

5 Motiváció Legyenek p 1,...,p n C különböző pontok a síkon, és p 0 = CP 1. Legyen P = {p 0, p 1,...,p n } és x 0 CP 1 \ P. Ekkor π 1 (CP 1 \ P, x 0 ) = F n, az n-elemű szabad csoport. Generátorok: γ j = pozitív irányítású hurok p j körül, minden 1 j n-re. π 1 (CP 1 \ P, x 0 ) reprezentációi Gl r (C)-ben A 1,...,A n Gl r (C)

6 Motiváció Legyenek p 1,...,p n C különböző pontok a síkon, és p 0 = CP 1. Legyen P = {p 0, p 1,...,p n } és x 0 CP 1 \ P. Ekkor π 1 (CP 1 \ P, x 0 ) = F n, az n-elemű szabad csoport. Generátorok: γ j = pozitív irányítású hurok p j körül, minden 1 j n-re. π 1 (CP 1 \ P, x 0 ) reprezentációi Gl r (C)-ben A 1,...,A n Gl r (C) A 0, A 1,...,A n Gl r (C) amelyekre A 0 A 1 A n = I.

7 Simpson eredménye Legyen minden 1 j n-re µ j C olyan, amelyre a C j µ j I rangja minimális. Jelölje ezt a rangot r j. Tétel (C. Simpson, 1992) Tegyük fel, hogy C 0 sajátértékei különbözők és generikusak. Ekkor pontosan akkor létezik A j C j amelyekre A 0 A 1 A n = I, ha a következő két feltétel teljesül: 1. n j=1 r j r; 2. n j=0 dim(c j) 2r 2 2.

8 Szükségesség Egy megfelelő 1-rangú reprezentációval tenzorizálva feltehető, hogy C j I rangja r j. Ha létezik A 0, A 1,...,A n megoldás, akkor ahol minden j-re Tehát A 1 0 = A 1 A n, A j = I +r j -rangú mátrix. r = rk(c 0 ) r r n.

9 Szükségesség Egy megfelelő 1-rangú reprezentációval tenzorizálva feltehető, hogy C j I rangja r j. Ha létezik A 0, A 1,...,A n megoldás, akkor ahol minden j-re Tehát A 1 0 = A 1 A n, A j = I +r j -rangú mátrix. r = rk(c 0 ) r r n. Ha léteznek megoldások, akkor egy n dim(c j ) 2r j=0 dimenziós teret alkotnak, tehát általános sajátértékekre ennek a dimenziónak nemnegatívnak kell lennie.

10 Fourier-transzformált Legyen ρ : π 1 (CP 1 \ P, x 0 ) Gl r (C) egy reprezentáció, amelyre ρ(γ j ) C j. Ekkor ρ Fourier-transzformáltja egy ρ : π 1 (C \ {0}) Glˆr (C) reprezentáció, ahol ˆr = n r j. j=1

11 Fourier-transzformált, folyt Legyen C j az a Gl rj (C)-beli konjugálási osztály, amelyre C j = C j I. Ismert, hogy ρ értéke a π 1 (C \ {0}) = Z generátorán teljesíti a következőket: alkalmas bázisban valamely Ãj C j mátrixokra az alábbi alakú: Ã 1... Ã Ã n konjugálási osztálya C 0 I.

12 Fourier-transzformált, folyt. Legyen C j az a Gl rj (C)-beli konjugálási osztály, amelyre C j = C j I. Ismert, hogy ρ értéke a π 1 (C \ {0}) = Z generátorán teljesíti a következőket: 1. alkalmas bázisban valamely Ãj C j mátrixokra az alábbi alakú: Ã 1... Ã Ã n 2. konjugálási osztálya C 0 I. Megfordítva: minden olyan mátrixnak, amely teljesíti az 1-2 feltételeket, az inverz Fourier-transzformáltja megoldást ad A 0 A 1 A n = I-re.

13 Elegendőség Feltesszük, hogy minden j-re C j = C j. Legyen A Mˆr (C) az első feltételt teljesítő mátrixok halmaza. Ekkor A egy affin algebrai részsokaság, dimenziója: dim(a) = ˆr 2 n j=1 r 2 j + n dim( C j ). j=1 Hasonlóan, legyen B Glˆr (C) a második feltételt teljesítő mátrixok halmaza; B is algebrai részsokaság, dimenziója: dim(b) = ˆr 2 r (ˆr r) 2.

14 Elegendőség, folyt. Ezért, dim(a) + dim(b) ˆr 2 = n dim(c j ) + ˆr r 2 r + j=1 ˆr 2 + n dim( C j ) 0 j=1 a n j=0 dim(c j) 2r 2 2 feltevés miatt. n dim( C j ) j=1

15 Elegendőség, folyt. Ezért, dim(a) + dim(b) ˆr 2 = n dim(c j ) + ˆr r 2 r + j=1 ˆr 2 + n dim( C j ) 0 j=1 n dim( C j ) a n j=0 dim(c j) 2r 2 2 feltevés miatt. Bézout tétele alapján A és B metszi egymást P(Mˆr (C) C)-ben. j=1

16 Elegendőség, folyt. Ezért, dim(a) + dim(b) ˆr 2 = n dim(c j ) + ˆr r 2 r + j=1 ˆr 2 + n dim( C j ) 0 j=1 n dim( C j ) a n j=0 dim(c j) 2r 2 2 feltevés miatt. Bézout tétele alapján A és B metszi egymást P(Mˆr (C) C)-ben. Ha A B P(Mˆr (C) 0), akkor C 0 sajátértékeit perturbálva már lesz nem-ideális megoldás. j=1

17 Egy példa: a Lamé-rendszer Legyen P = {0, 1, t, } és minden j {0, 1, 2, 3}-ra C j a diag(i, i) konjugálási osztálya. Tenzorizáljunk azzal az 1-rangú τ reprezentációval, amelyre minden j {1, 2, 3}-ra τ(γ j ) = i C. Ekkor a módosított konjugálási osztályok: C j = diag( 1, 1).

18 Egy példa: a Lamé-rendszer Legyen P = {0, 1, t, } és minden j {0, 1, 2, 3}-ra C j a diag(i, i) konjugálási osztálya. Tenzorizáljunk azzal az 1-rangú τ reprezentációval, amelyre minden j {1, 2, 3}-ra τ(γ j ) = i C. Ekkor a módosított konjugálási osztályok: C j = diag( 1, 1). Fourier-transzformálás után: kersünk egy olyan 1 a 1 a 2 B = b 3 1 a 3 b 2 b 1 1 mátrixot, amelynek sajátértékei: ( 1, 1, 1). 2 független feltétel 6 változóban.

19 A Lamé-rendszer, folyt. Legyen például b 3 = b 1 = 0. Ekkor az egyenletek: a 1 a 3 b 2 = 0 a 2 b 2 = 4, amelynek egy megoldása: a 1 = a 3 = 0, a 2 = b 2 = 2.

20 Kac-Moody gyökrendszerek Legyen G = (V,E) egy véges csillagszerű gráf, n : V Z csúcsainak egy színezése. Minden v V-re jelöljük e v -vel a v karakterisztikus függvényet. Vezessük be a következő szimmetrikus bilineáris formát Z V -n: 2 ha v = v (e v, e w ) = 1 ha (v, v ) E 0 különben

21 Kac-Moody gyökrendszerek Legyen G = (V,E) egy véges csillagszerű gráf, n : V Z csúcsainak egy színezése. Minden v V-re jelöljük e v -vel a v karakterisztikus függvényet. Vezessük be a következő szimmetrikus bilineáris formát Z V -n: 2 ha v = v (e v, e w ) = 1 ha (v, v ) E 0 különben Rögzített v V-re értelmezzük a t v : Z V Z V v-re való tükrözést a következő képlettel: t v (n) = n (e v, n)e v.

22 Kac-Moody gyökrendszerek, folyt. Legyen a Weyl-csoport. Az W = t v : v V Aut(Z V ) {e v : v V } halmaz W menti pályaterét valós gyököknek nevezzük. Definiálhatunk továbbá képzetes gyököket is.

23 Kac-Moody gyökrendszerek, folyt. Legyen W = t v : v V Aut(Z V ) a Weyl-csoport. Az {e v : v V } halmaz W menti pályaterét valós gyököknek nevezzük. Definiálhatunk továbbá képzetes gyököket is. A (C 0,...,C n ) adatokhoz hozzárendelhető egy G véges csillagszerű gráf és egy n Z V. Tétel (W. Crawley-Boevey, 2003) Akkor és csak akkor van megoldása A 0 A 1 A n = I-nek A j C j -ben, ha n valós vagy képzetes gyök.

24 A Lamé-rendszer gyökrendszere A P = {0, 1, t, }, C j = diag( 1, 1) esetben a hozzárendelt gráf a D 4 affin Dynkin-diagram:

25 Fourier-transzformált gyökrendszereken D 4 -nek létezik két különböző olvasata. Fourier-transzformálás előtt:

26 Fourier-transzformált gyökrendszereken D 4 -nek létezik két különböző olvasata. Fourier-transzformálás előtt: Fourier-transzformálás után:

27 Cél 1. Leírni a Fourier-transzformáltat általános Kac-Moody gyökrendszereken. 2. Egyszerűbb bizonyítást adni a Deligne-Simpson problémával kapcsolatos eredményekre.

Lineáris algebrai módszerek a kombinatorikában

Lineáris algebrai módszerek a kombinatorikában Lineáris algebrai módszerek a kombinatorikában Nagy V. Gábor SZTE Bolyai Intézet Eötvös Loránd Kollégium, Matematika Műhely Szeged, 2013. október 25. ELK 13 A Gyárfás Lehel-sejtés 1/21 Definíció. A G 1,...,

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA SZÓBELI EMELT SZINT Tanulói példány Vizsgafejlesztő Központ 1. Halmazok, halmazműveletek Alapfogalmak, halmazműveletek, számosság, számhalmazok, nevezetes ponthalmazok

Részletesebben

Absztrakt algebra I. Csoportelmélet

Absztrakt algebra I. Csoportelmélet Absztrakt algebra I. Csoportelmélet Dr. Tóth László egyetemi docens Pécsi Tudományegyetem 2006 Bevezetés Ez az anyag tartalmazza az Algebra és számelmélet című tárgy 4. féléves részének kötelező elméleti

Részletesebben

2. előadás: További gömbi fogalmak

2. előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak 2 előadás: További gömbi fogalmak Valamely gömbi főkör ívének α azimutja az ív egy tetszőleges pontjában az a szög, amit az ív és a meridián érintői zárnak be egymással

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet).

Vektortér. A vektortér elemeit vektornak, a test elemeit skalárnak nevezzük. Ezért a függvény neve skalárral való szorzás (nem művelet). Vektortér A vektortér (lineáris tér, lineáris vektortér) két, már tanult algebrai struktúrát kapcsol össze. Def.: Legyen V nemüres halmaz, amelyben egy összeadásnak nevezett művelet van definiálva, és

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006 A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

Fizika I, Villamosságtan Vizsga 2005-2006-1fé, 2006. jan. 12. Név:. EHA Kód:

Fizika I, Villamosságtan Vizsga 2005-2006-1fé, 2006. jan. 12. Név:. EHA Kód: E-1 oldal Név:. EHA Kód: 1. Írja fel a tölté-megmaradái (folytonoági) egyenletet. (5 %)... 2. Határozza meg a Q = 6 µc nagyágú pontzerű töltétől r = 15 cm távolágban az E elektromo térerőég értékét, (

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

Teszt kérdések. Az R n vektortér

Teszt kérdések. Az R n vektortér Teszt kérdések Döntse el az alábbi állításokról, hogy igazak agy hamisak! Az R tér geometriája 1. Ha két térbeli egyenesnek nincs közös pontja, akkor párhuzamosak.. Egy térbeli egyenest egyértelműen meghatározza

Részletesebben

Zárójelentés 2003-2005

Zárójelentés 2003-2005 Zárójelentés 2003-2005 A kutatási programban nemlineáris rendszerek ún. lineáris, paraméter-változós (LPV) modellezésével és rendszer elméleti tulajdonságainak kidolgozásával foglalkoztunk. Az LPV modellosztály

Részletesebben

Adatbázisok I A relációs algebra

Adatbázisok I A relációs algebra Adatbázisok I A relációs algebra Relációs algebra Az adatmodell műveleti része definiálja a rendelkezésre álló operátorokat. Műveletek típusai: -adat definiáló(ddl) Data DefinitionLanguage -adatkezelő(dml)

Részletesebben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben

Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Eötvös Loránd Tudományegyetem Természettudományi kar Lineáris algebra és mátrixok alkalmazása a numerikus analízisben Szakdolgozat Készítette: Borostyán Dóra Matematika BSc matematikai elemző Témavezető:

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Ismerkedés az Abel-csoportokkal

Ismerkedés az Abel-csoportokkal Ismerkedés az Abel-csoportokkal - Szakdolgozat - Készítette: Takács Mária (Matematika BSc, Tanári szakirány) Témavezető: Kiss Emil (Algebra és Számelmélet Tanszék, Matematikai Intézet) Eötvös Loránd Tudományegyetem

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Brückler Zita Flóra. Lineáris rendszerek integrálása

Brückler Zita Flóra. Lineáris rendszerek integrálása Eötvös Loránd Tudományegyetem Természettudományi Kar Brückler Zita Flóra Lineáris rendszerek integrálása BSc szakdolgozat Témavezető: Dr. Kovács Sándor Numerikus Analízis Tanszék Budapest, 2012 Köszönetnyilvánítás

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Kis-Benedek Ágnes Szimmetrikus és periodikus szerkezetek merevsége

Kis-Benedek Ágnes Szimmetrikus és periodikus szerkezetek merevsége Eötvös Loránd Tudományegyetem Természettudományi Kar Kis-Benedek Ágnes Szimmetrikus és periodikus szerkezetek merevsége Alkalmazott matematikus MSc Operációkutatás szakirány Szakdolgozat Témavezető: Jordán

Részletesebben

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK 007/008. tané Szakác Jenő Megyei Fizika Vereny I. forduló 007. noeber 9. MEGOLDÁSOK 007-008. tané - Szakác Jenő Megyei Fizika Vereny I. forduló Megoldáok. d = 50 = 4,4 k/h = 4 / a) t =? b) r =? c) =?,

Részletesebben

XII. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2015 Miskolc, 2015. augusztus 25-27. SZÁN SZABÁLYOZÁSÁNAK HATÁSA AZ ESZTERGÁLÁS REGENERATÍV REZGÉSEIRE

XII. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2015 Miskolc, 2015. augusztus 25-27. SZÁN SZABÁLYOZÁSÁNAK HATÁSA AZ ESZTERGÁLÁS REGENERATÍV REZGÉSEIRE XII. MAGYAR MECANIKAI KONFERENCIA MaMeK, 205 Miskolc, 205. augusztus 25-27. SZÁN SZABÁLYOZÁSÁNAK ATÁSA AZ ESZTERGÁLÁS REGENERATÍV REZGÉSEIRE Lehotzky Dávid, Insperger Tamás 2 és Stépán Gábor 3,2,3 Budapesti

Részletesebben

DIFFERENCIAEGYENLETEK

DIFFERENCIAEGYENLETEK DIFFERENCIAEGYENLETEK A gazdaság változómennyiségeit (jövedelem, fogyasztás, beruházás,...) általában bizonyos időszakonként (naponta, hetente, havonta, évente) figyeljük meg. Ha ezeket a megfigyeléseket

Részletesebben

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b.

FELADATOK A. A feladatsorban használt jelölések: R + = {r R r>0}, R = {r R r < 0}, [a; b] = {r R a r b}, ahol a, b R és a b. FELADATOK A RELÁCIÓK, GRÁFOK TÉMAKÖRHÖZ 1. rész A feladatsorban használt jelölések: R = {r R r < 0}, R + = {r R r>0}, [a; b] = {r R a r b}, ahol a, b R és a b. 4.1. Feladat. Adja meg az α = {(x, y) x +

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

A méretezés alapjai I. Épületek terheinek számítása az MSZ szerint SZIE-YMMF BSc Építőmérnök szak I. évfolyam Nappali tagozat 1. Bevezetés 1.1. Épületek tartószerkezetének részei Helyzetük szerint: vízszintes:

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.)

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.) Lineáris algebra I. Kovács Zoltán Előadásvázlat (2006. február 22.) 2 3 Erdős Jenő emlékének. 4 Tartalomjegyzék 1. A szabadvektorok vektortere 7 1. Szabadvektorok összeadása és skalárral való szorzása...............

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

Matematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Funkcionálanalízis az alkalmazott matematikában

Funkcionálanalízis az alkalmazott matematikában EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Simon Péter Funkcionálanalízis az alkalmazott matematikában egyetemi jegyzet A jegyzet az ELTE IK 2010. évi Jegyzettámogatási pályázat támogatásával készült

Részletesebben

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba

Kecskeméti Fıiskola GAMF Kar Informatika Tanszék. Johanyák Zsolt Csaba Kecskeméti Fıiskola GAMF Kar Informatika Tanszék Johanyák Zsolt Csaba 003 Tartalomjegyzék. Bevezetés.... A megbízhatóság fogalmai..... A termék idıtıl függı képességei...... Használhatóság /Üzemkészség/

Részletesebben

Gáspár Csaba. Analízis

Gáspár Csaba. Analízis Gáspár Csaba Analízis Készült a HEFOP 3.3.-P.-004-09-00/.0 pályázat támogatásával Szerzők: Lektor: Gáspár Csaba Szili László, egyetemi docens c Gáspár Csaba, 006. Tartalomjegyzék. Bevezetés 5. Alapvető

Részletesebben

Juhász Tibor. Lineáris algebra

Juhász Tibor. Lineáris algebra Juhász Tibor Lineáris algebra Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Lineáris algebra Eger, 2013 Készült a TÁMOP-425B-11/1-2011-0001 támogatásával Tartalomjegyzék

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

5. modul Térfogat és felszínszámítás 2

5. modul Térfogat és felszínszámítás 2 Matematika A 1. évfolyam 5. modul Térfogat és felszínszámítás Készítette: Vidra Gábor Matematika A 1. évfolyam 5. modul: TÉRFOGAT ÉS FELSZÍNSZÁMÍTÁS Tanári útmutató A modul célja Időkeret Ajánlott korosztály

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

Online jegyzet az Egészérték Programozás I. és II. tárgyhoz

Online jegyzet az Egészérték Programozás I. és II. tárgyhoz Online jegyzet az Egészérték Programozás I. és II. tárgyhoz Király Tamás, Kis Tamás és Szeg László October 25, 2013 Egészérték programozás I. vizsgatematika 2013. tavasz 1. Az egészérték lineáris programozási

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,

Részletesebben

Adatbázisok I. Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1

Adatbázisok I. Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1 Adatbázisok I. 4 Jánosi-Rancz Katalin Tünde tsuto@ms.sapientia.ro 327A 1-1 Relációs algebra alapja a konkrét lekérdez nyelveknek ő egy speciális algebra, egy halmazorientált nyelv, amely a lekérdezéseket

Részletesebben

Témakörök az osztályozó vizsgához. Matematika

Témakörök az osztályozó vizsgához. Matematika Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű

Részletesebben

A lineáris programozás 1 A geometriai megoldás

A lineáris programozás 1 A geometriai megoldás A lineáris programozás A geometriai megoldás Készítette: Dr. Ábrahám István A döntési, gazdasági problémák optimalizálásának jelentős részét lineáris programozással oldjuk meg. A módszer lényege: Az adott

Részletesebben

Adatbázis rendszerek I Relációs adatmodell műveleti rész (relációs algebra) ME- GEIAL Dr. Kovács László Relációs adatmodell strukturális rész tárolási struktúra séma R(m1,m2, ) adatmodell integritási rész

Részletesebben

Online tanulás nemstacionárius Markov döntési folyamatokban

Online tanulás nemstacionárius Markov döntési folyamatokban Online tanulás nemstacionárius Markov döntési folyamatokban Neu Gergely Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem PhD értekezés tézisei Témavezető:

Részletesebben

A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása

A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása 3. FEJEZET A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása 3.1. Az alapkísérletek célja Hétköznapi megfigyelés, hogy ugyanazon szilárd test alakváltozásainak mértéke függ a testet

Részletesebben

BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK A C É L S Z E R K E Z E T E K I. BMEEOHSAT17 segédlet a BME Építőmérnöki Kar hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi ejlesztése HEFOP/004/3.3.1/0001.01

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2011. november 29. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

Relációs algebrai lekérdezések átírása SQL SELECT-re (példák)

Relációs algebrai lekérdezések átírása SQL SELECT-re (példák) Relációs algebrai lekérdezések átírása SQL SELECT-re (példák) Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 Áttekintés: Rel.algebra és SQL Példák: Tk.Termékek

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

Vasbetontartók vizsgálata az Eurocode és a hazai szabvány szerint

Vasbetontartók vizsgálata az Eurocode és a hazai szabvány szerint Vasbetontartók vizsgálata az Eurocoe és a hazai szabvány szerint Dr. Kiss Zoltán Kolozsvári Műszaki Egyetem 1. Bevezetés A méretezési előírasok betartása minenhol kötelező volt régen is, kötelező ma is.

Részletesebben

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15

Csatlakozási lehetőségek 11. Méretek 12-13. A dilatációs tüske méretezésének a folyamata 14. Acél teherbírása 15 Schöck Dorn Schöck Dorn Tartalom Oldal Termékleírás 10 Csatlakozási lehetőségek 11 Méretek 12-13 A dilatációs tüske méretezésének a folyamata 14 Acél teherbírása 15 Minimális szerkezeti méretek és tüsketávolságok

Részletesebben

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ EUROCODE SZERINT 1 ÉPÜLETEK TARTÓSZERKEZETÉNEK RÉSZEI Helyzetük

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Bányaipari technikus T 1/6

Bányaipari technikus T 1/6 A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees

Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees Matematikai Lapo / Borító 2013. december 13. 19:28:39 13-1-borito 2014/5/20 11:55 page 0 #1 MATEMATIKAI LAPOK A Bolyai János

Részletesebben

Komáromi Éva LINEÁRIS PROGRAMOZÁS

Komáromi Éva LINEÁRIS PROGRAMOZÁS OPERÁCIÓKUTATÁS No.2. Komáromi Éva LINEÁRIS PROGRAMOZÁS Budapest 2005 Komáromi Éva LINEÁRIS PROGRAMOZÁS Javított kiadás OPERÁCIÓKUTATÁS No.2 Megjelenik az FKFP 0231 Program támogatásával a Budapesti Közgazdaságtudományi

Részletesebben

Oktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly.

Oktatási segédlet. Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra. Dr. Jármai Károly. Oktatási segédlet Acél- és alumínium-szerkezetek hegesztett kapcsolatainak méretezése fáradásra a Létesítmények acélszerkezetei tárgy hallgatóinak Dr. Jármai Károly Miskolci Egyetem 013 1 Acél- és alumínium-szerkezetek

Részletesebben

Szent István Egyetem MEZŐGAZDASÁGI ANYAGOK SZÁRÍTÁSI FOLYAMATÁNAK ELEMZÉSE VÁLTOZÓ RÉTEGVASTAGSÁG ESETÉN. Doktori (Ph.D.) értekezés.

Szent István Egyetem MEZŐGAZDASÁGI ANYAGOK SZÁRÍTÁSI FOLYAMATÁNAK ELEMZÉSE VÁLTOZÓ RÉTEGVASTAGSÁG ESETÉN. Doktori (Ph.D.) értekezés. Szent István Egyetem MEZŐGAZDASÁGI ANYAGOK SZÁRÍTÁSI FOLYAMATÁNAK ELEMZÉSE VÁLTOZÓ RÉTEGVASTAGSÁG ESETÉN Doktori (Ph.D.) értekezés Bihercz Gábor Gödöllő 2006. A doktori iskola megnevezése: Műszaki Tudományi

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Színes papíroktól a narancspakolásig a blokkrendszerek szimmetrikus világa

Színes papíroktól a narancspakolásig a blokkrendszerek szimmetrikus világa XIV. Bolyai Konferencia 2009. Március 14. Bodnár József IV. matematikus, ELTE TTK Eötvös Collegium Színes papíroktól a narancspakolásig a blokkrendszerek szimmetrikus világa 1873-ban Émile Mathieu kivételes

Részletesebben

Relációs algebra 1.rész

Relációs algebra 1.rész Relációs algebra 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 Lekérdezések a relációs modellben 2.4. Egy algebrai lekérdező nyelv -- 01B_RelAlg1alap:

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16).

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16). FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS Definíció Definíció Az f ( ) függvény pontban értelmezett deriváltja a f ( + ) f ( ) lim határértékkel egyenlő amennyiben az létezik ( lásd Fig 6) df A deriváltat

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus Síktopológiák a Sorgenfrey-egyenes ötletével Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus 1. Bevezetés A Sorgenfrey-egyenes

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

Programozható vezérlő rendszerek. Szabályozástechnika

Programozható vezérlő rendszerek. Szabályozástechnika - a legtöbb ipari rendszer tartalmaz valamiféle szabályozási feladatot (pozicionálás) - cél: a folyamat egyes paramétereinek megadott határokon belül tartása - a PLC ezeket képes lekezelni (analóg I/O)

Részletesebben

Szilárdtestfizika gyakorlat

Szilárdtestfizika gyakorlat Szilárdtestfizika gyakorlat Bácsi Ádám, Kanász-Nagy Márton, Kézsmárki István Tartalomjegyzék 1. Kristályszerkezet 5 1.1. Rács, elemi rácsvektorok.................................... 5 1.. Reciprok rács..........................................

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Differenciálegyenletek a hétköznapokban

Differenciálegyenletek a hétköznapokban Differenciálegyenletek a hétköznapokban BSc Szakdolgozat Írta: Gondos Réka Matematika BSc, alkalmazott matematikus szakirány Témavezető: Besenyei Ádám adjunktus Alkalmazott Analízis és Számításmatematikai

Részletesebben

Kevei Péter. 2013. november 22.

Kevei Péter. 2013. november 22. Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus

Részletesebben

A továbbhaladás feltételei fizikából és matematikából

A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 10 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8.

Pénzügyi matematika. Medvegyev Péter. 2013. szeptember 8. Pénzügyi matematika Medvegyev Péter 13. szeptember 8. Az alábbi jegyzet a korábbi ötéves gazdaságmatematikai képzés keretében a Corvinus egyetemen tartott matematikai el adásaim kib vített verziója. A

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium

Boronkay György Műszaki Középiskola és Gimnázium Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Halmazok

Részletesebben

Előadó: Dr. Bukovics Ádám

Előadó: Dr. Bukovics Ádám SZÉCHYI ISTVÁ GYT TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása: 6. LŐADÁS [] Dr. émeth Görg: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó - Platth Pál: Acélszerkezetek

Részletesebben

Mezei Ildikó-Ilona. Analitikus mértan

Mezei Ildikó-Ilona. Analitikus mértan Mezei Ildikó-Ilona Analitikus mértan feladatgyűjtemény Kolozsvár 05 Tartalomjegyzék. Vektoralgebra 3.. Műveletek vektorokkal.................................. 3.. Egyenes vektoriális egyenlete..............................

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar. Fuzzy optimalizálás. BSc Szakdolgozat

Eötvös Loránd Tudományegyetem Természettudományi Kar. Fuzzy optimalizálás. BSc Szakdolgozat Eötvös Loránd Tudományegyetem Természettudományi Kar Fuzzy optimalizálás BSc Szakdolgozat Készítette: Rajzinger Zsanett Matematika BSc Matematikai elemző szakirány Témavezető: Fullér Róbert Óbudai Egyetem

Részletesebben

Schöck Tronsole AZT típus SCHÖCK TRONSOLE

Schöck Tronsole AZT típus SCHÖCK TRONSOLE Schöck Tronsole típus SCHÖCK TRONSOLE Monolit vasbeton pihenő és lépcsőházi fal közötti lépéshangszigetelés (beépítéskész teherhordó elemmel) Schöck Tronsole típus Lépcsőpihenő: Monolit vasbeton Lépcsőházi

Részletesebben